JPS5862505A - Measuring device for screw element - Google Patents

Measuring device for screw element

Info

Publication number
JPS5862505A
JPS5862505A JP16128981A JP16128981A JPS5862505A JP S5862505 A JPS5862505 A JP S5862505A JP 16128981 A JP16128981 A JP 16128981A JP 16128981 A JP16128981 A JP 16128981A JP S5862505 A JPS5862505 A JP S5862505A
Authority
JP
Japan
Prior art keywords
television camera
steel pipe
screw
data
screw element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16128981A
Other languages
Japanese (ja)
Inventor
Kiyohiko Kawaguchi
川口 清彦
Arata Nemoto
新 根本
Hayaharu Ishimoto
石本 早治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16128981A priority Critical patent/JPS5862505A/en
Publication of JPS5862505A publication Critical patent/JPS5862505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2425Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To improve resolution and to enable to perform a high-precise measurement of a screw element, by using an optical system which limits a visual field of a two-dimentional photographing device. CONSTITUTION:A steel pipe 10, which has a screwed outer periphery, is located in a horizontal manner, light is radiated from one side by an illuminating lamp 27, and a two-dimentional photographing device 11, such as a television camera, is situated at the other side. Through location of mirrors 21-24 between the television camera 11 and the steel pipe 10, the photographing visual field of the television camera 11 is limited to upper and lower outer edge parts 10a and 10b (a part including screw thread) of the steel pipe 10. A picture photographed by the camera 11 produces a picture signal by means of a television camera controller 12, it is displaced by a monitor 13, and simultaneously, it is inputted to a picture processor 14. Position data of a bright and dark boundary part for showing a screw shape can be obtained in the processor 14. A computing device 15 prints and records computing results of the screw element by means of a printer 16, and meanwhile, in case computing results of each element is out of an allowable tolerance, an alarming device 17 is actuated.

Description

【発明の詳細な説明】 本発明はネジ要素の測定に関し、特に測定精度の向上を
図れる光学的測定装置を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the measurement of screw elements, and particularly proposes an optical measuring device that can improve measurement accuracy.

油井管として用いられる鋼管の端部には他の鋼管との接
続のだめの継手と螺合連結させるべく外周面にネジが形
成される。このネジ部はそのリード、ハイド、テーバ等
のネジ要素についてAPI規格を満たしていることを検
査する必要がある。ネジ要素の測定には一般にはゲージ
を用いて寸法を測定する方法が広く行われているが、人
手に頼るところが多く、生産能力に追随し難く、抜取り
検査に依らざるを得ないという問題がちり、またネジ切
り作業と検査作業との間に時間差があり、不良品の発見
が遅れることによりこの作業間にある油井管が大量に手
直しを必要としたり不良となる等の問題もある。これを
解消する手段として径方向の移動可能とした複数の触子
をネジの山、谷に“ 接触させ、その位置を触子に連繋
した差動トランス等の位置検出手段にて検出し、この検
出結果からネジ要素を測定する装置が開発され、市場に
出されているが、測定、検査項目が少く、また装置が大
きく、床面積の限られた既設ラインに設置するのは困難
であり、しかも著しく高価であるという問題点がある。
A thread is formed on the outer circumferential surface of the end of a steel pipe used as an oil country tubular pipe for threading connection with a joint for connection to another steel pipe. This threaded part needs to be inspected to ensure that its lead, hide, taper, and other threaded elements meet API standards. Generally, the method of measuring dimensions using a gauge is widely used to measure screw elements, but this method often relies on manual labor, has difficulty keeping up with production capacity, and has the problem of having to rely on sampling inspections. In addition, there is a time lag between the thread cutting work and the inspection work, which delays the discovery of defective products, resulting in problems such as a large amount of oil country tubular goods being repaired during this work or becoming defective. As a means of solving this problem, multiple contactors that are movable in the radial direction are brought into contact with the peaks and valleys of the screw, and their positions are detected by a position detection means such as a differential transformer connected to the contactors. A device that measures screw elements based on the detection results has been developed and is on the market, but there are only a few measurement and inspection items, and the device is large, making it difficult to install it on existing lines with limited floor space. Moreover, there is a problem that it is extremely expensive.

本発明は所かる事情に鑑みてな゛されたものであって、
テレビカメラ等の2次元撮像装置、その視野を制限する
光学系等を用いることKより高精度の測定が可能なネジ
要素測定装置を提供することを目的とする。
The present invention has been made in view of certain circumstances, and
It is an object of the present invention to provide a screw element measuring device that can perform measurements with higher precision than by using a two-dimensional imaging device such as a television camera, an optical system that limits the field of view, and the like.

以下本発明をその実施例を示す図面に基き具体的に説明
する。
The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明装置の全体的構成を示している。FIG. 1 shows the overall configuration of the apparatus of the present invention.

外周面にネジ切りされた油井管用の鋼管10#i図示し
ないチャック等に保持されて水平定置される。
A steel pipe 10#i for oil country tubular goods having a threaded outer peripheral surface is held in a horizontal position by a chuck or the like (not shown).

この鋼管10の一側方には光軸をその管軸を通る水平面
に整合させてテレビカメラ11を正対させてあり、その
撮像視野が縦長となるように視野の水平、垂直を実際の
水平、鉛直と逆にしである。
On one side of this steel pipe 10, a television camera 11 is directly facing with its optical axis aligned with a horizontal plane passing through the pipe axis, and the horizontal and vertical fields of view are aligned with the actual horizontal plane so that the imaging field of view is vertically elongated. , vertical and inverted.

テレビカメラ11と鋼管1.0との間に介在させである
鏡21.22’、23.24はテレビカフ月1の撮像視
野をネジ外縁部に制限するためのものであって、鏡21
は鋼管lOの上縁と、−22H鋼管10の下縁と同高に
して、水平、鉛直双方に対して45°傾斜させて鋼管l
Oの方向を向けている。
Mirrors 21, 22' and 23, 24, which are interposed between the television camera 11 and the steel pipe 1.0, are used to limit the imaging field of the television cuff 1 to the outer edge of the screw.
is the same height as the upper edge of the steel pipe lO and the lower edge of the -22H steel pipe 10, and the steel pipe lO is tilted at 45 degrees with respect to both the horizontal and vertical.
It is facing the direction of O.

−21の直下には@23が、また鏡22の直上には鏡2
4が、各鏡面を夫々鏡21.22の鏡面に平行とするよ
うに対設してあり、この鏡23.24に映る像をテレビ
カメラIIKて撮像するようにしである。このような鏡
21〜24の配置によりテレビカメラ”11の視野は第
2図に示すように水平定置されている鋼管10の上下の
外縁部分(ネジ山を含む部分) 10i、 10b K
限定されることになる。
@23 is directly below −21, and mirror 2 is directly above mirror 22.
4 are placed opposite each other so that their respective mirror surfaces are parallel to the mirror surfaces of mirrors 21 and 22, and the images reflected on these mirrors 23 and 24 are captured by a television camera IIK. By arranging the mirrors 21 to 24 in this manner, the field of view of the television camera 11 is as shown in FIG.
It will be limited.

27は照明灯であって、鋼管lOをテレビカメラ11と
は反対側から照射するようにしである。
Reference numeral 27 denotes an illumination lamp, which is designed to illuminate the steel pipe IO from the side opposite to the television camera 11.

これによりテレビカメラ11は、モニタ13に略示した
ように、鋼管10の上下の外縁部分10a。
As a result, the television camera 11 can capture the upper and lower outer edge portions 10a of the steel pipe 10, as schematically shown on the monitor 13.

10bを鋼管が暗く、背景が明るい局部投影像として捉
えることになる。
10b is perceived as a locally projected image in which the steel pipe is dark and the background is bright.

なお照明灯をテレビカメラ11111jK配して、鋼管
を明るく、また背景を暗く連像することとしてもよい。
Note that the television camera 11111jK may be provided with an illumination light to simultaneously image the steel pipe brightly and the background darkly.

第3図#′i鏡21.22の連動調整機構を鋼管10側
から示している。
FIG. 3 shows the interlocking adjustment mechanism of #'i mirrors 21 and 22 from the steel pipe 10 side.

−21〜24は適宜の鏡枠210.220.230.2
40に収付けられており、鏡枠210.220の一側に
はガイド筒211.221・が軸心を鉛直にして取付け
られており、他側には内面に螺条を有するネジ筒212
、222が軸心を鉛直にして収付けられている。
-21 to 24 are appropriate mirror frames 210.220.230.2
A guide tube 211, 221 is attached to one side of the lens frame 210, 220 with its axis vertical, and a threaded tube 212 with a thread on the inner surface is attached to the other side.
, 222 are housed with their axes vertical.

ガイド筒211 、221 Fi支持部材25の一側の
縦支柱となっているガイド柱251に滑#可能に摺嵌さ
れており、またガイド柱251と対向して平行に設けら
れた送りネジ252の上部、下部夫々にはネジ筒212
及び222を螺合させである。送りネジ252の上部螺
条と下部螺条とは逆ネジにしてあり、その中間部は螺条
を形成せず、この部分に鏡枠230゜240の一側に形
成した支持筒232.242を遊表しである。そして鏡
枠230.240の他側端部はガイド柱251に固着さ
れている。送りネジ252の下端にはパルスモータ26
が連結されており、そのlステップの駆動によシ送りネ
ジ252を所定菫回転させる。これにより上側の−21
と下側のw!22とに等寸ずつ接近し、或は離反する。
The guide tubes 211 and 221 are slidably fitted into a guide column 251 which is a vertical column on one side of the Fi support member 25, and a feed screw 252 provided parallel to and opposite to the guide column 251. Threaded tubes 212 at the top and bottom respectively
and 222 are screwed together. The upper and lower threads of the feed screw 252 are reversely threaded, and the middle part has no thread, and a support tube 232, 242 formed on one side of the lens frame 230° 240 is provided in this part. It is a game chart. The other end of the lens frame 230 and 240 is fixed to the guide column 251. A pulse motor 26 is attached to the lower end of the feed screw 252.
are connected to each other, and the feed screw 252 is rotated a predetermined number of times by driving the l step. This allows the upper -21
And the bottom lol! 22 and move away from each other by the same size.

従ってパルスモータ26の駆#によってテレビカメラ1
1の撮像視野は平行移動することKなって、鋼管の直径
に応じた視野調整が容易に可能さなる。
Therefore, by driving the pulse motor 26, the television camera 1
The imaging field of view 1 is moved in parallel, so that the field of view can be easily adjusted according to the diameter of the steel pipe.

12はテレビカメラコントローラであってテレビカメラ
11−による撮影像に応じた画像信号を出力する。この
画像信号は画像処理装置14へ入力され、ここで各水平
走査線についての明暗境界部位の位置を特定するデータ
が求められ、このデータは演算装置15へ読込まれる。
A television camera controller 12 outputs an image signal corresponding to an image taken by the television camera 11-. This image signal is input to the image processing device 14, where data specifying the position of the bright/dark boundary region for each horizontal scanning line is obtained, and this data is read into the arithmetic device 15.

上記明暗境界部位の位置特定データはネジの投影像の形
状を表すデータ群になっていることに言うまでもない。
Needless to say, the position specifying data of the bright and dark boundary region is a data group representing the shape of the projected image of the screw.

演算装置15はこのデータ群に基きネジ要素を算出する
のであるが、鋼管10は静止しているので1画面分のデ
ータ入力で十分である。演算装置15はネジ要素演算結
果をプリンタ16にて印字記録する一方、各要素の演算
結果が許容公差を外れている場合は警報器17を作動せ
しめる。
The calculation device 15 calculates the thread element based on this data group, but since the steel pipe 10 is stationary, data input for one screen is sufficient. The arithmetic unit 15 prints and records the thread element calculation results using the printer 16, and activates the alarm 17 if the calculation results for each element are outside the allowable tolerances.

次に各要素の演算方法についてその概略を説明する。演
算装置15は画像処理装置14から読込んだデータをメ
モリヘ一旦格納するが、その内容は第4図に示すよう罠
なっている。即ち水平走査線番ラミの1つKつき画面左
側のネジ投影像外縁(画像信号が白レベルから黒レベル
に変化する部分)のデータLiと右側のネジ投影像外縁
(画像信号が黒レベルから白レベルに変化する部分)の
データRiとからなっている。演算はこれらのデータを
読出して次のステップで行っていく。これらのデータL
 l * R1は第5図に示すようにモニタ13では画
面左から(正確には水平]同期信号(ケ置力・ら)各変
化部分までの寸法相当のデータとなる。
Next, an outline of the calculation method for each element will be explained. The arithmetic device 15 temporarily stores the data read from the image processing device 14 in the memory, but the contents are in a trap as shown in FIG. In other words, the data Li on the outer edge of the screw projection image on the left side of the screen (the part where the image signal changes from the white level to the black level) and the outer edge of the screw projection image on the right side (the part where the image signal changes from the black level to the white level) with one K on the horizontal scanning line number laminate. data Ri (the part that changes to the level). The calculation is performed in the next step by reading out these data. These data L
As shown in FIG. 5, on the monitor 13, l*R1 is data corresponding to the dimensions from the left side of the screen (to be more precise, horizontal) to each changing portion of the synchronization signal (placement force, etc.).

(1)  i木目の水平走査線について、1本@tlt
Di−1本目のデータL i −1との差I Li  
 Li−1lを順次算出していき、予め定めたレベル、
例1え11’実寸で1opes相当値と比較する。
(1) For the i grain horizontal scanning line, one @tlt
Di-difference from the first data L i -1 I Li
Li-1l is calculated sequentially, and the predetermined level,
Example 1E11' Compare the actual size with the value equivalent to 1 opes.

(2)  これより小さい部分はネジのLLIms又は
谷部(の平坦部であるとしてその部分の中+6に位置す
る水平走査線番号を求める。第4図の伊」ではj十1−
に木目のデータがその条件を満たす力1ら−(= j−
4−(k−j+t ’)/2又はc=(k+j+1 )
/2 となる。このCは第5図に示すようにIIJ 8rs 
(又は谷部)の中心であり、j+1〜によりもMfl後
においてIL:Li−1巨10ハとなったブータフ0ル
−プについて求められるCは逆に谷:部(又はLIJ副
も)の中心ということになり、要するに山部、谷部の中
心を特定する水平走査番号力;交互に求められることに
なる。
(2) Assuming that the smaller part is the flat part of the LLIms or troughs of the screw, find the horizontal scanning line number located at +6 in that part.
If the wood grain data satisfies that condition, then the force 1 ra− (= j−
4-(k-j+t')/2 or c=(k+j+1)
/2. This C is IIJ 8rs as shown in Figure 5.
(or trough), and C obtained for the Butha 0 loop which became IL:Li-1 giant 10 Ha after Mfl due to j+1~ is conversely the center of the trough (or LIJ sub). In other words, the horizontal scanning numbers for specifying the centers of peaks and valleys are alternately determined.

このようにして算出したCを奇数番目に得たものをC,
、C,、C,・・・C0・・・と、偶数番目に得たもの
をC,、C,、C,・・・Ce・・・とに分類し、メモ
リの他のエリアに第6図に示すように格納する。前述し
たところから理解されるように1例えば奇数番号の計算
値は谷中心、偶数番号の計算値は山中心となる0 (3)次にco、 ceでの1値tco t Lce 
 を算出し、各C0,Ceと対応させてメモリに書込・
む。C0,C,が整数値であれば“該当する水平走査線
のLi値がそのまま用いられ、そうでない場合はその前
後の水平走査線についてのLi値に基く比例計算にて算
出する。
The odd-numbered C calculated in this way is C,
, C, , C, . . . C0 . Store as shown. As can be understood from the above, 1 For example, the calculated value of an odd number is at the center of the valley, and the calculated value of an even number is at the center of the mountain.0 (3) Next, the 1 value at co and ce tco t Lce
is calculated and written to memory in correspondence with each C0, Ce.
nothing. If C0, C, is an integer value, the Li value of the corresponding horizontal scanning line is used as is; otherwise, it is calculated by proportional calculation based on the Li values of the horizontal scanning lines before and after it.

以上によりネジの山、谷の中心の管径方向位1dが特定
できたことになる。
With the above, the pipe diameter direction position 1d of the center of the thread ridges and valleys can be identified.

(荀 次にリードの算出処理に入る。これは相前後する
Cの差として個、−に求める。即ち゛谷す−ドは汀 C,−C。
(进 Next, lead calculation processing begins. This is calculated as the difference between successive Cs. In other words, the ``valley'' is C, -C.

C,−C。C, -C.

C0二C0−8 ら◆* −C6 のよう圧して、また山リードは C,−C。C02C0-8 et ◆* -C6 Pressing like this, the mountain lead again C, -C.

C,C。C, C.

Ce   Ce−x C@+z  C4 のようにして夫々求める。Ce Ce-x C@+z C4 Find each as follows.

(5)  次にハイドの算出処理に入る。(5) Next, the Hyde calculation process begins.

谷ハイドは相前後するC0. C,KおけるLi値員。Tani Hyde is C0. Li value in C and K.

。 LceO差と“して個々の/Sイトを求める、。. Find the individual /Site using the LceO difference.

即ち LC2−LcI LC3tex LC4−LC3 tco    tce のよう圧して求める。That is, LC2-LcI LC3tex LC4-LC3 tco tce Find it by applying pressure.

(6)  次にテーパの算出処理に入る。これには相前
後するLCOe或はLceの差として個々に求められる
(6) Next, enter taper calculation processing. This is determined individually as the difference between successive LCOe or Lce.

即ち、谷のテーパは LCa−Lct LCs    LCO LCOLe・−雪 Lc、。冨−LC(1 のよう和して、ま九山のテーパは Lea   Leg tcs   tea’ LCO−LCe−1 L(@+*  Lcs のようKして大々求められ、る。That is, the taper of the valley is LCa-Lct LCs LCO LCOLe・-Snow Lc. Tomi-LC (1 So, the taper of Mt. Lea Leg tcs tea’ LCO-LCe-1 L(@+* Lcs It is highly sought after as K.

而して叙上の如き処理は右側のデータ帽についても同様
に%行される。そして上述の如くして各ネジ山ととに算
出した数値について左側、右側共に含めて代数平均値を
求゛め、これをリード、ハイド、テーパとする。ブリ・
ンタ16には個々の算出結果、右、左ごとの平均値等も
併せて印字させてもよいことは勿論である。
The above-mentioned processing is similarly carried out for the data cap on the right side. Then, for the numerical values calculated for each screw thread as described above, including both the left and right sides, an algebraic average value is determined, and this is used as the lead, hide, and taper. Buri・
It goes without saying that the printer 16 may also print out the individual calculation results, the average value for each right and left side, etc.

而して本発明装置においては管軸心に関して対称な2位
置のネジ形状に基いてそのネジ要素を算出している。こ
れは撮影画像の水平走査線と鋼管軸心線とが正確に垂直
にならない場合におけるテーパ測定精度を高める上で重
要である。即ち、テレビカメラ11及び鏡21〜24の
光学系は安定定ttすれ、また鋼管lOもチャックによ
って位置決めされるが、その管軸心を、API規格のネ
ジ要素管理基準の±20声調の精度でのテーパ測定をl
1iT能とするように厳密に水平に(又はテレビカメラ
11の水平走査線方向と垂直に)位置せしめることは困
難である。しかしながら本発明のように軸心に対称な2
位置の投影像に基いてデータ処理を行う場合は軸心の水
平からの傾きに基因して個々のネジごとに含まれるテー
パの誤差は、左、右のものKついての平均化をすること
によシ相殺されることになる。
In the apparatus of the present invention, the thread element is calculated based on the thread shapes at two positions symmetrical with respect to the tube axis. This is important in improving taper measurement accuracy when the horizontal scanning line of the captured image and the steel pipe axis are not exactly perpendicular. That is, the optical systems of the television camera 11 and the mirrors 21 to 24 are stabilized tt, and the steel pipe IO is also positioned by the chuck, but the axis of the pipe is adjusted to an accuracy of ±20 tones according to the thread element management standard of the API standard. Measure the taper of
It is difficult to position it strictly horizontally (or perpendicularly to the horizontal scanning line direction of the television camera 11) so as to achieve 1iT performance. However, as in the present invention, two
When data processing is performed based on the projected image of the position, the taper errors included in each individual screw due to the inclination of the axis from the horizontal are averaged for the left and right ones K. It will be canceled out.

:1 (7)次にベベルの算出処理について説明する。ベベル
とは第2図に示すようにネジ端のテーパ部分の軸心線に
対する角度βである。この処理はLlを管端側(モニタ
上側)から所定数のデータLl+ k。。
:1 (7) Next, the bevel calculation process will be explained. The bevel is the angle β of the tapered portion of the threaded end with respect to the axis, as shown in FIG. This process converts Ll to a predetermined number of data Ll+k from the tube end side (upper side of the monitor). .

・・・Lll (但しvm−/の値はり、llが前記テ
ーパ一部分、所謂ベベル部の範囲内の値であるように設
定しておく)を順次読出し、これらのデータに基き最小
自乗法にて撮像平面(又はモニタ画像平面)での直交座
標系におけるテーパ部の傾きaを算出し、β=tmll
l としてベベルを算出する。
...Lll (however, the value of vm-/ is set so that ll is a value within the range of the taper part, the so-called bevel part) is read out sequentially, and based on these data, the least square method is used. Calculate the inclination a of the taper part in the orthogonal coordinate system on the imaging plane (or monitor image plane), and β = tmll
Calculate the bevel as l.

このような処理は右側のデータRiについても行われ、
左側のデータについて得たベベルとの平均を求める。こ
の場合も管軸心の水平からの傾きによる誤差は両データ
に基りて求めたβの平均をとることKよって相殺される
Such processing is also performed for the data Ri on the right side,
Find the average of the bevel obtained for the data on the left. In this case as well, the error due to the inclination of the tube axis from the horizontal is canceled out by taking the average of β determined based on both data.

以上のように本発明に係るネジ要素測定装置は、2次元
撮像装置と、該2次元撮像装置とネジとの闇に配され、
その撮像視野を、ネジ円周方向に相異る2位置の外縁部
分を限定的に含む領域に制限へ する光学系と、2次元撮像装置の画像信号に基いてネジ
要素を演算する演算装置とを具備するものであるから、
狭い場所にも設置でき、既設油井管検査ラインへの付設
が何らの問題もなく可能である。そして画像処理すべく
撮像する部分をネジの投影形状が現れる部分に限ってい
ること、により、無駄な管の中間部分を撮像せず、その
分だけ分解能を向上でき、高精度の測定が可能になる。
As described above, the screw element measuring device according to the present invention is arranged between a two-dimensional imaging device, the two-dimensional imaging device and the screw, and
an optical system that limits the imaging field of view to a region that includes the outer edge portions at two different positions in the circumferential direction of the screw; and an arithmetic device that calculates screw elements based on image signals from a two-dimensional imaging device. Since it is equipped with
It can be installed even in narrow spaces, and can be attached to existing oil country tubing inspection lines without any problems. By limiting the area to be imaged for image processing to the area where the projected shape of the screw appears, the middle part of the tube is not needlessly imaged, and the resolution can be improved accordingly, making it possible to perform highly accurate measurements. Become.

しかもその分解能は管径の大小に拘らず略々一定した値
を確保できる。更に前述のように管軸心と撮像装置との
関係に少しの狂いがあったとしても、つまり管軸心が厳
密に水平姿勢をとらすともそれに因ってテーパ、ベベル
に測定誤差を生じることがない。更に本発明装置は人手
を要することなく迅速に自動測定できるので鋼管の生産
能率に検査速度を追随させ得るから、全敗検査が可能に
なる。
Moreover, the resolution can be maintained at a substantially constant value regardless of the size of the pipe diameter. Furthermore, as mentioned above, even if there is a slight deviation in the relationship between the tube axis and the imaging device, that is, even if the tube axis takes a strictly horizontal position, this will cause measurement errors in taper and bevel. There is no. Furthermore, since the apparatus of the present invention can quickly and automatically perform measurements without requiring any manual labor, the inspection speed can be made to follow the production efficiency of steel pipes, making it possible to perform complete failure inspections.

そして本発明装置fは前述の従来の自助測定装−に比し
て著しく安価に提供できる。
The device f of the present invention can be provided at a significantly lower cost than the conventional self-help measuring device described above.

更に前述の実施例のように鏡21と鏡22とを相互に接
近、離反し得るように構成する場合は管径の異るものの
測定にも迅速に対処できる等、本発uj4は幾多の優れ
た効果を奏する。
Furthermore, when the mirror 21 and the mirror 22 are constructed so that they can approach and separate from each other as in the above-mentioned embodiment, the uj4 of the present invention has many advantages, such as being able to quickly cope with the measurement of tubes with different diameters. It has a great effect.

なお本発明は外ネジーーに適用できることはHうまでも
ない。
It goes without saying that the present invention can be applied to external threads.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図は本
発明装置の全体的構成図、第2図は撮像視野の説明図、
第3図#i鏡の連動調節機構の立面図、第4.6図はメ
モリ内容の概念図、第5図はデータLI、 R1の説明
図である。 11・・・テレビカメラ 12・・・テレビカメラコン
トローラ 13・・・モニタ 14・・・画像処理装置
15・・・演算装置 21〜24・・・鏡枠 許 出 
願 人   住友金属工業株式会社代理人 弁理士  
河 野 登 夫 /(/7 斉 2 図 寥 3 (2) ′Ik 4 目 答 5 l :響 第 6 図
The drawings show embodiments of the present invention, in which Figure 1 is an overall configuration diagram of the apparatus of the present invention, Figure 2 is an explanatory diagram of the imaging field of view,
FIG. 3 is an elevational view of the interlocking adjustment mechanism of mirror #i, FIG. 4.6 is a conceptual diagram of memory contents, and FIG. 5 is an explanatory diagram of data LI and R1. DESCRIPTION OF SYMBOLS 11... Television camera 12... Television camera controller 13... Monitor 14... Image processing device 15... Arithmetic device 21-24... Mirror frame permission
Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney
Noboru Kono/(/7 Sai 2 Zuho 3 (2) 'Ik 4 Answer 5 l: Hibiki No. 6

Claims (1)

【特許請求の範囲】[Claims] 1.2次元撮像装置と、該2次元撮像装置とネジとの間
に配され、その撮像視野を、ネジ円周方向に相異る2位
置の外縁部分を限定的に含む領域に制限する光学系と、
2次元撮像装置の画像信号に基いてネジ要素を演算する
演算装置とを具備することを特徴とするネジ要素測定装
置。
1. A two-dimensional imaging device, and an optical device disposed between the two-dimensional imaging device and the screw, which limits the imaging field of view to an area that exclusively includes the outer edge portions at two different positions in the circumferential direction of the screw. system and
1. A screw element measuring device comprising: an arithmetic device that calculates a screw element based on an image signal from a two-dimensional imaging device.
JP16128981A 1981-10-09 1981-10-09 Measuring device for screw element Pending JPS5862505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16128981A JPS5862505A (en) 1981-10-09 1981-10-09 Measuring device for screw element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16128981A JPS5862505A (en) 1981-10-09 1981-10-09 Measuring device for screw element

Publications (1)

Publication Number Publication Date
JPS5862505A true JPS5862505A (en) 1983-04-14

Family

ID=15732274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16128981A Pending JPS5862505A (en) 1981-10-09 1981-10-09 Measuring device for screw element

Country Status (1)

Country Link
JP (1) JPS5862505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151804A (en) * 1986-12-17 1988-06-24 Toyo Seikan Kaisha Ltd Method and apparatus for measuring dimension of can lid
EP0695413A1 (en) * 1993-04-19 1996-02-07 Mectron Engineering Company Non-contact inspection system
KR100947885B1 (en) 2008-03-03 2010-03-17 주식회사 에프엔텍 Testing Device of a Screw Thread and thereof Testing Method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151804A (en) * 1986-12-17 1988-06-24 Toyo Seikan Kaisha Ltd Method and apparatus for measuring dimension of can lid
JPH0473725B2 (en) * 1986-12-17 1992-11-24
EP0695413A1 (en) * 1993-04-19 1996-02-07 Mectron Engineering Company Non-contact inspection system
EP0695413A4 (en) * 1993-04-19 1997-12-29 Mectron Eng Co Non-contact inspection system
KR100947885B1 (en) 2008-03-03 2010-03-17 주식회사 에프엔텍 Testing Device of a Screw Thread and thereof Testing Method

Similar Documents

Publication Publication Date Title
US5249034A (en) Method of and apparatus for inspecting end of object for defect
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
US4776692A (en) Testing light transmitting articles
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
JPWO2012120662A1 (en) Glass bottle inspection device and telecentric lens unit
JPS61256237A (en) Defect inspection for cyclic pattern
US9823224B2 (en) Weld inspection method and system
JPS5862505A (en) Measuring device for screw element
JP3552440B2 (en) Method and apparatus for measuring screw element
JP2000009880A (en) Device and method for inspecting fuel assembly
JP2004266221A (en) Inspecting apparatus and method for wafer storing cassette
TW201024687A (en) Measuring device for water level by laser optical imaging technology and method for the same
JPH04184205A (en) Length measuring apparatus
JP6864911B2 (en) Surface shape strain measuring device
JP2007155373A (en) Method and apparatus for inspecting optic medium
JPH0534131A (en) Method and apparatus for processing image
JP2005043222A (en) Object surface inspection device and object surface inspection method
JPS5845506A (en) Method and device for measuring screw element
JPS60138921A (en) Inspecting device of pattern shape
JPH0411422Y2 (en)
JP2600567B2 (en) Pipe end processing section size measurement device
JPS5811804A (en) Method and device for measuring screw shape
JPH04286944A (en) Flaw detector
JPS63138204A (en) Shape measuring method
KR0171688B1 (en) Method and equipment to measure verticality without contact