JP7238836B2 - Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method - Google Patents

Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method Download PDF

Info

Publication number
JP7238836B2
JP7238836B2 JP2020054995A JP2020054995A JP7238836B2 JP 7238836 B2 JP7238836 B2 JP 7238836B2 JP 2020054995 A JP2020054995 A JP 2020054995A JP 2020054995 A JP2020054995 A JP 2020054995A JP 7238836 B2 JP7238836 B2 JP 7238836B2
Authority
JP
Japan
Prior art keywords
steel pipe
lower limit
flaw
wall thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020054995A
Other languages
Japanese (ja)
Other versions
JP2021156643A (en
Inventor
義樹 住野
浩一 中島
勤 廣口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020054995A priority Critical patent/JP7238836B2/en
Publication of JP2021156643A publication Critical patent/JP2021156643A/en
Application granted granted Critical
Publication of JP7238836B2 publication Critical patent/JP7238836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波探傷を用いて鋼管の外面および内面の疵の合否判定および鋼管の肉厚合否判定を行う鋼管の合否判定システムおよび合否判定方法、ならびに鋼管の製造方法に関する。 The present invention relates to a steel pipe pass/fail judgment system and pass/fail judgment method for judging acceptance/rejection of flaws on the outer and inner surfaces of a steel pipe and judging acceptance/rejection of the wall thickness of a steel pipe using ultrasonic flaw detection, and a steel pipe manufacturing method.

従来から、超音波探傷は、鋼管外面疵の有無、内面疵の有無、肉厚の管の強度の検査に用いられている。具体的には、疵の深さや肉厚判定の下限値および上限値に閾値を設けて超音波探傷による検査を行って、所定の閾値を外れていれば、例えば鋼管の製造過程を通して何らかの異常があり、鋼管の外面、内面、肉厚にその異常が現れていることが把握される。このため、超音波探傷による検査を通じて鋼管の合否を判定している。例えば特許文献1では、垂直探傷の測定結果と斜角探傷の測定結果を組み合わせることによって、有害欠陥であるか否かの判定を容易に行い得る超音波探傷における有害欠陥判定方法を提案している。 Conventionally, ultrasonic flaw detection has been used to inspect the presence or absence of flaws on the outer surface of steel pipes, the presence of flaws on the inner surface of steel pipes, and the strength of thick-walled pipes. Specifically, an ultrasonic inspection is performed by setting thresholds for the depth of flaws and the lower and upper limits for judging wall thickness. It is understood that there is an abnormality in the outer surface, inner surface, and wall thickness of the steel pipe. For this reason, acceptance/rejection of steel pipes is determined through inspection using ultrasonic flaw detection. For example, Patent Document 1 proposes a harmful defect determination method in ultrasonic flaw detection that can easily determine whether or not the defect is a harmful defect by combining the measurement results of vertical flaw detection and the measurement results of oblique flaw detection. .

一方、超音波探傷は、鋼管における疵の有無や肉厚の判定をするのみならず、丸棒や鋼帯など様々な金属材料の合否判定方法として、古くから用いられている。例えば特許文献2では、被探傷材として丸棒材の超音波探傷における合否判定方法を提案している。また、特許文献3では、缶用鋼板に用いられる鋼帯の合否判定方法を提案している。 On the other hand, ultrasonic flaw detection has long been used not only to determine the presence or absence of flaws in steel pipes and the wall thickness, but also as a pass/fail determination method for various metal materials such as round bars and steel strips. For example, Patent Document 2 proposes a pass/fail judgment method in ultrasonic flaw detection of a round bar as a flaw detection target. Further, Patent Document 3 proposes a pass/fail determination method for a steel strip used as a steel plate for cans.

また、超音波探傷は、製造過程の欠陥のみならず、腐食や孔食による鋼管の肉厚欠陥の判定に用いることもある。例えば、特許文献4では、給水加熱器等に用いられる伝熱管について、広がりを持つような肉厚欠陥が正常であるか否かを自動的に判定できるように、軸方向・周方向・最小肉厚部の応力評価・孔食評価をすることによって、肉厚評価を可能とするシステムを提案している。 Moreover, ultrasonic flaw detection is used not only for defects in the manufacturing process, but also for determining wall thickness defects in steel pipes due to corrosion and pitting corrosion. For example, in Patent Document 4, regarding a heat transfer tube used in a feed water heater or the like, it is possible to automatically determine whether or not a wall thickness defect that spreads is normal. We are proposing a system that enables wall thickness evaluation by stress evaluation and pitting corrosion evaluation of thick parts.

超音波探傷を用いて鋼管の外面、内面の疵の深さにおいて不合格と判定された鋼管は、その後、例えば外面疵の深さにおいて不合格の場合は鋼管の外面を研削するなどの手入れをすることによって、再び超音波探傷を用いて合否を判定する。 A steel pipe that is judged to be unacceptable for the depth of flaws on its outer surface or inner surface using ultrasonic flaw detection is then repaired, for example, by grinding the outer surface of the steel pipe if it fails for the depth of flaws on its outer surface. By doing so, ultrasonic flaw detection is used again to determine pass/fail.

ここで、鋼管に発生する代表的な疵のうち超音波探傷で判定する疵としては、材料の欠陥による疵、圧延による疵である。材料の欠陥による疵は、鋼管の長手方向に対し角度を持った疵が多く、一方、圧延による疵は長手方向に対して平行である。超音波探傷では、それぞれ長さが10mm~100mm程度、深さが0.2mm~程度で、線状もしくは点状の疵を判定しており、その判定基準は肉厚の5%以上の疵を「疵あり」として判定している。 Among typical flaws occurring in steel pipes, flaws determined by ultrasonic flaw detection include flaws due to material defects and flaws due to rolling. Most of the flaws due to material defects are angled with respect to the longitudinal direction of the steel pipe, while the flaws due to rolling are parallel to the longitudinal direction. Ultrasonic flaw detection judges linear or point-like flaws with a length of about 10 mm to 100 mm and a depth of about 0.2 mm. It is determined as "flawed".

特開2003-222617号公報JP 2003-222617 A 特開2007-271375号公報JP 2007-271375 A 特開2010-25835号公報JP 2010-25835 A 特開2009-8587号公報JP 2009-8587 A

超音波探傷を用いた検査により不合格判定となった鋼管を手入れ、特に研削するとき、研削によって肉厚判定の下限値が閾値以下の肉厚になって、再度超音波探傷を用いた合否判定の際、肉厚不良で不合格となる場合がある。この場合は、手入れする余地がない鋼管を手入れして再検査することになり、再び超音波探傷を用いて合否判定するまでの工程が無駄となって鋼管の製造能率が著しく低下してしまう。 When a steel pipe that has been judged to be unacceptable by inspection using ultrasonic flaw detection is repaired, especially when grinding, the lower limit of wall thickness judgment becomes less than the threshold value due to grinding, and the pass/fail judgment using ultrasonic flaw detection is performed again. In this case, it may be rejected due to poor wall thickness. In this case, steel pipes that have no room for maintenance are to be repaired and re-inspected, and the process of making pass/fail judgments using ultrasonic flaw detection again becomes useless, resulting in a significant drop in steel pipe manufacturing efficiency.

一方、肉厚の合否判定を、研削の余地も考慮して肉厚判定の下限の閾値を設定すると、本来合格の鋼管まで不合格判定としてしまうおそれがあるため、一律に、研削等の手入れの余地を考慮した肉厚判定の下限の閾値を設定することは、鋼管の肉厚判定基準として望ましくない。 On the other hand, if the lower limit threshold for wall thickness judgment is set in consideration of the room for grinding, there is a risk that even steel pipes that are originally acceptable will be rejected. It is not desirable to set the lower limit threshold for wall thickness determination in consideration of room as a wall thickness determination standard for steel pipes.

上述の特許文献1~4には、超音波探傷を用いた検査により不合格判定となった鋼管について、鋼管の手入れ、例えば研削する場合に、どのように肉厚判定を行うかについて記載されていない。 Patent Documents 1 to 4 described above describe how to determine the wall thickness of a steel pipe that has been rejected by an inspection using ultrasonic flaw detection, when the steel pipe is to be cleaned, for example, by grinding. do not have.

したがって、本発明は、超音波探傷を用いて鋼管の外面および内面の疵および鋼管の肉厚の情報を取得して合否判定を行う際に、手入れする余地がない鋼管を手入れしてしまうことや、本来合格の鋼管まで不合格判定としてしまうことがない技術を提供することを目的とする。 Therefore, the present invention prevents a steel pipe that has no room for maintenance from being repaired when acquiring information on flaws on the outer surface and inner surface of the steel pipe and the wall thickness of the steel pipe using ultrasonic flaw detection and making pass/fail judgments. To provide a technique that does not reject steel pipes that are originally acceptable.

上記課題を解決するため、本発明は、以下の[1]~[9]を提供する。 In order to solve the above problems, the present invention provides the following [1] to [9].

[1]超音波探傷を行って鋼管の外面および内面の疵および鋼管の肉厚の情報を取得し、鋼管の合否判定を行う鋼管の合否判定システムであって、
鋼管の外面および内面の疵の有無の判定を行う疵判定部と、
鋼管の肉厚の判定を行う肉厚判定部と、
前記肉厚判定部の肉厚の判定基準を設定する設定部と、
を有し、
前記設定部は、前記判定基準として、前記疵判定部で疵なしと判定された場合に適用される第1の肉厚の下限値と、前記疵判定部で疵ありと判定された場合に適用される前記第1の肉厚の下限値よりも大きい第2の肉厚の下限値とを設定し、
前記鋼管に対して超音波探傷を行う際に、前記疵の有無ごとに異なる判定基準で肉厚の判定を行うことを特徴とする鋼管の合否判定システム。
[1] A steel pipe pass/fail judgment system that performs ultrasonic flaw detection to acquire information on flaws on the outer and inner surfaces of a steel pipe and the wall thickness of the steel pipe, and judges the pass/fail of the steel pipe,
a flaw determination unit that determines the presence or absence of flaws on the outer surface and the inner surface of the steel pipe;
a thickness determination unit that determines the thickness of the steel pipe;
a setting unit for setting a criterion for determining the thickness of the thickness determination unit;
has
The setting unit includes, as the determination criteria, a first thickness lower limit value applied when the flaw determination unit determines that there is no flaw, and a first wall thickness lower limit applied when the flaw determination unit determines that there is a flaw. and a second thickness lower limit that is greater than the first thickness lower limit,
A pass/fail determination system for a steel pipe, wherein when ultrasonic flaw detection is performed on the steel pipe, a wall thickness is determined based on different determination criteria depending on the presence or absence of the flaw.

[2]前記鋼管に対して超音波探傷を行う際に、前記肉厚判定部では、前記疵判定部で疵ありと判定された部分を含む所定の範囲において、前記第2の肉厚の下限値が適用されることを特徴とする[1]に記載の鋼管の合否判定システム。 [2] When ultrasonic flaw detection is performed on the steel pipe, the wall thickness determination unit sets the lower limit of the second wall thickness in a predetermined range including a portion determined to have a flaw by the flaw determination unit. The steel pipe pass/fail determination system according to [1], wherein the value is applied.

[3]前記疵判定部で疵ありと判定された場合において、前記肉厚判定部で、前記肉厚が前記第2の肉厚の下限値以上と判定された際には、前記鋼管の手入れを行い、前記肉厚が前記第2の肉厚の下限値より小さいと判定された場合には前記鋼管をスクラップとすることを特徴とする[1]または[2]に記載の鋼管の合否判定システム。 [3] When the flaw determination unit determines that there is a flaw, and the wall thickness determination unit determines that the wall thickness is equal to or greater than the second wall thickness lower limit value, maintenance of the steel pipe is performed. and if it is determined that the wall thickness is smaller than the lower limit value of the second wall thickness, the steel pipe is scrapped. system.

[4]前記設定部は、前記疵の情報を取得して、内面疵および外面疵の深さに応じて前記第2の肉厚の下限値の設定値を変化させることを特徴とする[1]から[3]のいずれかに記載の鋼管の合否判定システム。 [4] The setting unit acquires the information on the flaw and changes the setting value of the lower limit value of the second wall thickness according to the depth of the inner surface flaw and the outer surface flaw [1] ] to [3].

[5]超音波探傷を行って鋼管の外面および内面の疵および鋼管の肉厚の情報を取得し、鋼管の合否判定を行う鋼管の合否判定方法であって、
前記鋼管の肉厚判定における前記鋼管の肉厚の判定基準として、疵なしと判定された場合に適用される第1の肉厚の下限値と、疵ありと判定された場合に適用される第1の肉厚の下限値よりも大きい第2の肉厚の下限値とを設定し、
前記鋼管に対して超音波探傷を行う際に、前記疵の有無ごとに異なる判定基準で肉厚の判定を行うことを特徴とする鋼管の合否判定方法。
[5] A steel pipe pass/fail judgment method for performing ultrasonic flaw detection to acquire information on flaws on the outer and inner surfaces of a steel pipe and the wall thickness of the steel pipe and making a pass/fail judgment for the steel pipe,
As a criterion for determining the thickness of the steel pipe in determining the thickness of the steel pipe, a first lower limit value of the thickness applied when it is determined that there is no flaw, and a first thickness lower limit value applied when it is determined that there is a flaw. A second thickness lower limit value greater than the first thickness lower limit value is set,
A method for judging acceptance/rejection of a steel pipe, wherein when the steel pipe is subjected to ultrasonic flaw detection, a wall thickness is judged according to a different judgment criterion depending on the presence or absence of the flaw.

[6]前記鋼管に対して超音波探傷を行う際に、前記疵判定部で疵ありと判定された部分を含む所定の範囲において、前記第2の肉厚の下限値が適用されることを特徴とする[5]に記載の鋼管の合否判定方法。 [6] When ultrasonic flaw detection is performed on the steel pipe, the second wall thickness lower limit is applied in a predetermined range including a portion judged to have a flaw by the flaw judgment unit. The acceptance/rejection determination method for the steel pipe according to [5].

[7]前記超音波探傷により疵ありと判定された場合において、前記肉厚が前記第2の肉厚の下限値以上と判定された際には、前記鋼管の手入れを行い、前記肉厚が前記第2の肉厚の下限値より小さいと判定された場合には前記鋼管をスクラップとすることを特徴とする[5]または[6]に記載の鋼管の合否判定方法。 [7] When it is determined that there is a flaw by the ultrasonic flaw detection, and when the wall thickness is determined to be equal to or greater than the second lower limit value of the wall thickness, the steel pipe is repaired and the wall thickness is reduced. The steel pipe acceptance/rejection determination method according to [5] or [6], wherein the steel pipe is scrapped when it is determined that the wall thickness is smaller than the second lower limit value.

[8]内面疵および外面疵の深さに応じて前記第2の肉厚の下限値の設定値を変化させることを特徴とする[5]から[7]のいずれかに記載の鋼管の合否判定システム。 [8] Acceptance or rejection of the steel pipe according to any one of [5] to [7], characterized in that the set value of the lower limit value of the second wall thickness is changed according to the depth of the inner surface flaw and the outer surface flaw. judgment system.

[9]上記[5]から[8]のいずれかの鋼管の合否判定方法を適用して鋼管を製造することを特徴とする鋼管の製造方法。 [9] A method of manufacturing a steel pipe, wherein the steel pipe is manufactured by applying the steel pipe pass/fail determination method according to any one of [5] to [8] above.

本発明では、鋼管の肉厚の判定基準として、疵判定部で疵なしと判定された場合に適用される第1の肉厚の下限値と、疵判定部で疵ありと判定された場合に適用される第1の肉厚の下限値よりも大きい第2の肉厚の下限値とを設定し、鋼管に対して超音波探傷を行う際に、疵の有無ごとに異なる判定基準で肉厚の判定を行う。このため、本来手入れ可能であるはずの肉厚の鋼管を不合格判定として消費してしまうことを防止することができ、また、手入れ(例えば研削)を行うと肉厚が不合格となってしまうような鋼管を手入れ(研削)すること、および、再度、超音波探傷を用いることによる無駄を省くことができる。このため、疵判定および肉厚判定の精度と生産性の両方を低下させることなく、鋼管を製造することができる。 In the present invention, as the criteria for determining the thickness of the steel pipe, the first thickness lower limit value applied when the flaw determination unit determines that there is no flaw, and the first thickness lower limit value applied when the flaw determination unit determines that there is a flaw. A second wall thickness lower limit that is greater than the applied first wall thickness lower limit is set, and when the steel pipe is subjected to ultrasonic flaw detection, the wall thickness is determined according to different criteria depending on the presence or absence of flaws. judgment is made. For this reason, it is possible to prevent a steel pipe with a thick wall that should be repairable from being consumed as a reject decision, and if repair (for example, grinding) is performed, the wall thickness will be rejected. It is possible to save waste by trimming (grinding) such steel pipes and again using ultrasonic flaw detection. Therefore, the steel pipe can be manufactured without deteriorating both accuracy of flaw determination and wall thickness determination and productivity.

本発明の一実施形態に係る鋼管の合否判定システムを示すブロック図である。1 is a block diagram showing a steel pipe acceptance/rejection determination system according to an embodiment of the present invention; FIG. 図1の鋼管の合否判定システムにより実行される鋼管の合否判定方法を示すフローチャートである。FIG. 2 is a flow chart showing a steel pipe pass/fail judgment method executed by the steel pipe pass/fail judgment system of FIG. 1 ; FIG. 実際に鋼管の研削手入れによってどの程度肉厚が減肉されるか調べた一例を示す図である。FIG. 3 is a diagram showing an example of an investigation of how much the thickness of a steel pipe is actually reduced by grinding. 肉厚の第2の肉厚の下限値(下限値B)の適用範囲の例を示す模式図である。It is a schematic diagram which shows the example of the applicable range of the lower limit (lower limit B) of the 2nd thickness of thickness. 本発明における第2の肉厚の下限値(下限値B)を適用した場合に、手入れ代なし・スクラップ判定となる例を示す図である。FIG. 10 is a diagram showing an example of determination of no maintenance fee/scrap when the second lower limit value (lower limit value B) of the wall thickness in the present invention is applied.

以下、添付図面を参照して、本発明の実施形態について説明する。
図1は本発明の一実施形態に係る鋼管の合否判定システムを示すブロック図、図2は図1のシステムにより実行される鋼管の合否判定方法を示すフローチャートである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a steel pipe acceptance/rejection determination system according to an embodiment of the present invention, and FIG. 2 is a flow chart showing a steel pipe acceptance/rejection determination method executed by the system of FIG.

鋼管の合否判定システム1は、疵判定部2と、肉厚判定部3と、設定部4と、出力部5とを有する。鋼管の合否判定システム1は、超音波探傷装置10により鋼管の超音波探傷を行って鋼管の外面および内面の疵および鋼管の肉厚の情報を取得する。 A steel pipe acceptance/rejection determination system 1 includes a flaw determination unit 2 , a wall thickness determination unit 3 , a setting unit 4 , and an output unit 5 . The steel pipe pass/fail determination system 1 performs ultrasonic flaw detection on the steel pipe using an ultrasonic flaw detector 10 to acquire information on flaws on the outer and inner surfaces of the steel pipe and on the wall thickness of the steel pipe.

疵判定部2は、超音波探傷装置10から鋼管の疵情報を取得し、鋼管の疵の有無を判定する。疵判定部2では、それぞれ長さが10mm~100mm程度、深さが0.2mm~程度で、線状もしくは点状の疵を判定しており、その判定基準は肉厚の5%以上の疵を「疵あり」と判定する。 The flaw determination unit 2 acquires flaw information of the steel pipe from the ultrasonic flaw detector 10 and determines whether or not there is a flaw in the steel pipe. The flaw judging section 2 judges linear or point-like flaws with a length of about 10 mm to 100 mm and a depth of about 0.2 mm or more, and the judgment criterion is a flaw of 5% or more of the thickness. is determined to be "flawed".

肉厚判定部3は、超音波探傷装置10から鋼管の肉厚情報を取得し、肉厚が判定基準を満たしているか否かを判定する。 The wall thickness determination unit 3 acquires wall thickness information of the steel pipe from the ultrasonic flaw detector 10 and determines whether or not the wall thickness satisfies the determination criteria.

設定部4は、肉厚の判定基準として、疵判定部2で疵なしと判定された場合に適用される第1の肉厚の下限値(下限値A)と、疵判定部2で疵ありと判定された場合に適用される第1の肉厚の下限値よりも大きい第2の肉厚の下限値(下限値B)とを設定する。 The setting unit 4 uses, as a thickness determination criterion, a first thickness lower limit value (lower limit value A) applied when the flaw determination unit 2 determines that there is no flaw, and a flaw determination unit 2 determines whether there is a flaw. A second thickness lower limit value (lower limit value B) that is greater than the first thickness lower limit value that is applied when it is determined that

肉厚判定部3では、設定部4で肉厚の判定基準として設定された第1の肉厚の下限値および第2の肉厚の下限値とにより肉厚の判定を行う。 The thickness determination unit 3 determines the thickness based on the first thickness lower limit value and the second thickness lower limit value set as the thickness determination criteria in the setting unit 4 .

具体的には、肉厚判定部3は、疵判定部2の判定情報を取得し、疵判定部2で「疵なし」の判定がなされた場合、判定基準として第1の肉厚の下限値(下限値A)を用いて肉厚判定を行い、肉厚が合格か不合格かを判定する。一方、疵判定部2で「疵あり」の判定がなされた場合、すなわち、疵判定が不合格の場合、判定基準として第2の肉厚の下限値(下限値B)を用いて肉厚判定を行い、鋼管を研削等の手入れに供されるか、スクラップになるかを判定する。肉厚判定部3の判定結果は出力部5から出力される。 Specifically, the thickness determination unit 3 acquires the determination information of the flaw determination unit 2, and when the flaw determination unit 2 determines that there is no flaw, the first thickness lower limit value is used as a determination criterion. (Lower limit value A) is used to determine the wall thickness to determine whether the wall thickness is acceptable or unacceptable. On the other hand, when the flaw determination unit 2 determines that there is a flaw, that is, when the flaw determination is unacceptable, the thickness is determined using the second thickness lower limit (lower limit B) as the determination criterion. Then, it is determined whether the steel pipe is subjected to maintenance such as grinding or scrapped. The determination result of the thickness determination unit 3 is output from the output unit 5 .

次に、このときの合否判定方法について、図2を参照して詳細に説明する。
まず、設定部4により肉厚判定の判定基準として、第1および第2の肉厚の下限値(下限値A、B)を設定する(ステップST1)。次いで、超音波探傷装置10を用いて超音波探傷を行い、疵および肉厚情報を取得する(ステップST2)。
Next, the acceptance/rejection determination method at this time will be described in detail with reference to FIG.
First, the lower limit values (lower limit values A and B) of the first and second thicknesses are set by the setting unit 4 as criteria for thickness determination (step ST1). Next, ultrasonic flaw detection is performed using the ultrasonic flaw detector 10 to acquire flaws and wall thickness information (step ST2).

取得した疵情報に基づいて、疵判定部2により、疵の有無を判定する(ステップST3)。「疵なし」と判定された場合は、肉厚判定部3により、鋼管の肉厚が第1の肉厚の下限値(下限値A)以上か否かを判定する(ステップST4)。肉厚が第1の肉厚の下限値(下限値A)以上であった場合は、出力部5から「合格」との判定結果が出力される。一方、肉厚が第1の肉厚の下限値(下限値A)よりも小さい場合は、出力部5から「不合格」との判定結果が出力される。疵判定部2により「疵あり」と判定された場合は、肉厚判定部3により、鋼管の肉厚が第2の肉厚の下限値(下限値B)上か否かを判定する(ステップST5)。肉厚が第2の肉厚の下限値(下限値B)以上であった場合は、鋼管に「手入れ代」あり(例えば研削代あり)と判定され、出力部5から「手入れ代あり」との判定結果が出力される。この場合は、鋼管の手入れ(例えば研削)を行って、再度、超音波探傷を行う。一方、肉厚が第2の肉厚の下限値(肉厚下限値B)よりも小さい場合は、鋼管に「手入れ代」なしと判定され、出力部5から「手入れ代なし」との判定結果が出力される。この場合は、鋼管の手入れは行われず、スクラップとされる。 Based on the acquired flaw information, the flaw determination unit 2 determines whether or not there is a flaw (step ST3). When it is determined that there is no flaw, the thickness determination section 3 determines whether or not the thickness of the steel pipe is equal to or greater than the first lower limit value (lower limit value A) of the thickness (step ST4). If the thickness is equal to or greater than the lower limit value (lower limit value A) of the first thickness, the output unit 5 outputs a determination result of "accepted". On the other hand, when the thickness is smaller than the lower limit value (lower limit value A) of the first thickness, the output unit 5 outputs a determination result of “fail”. When the flaw determination unit 2 determines that there is a flaw, the thickness determination unit 3 determines whether the thickness of the steel pipe is above the second lower limit value (lower limit value B) of the thickness (step ST5). If the wall thickness is equal to or greater than the second lower limit value (lower limit B) of the wall thickness, it is determined that the steel pipe has a "maintenance allowance" (for example, there is a grinding allowance), and the output section 5 indicates "a maintenance allowance". is output. In this case, the steel pipe is repaired (for example, by grinding), and the ultrasonic flaw detection is performed again. On the other hand, if the wall thickness is smaller than the second wall thickness lower limit value (wall thickness lower limit value B), it is determined that there is no "maintenance allowance" for the steel pipe, and the determination result of "no maintenance allowance" is output from the output unit 5. is output. In this case, the steel pipe is scrapped without any maintenance.

なお、本実施形態においては、鋼管の探傷と肉厚測定を同一の自動超音波探傷装置10で実施しているが、鋼管の肉厚の測定部位と疵の対応が取れれば、特段制約はなく、別々の装置で実施してもよい。 In the present embodiment, the same automatic ultrasonic flaw detector 10 is used for flaw detection and wall thickness measurement of the steel pipe. , may be performed on separate devices.

以上のような方法を実施するにあたり、実際に鋼管の研削手入れによってどの程度肉厚が減肉されるか調べた一例が図3である。様々な鋼管の径の大きさ、肉厚、品種などによって図3に示すような研削量を予め調査し、第2の肉厚の下限値(下限値B)を設定することが望ましい。下限値Bを過度に設定してしまえば、手入れ代が十分残っている鋼管も廃棄しなければならないことになり、生産能率を下げる要因となる。例えば図3の例では、鋼管の肉厚4.68mmの部分を研削すると肉厚が4.43mmとなり、研削による減肉量は0.25mmである。したがって、この肉厚4.68mm部分が「疵あり」の範囲であり、手入れのために研削しなければならないとすると、研削後の肉厚である4.43mmが許容できる肉厚であるか否かが問題となる。例えば、研削後に許容される肉厚の下限値が4.5mmである場合、第2の肉厚の下限値(下限値B)は4.75mmとなり、図3の例では「手入れ代なし」となる。 FIG. 3 shows an example of an investigation of how much the thickness of a steel pipe is actually reduced by grinding treatment in carrying out the above method. It is desirable to set the second wall thickness lower limit (lower limit B) by previously investigating the amount of grinding as shown in FIG. If the lower limit value B is set excessively, even steel pipes with sufficient maintenance allowance must be discarded, which is a factor in lowering production efficiency. For example, in the example of FIG. 3, grinding a portion of a steel pipe having a thickness of 4.68 mm results in a thickness of 4.43 mm, and the amount of thickness reduction due to grinding is 0.25 mm. Therefore, assuming that the 4.68 mm thick portion is within the range of "flawed" and must be ground for maintenance, the thickness of 4.43 mm after grinding is an allowable thickness. The question is whether. For example, if the lower limit of the wall thickness allowed after grinding is 4.5 mm, the second lower limit of the wall thickness (lower limit B) is 4.75 mm, and in the example of FIG. Become.

本実施形態では、超音波探傷で不合格となった際に、鋼管の手入れ、例えば研削を行って再び超音波探傷をすることが適切か否かを判断して、鋼管の手入れや再度の超音波探傷が無駄になってしまうことを未然に防止するため、肉厚の判定基準として2段の下限値(第1および第2の肉厚の下限値(下限値A、B))を設けている。このとき、上記例のように第2の肉厚の下限値(下限値B)を一律に設けてもよいが、鋼管の手入れや再度の超音波探傷が無駄になってしまうことをより確実に防止する観点からは、設定部4が疵の情報を取得して、内面疵および外面疵の深さに応じて第2の肉厚の下限値(下限値B)の設定値を変化させるようにすることが望ましい。 In this embodiment, when the ultrasonic flaw detection fails, it is determined whether it is appropriate to perform maintenance of the steel pipe, for example, grinding, and then perform ultrasonic flaw detection again. In order to prevent sonic flaw detection from being wasted, two lower limits (first and second lower limits of thickness (lower limits A, B)) are provided as criteria for determining thickness. there is At this time, the lower limit value (lower limit value B) of the second wall thickness may be uniformly set as in the above example, but it is more reliable to prevent the maintenance of the steel pipe and the ultrasonic flaw detection again from being wasted. From the viewpoint of prevention, the setting unit 4 acquires flaw information and changes the set value of the lower limit value (lower limit value B) of the second wall thickness according to the depth of the inner surface flaw and the outer surface flaw. It is desirable to

超音波探傷は、鋼管の超音波探傷による探傷ができない区間である不感帯を除いたほぼ全長にわたって実施することが好ましい。「疵あり」と判定された場合、疵の前後の所定範囲で下限値Bを適用するようにすることができる。例えば図4に示すように、20mmを1区間とし、区間内に疵ありと判定された場合、その前後20mm区間までを下限値Bの適用範囲とする。つまり、疵があった箇所を含め、60mmが第2の肉厚の下限値である下限値Bの適用範囲である。一方、第1の肉厚の下限値である下限値Aは、鋼管の超音波探傷が行われる長さ全体に適用することができる。 Ultrasonic flaw detection is preferably performed over almost the entire length of the steel pipe except for the dead zone, which is a section where ultrasonic flaw detection cannot be performed. When it is determined that there is a "flaw", the lower limit value B can be applied within a predetermined range before and after the flaw. For example, as shown in FIG. 4, when 20 mm is defined as one section and it is determined that there is a flaw in the section, the lower limit value B is applied to a section of 20 mm before and after that section. In other words, the applicable range of the lower limit value B, which is the second lower limit value of the thickness, is 60 mm, including the portion with the flaw. On the other hand, the lower limit A, which is the lower limit of the first wall thickness, can be applied to the entire length of the steel pipe for ultrasonic flaw detection.

以上のように、本実施形態では、鋼管の肉厚の判定基準として、疵判定部で疵なしと判定された場合に適用される第1の肉厚の下限値(下限値A)と、疵判定部で疵ありと判定された場合に適用される第1の肉厚の下限値よりも大きい第2の肉厚の下限値(下限値B)とを設定して疵の有無ごとに異なる判定基準で肉厚の判定を行う。このため、本来手入れ可能であるはずの肉厚を有する鋼管を手入れ代なしとして消費してしまうことを防止することができる。また、手入れ(例えば研削)を行うと肉厚が不合格となってしまうような鋼管を手入れ(研削)すること、および、再度、超音波探傷を用いることによる無駄を省くことができる。このため、疵判定および肉厚判定の精度と生産性の両方を低下させることなく、鋼管を製造することができる。 As described above, in the present embodiment, the first wall thickness lower limit value (lower limit value A) applied when the defect determination unit determines that there is no defect, and A second thickness lower limit value (lower limit value B) that is larger than the first thickness lower limit value applied when the determination unit determines that there is a flaw is set, and different determinations are made depending on the presence or absence of flaws. Judgment of wall thickness is performed according to the standard. Therefore, it is possible to prevent a steel pipe having a wall thickness that should be repairable from being consumed without a maintenance fee. In addition, it is possible to eliminate waste caused by cleaning (grinding) a steel pipe whose wall thickness would be rejected by cleaning (for example, grinding) and using ultrasonic flaw detection again. Therefore, the steel pipe can be manufactured without deteriorating both accuracy of flaw determination and wall thickness determination and productivity.

次に、実施例について説明する。
ここでは、超音波探傷を実施したすべての鋼管に対して、下限値AおよびBよりも薄肉となって不合格判定された割合を1ヵ月程度にわたり調べた結果について、表1を参照して説明する。超音波探傷を実施した鋼管は外径が60.3~177.8mmφ、肉厚は4.0~40.5mmであった。
Next, examples will be described.
Here, for all the steel pipes subjected to ultrasonic flaw detection, the ratio of the steel pipes that were thinner than the lower limits A and B and were judged to be rejected was examined over a period of about one month. The results will be described with reference to Table 1. do. The steel pipe subjected to ultrasonic flaw detection had an outer diameter of 60.3 to 177.8 mmφ and a wall thickness of 4.0 to 40.5 mm.

このとき、要求仕様の肉厚下限値が例えば6.02mmだった場合、肉厚の下限値Aは要求仕様の+0.13mmとなるように、つまり6.15mmと設定し、肉厚の下限値Bは下限値Aにさらに0.15mmを加えて6.30mmとなるように設定した。この条件で「手入れ代なし・スクラップ」判定となる鋼管の一例を図5に示す。すなわち、図5の例では、「疵あり」で肉厚が6.22mmであり、下限値Bの6.30mmを下回っているため、「手入れ代なし・スクラップ」判定となる。 At this time, if the lower limit of the wall thickness of the required specification is, for example, 6.02 mm, the lower limit of the wall thickness A is set to +0.13 mm of the required specification, that is, 6.15 mm, and the lower limit of the wall thickness is B was set to 6.30 mm by adding 0.15 mm to the lower limit A. FIG. 5 shows an example of a steel pipe judged to be "no maintenance fee/scrap" under these conditions. That is, in the example of FIG. 5, the wall thickness is 6.22 mm with "flaw", which is below the lower limit B of 6.30 mm, so the determination is "no maintenance fee/scrap".

表1では、下限値Bを種々に設定し、鋼管の超音波探傷による合否判定において、超音波探傷を実施した全ての鋼管に対して、超音波探傷により疵を発見した鋼管のうち、肉厚の下限値AおよびBを下回った鋼管の割合を示している。ここでは、下限値Aの値は+0.13mmで変更せず、下限値Bの値を変更し、それぞれ1ヵ月間、下限値Bを下回る鋼管の本数を調べた。なお、表1では、下限値Bの値を下限値Aからの増加分として記載し、+0.15~+0.3の範囲としている In Table 1, the lower limit value B is set variously, and in the pass/fail judgment by ultrasonic flaw detection of steel pipes, for all steel pipes subjected to ultrasonic flaw detection, among the steel pipes in which flaws were found by ultrasonic flaw detection, shows the percentage of steel pipes below the lower limits A and B of . Here, the value of the lower limit A was unchanged at +0.13 mm, and the value of the lower limit B was changed, and the number of steel pipes below the lower limit B was investigated for one month. In Table 1, the value of the lower limit B is described as an increase from the lower limit A, and is in the range of +0.15 to +0.3.

表1に示すように、従来の下限値Aを下回った鋼管は、超音波探傷を行ったすべての鋼管の1.5%である。これに対し、下限値Bを下回る鋼管が例えば0.15%あった場合、本発明の実施前と比較して、鋼管の手入れや研削、超音波探傷の再度の実施による操業上の無駄を1割省くことができたといえる。 As shown in Table 1, 1.5% of all the steel pipes subjected to ultrasonic flaw detection are below the conventional lower limit value A. On the other hand, if the percentage of steel pipes below the lower limit B is, for example, 0.15%, compared to before the implementation of the present invention, the operational waste due to maintenance, grinding, and re-implementation of ultrasonic flaw detection of steel pipes is reduced by 1. It can be said that it was possible to save it.

表1から、下限値Bを+0.30mmとすることで、肉厚下限値Bを下回り不合格となった鋼管は0.36%であった。下限値Aを下回った鋼管の割合と比較すると、手入れし、再度の超音波探傷を実施してしまう無駄を24%省くことができたことになる。ただし、下限値Bの値を大きくすればするほど、本来手入れ、研削することによって合格となる鋼管も不合格判定としてしまう。本例では目標値を0.24%と設定した。その結果、下限値Bが+0.30mmのときにその目標を達成できた。このため、下限値Bは+0.30mmを最適値とした。この目標値は削減したい手入れ、研削量を考慮して適宜設定可能である。 From Table 1, by setting the lower limit B to +0.30 mm, 0.36% of the steel pipes were rejected because they fell below the lower limit B in wall thickness. Compared with the ratio of the steel pipes falling below the lower limit A, it means that 24% of the waste of performing maintenance and performing ultrasonic flaw detection again was able to be saved. However, the larger the value of the lower limit B is, the more the steel pipes, which are supposed to pass after maintenance and grinding, are rejected. In this example, the target value was set at 0.24%. As a result, the target was achieved when the lower limit B was +0.30 mm. For this reason, the lower limit B was set to +0.30 mm as an optimum value. This target value can be appropriately set in consideration of the maintenance and grinding amount to be reduced.

Figure 0007238836000001
Figure 0007238836000001

本発明では、手入れ(研削)したら肉厚下限を下回ってしまう鋼管を、手入れ(研削)する前に下限値Bの判定によって判別する。しかし、上述の図3および図5から理解されるように、研削による減肉量は振れ幅が大きいため、下限値Bをより大きな値とすると、研削代が十分あるような鋼管でも不合格判定(手入れ(研削)不可)としてしまう。このため、研削量がどの程度であるかを詳細に調べ、可能であれば、鋼種や要求仕様の肉厚下限値を考慮して、下限値Bを逐一設定することが最適な肉厚判定である。 In the present invention, a steel pipe whose wall thickness falls below the lower limit after maintenance (grinding) is determined by determining the lower limit value B before maintenance (grinding). However, as can be seen from FIGS. 3 and 5 described above, since the amount of wall thickness reduction due to grinding has a large fluctuation range, if the lower limit value B is set to a larger value, even a steel pipe with sufficient grinding allowance can be rejected. (Grinding is not possible). For this reason, the optimum thickness determination is to investigate the amount of grinding in detail, and if possible, consider the lower limit of thickness for the steel type and required specifications, and set the lower limit B one by one. be.

以上、本発明の実施の形態および実施例について説明したが、これらはあくまで例示に過ぎず、制限的なものではないと考えられるべきである。上記の実施形態は、本発明の要旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 Although the embodiments and examples of the present invention have been described above, they should be considered as merely illustrative and not restrictive. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the gist of the present invention.

1 鋼管の合否判定システム
2 疵判定部
3 肉厚判定部
4 設定部
5 出力部
1 steel pipe pass/fail determination system 2 flaw determination unit 3 wall thickness determination unit 4 setting unit 5 output unit

Claims (9)

超音波探傷を行って鋼管の外面および内面の疵および鋼管の肉厚の情報を取得し、鋼管の合否判定を行う鋼管の合否判定システムであって、
鋼管の外面および内面の疵の有無の判定を行う疵判定部と、
鋼管の肉厚の判定を行う肉厚判定部と、
前記肉厚判定部の肉厚の判定基準を設定する設定部と、
を有し、
前記設定部は、前記判定基準として、前記疵判定部で疵なしと判定された場合に適用される第1の肉厚の下限値と、前記疵判定部で疵ありと判定された場合に適用される前記第1の肉厚の下限値よりも大きい第2の肉厚の下限値とを設定し、
前記鋼管に対して超音波探傷を行う際に、前記疵の有無ごとに異なる判定基準で肉厚の判定を行うことを特徴とする鋼管の合否判定システム。
A steel pipe pass/fail judgment system for performing ultrasonic flaw detection to acquire information on flaws on the outer and inner surfaces of a steel pipe and the wall thickness of the steel pipe, and making a pass/fail judgment of the steel pipe,
a flaw determination unit that determines the presence or absence of flaws on the outer surface and the inner surface of the steel pipe;
a thickness determination unit that determines the thickness of the steel pipe;
a setting unit for setting a criterion for determining the thickness of the thickness determination unit;
has
The setting unit includes, as the determination criteria, a first thickness lower limit value applied when the flaw determination unit determines that there is no flaw, and a first wall thickness lower limit applied when the flaw determination unit determines that there is a flaw. and a second thickness lower limit that is greater than the first thickness lower limit,
A pass/fail determination system for a steel pipe, wherein when ultrasonic flaw detection is performed on the steel pipe, a wall thickness is determined based on different determination criteria depending on the presence or absence of the flaw.
前記鋼管に対して超音波探傷を行う際に、前記肉厚判定部では、前記疵判定部で疵ありと判定された部分を含む所定の範囲において、前記第2の肉厚の下限値が適用されることを特徴とする請求項1に記載の鋼管の合否判定システム。 When the steel pipe is subjected to ultrasonic flaw detection, the wall thickness determination unit applies the second wall thickness lower limit to a predetermined range including the portion determined to have a flaw by the flaw determination unit. The acceptance/rejection determination system for steel pipes according to claim 1, characterized in that: 前記疵判定部で疵ありと判定された場合において、前記肉厚判定部で、前記肉厚が前記第2の肉厚の下限値以上と判定された際には、前記鋼管の手入れを行い、前記肉厚が前記第2の肉厚の下限値より小さいと判定された場合には前記鋼管をスクラップとすることを特徴とする請求項1または請求項2に記載の鋼管の合否判定システム。 When the flaw determination unit determines that there is a flaw and the wall thickness determination unit determines that the wall thickness is equal to or greater than the second lower limit value of the wall thickness, the steel pipe is repaired, 3. The steel pipe acceptance/rejection determination system according to claim 1 or 2, wherein the steel pipe is scrapped when it is determined that the wall thickness is smaller than the lower limit value of the second wall thickness. 前記設定部は、前記疵の情報を取得して、内面疵および外面疵の深さに応じて前記第2の肉厚の下限値の設定値を変化させることを特徴とする請求項1から請求項3のいずれか一項に記載の鋼管の合否判定システム。 1 to 4, wherein the setting unit acquires the information on the flaw and changes the setting value of the lower limit value of the second wall thickness according to the depth of the inner surface flaw and the outer surface flaw. Item 4. The acceptance/rejection determination system for the steel pipe according to any one of Item 3. 超音波探傷を行って鋼管の外面および内面の疵および鋼管の肉厚の情報を取得し、鋼管の合否判定を行う鋼管の合否判定方法であって、
前記鋼管の肉厚判定における前記鋼管の肉厚の判定基準として、疵なしと判定された場合に適用される第1の肉厚の下限値と、疵ありと判定された場合に適用される第1の肉厚の下限値よりも大きい第2の肉厚の下限値とを設定し、
前記鋼管に対して超音波探傷を行う際に、前記疵の有無ごとに異なる判定基準で肉厚の判定を行うことを特徴とする鋼管の合否判定方法。
A steel pipe pass/fail determination method for performing ultrasonic flaw detection to acquire information on flaws on the outer and inner surfaces of a steel pipe and the wall thickness of the steel pipe, and determining pass/fail of the steel pipe,
As a criterion for determining the thickness of the steel pipe in determining the thickness of the steel pipe, a first lower limit value of the thickness applied when it is determined that there is no flaw, and a first thickness lower limit value applied when it is determined that there is a flaw. A second thickness lower limit value greater than the first thickness lower limit value is set,
A method for judging acceptance/rejection of a steel pipe, wherein when the steel pipe is subjected to ultrasonic flaw detection, a wall thickness is judged according to a different judgment criterion depending on the presence or absence of the flaw.
前記鋼管に対して超音波探傷を行う際に、前記疵判定部で疵ありと判定された部分を含む所定の範囲において、前記第2の肉厚の下限値が適用されることを特徴とする請求項5に記載の鋼管の合否判定方法。 The second wall thickness lower limit is applied to a predetermined range including a portion determined to have a flaw by the flaw determination unit when ultrasonic flaw detection is performed on the steel pipe. The acceptance/rejection determination method for the steel pipe according to claim 5. 前記超音波探傷により疵ありと判定された場合において、前記肉厚が前記第2の肉厚の下限値以上と判定された際には、前記鋼管の手入れを行い、前記肉厚が前記第2の肉厚の下限値より小さいと判定された場合には前記鋼管をスクラップとすることを特徴とする請求項5または請求項6に記載の鋼管の合否判定方法。 When it is determined that there is a flaw by the ultrasonic flaw detection, and when the wall thickness is determined to be equal to or greater than the second lower limit value of the wall thickness, the steel pipe is repaired, and the wall thickness is reduced to the second wall thickness. 7. The steel pipe acceptance/rejection determination method according to claim 5 or 6, wherein the steel pipe is scrapped when it is determined that the wall thickness is smaller than the lower limit of the wall thickness. 内面疵および外面疵の深さに応じて前記第2の肉厚の下限値の設定値を変化させることを特徴とする請求項5から請求項7のいずれか一項に記載の鋼管の合否判定方法。 8. The acceptance/rejection determination of the steel pipe according to any one of claims 5 to 7, wherein the set value of the lower limit value of the second wall thickness is changed according to the depth of the inner surface flaw and the outer surface flaw. Method. 請求項5から請求項8のいずれか一項の鋼管の合否判定方法を適用して鋼管を製造することを特徴とする鋼管の製造方法。 A method for manufacturing a steel pipe, wherein the steel pipe is manufactured by applying the steel pipe pass/fail determination method according to any one of claims 5 to 8.
JP2020054995A 2020-03-25 2020-03-25 Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method Active JP7238836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020054995A JP7238836B2 (en) 2020-03-25 2020-03-25 Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020054995A JP7238836B2 (en) 2020-03-25 2020-03-25 Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2021156643A JP2021156643A (en) 2021-10-07
JP7238836B2 true JP7238836B2 (en) 2023-03-14

Family

ID=77917999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020054995A Active JP7238836B2 (en) 2020-03-25 2020-03-25 Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP7238836B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271375A (en) 2006-03-30 2007-10-18 Jfe Steel Kk Acceptance decision system of material to be inspected in its flaw using ultrasonic flaw detection and acceptance decision method therefor
JP2018036139A (en) 2016-08-31 2018-03-08 Jfeスチール株式会社 Steel pipe flaw repairing guidance system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243713B2 (en) * 1972-11-27 1977-11-01
JPS61175562A (en) * 1985-01-30 1986-08-07 Sumitomo Metal Ind Ltd Non-destructive inspecting device
JP3475376B2 (en) * 1995-05-02 2003-12-08 Jfeスチール株式会社 Scratching grinding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271375A (en) 2006-03-30 2007-10-18 Jfe Steel Kk Acceptance decision system of material to be inspected in its flaw using ultrasonic flaw detection and acceptance decision method therefor
JP2018036139A (en) 2016-08-31 2018-03-08 Jfeスチール株式会社 Steel pipe flaw repairing guidance system

Also Published As

Publication number Publication date
JP2021156643A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Dickerson et al. Fatigue of friction stir welds in aluminium alloys that contain root flaws
Arola et al. Estimating the fatigue stress concentration factor of machined surfaces
CN104084750B (en) Submerged arc welding restorative procedure after the wearing and tearing of alkaline compression roller
JP7238836B2 (en) Steel pipe pass/fail judgment system and pass/fail judgment method, and steel pipe manufacturing method
JP4616778B2 (en) Life evaluation method for high strength steel welds
CN100578213C (en) Fault detection method of roller body chamfering
Babakri Improvements in flattening test performance in high frequency induction welded steel pipe mill
RU2639599C2 (en) Method of rejection and repair of underground pipe lines
JP6626329B2 (en) Method for identifying the cause of defects in split products and traceability system for split products
KR102484816B1 (en) Method for manufacturing steel fuel-pressure-feeding pipe
JP7144225B2 (en) Spot weld inspection method
JP6839492B2 (en) How to judge the quality of split products and traceability system for split products
JP2010025835A (en) Acceptance decision method of steel strip
Naumkin et al. The assessment of the individual resource of the welded joint during repairs of the technological pipeline
Semiga et al. Evaluation of Fatigue in Gas Pipelines
JP4461031B2 (en) Repair welding method and repair weld member
Höhler et al. Pipe features identified during inline inspection using MFL pigs
CN111199089A (en) Method and device for analyzing reliability and sensitivity of pipeline circumferential weld
Kuan et al. ILI Validation–Overview and Case Studies
Naumkin et al. The use of magnetic flaw detection to control the offset of the edges of the welded joints of technological pipelines
BG3897U1 (en) Heating surfaces automated production line
Romito et al. Total Focusing Method for the Ultrasonic Testing of drawn arc stud welding
Greig Of Smut, Magic Backing Bars, and Hybridization: Lessons Learned in Government-Industry Cooperation to Develop kel-Aluminum Bronze (NAB) Main Propulsion Shaft Repair Procedures
Sinnasamy et al. IDENTIFICATION OF WELDING DEFECTS: A CASE STUDY BASED ON DATA FROM 2010 TO 2012
Kotian et al. Material Properties and Flaw Characteristics of Vintage Girth Welds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150