JP4945368B2 - 能動型防振支持装置及びその制御方法 - Google Patents

能動型防振支持装置及びその制御方法 Download PDF

Info

Publication number
JP4945368B2
JP4945368B2 JP2007209438A JP2007209438A JP4945368B2 JP 4945368 B2 JP4945368 B2 JP 4945368B2 JP 2007209438 A JP2007209438 A JP 2007209438A JP 2007209438 A JP2007209438 A JP 2007209438A JP 4945368 B2 JP4945368 B2 JP 4945368B2
Authority
JP
Japan
Prior art keywords
engine
vibration
actuator
determined
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007209438A
Other languages
English (en)
Other versions
JP2009041714A (ja
Inventor
哲矢 石黒
浩臣 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007209438A priority Critical patent/JP4945368B2/ja
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to EP11151886A priority patent/EP2353911B1/en
Priority to DE602008005371T priority patent/DE602008005371D1/de
Priority to EP08014242A priority patent/EP2023008B1/en
Priority to EP11151885.8A priority patent/EP2351660B1/en
Priority to US12/228,161 priority patent/US8763996B2/en
Publication of JP2009041714A publication Critical patent/JP2009041714A/ja
Application granted granted Critical
Publication of JP4945368B2 publication Critical patent/JP4945368B2/ja
Priority to US14/277,413 priority patent/US9592726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、車両のエンジンを車体に支承する能動型防振支持装置及びその制御方法に関する。
クランクパルスセンサを使用してエンジン振動の位相及びエンジン振動の大きさを推定し、その推定結果にもとづいてアクチュエータを伸縮駆動して、エンジンの振動を抑制する能動型防振支持装置が、例えば特許文献1に開示されている。特許文献1に開示される従来の技術によると、クランクパルスをサンプリングしてクランクパルス間隔の変動からエンジン振動を推定し、その推定結果に基づいて、アクチュエータを伸縮駆動するため、アイドル状態や一定走行等、定常状態の振動に対しては、効果的な防振性能を有することができる。
しかしながら、短期間の振動(過渡振動)に対しては、クランクパルス間隔の変動でエンジン振動を判定しようとしても制御が間に合わず、過渡振動を抑制できないという問題がある。そこで、例えば、特許文献2には、エンジンが全筒運転から休筒運転に切り換わるときの過渡振動に対して効果的な防振性能を有する能動型防振支持装置の技術が開示されている。
特開2007−107579号公報(段落0022〜0025参照) 特開2006−017288号公報(段落0026、図6参照)
しかしながら、特許文献2に開示された技術は、全筒運転と休筒運転の切り換わりを検知して、予めマップとして記憶されている補正値でエンジン振動の推定を過渡的に補正するものであり、その基本的な考え方は、エンジンが定常運転をしているときのものである。つまり、その制御は一定の周期で行われており、最初の周期でクランクパルスをサンプリングしたその結果は、次の周期での制御のための演算に用いられ、演算の結果は更に次の周期におけるアクチュエータの伸縮制御に用いられるというものであり、エンジン始動時に発生する過渡振動等の一過性のものを、効果的に抑制するにはアクチュエータの伸縮制御の開始が間に合わないという課題があった。
そこで、本発明は、エンジン始動時等に発生する過渡振動を効果的に抑制できる能動型防振支持装置、及びその制御方法を提供することを目的とする。
前記課題を解決するために、請求項1に係る発明の能動型防振支持装置は、エンジンを車体に支承するとともに、エンジンの回転変動を検出するセンサからの出力にもとづいてエンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置において、制御手段は、エンジンの始動からアイドリング状態に達するまでの期間に、センサからの出力にもとづくエンジンの回転変動の変化率が所定値以上のときに、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、センサからの出力にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始することを特徴とする。
請求項1に係る発明によると、エンジンの回転変動の変化率が所定値以上のときに、制御手段は、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、センサからの出力にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始するので、車体への振動の伝達を速やかに抑制することができる。
また、エンジン及びエンジンの支承により決まる固有振動数にてアクチュエータの伸縮駆動を開始するので、エンジン及びエンジンの車体への搭載の仕方で決まるエンジンが発動したときの固有の振動が車体に伝達されるのが抑制できる。
請求項2に係る発明の能動型防振支持装置は、エンジンを車体に支承するとともに、エンジンの回転変動を検出するセンサからの出力にもとづいてエンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置において、エンジンの発動を検知するエンジン発動検知手段を備え、制御手段は、エンジンの始動からアイドリング状態に達するまでの期間に、エンジン発動検知手段によりエンジンの発動を検知したときに、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、エンジン発動検知手段にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始することを特徴とする。
請求項2に係る発明によると、エンジン発動検知手段によりエンジンの発動を検知したときに、制御手段は、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、エンジン発動検知手段にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始するので、車体への振動の伝達を速やかに抑制することができる。
また、エンジン及びエンジンの支承により決まる固有振動数にてアクチュエータの伸縮駆動を開始するので、エンジン及びエンジンの車体への搭載の仕方で決まるエンジンが発動したときの固有の振動が車体に伝達されるのが抑制できる。
請求項3に係る発明の能動型防振支持装置における制御方法は、エンジンを車体に支承するとともに、エンジンの回転変動を検出するセンサからの出力にもとづいてエンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置における制御方法であって、制御手段は、エンジンの始動からアイドリング状態に達するまでの期間に、センサからの出力にもとづくエンジンの回転変動の変化率が所定値以上のときに、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、センサからの出力にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始することを特徴とする。
請求項3に係る発明によると、センサからの出力にもとづくエンジンの回転変動の変化率が所定値以上のときに、制御手段は、エンジンが発動を開始したと判定し、エンジン及びエンジンの支承により決まる固有振動数と、センサからの出力にもとづくエンジンが発動を開始したと判定したタイミングで求めた位相遅れと、によりアクチュエータの伸縮駆動を開始するので、エンジン及びエンジンの車体への搭載の仕方で決まるエンジンが発動したときの固有の振動が車体へ伝達されるのを速やかに抑制することができる。
本発明によると、エンジン始動時に発生する過渡振動を効果的に抑制できる能動型防振支持装置、及びその制御方法を提供することができる。
以下、本発明を実施するための最良の形態について、適宜図を参照しながら詳細に説明する。
(能動型防振支持装置の全体構成)
図1は本発明の実施形態に係る能動型防振支持装置を適用した車両におけるエンジン搭載状態を示す図であり、(a)は平面図、(b)は斜視図である。図2は、本実施形態に係わる能動型防振支持装置のエンジンマウント(アクティブ・コントロール・マウント)の構造を示す断面図である。
本実施形態に係わる能動型防振支持装置1は、図1の(a)、(b)において、上下方向に伸縮駆動することが可能で、車両Vのエンジン2を車体フレームに弾性的に支承するために用いられるアクティブ・コントロール・マウント(以下、ACMと略称する)10を、エンジン2の前後方向に2つ配置してなる。
ここで、エンジン2は、クランク軸(図示せず)の一端にトランスミッション3が結合されるとともに、クランク軸が車両Vの本体に横向きに配置される、いわゆる横置きのV型6気筒エンジンである。従って、エンジン2はクランク軸方向が車両Vの左右方向に配置され、ACM10は、エンジン2によるロール方向の振動を抑制するため、エンジン2を挟んで車両Vの前後に1対備えられている。以降、車両Vに対してエンジン2の前方向に備わるACM10を前方ACM10a、後方向に備わるACM10を後方ACM10bと称する。
前方ACM10a及び後方ACM10bは、エンジン2の重心の高さより低い位置に取り付けられ、エンジン2の前後方向のロール振動を抑制するとともに、エンジン2を車両Vの車体に弾性支持(支承)する。
図2に示すように、能動型防振支持装置1は、ACM10を制御するアクティブ・コントロール・マウント制御ECU(Electric Control Unit)62を備えている。以下では、アクティブ・コントロール・マウント制御ECU62は、ACMECU62と称する。
ACMECU62は、請求項に記載の制御手段に対応する。
ACMECU62はエンジン2の回転速度や出力トルク等を制御するエンジン制御ECU(以下、エンジンECUと称する)61と通信回線で接続されている。
なお、ACMECU62は、エンジンECU61からエンジン回転速度NE信号、クランクパルス信号、各気筒の上死点のタイミングを示すTDC信号、V型6気筒のエンジン2を全筒運転しているのか、休筒運転をしているのか示すシリンダ・オフ信号、イグニッション・スイッチ信号(以下、IG−SW信号と称する)が入力される。
なお、クランクパルスは、6気筒エンジンの場合、クランクシャフトの1回転につき24回、つまりクランク角の15°毎に1回出力される。
(ACMの構成)
図2に示すように、ACM10は、軸線Lに関して実質的に軸対称な構造を有するもので、主に、略円筒状の上部ハウジング11と、その下側に配置された略円筒状の下部ハウジング12と、下部ハウジング12内に収容されて上面が開放した略カップ状のアクチュエータケース13と、上部ハウジング11の上側に接続したダイヤフラム22と、上部ハウジング11内に格納された環状の第1弾性体支持リング14と、第1弾性体支持リング14の上側に接続した第1弾性体19と等から構成されている。
上部ハウジング11下端のフランジ部11aと、下部ハウジング12の上端のフランジ部12aとの間に、アクチュエータケース13の外周のフランジ部13aと、第1弾性体支持リング14の外周部と、アクチュエータケース13内の上部側に配置された環状の第2弾性体支持リング15の外周部とが重ね合わされてカシメにより結合される。このとき、フランジ部12aとフランジ部13aとの間に環状の第1フローティングラバー16を介在させ、かつアクチュエータケース13の上部と第2弾性体支持リング15の内面との間に環状の第2フローティングラバー17を介在させることで、アクチュエータケース13は上部ハウジング11及び下部ハウジング12に対して上下方向に相対移動可能にフローティング支持される。
第1弾性体支持リング14と、第1弾性体19の上面側に設けられた凹部内に配置された第1弾性体支持ボス18は、厚肉のラバー等の弾性部材で形成された第1弾性体19の下端及び上端で、加硫接着によって接合されている。更に、第1弾性体支持ボス18の上面にダイヤフラム支持ボス20が図示しないボルト等で固定されており、ダイヤフラム支持ボス20に内周部を加硫接着等によって接合されたダイヤフラム22の外周部が、上部ハウジング11に加硫接着により接合されている。
ダイヤフラム支持ボス20の上面にはエンジン取付部20aが一体に形成され、エンジン2(図1参照)に固定される(詳細な固定方法は、図示省略してある)。また、下部ハウジング12の下端の車体取付部12bが車体フレームFに固定される。
上部ハウジング11の上端のフランジ部11bには、ストッパ部材23の下端のフランジ部23aが図示しないボルト及びナットの締結等によって固定されており、ストッパ部材23の上部内面に取り付けたストッパラバー26に、エンジン取付部20aが当接可能に対向する。
このような構造によって、ACM10にエンジン2(図1参照)から大きな荷重が入力したとき、エンジン取付部20aがストッパラバー26に当接することで、エンジン2の過大な変位が抑制される。
第2弾性体支持リング15の内周面には、膜状のラバー等からなる弾性体で形成された第2弾性体27の外周部が加硫接着により接合されており、第2弾性体27の中央部にその上部が埋め込まれるように可動部材28が加硫接着により接合される。
そして、第2弾性体支持リング15の上面と第1弾性体支持リング14の下部との間に円板状の隔壁部材29が固定されており、第1弾性体支持リング14、第1弾性体19及び隔壁部材29により区画された第1液室30と、隔壁部材29及び第2弾性体27により区画された第2液室31とが、隔壁部材29の中央に開口している連通孔29aを介して相互に連通する。
また、第1弾性体支持リング14と上部ハウジング11との間に環状の連通路32が形成されている。連通路32は連通孔33を介して第1液室30に連通するとともに、環状の連通間隙34を介して、第1弾性体19とダイヤフラム22により区画された第3液室35に連通する。
次に、アクチュエータケース13内に格納された破線枠内で示した駆動部(アクチュエータ)41の詳細構造を説明する。
図2に示すように駆動部41は、主に透磁率が高い金属又は合金からなる固定コア42、ヨーク44、可動コア54と、外周をコイルカバー47で覆われた電磁石のコイル46と、から構成されている。固定コア42は、下端部に受け座面のフランジ部を有する略円筒状で、円筒部の外周は円錐の周面形状をしている。可動コア54は略円筒状で上端が内周方向に突き出てばね座を形成し、円筒部の内周は円錐の周面形状をしている。
コイルカバー47には、アクチュエータケース13及び下部ハウジング12に開口する開口部を貫通して外部に延出するコネクタ部47aが一体に形成され、そこにコイル46に給電する給電線が接続される。
ヨーク44は、コイルカバー47の上面側に環状の鍔部を持ち、その鍔部の内周から下方に伸びる円筒部を有する、謂わば、フランジ付き円筒の形状である。ヨーク44の円筒部の内周面には、薄肉円筒状の軸受け部材51が上下方向に摺動自在に嵌合しており、この軸受け部材51の上端には径方向内向きに折り曲げられた上部フランジが形成されるとともに、下端には径方向外向きに折り曲げられた下部フランジ51aが形成されている。
下部フランジ51aとヨーク44の円筒部の下端との間には、セットばね52が圧縮状態で配置されており、このセットばね52の弾性力で軸受け部材51の下部フランジ51aを下方に付勢して、下部フランジ51aの下面と固定コア42との間に配された弾性体53を介して、固定コア42の上面に押し付けることで、軸受け部材51がヨーク44にて支持される。
軸受け部材51の内周面には、略円筒状の可動コア54が上下方向に摺動自在に嵌合する。更に、固定コア42及び可動コア54はそれぞれ軸線L上の中心部が中空になっており、そこに前記した可動部材28が配置されている。可動部材28は、ロッド28aと、ロッド28aの上端部の、ロッド28aより外径の大きいヘッド部28bと、からなる。ロッド28aの下端部にはナット部材56が締結される。ナット部材56は、中心部に上端が開口した中空部を有し、その中空部にロッド28aの下端側を収容し、その上端がやや外径が大きく上面が可動コア54のばね座の下面と当接するようになっている。
また、可動コア54の上面のばね座とヘッド部28bの下面との間には、セットばね58が圧縮状態で配置され、このセットばね58の弾性力で可動コア54は下方に付勢され、可動コア54の前記ばね座の下面がナット部材56の上端面に押し付けられて固定される。この状態で、可動コア54の円筒部の円錐の周面形状の内周面と固定コア42の円錐の周面形状の外周面とが、円錐の周面状のギャップgを介して対向している。
ロッド28a及びナット部材56は、固定コア42の中心に形成された中空部に緩く嵌合し、この中空部は下方がプラグ42aで閉塞されている。
以上のように構成されるACM10の作用について説明する(以下、適宜図2参照)。
車両Vの走行中に低周波数(例えば、7〜20Hz)のエンジン、車体、サスペンションの連成系において車体の剛体振動とエンジン系の共振により発生する低周波振動であるエンジンシェーク振動が発生したとき、エンジン2からダイヤフラム支持ボス20及び第1弾性体支持ボス18を介して入力される荷重で第1弾性体19が変形して第1液室30の容積が変化すると、連通路32を介して接続された第1液室30及び第3液室35の間で液体が流通する。この状態で、第1液室30の容積が拡大・縮小すると、それに応じて第3液室35の容積は縮小・拡大するが、この第3液室35の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、連通路32の形状及び寸法、並びに第1弾性体19のばね定数は、前記エンジンシェーク振動の周波数領域で低ばね定数及び高減衰力を示すように設定されているため、エンジン2から車体フレームFに伝達される振動を効果的に低減することができる。
なお、上記エンジンシェーク振動の周波数領域では、エンジン2が定常回転の場合は、ACM10の駆動部41は駆動しない非作動状態に保たれる。
前記エンジンシェーク振動よりも周波数の高い振動、すなわちエンジン2の図示しないクランクシャフトの回転に起因するアイドル時の振動や気筒休止時の振動が発生した場合、第1液室30及び第3液室35を接続する連通路32内の液体はスティック状態になって振動を抑制できなくなるため、ACM10の駆動部41を駆動してエンジン2の振動を抑制する。ちなみに、アイドル振動は、アイドル回転状態でフロア、シート及びステアリング・ホイールが低周波振動を起こすもので、ブルブル振動は4気筒エンジンで、例えば、20〜35Hz、6気筒エンジンで、例えば30〜50Hzであり、ユサユサ振動は5〜10Hzで燃焼不均一にて発生し、エンジンのロール振動が主な要因である。
そこで、駆動部41を駆動するため、図2に示すACM10を含む能動型防振支持装置1(図1参照)には、エンジン2のクランクパルスを検出するクランクパルスセンサ(センサ)60、エンジンECU61、及びACMECU62が備わる。
(ACMECUの構成)
図3は、クランクパルスセンサ、エンジンECU及びACMECUの接続を示すブロック図である。
クランクパルスセンサ60は、エンジン2の図示しないクランク軸が発生するクランクパルスを検出するセンサである。6気筒エンジンの場合、クランクパルスは、エンジン2におけるクランク角が15°ごとに発生し、クランクパルスセンサ60はこのクランクパルスを検出してエンジンECU61に入力する。
エンジンECU61は、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えるマイクロコンピュータ及び周辺回路等から構成され、エンジン2の回転速度を制御したり、エンジン2に備わる図示しない回転速度センサを介してエンジン2の回転速度を検出したりする。そして、検出した回転速度やクランクパルスセンサ60から入力されるクランクパルスをACMECU62に入力する機能を有する。
ACMECU62は、CPU62b、ROM62c、RAM62d等を備えるマイクロコンピュータ及び周辺回路等から構成される。そして、エンジンECU61から入力されるエンジン回転速度NEやクランクパルス等の信号を入力する信号入力部62aが備わる。
更に、ACMECU62は、前方ACM10a及び後方ACM10bがそれぞれ備えるコイル46(図2参照)に電流を通電する図示しないスイッチング回路を含む給電部62fを備える。給電部62fの前記スイッチング回路はCPU62bに制御され、給電部62がバッテリから供給される直流電源を、コネクタ部47a(図2参照)を介してコイル46(図2参照)に供給可能となっている。そして、ACMECU62は、例えばROM62cに格納されるプログラムによって動作する。
また、ACMECU62にはフラッシュメモリ等の記憶部62eが備わり、ACM10を制御するために必要なデータ等が記憶される。
図2に示すように構成されるACM10の駆動部41は、コイル46に電流が通流されていない状態のとき、可動部材28は、第2弾性体27の自己の弾性復元力によって上動する。そして、ナット部材56が可動コア54を押し上げ、可動コア54と固定コア42との間にギャップgが形成される。
一方、ACMECU62からコイル46に電流が通電されると、コイル46が発生させた磁束線がヨーク44、可動コア54、更にギャップgを上下に貫通して、固定コア42、コイル46に戻る閉じた回路を形成することによって、可動コア54が下方に吸引され、移動する。このとき、可動コア54は可動部材28に固定されるナット部材56を介して、可動部材28を下方に移動させ、第2弾性体27が下向きに変形する。その結果、第2液室31(図2参照)の容積が増加するため、エンジン2(図1参照)からの荷重で圧縮された第1液室30の液体が隔壁部材29の連通孔29aを通過して第2液室31に流入し、エンジン2から車両V(図1参照)に伝達される荷重を低減することができる。コイル46への通電を止めると、可動コア54は下への吸引力から解放される。
以上のように、ACMECU62は、コイル46へ通電する電流をオン/オフすることで可動部材28の上下動を制御でき、エンジン2のロール振動を抑制することができる。
(エンジン始動時のエンジン振動)
次に本発明の特徴であるエンジン2の始動時の振動の車体への伝達抑制について説明する。これまでの能動型防振支持装置では、エンジン2のアイドリング時や6気筒運転から3気筒運転に切り換えた場合等、エンジン2が定常回転をしている場合のエンジン振動を吸収することに着目されたものであった。
本実施形態に係わる能動型防振支持装置1(図1の(a),(b)参照)は、ACM10でエンジン2を支承し、特にエンジン始動時に発生する後記するロール固有値振動を、ACM10の駆動部(アクチュエータ)41(図2参照)を伸縮駆動することで車体に伝達されるのを抑制するものである。
エンジン2をスタータで始動すると、エンジン2が発動(エンジン2の点火が開始、つまり気筒爆発により自力回転力を始めることを、ここでは「発動」と称することとする)した直後しばらく、回転速度がアイドリング状態の回転速度に上がるまでは、エンジン2の振動は、エンジン2の重量(ここでは、エンジン2とトランスミッション3の重量を含む)と、エンジンマウントのばね定数によって決まる固有振動数(ロール固有値)による振動が大半を占めることが分かった。
そして、エンジン2が発動して点火周期(エンジン振動の3次成分)がロール固有値と一致したエンジン回転速度NEのとき、共振して振動が最大になる。
V型6気筒エンジンの場合、クランク軸の1回転で3回気筒の爆発があるので、エンジン回転速度NEに応じた振動を「エンジン振動3次」と称するが、エンジン振動3次の振動周波数は、エンジン回転速度NEが増加するに連れて増加し、かつ、振動の大きさも増加する。これに対し、前記した固有振動数によるロール固有値振動は低減していき、アイドリング状態のエンジン回転速度に近づくと、エンジン振動3次の振動が支配的となることが分かった。
なお、ロール固有値振動は、クランク軸の回転方向に発生する振動であって、横置きエンジンの場合、車両の前後方向に発生する。
そして、ロール固有値振動は、例えばエンジン始動時等クランク軸が不安定な回転をしている場合に発生する振動である。
ちなみに、直列4気筒エンジンの場合は、1回転に2回気筒爆発があるので、エンジン回転速度NEに応じた振動をエンジン振動2次と称し、V型6気筒エンジンにおける3気筒での運転状態、つまり、休筒運転時の場合は1回転に1.5回気筒爆発があるので、エンジン回転速度NEに応じた振動をエンジン振動1.5次と称する。
図4はエンジン始動時のエンジン振動特性の時間推移を示す解析結果を説明する図である。図4において横軸は時間(sec)であり、縦軸は振動周波数(Hz)を示している。そして、振動の大きさをハッチングの種類を変えた領域で示してある。
破線で示すように、「エンジン振動3次」(図中、「ENG振動3次」と表示)の振動成分は、エンジン2が発動した時間t以降、アイドリング状態のエンジン回転速度NEよりやや低い所定のエンジン回転速度NEmに達した時間tまでの間では、前記固有振動数(ロール固有値)での振動とエンジン振動3次成分の混成振動域である。そして、エンジン回転速度NEが前記したロール固有値と一致したとき最大の振動になる。
時間t以降は、エンジン振動3次成分が主成分になるのが分かる。
(ACMECUの作用)
次に図5から図7を参照しながらACMECUの作用について説明する。
図5は、本実施形態におけるACMECUの機能構成ブロック図である。図6はクランクパルスの移動平均の算出を説明する図であり、図7は前方ACMと後方ACMのアクチュエータを伸縮駆動制御する電流の出力タイミングを説明する図である。
ACMECUの各機能構成ブロックの機能は、ROM62c(図3参照)に記憶されたプログラムをCPU62bが実行することで実現される。具体的には、クランクパルス間隔算出部621、エンジン回転モード判定部622、振動状態推定部623、位相検出部624、アクチュエータ駆動制御部625を含んで構成されている。
クランクパルス間隔算出部621は、CPU62bの内部クロック信号とエンジンECU61からのクランクパルス信号及びTDCパルス信号により、クランクパルスの間隔を算出する。クランクパルス(図6中、CRKパルスと表示)信号は、前記したようにクランク軸回転角15°ごとに出力されるが、代表シリンダの上死点に対してはクランクパルスを出力しない、歯抜けの状態とする(図6参照)。ここでクランクパルス間隔(図6中のT,T,T,T,T,T,T,T)とは、図6で示すように、方形波の1周期分であるが、代表シリンダの上死点ではTDCパルス信号はあるが、クランクパルス信号は発生しないので、このクランク軸回転角30°分についてのクランクパルス間隔(T+T)を半分にした値をクランクパルス間隔として算出する。
クランクパルス間隔算出部621で算出されたクランクパルス間隔は、エンジン回転モード判定部622と振動状態推定部623に入力される。
エンジン回転モード判定部622には、エンジンECU61からのエンジン回転速度NE信号、シリンダ・オフ信号、IG−SW信号、アクセル・ポジション・センサ信号、クランクパルス間隔が入力される。
エンジン回転モード判定部622は、これらの信号にもとづいて、エンジン2の回転モードをエンジン始動時のエンジン発動を検出してエンジン起動状態と判定したり、その後エンジン回転速度NEの上昇を監視して所定のエンジン回転速度NEm以上に達したときアイドリング状態と判定したり、シリンダ・オフ信号にもとづいてエンジン2の運転状態が全筒運転状態か休筒運転状態かを判定したり、アクセル・ポジション・センサ信号にもとづいてアイドリング状態と判定したりする。
エンジン発動の検出、つまり、エンジン始動時のエンジン2の回転変動を検出する方法は、図8に示すエンジン始動時のACM制御の流れのフローチャートの説明の中で後記する。
振動状態推定部623は、エンジン回転モード判定部622からの回転モードの判定がアイドリング状態や、全筒運転状態、休筒運転状態の場合、その判定にもとづいて、クランクパルス間隔からクランク軸の回転変動を検出することとし、回転変動のP−P値(ピークから次のピークまでの間隔)から、エンジン振動の大きさ、エンジン振動の周期を求め、アクチュエータ駆動制御部625及び位相検出部624にエンジン振動の周期及び大きさ、クランク軸の回転変動のピークのタイミング等を出力する。このとき、エンジン回転モード判定部622から入力された、エンジン2の回転モードのフラグ信号に応じて算出して出力する。つまり、ここではV型6気筒エンジンなので全筒運転状態の場合はエンジン振動3次とし、休筒運転状態の場合はエンジン振動1.5次として推定する。この振動状態の推定方法については、例えば、2003年9月18日開催の自動車技術会秋季学術講演会の前刷集の「111 アクティブエンジンマウントの開発」に記載された公知の技術なので詳細な説明は省略する。
振動状態推定部623は、エンジン回転モード判定部622からの回転モードの判定がエンジン起動状態(エンジン2が発動直後からアイドリング状態に入るまでの間の期間)の場合、予め記憶部62eに記憶された所定の固有振動数(ロール固有値)の振動周期及び振動の大きさをアクチュエータ駆動制御部625及び位相検出部624に出力する。
位相検出部624は、アイドリング状態や、全筒運転状態、休筒運転状態の場合は、振動状態推定部623からのクランク軸の回転変動のP−P値、回転変動のピークのタイミングと、エンジンECU21からのクランクパルス信号、各気筒のTDCパルス信号と、にもとづいて、クランク軸の回転変動のピークのタイミングとTDCのタイミングを比較し、位相の算出を行い、アクチュエータ駆動制御部625に出力する。
アクチュエータ駆動制御部625は、それを受けてエンジン回転速度NE信号にもとづいて前記エンジン振動3次、又はエンジン振動1.5次に合わせて、前方ACM10aと後方ACM10bのそれぞれを振動の周期毎にエンジン振動波形を相殺できるマウント動作となるように、駆動周期内にデューティ信号の集合体を用いて組み合わせ、TDC毎の基準パルスから求めた位相により駆動部41(図2参照)の伸縮駆動制御を行う。
ちなみに、このアクチュエータ駆動制御部625による駆動周期内にデューティ信号の集合体を用いて行なう制御は、特開2002−139095号公報の発明の詳細な説明の段落[0030],[0031]及び図5、図6を参照されたい。
次に、エンジン回転モード判定部622からの回転モードの判定がエンジン起動状態(エンジン2が発動直後からアイドリング状態に入るまでの間の期間)の場合の、位相検出部624及びアクチュエータ駆動制御部625の機能を説明する。
その場合、位相検出部624は、振動状態推定部623からの所定の固有振動数(ロール固有値)の振動周期と、エンジンECU21からのクランクパルス信号、各気筒のTDCパルス信号、とにもとづいて、エンジン2が発動したと判定したタイミングtから所定の時間差Δtだけ位相を遅らせて(図7参照)、例えば、後方ACM10bに、そして、半周期遅れて前方ACM10aに出力するようにアクチュエータ駆動制御部625に出力する。例えば、Δtは予め設定されている。
アクチュエータ駆動制御部625は、それを受けて、前方ACM10と後方ACM10bそれぞれを振動の周期毎にエンジン振動波形を相殺できるマウント動作となるように、駆動周期内にデューティ信号の集合体を用いて組み合わせ、以後固定された周期により出力制御を行う。
(エンジン始動時のACM制御の流れ)
次に本実施形態の特徴であるエンジン始動時のACM制御の流れについて図8及び図9を参照しながら(適宜、図3、図5〜図7を参照して)説明する。図8はエンジン始動時のACM制御の流れのフローチャートであり、図9はエンジン始動時のエンジン点火タイミング、クランクパルス、エンジン振動、エンジン回転速度NEの時間推移を示す図である。
この制御は、CPU62b(図3参照)のエンジン回転モード判定部622、振動状態推定部623、位相検出部624、アクチュエータ駆動制御部625において一定の周期で行なわれる。クランクパルス間隔算出部621は、その一定周期内に、クランクパルス信号を受信すると、クランクパルス間隔を算出し、エンジン回転モード判定部622及び振動状態推定部623に入力する。
ステップS11では、IG−SWがオンになって、ACMECU62が起動すると初期設定として、エンジン回転モード判定部622は、クランクパルス間隔の移動平均値算出の初期設定としてn=0とする。
ステップS12では、エンジン回転モード判定部622は、IG−SWの信号がスタータ・オン(スタータON)を示しているか否かをチェックする。スタータ・オンの場合(Yes)はステップS13に進み、そうでない場合はステップS12を繰り返す。
ステップS13では、エンジン回転モード判定部622は、nが所定値(N+1)未満、例えば、N+1(=9)未満か否かをチェックする。nがN+1(=9)未満の場合はステップS14へ進み、n=n+1を算出してステップS15へ進む。ステップS13においてnがN+1(=9)以上の場合はステップS15へ進む。
ステップS15では、エンジン回転モード判定部622は、クランクパルス間隔を読み込み、次いで、移動平均値TCRKAVEを算出する(ステップS16)。ただし、nがN(=8)以上に達するまでは移動平均値を算出しない。
ちなみに、移動平均値TCRKAVEは、図6に示すように、クランクパルス間隔T〜Tの最寄りの8個のクランクパルス間隔により算出される。nがN+1(=9)以上のときは、新しいクランクパルス間隔が加えられるたびに、一番古いクランクパルス間隔を差し引いて、常に8個の移動平均値TCRKAVEとする。
ステップS17では、エンジン回転モード判定部622は、n=N(=8)以上か否かをチェックする。nがN以上の場合はステップS18へ進み、そうでない場合はステップS12へ戻る。つまり、8個のクランクパルス間隔が入力された移動平均値TCRKAVEが算出されて始めてステップS18へ進む。
ステップS18では、エンジン回転モード判定部622は、移動平均値TCRKAVEが所定の閾値Tth以下か否かをチェックする。ここで、判定の閾値Tthは、実験的に得られたデータにもとづいて設定される数値であり、エンジン2が発動したときに、その後のクランクパルス間隔が、例えば、2〜4個含まれた移動平均値が急激に短くなったときの数値である。
移動平均値TCRKAVEが所定の判定の閾値Tth以下の場合は、ステップS19へ進み、そうでない場合はステップS12へ戻り、ステップS12〜ステップS18の処理を繰り返す。
ステップS19では、エンジン回転モード判定部622は、エンジン発動と判定し、エンジン起動回転モードのフラグ信号を振動状態推定部623と位相検出部624に出力する。また、エンジン回転モード判定部622は、エンジン発動と判定したタイミングのタイミング信号を位相検出部624に出力する。
ここで、クランクパルス間隔の移動平均値TCRKAVEは、請求項に記載の回転変動の変化率に対応し、「移動平均値TCRKAVEが判定の閾値Tth以下になった場合」が、請求項に記載の「エンジンの回転変動の変化率が所定値以上の場合」に対応する。
ステップS20では、振動状態推定部623は、エンジン回転モード判定部622からエンジン起動回転モードのフラグ信号を受信して、記憶部62eに記憶されているロール固有値と振動の大きさを読み出し、ロール固有値での所定の振動の大きさを設定し、アクチュエータ駆動制御部625に出力する。
位相検出部624は、エンジン回転モード判定部622からエンジン起動回転モードのフラグとエンジン発動と判定したタイミングを受信して、それらとエンジンECU61からのTDCパルス信号とクランクパルス信号にもとづいて、位相遅れのΔtを設定する(ステップS21)。
この位相遅れのΔtの値は、エンジン発動と判定されたタイミングのクランクパルス(つまり、クランク軸角度位置)を基準に設定され、その設定は記憶部61eの中にデータテーブルの形で用意されており、それを参照して設定される。図7では、後方ACM10bに所定の位相遅れΔtが掛けられアクチュエータ駆動電流が出力制御され、その後ロール固有値に従って前方ACM10aにもアクチュエータ駆動電流が出力制御(ステップ22、ロール固有値にもとづいてアクチュエータを制御)されるようになっているがそれに限定されない。
発動のタイミングとクランク軸角度位置によっては、前方ACM10aに所定の位相遅れΔtが掛けられ、その後ロール固有値に従って後方ACM10bにもアクチュエータ駆動電流が出力制御される。
ステップS23では、エンジン回転モード判定部622は、エンジン回転速度NEが所定値NEm以上か否かをチェックする。エンジン回転速度NEが所定値NEm以上の場合(Yes)は、このエンジン起動回転モードの制御を終了する。つまり、アイドリングモードと判定して、アイドリングモードのフラグを立て、振動状態推定部623、位相検出部624にそのフラグ信号を出力し、アイドリングモードでの振動抑制の制御をさせる。ステップS23において、エンジン回転速度NEが所定値NEm未満の場合(No)は、ステップS22に戻り、ロール固有値にもとづいてアクチュエータを制御する。
以上の一連の制御による作用を、図9を参照しながら説明する。
図9はエンジンを始動してアイドリング状態に至るまでのエンジン状態の時間推移を示したものであり、(a)は点火タイミングパルス(IGパルス)を、(b)はクランクパルス(CRKパルス)を、(c)はエンジン振動(ENG振動)を、(d)はエンジン回転速度NE(rpm)を示したものである。
0秒でIG−SWでスタータをオン状態(図中、IG−ONで表示)にするとエンジン2が回転させられ、エンジン回転数が上がり、スタータによるエンジン2の駆動によるポンピング等による10Hz程度のスタータ駆動振動が始まる。そして、エンジン回転モード判定部622は、IG−SW信号のスタータがオンの状態を検出して、クランクパルス間隔の移動平均値TCRKAVEを監視し、判定の閾値Tth以下になったかどうかをチェックする。時間t秒でエンジン2が発動すると、移動平均値TCRKAVEは少し遅れた時間t秒で判定の閾値Tth以下を示し、エンジン回転モード判定部622は、「エンジン発動」と判定しエンジン起動回転モードのフラグ信号を振動状態推定部623及び位相検出部624に出力する。また、エンジン回転モード判定部622は、エンジン発動と判定したタイミングのタイミング信号を位相検出部624に出力する。
振動状態推定部623は、エンジン起動回転モードのフラグ信号を受けてロール固有値での所定の振動の大きさを設定し、アクチュエータ駆動制御部625に出力する。位相検出部624は、エンジン回転モード判定部622からエンジン起動回転モードのフラグとエンジン発動と判定したタイミングを受信して、それらとエンジンECU61からのTDCパルス信号とクランクパルス信号にもとづいて、位相遅れのΔtを設定する。そして、ロール固有値に従って前方ACM10a、後方ACM10bにアクチュエータ駆動電流が出力制御される(図9中に表示した「始動時制御」)。このロール固有値振動は約20Hzであり、ACM10a、10bの能動的な振動緩和制御により、車体へのエンジン振動の伝達が抑制される。その間、エンジン2は、ロール固有値振動と増加するエンジン振動3次の振動の混成振動を続けながらエンジン回転速度NEを増加させ、アイドリング状態の回転速度に近づき、エンジン回転モード判定部622は、エンジン回転速度NEを監視し、所定値NEm以上、アイドリング状態のエンジン回転速度、例えば、600rpmに対して450rpmに達したか否かをチェックする。
図9において時間tのタイミングでエンジン回転速度NEが所定値NEm以上に達すると、エンジン回転モード判定部622は、エンジン回転状態がアイドリング状態に入ったと判定して、アイドリング状態のフラグ信号を振動状態推定部623及び位相検出部624に出力し、振動状態推定部623、位相検出部624、アクチュエータ駆動制御部625によるエンジン振動の制御を、定常回転状態のエンジン振動抑制制御の一つであるアイドリング状態の制御(図9では「アイドル制御」と表示)に切り換える。つまり、エンジン振動3次の振動に対する振動抑制制御に切り換わる。
以上、本実施形態によれば、エンジン2の発動の判定をクランクパルス間隔の移動平均値TCRKAVEを用いて行っているので、エンジン2が発動してからのクランクパルス間隔の値が、例えば、2ないし4個含まれた時点のクランクパルス間隔の移動平均値TCRKAVEを判定の閾値Tthとすることによって、例えば、V型6気筒エンジンにおける上死点間のクランク軸角度(120°)の時間にてエンジン発動を判定するよりも短時間にエンジン発動を判定することができ、エンジン2のロール固有値振動の発生に対して迅速にACM10の制御が開始できる。もし、上死点間のクランク軸角度(例えば、120°)の時間にてエンジン発動を判定すると、すでにロール固有値振動の発生しており、その振動を抑制するタイミングとしては少し遅すぎる。
そのため、エンジン発動を判定した時点のクランクパルスを基準として、ロール固有値振動を相殺するに適したΔt時間だけ位相をずらしてACM10a,10bの制御を始める。これにより、エンジン始動時のエンジン振動をその初期の段階から低減することができる。
また、移動平均値TCRKAVEを用いることにより、過早な誤判定を防止でき確実にエンジン発動を検知することができる。
更に、記憶部62eに格納したデータテーブルを参照して、エンジン発動と判定したタイミングにおけるクランクパルスを基準として、最初にアクチュエータの伸縮駆動制御を開始するACM10a,10bを決め、その最初に制御を開始するACM10側の位相遅れ時間Δtを決めるようにしているので、どの気筒から点火を開始して自発回転を始めても、それによるロール固有値振動の向きに対して適切なACM10a,10bの制御を開始できる。
本実施形態では、エンジン2はV型6気筒エンジンを例に説明したが、それに限定されるものではない。V型8気筒エンジン、直列4気筒エンジン、水平対向4気筒エンジン等他の多気筒エンジンにも、勿論、適用可能である。
エンジン発動の検出にエンジン2の回転変動の時間変化率、つまり、クランクパルス間隔の移動平均値TCRKAVEを用いることとしたが、それに限定されない。
例えば、各気筒に筒圧検出センサ(エンジン発動検知手段)を設けて、筒圧検出センサの示す筒圧が点火を示す閾値以上のときにエンジン発動と判定するようにしても良い。
この場合もエンジン発動の検知の方法のみが実施の形態と異なるだけで、他の部分は前記した実施の形態と同じにできる。
本発明の実施形態に係る能動型防振支持装置を適用した車両におけるエンジン搭載状態を示す図であり、(a)は平面図、(b)は斜視図である。 実施形態の能動型防振支持装置におけるエンジンマウント(アクティブ・コントロール・マウント)構造を示す断面図である。 クランクパルスセンサ、エンジンECU及びACMECUの接続を示すブロック図である。 エンジン始動時のエンジン振動特性の時間推移を示す解析結果を説明する図である。 本実施形態におけるACMECUの機能構成ブロック図である。 クランクパルスの移動平均の算出を説明する図である。 前方ACMと後方ACMのアクチュエータを駆動制御する電流の出力タイミングを説明する図である。 エンジン始動時のACM制御の流れのフローチャートである。 エンジン始動時のエンジン点火タイミング、クランクパルス、エンジン振動、エンジン回転速度NEの時間推移を示す図である。
符号の説明
1 能動型防振支持装置
2 エンジン
3 トランスミッション
10,10a,10b アクティブ・コントロール・マウント
41 駆動部(アクチュエータ)
60 クランクパルスセンサ(センサ)
61 エンジンECU
62 ACMECU(制御手段)
62a 信号入力部
62b CPU
62c ROM
62d RAM
62e 記憶部
62f 給電部
621 クランクパルス間隔算出部
622 エンジン回転モード判定部
623 振動状態推定部
624 位相検出部
625 アクチュエータ制御部

Claims (3)

  1. エンジンを車体に支承するとともに、前記エンジンの回転変動を検出するセンサからの出力にもとづいて前記エンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置において、
    前記制御手段は、
    前記エンジンの始動からアイドリング状態に達するまでの期間に、前記センサからの出力にもとづく前記エンジンの回転変動の変化率が所定値以上のときに、前記エンジンが発動を開始したと判定し、
    前記エンジン及び前記エンジンの支承により決まる固有振動数と、前記センサからの出力にもとづく前記エンジンが発動を開始したと判定したタイミングで求めた位相遅れと、により前記アクチュエータの伸縮駆動を開始することを特徴とする能動型防振支持装置。
  2. エンジンを車体に支承するとともに、前記エンジンの回転変動を検出するセンサからの出力にもとづいて前記エンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置において、
    前記エンジンの発動を検知するエンジン発動検知手段を備え、
    前記制御手段は、
    前記エンジンの始動からアイドリング状態に達するまでの期間に、前記エンジン発動検知手段により前記エンジンの発動の開始を検知したときに、前記エンジンが発動を開始したと判定し、
    前記エンジン及び前記エンジンの支承により決まる固有振動数と、前記エンジン発動検知手段にもとづく前記エンジンが発動を開始したと判定したタイミングで求めた位相遅れと、により前記アクチュエータの伸縮駆動を開始することを特徴とする能動型防振支持装置。
  3. エンジンを車体に支承するとともに、前記エンジンの回転変動を検出するセンサからの出力にもとづいて前記エンジンの振動状態を推定する制御手段がアクチュエータを伸縮駆動して、振動の伝達を抑制する能動型防振支持装置における制御方法であって、
    前記制御手段は、
    前記エンジンの始動からアイドリング状態に達するまでの期間に、前記センサからの出力にもとづく前記エンジンの回転変動の変化率が所定値以上のときに、前記エンジンが発動を開始したと判定し、
    前記エンジン及び前記エンジンの支承により決まる固有振動数と、前記センサからの出力にもとづく前記エンジンが発動を開始したと判定したタイミングで求めた位相遅れと、により前記アクチュエータの伸縮駆動を開始することを特徴とする能動型防振支持装置における制御方法。
JP2007209438A 2007-08-10 2007-08-10 能動型防振支持装置及びその制御方法 Expired - Fee Related JP4945368B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007209438A JP4945368B2 (ja) 2007-08-10 2007-08-10 能動型防振支持装置及びその制御方法
DE602008005371T DE602008005371D1 (de) 2007-08-10 2008-08-08 Vorrichtung zur aktiven Vibrationsisolierung und Steuerungsverfahren dafür
EP08014242A EP2023008B1 (en) 2007-08-10 2008-08-08 Active vibration isolating support apparatus and method for controlling the same
EP11151885.8A EP2351660B1 (en) 2007-08-10 2008-08-08 Active vibration isolating support apparatus
EP11151886A EP2353911B1 (en) 2007-08-10 2008-08-08 Active vibration isolating support apparatus
US12/228,161 US8763996B2 (en) 2007-08-10 2008-08-08 Active vibration isolating support apparatus and method for controlling the same
US14/277,413 US9592726B2 (en) 2007-08-10 2014-05-14 Active vibration isolating support apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209438A JP4945368B2 (ja) 2007-08-10 2007-08-10 能動型防振支持装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2009041714A JP2009041714A (ja) 2009-02-26
JP4945368B2 true JP4945368B2 (ja) 2012-06-06

Family

ID=40442648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209438A Expired - Fee Related JP4945368B2 (ja) 2007-08-10 2007-08-10 能動型防振支持装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP4945368B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700742B2 (ja) * 2009-03-26 2011-06-15 本田技研工業株式会社 能動型防振支持装置
JP5426928B2 (ja) * 2009-05-25 2014-02-26 本田技研工業株式会社 能動型防振支持装置
JP5389736B2 (ja) * 2010-06-03 2014-01-15 本田技研工業株式会社 能動型防振支持装置
US10111831B2 (en) * 2011-02-28 2018-10-30 Technologies Khloros Inc. Chewable vehicle for mouth absorption
JP6002049B2 (ja) * 2013-01-16 2016-10-05 本田技研工業株式会社 能動型防振支持装置の制御装置
JP5899296B1 (ja) * 2014-11-26 2016-04-06 住友理工株式会社 防振用電磁式アクチュエータと、それを用いた能動型流体封入式防振装置および能動型制振装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611740A (ja) * 1984-06-13 1986-01-07 株式会社日立製作所 水栓直結形給水装置
JP3335678B2 (ja) * 1992-09-29 2002-10-21 マツダ株式会社 車両の振動低減装置
JPH11159368A (ja) * 1997-11-26 1999-06-15 Nippon Soken Inc 筒内直接噴射式火花点火内燃機関
JPH11247919A (ja) * 1998-03-04 1999-09-14 Tokai Rubber Ind Ltd 流体封入式能動型防振装置

Also Published As

Publication number Publication date
JP2009041714A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4700742B2 (ja) 能動型防振支持装置
US9592726B2 (en) Active vibration isolating support apparatus
US7717409B2 (en) Active vibration isolating support apparatus
JP5438756B2 (ja) 能動型防振支持装置
JP4691075B2 (ja) 能動型防振支持装置、及びその制御方法
JP4945368B2 (ja) 能動型防振支持装置及びその制御方法
EP2025970B1 (en) Engine natural vibration frequenzy detection method, active vibration isolation support device control method, engine natural vibration frequency detection apparatus, active vibration isolation support device control apparatus, active vibration isolation support device, and vibration frequency detection apparatus for vibrating body
JP4657056B2 (ja) 能動型防振支持装置の制御装置
JP4890384B2 (ja) エンジンの固有振動数検出方法および能動型防振支持装置の制御方法
JP5503337B2 (ja) エンジン始動制御装置
JP4657037B2 (ja) 能動型防振支持装置の制御装置
JP4806479B2 (ja) 能動型防振支持装置の制御装置
JP4711912B2 (ja) 能動型防振支持装置の制御装置
JP2007023793A (ja) エンジンの防振装置
JP5389636B2 (ja) 能動型防振支持装置
JP2006232108A (ja) エンジンの防振支持方法
JP2004036531A (ja) エンジンの振動防止制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Ref document number: 4945368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees