JP3552440B2 - Method and apparatus for measuring screw element - Google Patents

Method and apparatus for measuring screw element Download PDF

Info

Publication number
JP3552440B2
JP3552440B2 JP01075097A JP1075097A JP3552440B2 JP 3552440 B2 JP3552440 B2 JP 3552440B2 JP 01075097 A JP01075097 A JP 01075097A JP 1075097 A JP1075097 A JP 1075097A JP 3552440 B2 JP3552440 B2 JP 3552440B2
Authority
JP
Japan
Prior art keywords
screw
measuring
screw element
contact
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01075097A
Other languages
Japanese (ja)
Other versions
JPH09264719A (en
Inventor
順 高野
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01075097A priority Critical patent/JP3552440B2/en
Publication of JPH09264719A publication Critical patent/JPH09264719A/en
Application granted granted Critical
Publication of JP3552440B2 publication Critical patent/JP3552440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば油井管の両端に加工された大口径のねじの形状やピッチ、ねじ高さ、テーパ等のねじ要素を測定する方法および装置に関する。
【0002】
【従来の技術】
従来、油井管等のパイプの管端に接続のために刻み込まれるねじの検査方法として、測定子をねじ溝に沿って移動させながら形状の判別を行う接触式ねじ要素検査装置(以下、接触式センサと略称する)を用いた測定方法が採用されている。
【0003】
図8は、API(アメリカ石油協会)規格に定められている油井管のバットレスねじ、ラウンドねじのねじ部でのリード測定とテーパ測定の原理を示したものである。
リード測定の場合は図8(a) に示すように、最初のねじ谷1aに所定の半径rのリードゲージのコンタクトチップ2を嵌め込んで、その接点P,Pへの垂直線S,Sと接点P,P間の弦3aとのなす角度がいずれもθ(例えばねじの角度が60°の場合はθ=30°)となるような中心線4aの位置を求めておき、このねじ谷1aから管軸方向に1インチ離れた位置におけるねじ谷1bにおける接点P,Pでの弦3bと中心線4bを求め、この中心線4a−4b間の距離Lをリードとする。
【0004】
そして、油井管のねじ部のリードLを測定する場合は、図9に示すように、ねじ部5でのA−B間の全ねじ長さLに対して完全なねじ谷を有するA−C間の長さ(L−g)(g;不完全ねじ長さ)において1インチごとに測定することにより、ねじ谷のピッチを検査するのである。
また、テーパ測定の場合は図8(b) に示すように、同様にして中心線4a−4b間が1インチ離れた位置のねじ谷1a,1bの弦3a,3bの高さの差ΔHを求め、同様にねじの反対側でΔHを求め、下記(1) 式でテーパTを得る。
【0005】
T=ΔH/L+ΔH/L ………………(1)
しかし、上記のような接触式センサの場合は、管の外径およびねじの種類によって、あるいはセンサを保持する治具によってその位置を変更する必要があるなど、測定するのにかなりの工数がかかるという欠点がある。また、接触式の機械的な手段による測定面の限界やオペレータの個人差による誤差も大きいことから、精度の点で好ましくない結果を招くことも避けられない。
【0006】
ところで、接触式センサに代えて、例えば光学式ねじ形状検査装置(以下、光学式センサと略称する)を用いてねじ要素を測定する方法が最近注目されつつある。この光学式センサの場合は、被測定物に光束を照射した後にこれを撮像装置によって映像信号としてこれを計算機に入力することにより、被測定物の形状を測定しようとするものである。いま、例えばねじのテーパを測定する場合は、ねじ谷の径に相当する区間を取り出し、この間の径の測定値の平均値を求め、ねじ谷の径として算出するのである。
【0007】
【発明が解決しようとする課題】
しかしながら、上記の光学式センサでねじ要素を測定する方法では、前記した接触式センサでのコンタクトチップとねじ表面の接触状態の検出とは異なることから、光学式センサと接触式センサの測定値の間には差を生じることがままあり、そのため光学式センサの測定値を接触式センサの測定値に代えて使用することは、ねじ要素の品質管理を統一して実施するうえで問題であった。
【0008】
なお、例えば特開昭63−212808号公報には光学式センサを用いたネジ形状測定装置が提案されている。その内容は、外周にネジが形成された円柱状の測定対象のネジ形状測定装置において、測定対象の軸長方向に相対移動可能な架台と、該架台に装着された測定ヘッドと、前記架台と測定対象との相対位置を測定する位置検出センサと、前記測定ヘッドに装着され、測定対象の軸長方向に沿ってその外径を検出する光学式センサとを備え、前記架台と測定対象とを相対移動させることにより前記測定ヘッドを測定対象の軸長方向に沿って移動させつつ前記光学式センサにて測定対象の外径を検出し、また前記位置検出センサにて前記架台と測定対象との相対位置を検出し、両検出結果を関連付けることにより測定対象のネジ形状を測定すべくなしたことを特徴とするものであるが、ネジ形状の認識がたとえ正確にできたとしても、APIゲージ等による測定を再現することができないため、APIゲージ等による測定値との間に差が生じてしまうという問題が潜在していたのである。
【0009】
本発明は、上記のような従来技術の有する課題を解決すべくしてなされたもので、光学式センサと接触式センサとの測定値間の差が生じる原因を取り除き、光学式センサの測定値を接触式センサの測定値の代替として使用可能なねじ要素の測定方法および装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、光源ランプから光をねじ溝に平行に照射してねじ面を通過する光を検出してねじ形状を測定する光学式センサを用いてねじ要素を測定する方法であって、前記光学式センサで測定されたねじ形状の線図に接触式センサのゲージに用いられるコンタクトチップのイメージを仮想的に内接するように重ね合わせてその接点の2次元座標データを所定の間隔ごとに求め、それらの2次元座標データからねじ要素を演算することを特徴とするねじ要素の測定方法である。なお、所定の間隔ごとに得られる測定値から外径変化量を演算・比較してシール部付近の異物付着の有無を判定することができる。
【0011】
また、本発明は、光をねじ溝に平行に照射する光源ランプと、この光源ランプに対向した位置に設けられてねじ面を通過する光を検出する受光素子とからなる光学式センサを用いてねじ要素を測定する装置であって、前記光学式センサで測定されたねじ形状の線図を演算・記憶する演算処理装置と、前記ねじ形状の線図を入力して、このねじ形状の線図に予め記憶された接触式センサのゲージに用いられるコンタクトチップのイメージを仮想的に内接するように重ね合わせて、その接点の2次元座標データを所定の位置ごとに求め、それらの2次元座標データからねじ要素を演算する計算機と、からなることを特徴とするねじ要素の測定装置である。
【0012】
なお、前記光源ランプにハロゲンランプを、また前記受光素子にCCDカメラを用いるのがよい。また、管端部にねじの長手方向座標の基準となる管端位置を検出する管端位置検出器を取り付けるのがよい。
【0013】
【発明の実施の形態】
以下に、本発明の好適な実施の形態について、図面を参照して詳しく説明する。
図1は本発明に係わるねじ要素測定装置の全体構成を示す概要図であり、図2はそのA−A矢視正面図である。まず、図1において、10は光学式センサ、20は演算処理装置、30は計算機、40はCRTなどのディスプレイ装置、50はプリンタ、61は上下方向の昇降装置、62は管長手方向の駆動装置である。
【0014】
光学式センサ10は、図2に示すように、ねじ部5の周囲に4個のハロゲンランプなどの光源ランプ11a,11b,11c,11dと、それらに対向した位置にそれぞれ4個のCCDカメラなどの受光素子12a,12b,12c,12dとが配置される。光源ランプ11a,11b,11c,11dからの光線は第1のレンズ13a,13b,13c,13dで平行光とされてねじ溝に平行に照射され、ねじ面を通過した光線は第2のレンズ14a,14b,14c,14dによって集光されて受光素子12a,12b,12c,12dでそれぞれ受光される。15a,15bは光学式センサ10の左右方向の移動位置を検出するマグネスケールなどの位置検出器である。
【0015】
16は管端部に取り付けられる管端位置検出器で、ねじの長手方向座標の基準となる管端位置Pを検出するものである。この管端位置検出器16は図3に示すように、管端に形状が例えば円柱状のピース17を押し当てて、その端面座標をCCDカメラなどの光学装置18によって読み取って、管端位置Pとする。なお、端面座標を検出する際、光学装置18を管長手方向軸に対して垂直とならないでやや斜めになるように取り付けるのが望ましい。また、ピース17と光学装置18の数は管端円周方向に90°配置とした4個が望ましいが、120 °配置の3個あるいは60°配置の6個など複数配置でもかまわない。
【0016】
演算処理装置20は、受光素子12a,12b,12c,12dからの受光信号と位置検出器15a,15bからの位置検出信号を入力して、ねじ部5の4箇所におけるねじ形状を例えば図4に示すように、位置検出器15a,15bによるねじ軸方向位置xと受光素子12a〜12dによるねじ径方向の値yとして演算して、連続した線図を描いて記憶する。
【0017】
計算機30は、演算処理装置20で認識されたねじ形状の線図に例えばリードゲージのコンタクトチップのイメージを仮想的に内接するように重ね合わせた状態をソフトウェア内でつくり出し、その接点座標からねじ要素であるリードやテーパを求め、その結果をディスプレイ装置40に表示させるとともにプリンタ50に出力する。また、この計算機30は、昇降装置61および駆動装置62を操作して光学式センサ10の位置決めをする機能も有する。
【0018】
以下に、計算機30での処理手順を説明する。
▲1▼予めAPI規格ねじおよびプレミアムジョイントねじの測定に用いられる接触式センサのコンタクトチップの径(例えば表1参照)を、イメージとしてプログラム内定数テーブルに登録しておく。
【0019】
【表1】

Figure 0003552440
【0020】
▲2▼昇降装置61および駆動装置62を操作して光学式センサ10がねじ軸のほぼ延長線上になるように位置決めして、管端位置検出器16で管端位置Pを検出した後最初の完全なねじ形状を測定し、その位置における演算処理装置20で演算・記憶された線図を順次2次元座標データ(x,y)として入力し、図5に示すように、径rなるコンタクトチップのイメージ2Aがねじ谷1aに仮想的に内接するように重ね合わせて、その接点の管端側の位置P(x,y)を求める。
▲3▼つぎに、駆動装置62を操作して光学式センサ10をほぼ1インチ移動させ、その位置におけるねじ谷1bのねじ形状を測定し、同様にしてコンタクトチップのイメージ2Aがねじ谷1bに仮想的に内接する接点の管端側位置P(x,y)を求める。
▲4▼ねじの反対側において前記Pに対応する点P(x,y)と、Pに対応する点P(x,y)を求める。
▲5▼そして、ねじ要素であるリードLおよびテーパTを下記式(2) , (3) 式によってそれぞれ求める。
【0021】
Figure 0003552440
また、必要に応じてねじ山高さを求めることもできる。
ここで、ねじ軸方向位置xを測定する際に、位置検出器15a,15bに異物付着や摩耗、曲がりなどの異常事態によって測定誤差が発生する場合があるので、これを防止するためには以下のような処置を講ずるのがよい。
イ.2個の位置検出器15a,15bの測定値Lai,Lbi(i=1,2…n)を例えば1msec毎に逐次比較して、両者の差Δsを算出する。
【0022】
この差Δsは、下記(4) 式で表される。
Δs=|Ce −Se | ………………(4)
ここで、Ce ;光学系移動時の蛇行により生じる位置検出器15a,15bの移動量の差、Se ;位置検出器15a,15bの測定異常により生じる両者の読みの差である。
ロ.その差Δsが例えば40μm の許容値を超えたらどちらか一方に異常が発生したとみなして測定値を無効にするとともに、警報を出力させる。
ハ.また、位置検出器15a,15bの測定異常によって生じる両者の差Se の検出能を高めるために、移動量が例えば5mm毎に(4) 式のΔsをリセットする。これによって、Ce の影響を小さくすることができる。
【0023】
また、管端位置検出器16で管端位置を検出するピース17に摩耗が生じたり異物が付着したりして誤検出を行う場合がある。そこで、そのようなときの誤検出を防ぐためには、図6に示すように、管端位置検出器16で採取したデータDから最小自乗法により算出したベストフィットラインBFL と個々のねじ長手方向座標の距離X,Y,Zを測定毎にチェックし、その値が別に定められた許容値を超えた場合はエラーが発生したとして無効にするのである。
【0024】
ここで、XはデータDのMAX 点とMIN 点の管軸方向の距離(μm)で平面度を表し、YはベストフィットラインBFL とMIN 点の距離の管軸方向の距離(μm)で摩耗度合いを表し、ZはベストフィットラインBFL とMAX 点の距離の管軸方向の距離(μm)で異物付着を表す指標である。
また、図7に示すようなプレミアムジョイントのシール部付近に異物が付着して測定精度を損なうおそれがある。すなわち、シール部に異物付着があるとシール径Dが実際よりも大きく測定されて外径変化量rが小さくなり、一方管端基準径Dの付近に異物付着があると外径変化量rが大きくなる傾向があることが知られている。そこで、異物付着のチェックを行うために、前出図7に示したように、各測定毎に4つの測定方向の外径変化量r,r,r,rを比較し、その最大値rMAX と最小値rMIN の差Wを下記(5) 式で演算する。
【0025】
W=|rMAX −rMIN | ………………(5)
そして、この差Wが許容値(例えば0.10μm)を超えた場合、シール部付近に異物が付着したとみなして、警報を発するようにするのである。
なお、上記の説明において、光源ランプと受光素子を組み合わせたものを4組用いるとして説明したが、本発明はこれに限るものではなく、少なくとも1組を用いることによって実現することが可能である。
【0026】
【実施例】
本発明法を用いてラウンドねじのリードLを測定したときの測定値の接触式センサでの測定値(基準値)との差の平均およびその標準偏差を表2に示した。このとき、光源ランプ11a〜11dにはハロゲンランプを用い、受光素子12a〜12dにはCCDカメラを用いた。なお、比較のために、従来の光学式センサでのそれぞれのデータも併せて示した。
【0027】
【表2】
Figure 0003552440
【0028】
この表からわかるように、測定値の差の平均が従来法に比較して1/3と大きく減少しており、測定誤差の軽減に寄与することは明らかである。
なお、上記の実施例ではラウンドねじのリード測定について述べたが、本発明はそれに限るものではなく、バットレスねじやその他のプレミアムジョイントねじなどのテーパやねじ山高さ、シール部外径などの測定にも用いることができることはいうまでもない。
【0029】
【発明の効果】
以上説明したように、本発明によれば、従来の接触式センサで実施されているねじ要素測定方法を光学式センサに取り入れて、ねじ形状に例えばリードゲージのコンタクトチップを仮想的に内接させた状態をソフトウェア内でつくり出してリードやテーパ等のねじ要素を求めるようにしたので、光学式センサを用いても誤差の少ない測定を行うことができる。また、API規格ねじばかりでなく、特殊なプレミアムジョイントねじ等のねじ要素を測定することができるから、検査作業の効率化や省力化を実現することが可能である。
【図面の簡単な説明】
【図1】本発明の全体構成を示す概要図である。
【図2】図1のA−A矢視正面図である。
【図3】本発明に用いられる管端位置検出器の概要図である。
【図4】本発明によるねじ要素の測定例の説明図である。
【図5】本発明によるねじ形状の測定例の説明図である。
【図6】本発明での管端位置の測定誤差の説明図である。
【図7】本発明での外径変化量の説明図である。
【図8】従来法によるねじ要素での(a) リード、(b) テーパの測定原理の説明図である。
【図9】従来法によるラウンドねじのねじ部のリード測定の説明図である。
【符号の説明】
1a,1b ねじ谷
2 コンタクトチップ
2A コンタクトチップのイメージ
3a,3b 弦
4a,4b 中心線
5 ねじ部
10 光学式センサ(光学式ねじ形状検査装置)
11a,11b,11c,11d 光源ランプ
12a,12b,12c,12d 受光素子
13a,13b,13c,13d 第1のレンズ
14a,14b,14c,14d 第2のレンズ
15a,15b 位置検出器
16 管端位置検出器
17 ピース
18 光学装置
20 演算処理装置
30 計算機
40 ディスプレイ装置
50 プリンタ
61 昇降装置
62 駆動装置
L リード
T テーパ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a screw element such as a shape, a pitch, a screw height, and a taper of a large-diameter screw processed at both ends of an oil country tubular good.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of inspecting a screw cut into a pipe end of an oil well pipe or the like for connection, a contact-type screw element inspection apparatus (hereinafter, referred to as a contact-type inspection apparatus) that determines a shape while moving a stylus along a thread groove. (Abbreviated as a sensor).
[0003]
FIG. 8 shows the principle of lead measurement and taper measurement at the thread portion of a buttress screw and round screw of an oil country tubular good specified by API (American Petroleum Institute) standards.
As in the case of lead measurement shown in FIG. 8 (a), is fitted a contact tip 2 lead gauge predetermined radius r to the first thread root 1a, a vertical line S to the contact point P 1, P 1, The position of the center line 4a is determined so that the angle between S and the chord 3a between the contact points P 1 and P 1 is θ (for example, θ = 30 ° when the angle of the screw is 60 °). seeking chord 3b and the center line 4b with contacts P 2, P 2 in the thread root 1b in one inches away position in the tube axis direction from the thread root 1a, the distance L between the center line 4a-4b the lead .
[0004]
Then, when measuring the lead L of the thread portion of the oil well pipe, as shown in FIG. 9, it has a full thread root with respect to the total screw length L 1 between A-B in the threaded portion 5 A- length between C (L 1 -g); by measuring every inches at the (g incomplete thread length) is to inspect the pitch of the thread root.
In the case of taper measurement, as shown in FIG. 8B, similarly, the difference ΔH 1 between the heights of the chords 3a, 3b of the thread roots 1a, 1b at a position 1 inch apart between the center lines 4a-4b. Similarly, ΔH 2 is determined on the opposite side of the screw, and a taper T is obtained by the following equation (1).
[0005]
T = ΔH 1 / L 1 + ΔH 2 / L 2 (1)
However, in the case of the contact type sensor as described above, it takes considerable man-hours to measure, for example, the position needs to be changed depending on the outer diameter of the tube and the type of screw, or with a jig holding the sensor. There is a disadvantage that. In addition, since errors due to limitations of the measurement surface due to the contact-type mechanical means and individual differences between operators are large, it is inevitable that undesired results are caused in terms of accuracy.
[0006]
Meanwhile, a method of measuring a screw element using, for example, an optical screw shape inspection device (hereinafter, abbreviated as an optical sensor) instead of the contact sensor has recently been receiving attention. In the case of this optical sensor, the shape of the measured object is measured by irradiating the measured object with a light beam and then inputting this as a video signal to a computer by an imaging device. Now, for example, when measuring the taper of a screw, a section corresponding to the diameter of a thread root is taken out, the average value of the measured values of the diameter during this period is calculated, and calculated as the diameter of the thread root.
[0007]
[Problems to be solved by the invention]
However, in the method of measuring a screw element with the above-described optical sensor, since the detection of the contact state between the contact tip and the screw surface in the above-described contact sensor is different, the measurement values of the optical sensor and the contact sensor are different. There is still a difference between them, and the use of optical sensor readings instead of contact sensor readings has been a problem in unifying quality control of screw elements. .
[0008]
For example, Japanese Patent Application Laid-Open No. Sho 63-212808 proposes a screw shape measuring device using an optical sensor. The contents thereof are, in a cylindrical screw shape measuring device having a thread formed on the outer periphery thereof, a gantry capable of relatively moving in the axial length direction of the measuring object, a measuring head mounted on the gantry, and the gantry. A position detection sensor that measures a relative position with respect to the measurement target, and an optical sensor that is attached to the measurement head and detects an outer diameter of the measurement target along an axial direction of the measurement target. The outer diameter of the measurement target is detected by the optical sensor while moving the measurement head along the axial length direction of the measurement target by relatively moving, and the gantry and the measurement target are detected by the position detection sensor. It is characterized by measuring the screw shape of the object to be measured by detecting the relative position and associating the two detection results, but even if the screw shape can be accurately recognized, the API gauge Because by not able to reproduce the measurements, a problem that a difference occurs between the value measured by API gauge or the like is to have latent.
[0009]
The present invention has been made in order to solve the problems of the prior art as described above, and removes the cause of the difference between the measured values of the optical sensor and the contact sensor, and reduces the measured value of the optical sensor. It is an object of the present invention to provide a method and an apparatus for measuring a screw element which can be used as a substitute for a measured value of a contact sensor.
[0010]
[Means for Solving the Problems]
The present invention is a method of measuring a screw element using an optical sensor that irradiates light from a light source lamp in parallel to a screw groove and detects light passing through a screw surface to measure a screw shape. The image of the contact tip used for the gauge of the contact type sensor is superimposed virtually inscribed on the diagram of the screw shape measured by the type sensor, and the two-dimensional coordinate data of the contact is obtained at predetermined intervals, This is a method for measuring a screw element, wherein the screw element is calculated from the two-dimensional coordinate data. It should be noted that it is possible to determine the presence or absence of foreign matter adherence near the seal portion by calculating and comparing the outer diameter change amount from the measured value obtained at predetermined intervals.
[0011]
Further, the present invention uses an optical sensor including a light source lamp for irradiating light in parallel to the screw groove and a light receiving element provided at a position facing the light source lamp and detecting light passing through the screw surface. An apparatus for measuring a screw element, an arithmetic processing unit for calculating and storing a diagram of the thread shape measured by the optical sensor, and an input of the thread diagram, and a diagram of the thread shape The image of the contact chip used for the gauge of the contact sensor stored in advance is superimposed so as to be virtually inscribed, and the two-dimensional coordinate data of the contact is obtained for each predetermined position. And a calculator for calculating a screw element from the screw element.
[0012]
It is preferable to use a halogen lamp as the light source lamp and a CCD camera as the light receiving element. Further, it is preferable to attach a pipe end position detector for detecting a pipe end position serving as a reference of the longitudinal coordinates of the screw to the pipe end.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing the overall configuration of a screw element measuring device according to the present invention, and FIG. 2 is a front view taken along the line AA of FIG. First, in FIG. 1, reference numeral 10 denotes an optical sensor, reference numeral 20 denotes an arithmetic processing unit, reference numeral 30 denotes a computer, reference numeral 40 denotes a display device such as a CRT, reference numeral 50 denotes a printer, reference numeral 61 denotes a vertical elevating device, and reference numeral 62 denotes a longitudinal driving device of the tube. It is.
[0014]
As shown in FIG. 2, the optical sensor 10 includes four light source lamps 11a, 11b, 11c, and 11d such as halogen lamps around the screw portion 5, and four CCD cameras and the like at positions opposed to them. Of light receiving elements 12a, 12b, 12c, and 12d. Light rays from the light source lamps 11a, 11b, 11c, and 11d are converted into parallel lights by the first lenses 13a, 13b, 13c, and 13d, and are radiated in parallel to the screw grooves. , 14b, 14c, and 14d, and are received by the light receiving elements 12a, 12b, 12c, and 12d, respectively. Reference numerals 15a and 15b denote position detectors such as a magnescale for detecting the left and right movement positions of the optical sensor 10.
[0015]
16 are those at the tube end position detector attached to the tube end, it detects the tube end position P 0 as a reference for the longitudinal coordinate of the screw. As shown in FIG. 3, the tube end position detector 16 presses a piece 17 having a cylindrical shape, for example, against the tube end, reads the end face coordinates by an optical device 18 such as a CCD camera, and obtains the tube end position P. Set to 0 . When detecting the end face coordinates, it is desirable to mount the optical device 18 so as not to be perpendicular to the longitudinal axis of the tube but to be slightly inclined. The number of the pieces 17 and the optical devices 18 is desirably four arranged at 90 ° in the circumferential direction of the tube end, but may be plural, such as three arranged at 120 ° or six arranged at 60 °.
[0016]
The arithmetic processing unit 20 receives the light receiving signals from the light receiving elements 12a, 12b, 12c, and 12d and the position detection signals from the position detectors 15a and 15b, and changes the screw shape at the four positions of the screw portion 5 into, for example, FIG. As shown in the figure, a calculation is performed as a position x in the screw axis direction by the position detectors 15a and 15b and a value y in the screw diameter direction by the light receiving elements 12a to 12d, and a continuous diagram is drawn and stored.
[0017]
The computer 30 creates, in the software, a state in which, for example, an image of a contact tip of a lead gauge is virtually inscribed in the screw shape diagram recognized by the arithmetic processing unit 20 so as to be virtually inscribed. Are obtained, and the result is displayed on the display device 40 and output to the printer 50. The calculator 30 also has a function of operating the lifting device 61 and the driving device 62 to position the optical sensor 10.
[0018]
Hereinafter, a processing procedure in the computer 30 will be described.
(1) The diameter (for example, see Table 1) of the contact tip of the contact sensor used for measuring the API standard screw and the premium joint screw is registered in the constant table in the program as an image.
[0019]
[Table 1]
Figure 0003552440
[0020]
▲ 2 ▼ and positioned to be approximately on the extended line of the optical sensor 10 screw shaft by operating the lifting device 61 and the driving device 62, the first after the detection of the pipe end position P 0 in a tubular end position detector 16 measuring the complete thread shape, enter the diagrams are calculated and stored in processor 20 at that position sequentially 2-dimensional coordinate data (x i, y i) as, as shown in FIG. 5, the diameter r The image 2A of the contact tip is superimposed so as to be virtually inscribed in the thread root 1a, and the position P 1 (x 1 , y 1 ) of the contact on the tube end side is obtained.
(3) Next, the optical sensor 10 is moved by approximately one inch by operating the driving device 62, and the screw shape of the screw thread 1b at that position is measured. Similarly, the image 2A of the contact tip is moved to the screw thread 1b. The tube end side position P 2 (x 2 , y 2 ) of the virtually inscribed contact is determined.
▲ 4 ▼ determine the P 3 points corresponding to the P 1 on the opposite side of the screw (x 3, y 3), points corresponding to P 2 P 4 and (x 4, y 4).
{Circle around (5)} Then, the lead L and the taper T, which are the screw elements, are obtained by the following equations (2) and (3).
[0021]
Figure 0003552440
Further, the thread height can be obtained as required.
Here, when measuring the position x in the screw axis direction, a measurement error may occur due to an abnormal situation such as adhesion of foreign matter, abrasion, or bending on the position detectors 15a and 15b. It is good to take such a measure.
I. The measured values L ai , L bi (i = 1, 2,... N) of the two position detectors 15a, 15b are sequentially compared, for example, every 1 msec, and the difference Δs between them is calculated.
[0022]
This difference Δs is expressed by the following equation (4).
Δs = | Ce−Se | (4)
Here, Ce: a difference in the amount of movement of the position detectors 15a and 15b caused by meandering during the movement of the optical system, and Se: a difference between the two readings caused by measurement abnormality of the position detectors 15a and 15b.
B. If the difference Δs exceeds a permissible value of, for example, 40 μm, it is considered that an abnormality has occurred in one of them, the measured value is invalidated, and an alarm is output.
C. Further, in order to enhance the ability to detect the difference Se between the two due to the measurement abnormality of the position detectors 15a and 15b, Δs of the equation (4) is reset at every 5 mm of the movement amount. Thereby, the influence of Ce can be reduced.
[0023]
In addition, there is a case where the piece 17 for detecting the pipe end position by the pipe end position detector 16 is worn, or a foreign substance is attached, and erroneous detection is performed. Therefore, in order to prevent erroneous detection in such a case, as shown in FIG. 6, the best fit line BFL calculated from the data D collected by the pipe end position detector 16 by the least square method and the individual screw longitudinal coordinates The distances X, Y, and Z are checked for each measurement, and if the values exceed a separately defined allowable value, an error is generated and invalidated.
[0024]
Here, X represents the flatness by the distance (μm) in the tube axis direction between the MAX point and the MIN point of the data D, and Y represents the wear (μm) in the tube axis direction of the distance between the best fit line BFL and the MIN point. Z is an index indicating the adhesion of foreign matter by the distance (μm) in the tube axis direction at the distance between the best fit line BFL and the point MAX.
In addition, foreign matter may adhere to the vicinity of the seal portion of the premium joint as shown in FIG. That, is measured greater than foreign matter is the sealing diameter D S is indeed the seal portion becomes small outer diameter change amount r, whereas the outer diameter change amount if there is foreign matter in the vicinity of the tube ends standard diameter D B It is known that r tends to be large. Therefore, in order to check for foreign matter adhesion, as shown in FIG. 7 described above, the outer diameter change amounts r 1 , r 2 , r 3 , r 4 in the four measurement directions are compared for each measurement, and the results are compared. The difference W between the maximum value r MAX and the minimum value r MIN is calculated by the following equation (5).
[0025]
W = | r MAX -r MIN | (5)
If the difference W exceeds an allowable value (for example, 0.10 μm), it is determined that a foreign matter has adhered to the vicinity of the seal portion, and an alarm is issued.
In the above description, four sets of a combination of a light source lamp and a light receiving element are used. However, the present invention is not limited to this, and can be realized by using at least one set.
[0026]
【Example】
Table 2 shows the average and standard deviation of the difference between the measured value of the lead L of the round screw and the measured value (reference value) measured by the contact sensor when the method of the present invention was used. At this time, a halogen lamp was used for the light source lamps 11a to 11d, and a CCD camera was used for the light receiving elements 12a to 12d. For comparison, respective data of the conventional optical sensor are also shown.
[0027]
[Table 2]
Figure 0003552440
[0028]
As can be seen from this table, the average of the difference between the measured values is greatly reduced to 1/3 as compared with the conventional method, and it is clear that this contributes to the reduction of the measurement error.
In the above embodiment, the measurement of the lead of the round screw has been described.However, the present invention is not limited to this. Needless to say, it can also be used.
[0029]
【The invention's effect】
As described above, according to the present invention, the screw element measurement method implemented by the conventional contact sensor is incorporated into the optical sensor, and the contact tip of, for example, a lead gauge is virtually inscribed in the screw shape. Since the screw state such as a lead and a taper is obtained by creating the state in software, measurement with less error can be performed even by using an optical sensor. In addition, since it is possible to measure not only API standard screws but also screw elements such as special premium joint screws, it is possible to realize more efficient inspection work and labor saving.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of the present invention.
FIG. 2 is a front view taken along the line AA of FIG. 1;
FIG. 3 is a schematic diagram of a tube end position detector used in the present invention.
FIG. 4 is an explanatory diagram of a measurement example of a screw element according to the present invention.
FIG. 5 is an explanatory diagram of a measurement example of a screw shape according to the present invention.
FIG. 6 is an explanatory diagram of a measurement error of a pipe end position in the present invention.
FIG. 7 is an explanatory diagram of an outer diameter change amount in the present invention.
8A and 8B are explanatory diagrams of a principle of measuring (a) a lead and (b) a taper of a screw element according to a conventional method.
FIG. 9 is an explanatory diagram of lead measurement of a thread portion of a round screw according to a conventional method.
[Explanation of symbols]
1a, 1b Thread root 2 Contact tip 2A Image of contact tip 3a, 3b Strings 4a, 4b Center line 5 Thread 10 Optical sensor (optical screw shape inspection device)
11a, 11b, 11c, 11d Light source lamps 12a, 12b, 12c, 12d Light receiving elements 13a, 13b, 13c, 13d First lenses 14a, 14b, 14c, 14d Second lenses 15a, 15b Position detector 16 Tube end position Detector 17 Piece 18 Optical device 20 Computing device 30 Computer 40 Display device 50 Printer 61 Elevating device 62 Drive device L Lead T Taper

Claims (5)

光源ランプから光をねじ溝に平行に照射してねじ面を通過する光を検出してねじ形状を測定する光学式センサを用いてねじ要素を測定する方法であって、
前記光学式センサで測定されたねじ形状の線図に接触式センサのゲージに用いられるコンタクトチップのイメージを仮想的に内接するように重ね合わせてその接点の2次元座標データを所定の間隔ごとに求め、それらの2次元座標データからねじ要素を演算することを特徴とするねじ要素の測定方法。
A method of measuring a screw element using an optical sensor that detects light passing through a screw surface by irradiating light from a light source lamp in parallel to a screw groove and measures a screw shape,
The image of the contact tip used for the gauge of the contact type sensor is superimposed on the thread-shaped diagram measured by the optical sensor so as to be virtually inscribed, and the two-dimensional coordinate data of the contact point is provided at predetermined intervals. A method for measuring a screw element, comprising calculating the calculated screw element from the two-dimensional coordinate data.
所定の間隔ごとに得られる測定値から外径変化量を演算・比較してシール部付近の異物付着の有無を判定することを特徴とする請求項1記載のねじ要素の測定方法。The method for measuring a screw element according to claim 1, wherein the amount of change in outer diameter is calculated and compared from measured values obtained at predetermined intervals to determine whether or not foreign matter is attached near the seal portion. 光をねじ溝に平行に照射する光源ランプと、この光源ランプに対向した位置に設けられてねじ面を通過する光を検出する受光素子とからなる光学式センサを用いてねじ要素を測定する装置であって、
前記光学式センサで測定されたねじ形状の線図を演算・記憶する演算処理装置と、前記ねじ形状の線図を入力して、このねじ形状の線図に予め記憶された接触式センサのゲージに用いられるコンタクトチップのイメージを仮想的に内接するように重ね合わせて、その接点の2次元座標データを所定の位置ごとに求め、それらの2次元座標データからねじ要素を演算する計算機と、からなることを特徴とするねじ要素の測定装置。
A device for measuring a screw element using an optical sensor comprising a light source lamp for irradiating light in parallel to a screw groove and a light receiving element provided at a position facing the light source lamp and detecting light passing through a screw surface. And
An arithmetic processing unit that calculates and stores a diagram of the thread shape measured by the optical sensor, and a gauge of the contact sensor pre-stored in the diagram of the thread shape by inputting the diagram of the thread shape A computer that superimposes the image of the contact chip used for the virtual inscribing so as to obtain two-dimensional coordinate data of the contact point for each predetermined position, and calculates a screw element from the two-dimensional coordinate data. An apparatus for measuring a screw element, comprising:
前記光源ランプにハロゲンランプを、また前記受光素子にCCDカメラを用いることを特徴とする請求項3記載のねじ要素の測定装置。4. The apparatus according to claim 3, wherein a halogen lamp is used as the light source lamp, and a CCD camera is used as the light receiving element. 管端部にねじの長手方向座標の基準となる管端位置を検出する管端位置検出器を取り付けたことを特徴とする請求項3または4記載のねじ要素の測定装置。5. The screw element measuring device according to claim 3, wherein a pipe end position detector for detecting a pipe end position serving as a reference of a longitudinal coordinate of the screw is attached to the pipe end.
JP01075097A 1996-01-25 1997-01-24 Method and apparatus for measuring screw element Expired - Fee Related JP3552440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01075097A JP3552440B2 (en) 1996-01-25 1997-01-24 Method and apparatus for measuring screw element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-11201 1996-01-25
JP1120196 1996-01-25
JP01075097A JP3552440B2 (en) 1996-01-25 1997-01-24 Method and apparatus for measuring screw element

Publications (2)

Publication Number Publication Date
JPH09264719A JPH09264719A (en) 1997-10-07
JP3552440B2 true JP3552440B2 (en) 2004-08-11

Family

ID=26346072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01075097A Expired - Fee Related JP3552440B2 (en) 1996-01-25 1997-01-24 Method and apparatus for measuring screw element

Country Status (1)

Country Link
JP (1) JP3552440B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119713A1 (en) 2008-03-27 2009-10-01 住友金属工業株式会社 Device for measuring screw element at pipe end, system for measuring screw element and method for measuring screw element
WO2013038485A1 (en) 2011-09-13 2013-03-21 新日鐵住金株式会社 Method for measuring threaded element at tube end
WO2013100004A1 (en) 2011-12-27 2013-07-04 新日鐵住金株式会社 Method for measuring shape of threaded tube end portion
JP2017190980A (en) * 2016-04-12 2017-10-19 新日鐵住金株式会社 Thread shape measuring apparatus of threaded pipe
US11313675B2 (en) 2018-05-02 2022-04-26 Nippon Steel Corporation Thread shape measuring apparatus and measuring method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317469A (en) * 2006-08-30 2006-11-24 Mitsutoyo Corp Screw shape measuring method and recording medium recording program
JP5630938B2 (en) * 2007-02-27 2014-11-26 Ntn株式会社 Ball screw measuring device
DE102007017747B4 (en) * 2007-04-12 2009-05-07 V & M Deutschland Gmbh Method and device for the optical measurement of external threads
JP4641555B2 (en) * 2008-09-19 2011-03-02 株式会社ミツトヨ Screw hole shape measurement method
JP2013167642A (en) * 2013-04-30 2013-08-29 Ntn Corp Ball screw measuring apparatus and measuring method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119713A1 (en) 2008-03-27 2009-10-01 住友金属工業株式会社 Device for measuring screw element at pipe end, system for measuring screw element and method for measuring screw element
US8804104B2 (en) 2008-03-27 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Apparatus, system, and method for measuring thread features on pipe or tube end
WO2013038485A1 (en) 2011-09-13 2013-03-21 新日鐵住金株式会社 Method for measuring threaded element at tube end
US9267900B2 (en) 2011-09-13 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method for measuring thread element at end portion of pipe or tube
WO2013100004A1 (en) 2011-12-27 2013-07-04 新日鐵住金株式会社 Method for measuring shape of threaded tube end portion
US9557165B2 (en) 2011-12-27 2017-01-31 Nippon Steel & Sumitomo Metal Corporation Method for measuring end portion shape of threaded pipe or tube
JP2017190980A (en) * 2016-04-12 2017-10-19 新日鐵住金株式会社 Thread shape measuring apparatus of threaded pipe
US11313675B2 (en) 2018-05-02 2022-04-26 Nippon Steel Corporation Thread shape measuring apparatus and measuring method

Also Published As

Publication number Publication date
JPH09264719A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
KR100685206B1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
JP3552440B2 (en) Method and apparatus for measuring screw element
JP2008544253A (en) Method and apparatus for measuring straightness of tubes and rods
JP2000230818A (en) Method and instrument for noncontact measurement of wheel alignment characteristic
JP6849149B2 (en) Thread shape measuring device and measuring method
US5260780A (en) Visual inspection device and process
CN104024790A (en) Method for measuring shape of threaded tube end portion
CN107869957B (en) Imaging system-based cylindrical section size measuring device and method
JP2002168617A (en) Device and system for measuring tubular object such as tunnel
US7679757B1 (en) Non-contact profile measurement system
CN113551619B (en) On-line measuring method and device for straightness of seamless steel pipe
JP2008107156A (en) Method and device for detecting sectional shape
JP5146181B2 (en) Device for setting the position of the starting point in the circumferential direction in oil well pipe thread shape all-round measurement
JPH0387606A (en) Method and device for measuring automatically tubular article
JP3065367B2 (en) Shape measurement device for structures around railway tracks
JP3212023B2 (en) Dimension measurement device and manufacturing system for corrugated long flexible tube
KR20010063525A (en) Apparatus for detecting the edge of colded roll
JP2600567B2 (en) Pipe end processing section size measurement device
RU2805139C1 (en) Method for control of appearance, geometry of a fuel rod and the size of its defects
JP3239682B2 (en) Segment position measurement method
JPH02176408A (en) Body-shape measuring apparatus
JP2683745B2 (en) Optical fiber end face state detection method and detection device
JP2023172774A (en) Screw shape measurement device and screw shape measurement method
JPS5862505A (en) Measuring device for screw element
JPH0326903A (en) Dimensional inspection and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees