JP4937125B2 - レーザ画像表示装置 - Google Patents

レーザ画像表示装置 Download PDF

Info

Publication number
JP4937125B2
JP4937125B2 JP2007528362A JP2007528362A JP4937125B2 JP 4937125 B2 JP4937125 B2 JP 4937125B2 JP 2007528362 A JP2007528362 A JP 2007528362A JP 2007528362 A JP2007528362 A JP 2007528362A JP 4937125 B2 JP4937125 B2 JP 4937125B2
Authority
JP
Japan
Prior art keywords
laser
laser light
light source
pseudo
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007528362A
Other languages
English (en)
Other versions
JPWO2007013221A1 (ja
Inventor
哲郎 水島
研一 笠澄
達男 伊藤
知也 杉田
和久 山本
愼一 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007528362A priority Critical patent/JP4937125B2/ja
Publication of JPWO2007013221A1 publication Critical patent/JPWO2007013221A1/ja
Application granted granted Critical
Publication of JP4937125B2 publication Critical patent/JP4937125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、画像表示装置に用いるレーザ光源パッケージ、および、光源からの光を導光する光インテグレータ、ならびに、テレビ受像機、映像プロジェクタといった画像表示装置に関する。本発明は、特に、複数波長のレーザ光を出射可能なレーザ光源パッケージ、および、レーザ光に適した光インテグレータおよびこれを用いたレーザ画像表示装置に関する。
現在、様々な方式の画像表示装置が普及している。それら種々の画像表示装置が採用する画像表示方式のひとつに、変調された光源光をスクリーン上に投影し、画像を表示するプロジェクションディスプレイ方式がある。従来、この方式を用いた画像表示装置に用いられる光源は、ランプ光源である。しかし、ランプ光源は、寿命の短さ、色再現領域の制限、および、光利用効率の低さ、といった問題を有する。
これらランプ光源が有する問題を解決するために、近年、プロジェクションディスプレイの光源としてレーザ光源を用いることが試みられている。本願においては、光源にレーザ光源を使用する画像表示装置をレーザ画像表示装置と称する。レーザ画像表示装置のレーザ光源は、ランプ光源に比べて寿命が長く、レーザ光の備える指向性の強さゆえに光利用効率の向上が容易である。さらに、レーザ光源の発するレーザ光は単色性に優れており、ランプ光源に較べて色再現領域を拡大することができ、色鮮やかな画像表示を可能にする。
しかし、レーザ画像表示装置においては、スペックルノイズの問題が存在する。スペックルノイズは、画像表示に使用するレーザ光の高干渉性に起因するノイズである。このような問題は、ランプ光源を用いた画像表示装置においては存在しなかった問題である。高干渉性を有するレーザ光がスクリーン上で散乱され、鑑賞者に到達したとき、散乱されたレーザ光同士が干渉しあうことによって鑑賞者に微細なムラ状のノイズを認識させる。スペックルノイズは、鑑賞者の目のF値(エフナンバー)と、レーザ光源の波長とで決まる大きさを有する粒状のノイズがランダムに配列した状態で現われ、鑑賞者が画像表示スクリーンの画像を認識することを妨害し、深刻な画像劣化を引き起こす。これまでに、スペックルノイズの低減のため、レーザ画像表示方法およびレーザ画像表示装置に関する様々な技術が提案されている。
特許文献1(特開平6−208089号公報)は、回転運動する拡散素子を備えたディスプレイ装置を開示する。このディスプレイ装置においては、回転運動する拡散素子を通したレーザ光を変調素子の照明に用いる。回転運動する拡散素子は、実質的には、変調素子に対する照明光の入射角度を時間的に変化させる。したがって、画像表示スクリーンに対するレーザ光の入射角度も同様に時間的に変化し、よって、画像表示スクリーンで発生するスペックルパターンも時間的に変化する。この結果、鑑賞者は、多様に変化するスペックルパターンを時間的に平均化した画像を鑑賞することとなり、鑑賞者の認識するスペックルノイズは低減される。
特許文献2(特開平10−293268号公報)は、光偏向器とフライアイレンズアレイとを有するレーザディスプレイ装置を開示する。このレーザディスプレイ装置においては、光源を出射したレーザ光は、光偏向器を経てフライアイレンズに入射する。フライアイレンズアレイは、それを構成するエレメントと同数の2次光源を形成し、この2次光源列から出射するレーザ光が空間変調器に入射することにより、画像が形成され、スクリーンに画像が表示される。してみれば、このディスプレイ装置においては、空間変調器を照明する光源像は、略点光源列である。このような像を備えた光を光源として用いる限り、十分なスペックルノイズの除去は困難である。
特許文献3(特開2003−98476号公報)は、拡散器とフライ・アイ(ハエの眼)インテグレータとを備えるレーザ投影型表示システムを開示し、さらに、可動式の拡散器、および、フライ・アイ・インテグレータに関し、その最適配置位置を提案する。
特許文献4(特開2004−144936号公報)は、拡散素子を、光源と被照明体との間に備える画像表示装置を開示する。この画像表示装置においては、拡散素子に接続した加振手段により拡散素子を振動させることによって、スペックルノイズの低減を図っている。また、本文献においては、拡散素子とは別に、さらなる拡散手段を備える提案もなされている。
このように、拡散器、拡散板といった拡散素子を運動させることによって、照明光角度を変化させ、スペックルノイズを低減することは可能である。しかしながら、このような構成においては厳密な照明光角度の制御は事実上不可能であって、このような構成を有する装置は、変調素子から出射する光を画像表示スクリーンに投射する投射光学系の光利用効率に問題がある。
また、半導体レーザのようなレーザ光源を用いる画像表示装置における、投射光学系まで含めた光利用効率の向上に関する提案は殆ど無い。
レーザ光源を使用するディスプレイ(レーザ画像表示装置)の光学系に関する従来の提案においては、スペックルノイズの低減に主眼が置かれており、投射光学系を含む装置の光学系全体での光の利用効率を向上させるという観点を見出すことができない。十分なスペックルノイズ低減効果と高い光利用効率の確保の二点を高レベルで両立し得るような技術の提案は、未だない。
特開平06−208089号公報 特開平10−293268号公報 特開2003−098476号公報 特開2004−144936号公報
前記従来の問題点を鑑み、本願にかかる本発明は、十分なスペックルノイズ低減効果と高い光利用効率の確保を両立可能な画像表示装置を提供することを課題とする。
さらに、本発明は、画像表示スクリーンの周辺部まで均一な明るさで画像を表示可能な画像表示装置を提供することを課題とする。
また、本願の課題を解決するため、レーザ画像表示装置において有利に使用可能な光インテグレータの提供も本発明の課題とする。
また、本願の課題を解決するため、レーザ画像表示装置において有利に使用可能なレーザ光源パッケージの提供も本発明の課題とする。
本発明は、その一態様において、レーザ光を出射するレーザ光源と、レーザ光を受けてその進行方向を偏向させるビーム偏向素子と、ビーム偏向素子による偏向の程度を制御可能なビーム偏向素子制御部と、偏向を受けたレーザ光を受け、導光し、その出射端面より出射する光インテグレータと、偏向を受けたレーザ光を散乱させる擬似面光源化素子と、擬似面光源化素子によって散乱されたレーザ光を受け、それを変調する変調素子と、を有するレーザ画像表示装置である。
本発明の一態様においては、光インテグレータの出射端面の形状は、変調素子の有効面の形状と相似であることが好ましい。
本発明の一態様においては、擬似面光源化素子は、光インテグレータの導光部に、レーザ光の光路に沿って、挟まれて配置されることが好ましい。
本発明の一態様においては、擬似面光源化素子は、レーザ光の光路に沿って、光インテグレータの出射端面と、変調素子との間に配置されることが好ましい。
本発明の一態様においては、ビーム偏向素子制御部は、ビーム偏向素子による偏向の程度を、時系列に沿って可変的に制御することが好ましい。
本発明の一態様においては、擬似面光源化素子は、それに入射するレーザ光の位置および入射の角度の少なくともいずれかに依存して、レーザ光に異なる位相を与えることが好ましい。
本発明の一態様においては、ビーム偏向素子は、そのレーザ光に及ぼす偏向作用が、光軸に対し0度ないしθ度の間の角度θを成す方向に変化させることができる素子であり、擬似面光源化素子は、光軸に平行に入射するレーザ光に、半値散乱角φを有する散乱作用を及ぼすことができる素子であり、θとφとの間に、θ>φの関係が成立することが好ましい。
本発明の一態様においては、さらに、レーザ光の進行方向にそって、擬似面光源化素子と変調素子の間に配置され、受けたレーザ光を変調素子に入射させる投影光学系と、レーザ光の進行方向にそって、変調素子の下流に配置され、変調を受けたレーザ光を拡大する投射光学系とを有し、投影光学系の倍率をaとし、投射光学系のエフナンバーをFとしたとき、次の関係式(1)
Figure 0004937125
を満足することが好ましい。
本発明の一態様においては、擬似面光源化素子は、それに入射するレーザ光の偏光方向を実質的にランダムに変化させることが好ましい。
本発明の一態様においては、擬似面光源化素子は、それが含まれる光学系の光軸と垂直な方向に関して非一様な厚み分布を示し、複屈折材料を含むことが好ましい。
本発明の一態様においては、変調素子は、レーザ光の進行方向上流側に、変調素子に含まれる画素に入射するレーザ光を偏向させるマイクロレンズを有することが好ましい。
本発明の一態様においては、レーザ光源は、半導体レーザを有し、変調素子は、その有効面が長方形形状であり、半導体レーザの活性層の厚み方向と、長方形形状の長辺方向が平行であることが好ましい。
本発明の一態様においては、半導体レーザは、出射可能なレーザ光の波長の10倍以上のストライプ幅を有することが好ましい。
本発明の一態様においては、レーザ光源は、第1の波長を有する第1レーザ光を出射可能な第1レーザ光源部と、第1の波長よりも長い第2の波長を有する第2レーザ光を出射可能な第2レーザ光源部を含み、第1レーザ光の変調素子までの光路長は、第2レーザ光の変調素子までの光路長よりも短いことが好ましい。
本発明は、別の一態様において、レーザ光を導光する光インテグレータ上流部および光インテグレータ下流部と、レーザ光を散乱させる擬似面光源化素子と、を有する光インテグレータであって、擬似面光源化素子は、光インテグレータ上流部の導光部および光インテグレータ下流部の導光部に挟まれるように配された光インテグレータである。
本発明の別の一態様においては、光インテグレータ下流部の光軸が通り、導光されたレーザ光を出射可能な端面であって、擬似面光源化素子に近接する端面と反対側の端面のレーザ光を出射可能な部分の形状は、実質的に縦横比4:3の長方形形状であることが好ましい。
本発明の別の一態様においては、光インテグレータ下流部の光軸が通り、導光されたレーザ光を出射可能な端面であって、擬似面光源化素子に近接する端面と反対側の端面のレーザ光を出射可能な部分の形状は、実質的に縦横比16:9の長方形形状であることが好ましい。
本発明は、さらに別の一態様において、第1の波長を有する第1レーザ光を出射可能な第1レーザ光源部と、第1の波長よりも短波長である第2の波長を有する第2レーザ光を出射可能な第2レーザ光源部と、を有するレーザ光源パッケージであって、第1レーザ光源部は、第1ストライプ幅を有する半導体レーザ光源であり、第2レーザ光源部は、第2ストライプ幅を有する半導体レーザ光源であり、第1ストライプ幅は、第1の波長の10倍以上の長さを有し、第2ストライプ幅は、第2の波長の10倍以上の長さを有するレーザ光源パッケージである。
本発明のさらに別の一態様においては、第1ストライプ幅は、第2ストライプ幅よりも長いことが好ましい。
本発明にかかる画像表示装置は、高い光利用効率でスペックルノイズが除去された画像を表示することができる。
さらに、本発明にかかる画像表示装置は、画像表示スクリーンの周辺部まで均一な明るさを有する画像を表示可能である。
本発明にかかる光インテグレータは、高い光利用効率で、均一な明るさの照明光を変調素子に与えることができる。さらに、本発明にかかる光インテグレータを介して投影される画像においては、スペックルノイズが低減される。
以下、本発明の実施形態について、図面を参照しながら説明する。
(第1の実施形態)
本発明の第1の実施形態は、レーザ画像表示装置である。本レーザ画像表示装置は、プロジェクション・ディスプレイ(レーザ・ディスプレイ)である。図1に、第1の実施形態によるレーザ画像表示装置100の構成概略図を示す。
レーザ画像表示装置100は、赤色(R)レーザ光源1R、緑色(G)レーザ光源1G、および、青色(B)レーザ光源1Bなる3色のレーザ光源、および、これらレーザ光源1R、1G、1Bの駆動制御を行うレーザ光源制御部1Cと、レーザ光を反射または透過させるダイクロイックミラー21と、レンズ22(例えば、発散レンズ)と、レーザ光の進行方向を偏向させるビーム偏向素子部3、および、ビーム偏向素子部3を駆動制御するビーム偏向素子制御部3Cと、レーザ光を導光する光インテグレータ4と、好ましくは光インテグレータ4の内部に構成され、もしくは、光インテグレータ4の部分に挟まれるようにして配置される擬似面光源化素子5と、倍率aを有し、レーザ光を変調素子7に投影するための投影光学系6と、レーザ光を変調し画像を形成する変調素子7、および、変調素子7を駆動制御する変調素子制御部7Cと、エフナンバー(F値)Fを有し、変調素子7より出射したレーザ光をスクリーン10に投射する投射光学系8と、画像を表示するためのスクリーン10と、を有する。なお、擬似面光源化素子5は、レーザ光源1R、1G、および、1Bからのレーザ光の進行方向に関して、光インテグレータ4から変調素子7に至る間に、光インテグレータ4と独立して配置されてもよい。
レーザ画像表示装置100においては、単一の変調素子7を、各色レーザ光の出射のタイミングと同期して時間分割して使用することで、各レーザ光源1R、1G、および、1Bからのレーザ光を変調する。レーザ光源制御部1Cは、レーザ光源1R、1G、および、1Bが、時系列に沿って、順次、レーザ光を出射させるようにレーザ光源1R、1G、および、1Bを駆動制御することができる。レーザ光源1R、1G、および、1Bが出射したR(赤色)、G(緑色)、および、B(青色)を含む3色のレーザ光は、それぞれ、1つ以上のダイクロイックミラー21を介して、レンズ22(発散レンズ)等に導かれる。ダイクロイックミラー21は、上記3色のレーザ光を1つの変調素子7で変調するために、適切に上記3色のレーザ光を合波可能である。そして、上記3色のレーザ光は、レーザ画像表示装置100の照明光学系2に含まれるビーム偏向素子部3に入射する。
照明光学系2は、レーザ光源1R、1G、および、1Bからのレーザ光を受け、そのレーザ光を、その断面における光強度分布がほぼ一様で、かつ、所定の断面形状を有するレーザ光に変化させ、当該レーザ光を出射する光学系である。レーザ画像表示装置100の照明光学系2においては、この、所定の断面形状で一様な光強度分布を有するレーザ光は、投影光学系6から出射され、変調素子7を照明する。照明光学系2に含まれる構成要素、および、その作用・効果の詳細については、後で説明する。
変調素子7で変調を受け反射された変調レーザ光は、投射光学系8によって、スクリーン10へ拡大投射され、各色の変調レーザ光は、スクリーン10上で時間平均的加法混色され、スクリーン10にカラー画像を形成する。そして、鑑賞者は、形成された色鮮やかなカラー画像を鑑賞する。レーザ画像表示装置100の変調素子7には、デジタル・マイクロミラー・デバイス(DMD)といった反射型2次元変調素子を用いることができる。しかし、本発明は、変調素子7を、上記反射型2次元変調素子に限定しない。本発明は、あらゆるタイプの変調素子を使用することができる。例えば、本発明は、変調素子7として透過型の変調素子を使用してもよい。また、本発明は、変調素子7として、1次元的な変調素子を使用することもできる。さらには、本発明は、使用する変調素子7が単一の素子からなることに限定せず、複数の変調素子を用いる構成とすることもできる。この場合、レーザ画像表示装置100は、レーザ光源1R、1G、および、1Bからのレーザ光毎に変調素子を備えることも可能である。また、本発明は、レーザ光源1R、1G、および、1Bの少なくともいずれか1つから、時間的に連続して出射されるレーザ光の使用を除外するものではない。
<照明光学系2>
以下、レーザ画像表示装置100の照明光学系2について、詳しく説明する。
<照明光学系2の構成>
レーザ画像表示装置100の照明光学系2は、ビーム偏向素子部3と、光インテグレータ4と、擬似面光源化素子5と、投影光学系6と、を含む。
≪ビーム偏向素子部3≫
ビーム偏向素子部3は、レーザ光源1R、1G、および、1Bからのレーザ光の進行方向に関し、光インテグレータ4よりも上流に配置され、レーザ光源1R、1G、および、1Bの少なくともいずれか1つから出射したレーザ光を受け、その進行方向を偏向させる機能を有する素子を含む。ビーム偏向素子制御部3Cは、ビーム偏向素子部3に入射するレーザ光の受ける偏向作用の程度(後述のビーム偏向角に相当)を、随時変更可能に制御する。ビーム偏向素子部3によって、進行方向を所定の方向へ偏向されたレーザ光は、その進行方向下流に配された光インテグレータ4へ入射する。
≪光インテグレータ4≫
レーザ光源からのレーザ光は、ビーム偏向素子部3による偏向作用を受けた後、光インテグレータ4に入射する。光インテグレータ4は、所定形状の入射端面および所定形状の出射端面を有し、入射したレーザ光を、光インテグレータ4の内部境界面での内部反射を許しながら出射端面まで導光する。光インテグレータ4の入射端面の形状は、任意の形状でよいが、ビーム偏向素子部3から出射するレーザ光の取込が容易で、取込量を可能な限り大きくするように構成されることが好ましい。同様、光インテグレータ4の出射端面の形状は、任意の形状でよいが、好ましくは、矩形形状である。さらに好ましくは、光インテグレータ4の出射端面形状は、変調素子7において実際に画像形成のための変調に関与する素子が配置された領域の形状、すなわち、画像表示のためにレーザ光を照射すべき変調素子の領域の形状と相似の関係にある。或いは、実際にスクリーン10に形成される画像の形状と相似の関係を有することが好ましい。光インテグレータ4の出射端面が当該相似の関係を備えることにより、変調素子7を照明するレーザ光のうち実際には画像形成に貢献しないレーザ光の光量を最小限に抑えることが可能となる。例えば、レーザ画像表示装置100の変調素子7の上記領域が、縦横比4:3の長方形形状を有するならば、光インテグレータ4の出射端面形状も、縦横比4:3の長方形形状を有することが好ましい。或いは、レーザ画像表示装置100が、縦横比4:3の長方形形状の画像を表示する設計ならば、光インテグレータ4の出射端面の形状は、縦横比4:3の長方形形状に設計されることが好ましい。また、変調素子7の上記領域と、それを照明するレーザ光とが一致するように、光学系を構成することが望ましい。光インテグレータ4の側面形状は、任意の形状でよいが、好ましくは、上記内部反射が適切に効率的に行われ、入射したレーザ光を高効率で出射端面まで導光可能な形状である。なお、変調素子7として液晶等、偏光制御を行う素子を使用する場合、上記内部反射を行う内部境界面(反射面)が、入射したレーザ光の偏光方向に対して垂直または平行になるように、側面形状を構成することが望まれる。また、光インテグレータ4の入射端面と出射端面の形状が相違する場合、側面形状は、照明光学系2の光軸に対して非平行な平面または曲面を有してもよい。さらには、光軸を光インテグレータ4内で屈曲させるような形状を有してもよい。
≪擬似面光源化素子5≫
擬似面光源化素子5それ自体は、入射したレーザ光を散乱させ、出射する素子である。一般に、レーザ光は平行光である。擬似面光源化素子5は、その散乱作用により、それに入射した平行レーザ光を、略発散光にする。擬似面光源化素子5は、レーザ光の進行方向に関し、光インテグレータ4の一部分よりも下流に配置されればよい。そのような構成を採ることにより、レーザ画像表示装置100において、擬似面光源化素子5は、光インテグレータ4の導光部を導光されたレーザ光に対し散乱効果を与えることが可能となる。擬似面光源化素子5より上流にある光インテグレータ4の一部分の導光部は、光軸に沿って所定の長さよりも長いことが好ましい。この所定の長さは、光インテグレータ4を導光されたレーザ光が、擬似面光源化素子5に一様に入射するようになるために必要な長さの最小値と実質的に一致する。
擬似面光源化素子5は、レーザ光の進行方向に沿って、その上流側部および下流側部で光インテグレータ4の導光部と近接するように配置されることが好ましい。この、語「近接する」には、互いがその一部で接触している状態、接着剤等を介して接続されている状態、互いは乖離しているが十分に近い位置関係にある状態、を含む。このとき、擬似面光源化素子5は、近接する光インテグレータ4にその両側を挟まれるように配置される。この、語「挟まれる」には、光インテグレータ4の縁端部を含まないその一部分が、擬似面光源化素子5の機能を備える場合、および、光インテグレータ4の内部に擬似面光源化素子5が挿設される場合を含む。換言すれば、語「挟まれる」は、レーザ光の進行方向に沿って、光インテグレータ4の導光部、擬似面光源化素子5、光インテグレータ4の導光部が、順に、互いに近接して配置される状態を含む。レーザ光の光路に沿って擬似面光源化素子5よりも下流側に位置する光インテグレータ4後半部分の導光部の長さは、所定の長さ以上であればさらに好ましい。この長さは、照明光学系2の光軸に沿って測距して定めればよい。上記所定の長さは、擬似面光源化素子5の構成によって異なるが、光インテグレータ4の出射端面の像から素子5自身の像が消失するのに必要な長さの最小値と実質的に一致する。また、擬似面光源化素子5は、レーザ光源1R、1G、および、1Bからのレーザ光の進行方向に関して、光インテグレータ4から投影光学系6に至る間に、光インテグレータ4と独立して配置されてもよい。なお、光インテグレータ4が後述する中空型光インテグレータの場合、光インテグレータ4の導光部は、その中空部と実質的に一致する。
≪投影光学系6≫
投影光学系6は、光インテグレータ4を出射したレーザ光を、変調素子7に投影するための光学系である。投影光学系6は、光インテグレータ4を出射したレーザ光が、変調素子7に適切に入射されるように、1つのレンズ、または、1つ以上のレンズ群で構成することができ、倍率aを有する光学系である。また、投影光学系6をアナモフィック系として構成することもできる。このとき、投影光学系6は、光インテグレータ4の出射端面より出射されるレーザ光を歪曲させ、該歪曲されたレーザ光を変調素子7の有効面へ導く光学系である。その場合、光インテグレータ4の出射端面形状は、投影光学系6によるレーザ光の歪曲を考慮して設計する。
<照明光学系2の作用・効果>
これより、照明光学系2の作用・効果について詳細に説明する。図2A、図2B、および、図2Cは、光インテグレータ4および擬似面光源化素子5の作用を説明する図である。先ず、図2Aは、光インテグレータ4に入射したレーザ光21c等が光インテグレータ4内を伝播する様子を示す図である。
≪照明光学系2の作用≫
本発明にかかるレーザ画像表示装置100においては、ビーム偏向素子部3によりその進路について偏向作用を受けたレーザ光が、光インテグレータ4に入射する。
当該入射レーザ光21cは、光軸21aに対し角θを成して光インテグレータ4に入射する。ここで、光軸21aは、照明光学系2の光軸である。角θは、ビーム偏向素子3によるビーム偏向角である。ビーム偏向角θは、光軸21aに平行なレーザ光21が、ビーム偏向素子部3より偏向作用を受けたときの、その光路と、光軸21aとが成す角である。ビーム偏向角θは、0≦|θ|≦θなる関係を満足する。θは、最大ビーム偏向角であり、光軸21aに平行なレーザ光21が、ビーム偏向素子部3より偏向作用を受けて出射したときの、ビーム偏向角θの最大値である。また、ビーム偏向角θは、ビーム偏向素子制御部3Cを介し、0度からθ度までの間でリアルタイム制御可能である。その制御の方法については、後でその例を挙げて説明する。
よって、レーザ光は、様々なビーム偏向角θ(θ:0≦|θ|≦θ)で光インテグレータ4に入射し、光インテグレータ4内においては、その内部境界面において反射を許しつつ、図面左方へ伝播する。伝播の間、入射レーザ光の一部は内部境界面で複数回の内部反射を繰り返し、そのビーム形状を拡大させ、やがて実質的に光インテグレータ4内の導光部の断面に一致するビーム形状となって光インテグレータ4を満たすようになる。
このとき、光インテグレータ4内を導光されるレーザ光の光源像は、光インテグレータ4の導光部の断面において、光インテグレータ4内で生じたレーザ光の内部反射の回数と同数の、複数の点光源からなる像である。
そして、光インテグレータ4の導光部を満たす形状を有するに至ったレーザ光、つまり、複数の点光源群からなる光源像を有するレーザ光が、擬似面光源化素子5に入射する。
次に、擬似面光源化素子5の作用について図2Bおよび図2Cを参照し説明する。図2Bは、擬似面光源化素子5による入射レーザ光の散乱作用を示す図である。
擬似面光源化素子5は、それに入射するレーザ光に対し散乱作用を及ぼし、入射レーザ光を、様々な散乱角で、散乱角に依存した所定の強度分布で出射する。擬似面光源化素子5に入射する光が平行光の場合、出射する光は、所定の強度分布を備えた発散光として出射する。
擬似面光源化素子5に対し、上記の光インテグレータ4の導光部を満たす形状を有するに至ったレーザ光、つまり、複数の点光源群からなる光源像を有するレーザ光が入射した場合、このレーザ光は、実質的に一様な光強度分布を示す面光源からなる光源像を有する略発散レーザ光に変化する。そして、このレーザ光は、再び、光インテグレータ4内を、内部反射を許しながら、導光され、光インテグレータ4の出射端面の形状と実質的に同一の形状で一様な光強度分布を有するレーザ光として、光インテグレータ4より出射される。
図2Cは、擬似面光源化素子5の擬似面光源化作用(散乱作用)の程度を定量的に示す、半値散乱角φの定義を示す図である。半値散乱角φは、光軸21a(図2A)に平行な平行レーザ光21x(図2B)が擬似面光源化素子5に入射したときに他端より出射される発散レーザ光の最大光強度の半値(I1/2)を有するレーザ光の伝播方向と、光軸21a(平行レーザ光21xの光路)の成す角として定義される。
擬似面光源化素子5は、レーザ光が入射し透過する位置および入射する角度の少なくともいずれかに依存して異なる位相を入射レーザ光に与えて出射することができる素子を含むことが望ましい。擬似面光源化素子5が、レーザ光の入射する位置および入射の角度の少なくともいずれかに依存して異なる位相をレーザ光に与えることで、擬似面光源化素子5から出射するレーザ光束は、非平面的でかつ複雑な位相面を有するようになり、もって、当該レーザ光束のコヒーレンシーが低減される。このとき、レーザ光束が出射される擬似面光源化素子5の出射端面は、擬似面光源を構成し、当該断面の様々な位置から、様々な角度で、異なる位相を有するレーザ光が発散的に出射される。
なお、擬似面光源化素子5を出射し、光インテグレータ4から出射されるレーザ光の光源像は、投影光学系6の射出瞳で観察することができる。
この、一様な光強度を有し、コヒーレンシーが低減されている擬似面光源化レーザ光束は、投影光学系6より変調素子7へ向けて出射され、変調素子7において変調され、投射光学系8において、変調された当該レーザ光束は拡大されてスクリーン10に達し、画像を形成する。
≪照明光学系2の効果≫
レーザ光源1R、1G、および、1Bの少なくともいずれか1つから出射されたレーザ光の光源像は、先ず、ビーム偏向素子部3の作用の程度が時間的に変化する偏向作用、および、光インテグレータ4の上流部を導光される際の内部反射の作用により、その構成が時間的に変化する複数の点光源からなる光源像となる。そして、擬似面光源化素子5および光インテグレータ下流部の作用により、この複数の点光源からなる光源像は、擬似的に面光源化された光源像になる。このとき、擬似的に面光源化されたレーザ光束は、上記時間的に変化する複数の点光源像の変化と対応して時間的にその主たる進行方向を変化させる複数の略発散レーザ光から構成されている。
そのため、変調素子7は、時間的に入射角が変化するレーザ光によって照明される。この、変調素子7を照明するレーザ光束を構成するレーザ光の入射角度の時間的変化により、スクリーン10で生じるスペックルパターンが変化する。鑑賞者の視覚がスペックルパターンを認識するために必要な時間よりも十分に速く角度変化を生じさせるようにビーム偏向素子部3を駆動制御することで、鑑賞者の視覚においてスペックルノイズの平均化が生じ、鑑賞者の認識するスペックルノイズが低減される。そのため、鑑賞者は、スクリーン10に表示された画像を、スペックルノイズの無い、鮮明な画像として認識する。
さらに、擬似面光源化された光源像は、複数の点光源からなる光源像よりもはるかに光源像面積が拡大されている。レーザ画像表示装置100において、画像表示にかかるレーザ光の光源像面積の拡大は、スクリーン10上で画像を構成する各画素を表示する実効光源面積の拡大に対応する。一般に、各画素の表示にかかる光源の実効光源面積の拡大は、スペックルノイズのパターンのコントラストを低下させる。レーザ画像表示装置100においては、先述の光源像の時間的変化によるスペックルノイズ低減効果との相乗効果により、鑑賞者が認識するスペックルノイズは、より一層低減される。
本発明にかかるレーザ画像表示装置100は、スペックルノイズのパターンの時間的平均化、および、実効光源面積の拡大化によるスペックルノイズのパターンのコントラストの低下、という2つの作用の相乗効果により、スペックルノイズを効率よく除去することができる。
さらに、光インテグレータ4出射端面(光インテグレータ4下流部の出射端面)を、変調素子7の形状と相似の形状とすることで、光インテグレータ4出射端面から出射するレーザ光束の大部分を、画像表示に利用することが可能となり、もって、レーザ画像表示装置100の光利用効率の向上という効果を奏する。
<構成例>
擬似面光源化素子5は、光インテグレータ内に構成することが好ましい。または、変調素子7上流に具備することが好ましい。ここで、「変調素子7上流」とは、光インテグレータ4の出射端面から、レーザ光束を変調する変調素子7までの区間を指す。この区間内に擬似面光源化素子を配置することにより、変調素子7を照明するレーザ光束の光源像は、複数の点光源の集まりではなく、連続的に繋がった1つの像とすることができる。レーザ光束の断面形状が、変調素子7と相似な矩形形状、或いは、略発散レーザ光束になっている位置に擬似面光源化素子5を配置することで、照明用のレーザ光束の光源像をほぼ連続的に繋がった像とすることができる。ただし、変調素子7上流に擬似面光源化素子5を具配置する場合は、擬似面光源化素子5に起因した像が、変調素子7に結像しないよう、光インテグレータ出射端面から1mm以上離すことが好ましい。
また、擬似面光源化素子5は、光インテグレータ4に入射したレーザ光が光インテグレータ4の導光部全体を満たすようになる位置よりも下流に配置することが好ましい。
図3A、図3B、および、図3Cは、擬似面光源化素子5構成例を示す図である。擬似面光源化素子としては、ランダムな凹凸パターンをその表面に有する擬似面光源化素子5IR(図3A)、多種のレンズが形成されたマイクロレンズアレイを含む擬似面光源化素子5AL(図3B)、基材と屈折率の異なる粒子を散在させて含む擬似面光源化素子5PA(図3C)、等がある。また、擬似面光源化素子5は、ミラーなどに貼り付けて反射型の素子として使用することも可能である。
さらに、擬似面光源化素子5は、それを透過するレーザ光の光量ロスを防ぐため、レーザ光の波長に対応した反射防止処理を施すことが好ましい。変調素子7上流に配置する場合などは、反射防止コートを施すことが好ましい。またさらに、擬似面光源化素子5は、半値散乱角φを制御するために、ホログラムパターンを有するホログラム・ディフューザを用いることが好ましい。なお、擬似面光源化素子5は、その、光軸に対し垂直な断面において、非一様な半値散乱角φを示すものであってもよい。
擬似面光源化素子5は、図1に図示したように光インテグレータ4に挟まれるように配置すれば、擬似面光源化素子5による散乱作用で生じる変調素子7上の結像歪による光量ロスをなくすことができる。この、図1に示すような、好ましい形態について説明する。図4A、図4B、図4C、図4D、および、図4Eは、光インテグレータ4に挟まれた擬似面光源化素子5の構成具体例を示す図である。
具体例1:光インテグレータ上流部4a下流端面および光インテグレータ下流部4b上流端面とほぼ同じ形状を有する反射防止コートを施した擬似面光源化素子5ARを、2つの光インテグレータ断面に挟むように密着固定させる(図4A)。
具体例2:光インテグレータ上流部4a下流端面および光インテグレータ下流部4b上流端面とほぼ同じ形状を有する擬似面光源化素子5を、2つの光インテグレータ4aおよび4b断面に透明接着剤41で接着する(図4B)。
具体例3:光インテグレータ下流部4b(または、光インテグレータ上流部4a)の断面に凹凸形状を与えることで、擬似面光源化素子と同等の機能を有する部分4Sを光インテグレータ4b(または4a)に与え、光インテグレータ上流部4a(または4b)に透明接着剤41で接着する(図4C)。
具体例4:光インテグレータ下流部4b(または、光インテグレータ上流部4a)の断面に凹凸形状を与え、当該凹凸形状に反射防止コートを施し、擬似面光源化素子と同等の機能を有する部分4SARを光インテグレータ4b(または4a)に与え、反射防止コートをした光インテグレータ上流部4a(または4b)に密着固定する(図4D)。
具体例5:中空型光インテグレータ4Hの内部に反射防止コートをした擬似面光源化素子5ARを挿入する(図4E)。
光インテグレータに挟まれるように擬似面光源化素子5を具備できるものであれば、その構成は、前記構成に限定されない。また、擬似面光源化素子5を光インテグレータに挟むようにして具備したとき、レンズ等からなる投影光学系6を省略し、直接、変調素子7に、光インテグレータ4の出射端面の像を形成するような構成としてもよい。この場合、光インテグレータ4と変調素子7を近接させ、インテグレータ4出射端面からの出射レーザ光で変調素子7を照明したり、フィールドレンズにより変調素子7を出射レーザ光で照明したりする構成としてよい。
光インテグレータ4は、ロッド型のガラスからなるロッドインテグレータや、中空型インテグレータや、出射部が矩形となる光ファイバや中空ファイバを用いることができる。光インテグレータ4の入射端面および出射端面は、反射による光量ロスを防止するため、反射防止コートが施されるか、或いは、中空型であることが好ましい。図5A、図5B、図5C、図5D、図5E、図5F、図5G、図5H、図5I、図5J、図5K、図5L、図5M、図5O、図5P、および、図5Qは、光インテグレータ4の入射端面、出射端面、および、側面形状の例を説明する図である。
図5Aを参照すれば、光インテグレータ4は、入射端面55においてレーザ光51を入射し、出射端面57よりレーザ光53を出射する。ここで、入射端面55および出射端面57とは、光軸方向より平面視した形状を指し、側面形状59とは、入射端面55と出射端面57とを接続する光インテグレータ4外側表面を、光軸と垂直な方向から平面視した形状を指す。
入射端面55および出射端面57の少なくともいずれかは、矩形、例えば、縦横比4:3の長方形(図5B)、縦横比16:9の長方形(図5C)、および、適当な縦横比の長方形とすることができる。この縦横比には、1:1(正方形)を含む。光インテグレータ4にかかる製造コストを抑えるために、入射端面55と出射端面57とは、互いに合同、または、相似な形状であることが望ましい。また、端面55および57は、それぞれ、平行な辺を含む形状であることが望ましい。入射端面55と出射端面57の大小関係は任意であるが、入射端面55を、出射端面57よりも大きくすることで、レーザ光の損失を最小限に抑えることができる。
また、入射端面55および出射端面57の少なくともいずれかは、曲線を含んだ形状、例えば、半円を直線で接続した形状(図5D)としてよい。光インテグレータ4に入射するレーザ光のビーム形状(異なる光源からのレーザ光が合波されたときのビーム形状を含む)に対応した形状の端面を有することで、レーザ光を効率よく取り込むことができる。
入射端面55および出射端面57の少なくともいずれかは、台形形状(図5E)としてよい。
入射端面55および出射端面57の少なくともいずれかは、楕円(真円を含む)形状(図5F)としてよい。
入射端面55および出射端面57の少なくともいずれかは、5以上の頂点を有する多角形形状、例えば、8角形形状(図5G)としてよい。
入射端面55および出射端面57の少なくともいずれかは、180度を超える頂角を1つ以上備えた多角形形状、例えば、星形形状(図5H)としてよい。
入射端面55および出射端面57の少なくともいずれかは、縦横比が極端に異なる、略一次元的な楕円形状(図5I)としてよい。
入射端面55および出射端面57の少なくともいずれかは、縦横比が極端に異なる、略一次元的な長方形形状(図5J)としてよい。入射端面55および出射端面57の少なくともいずれかは、縦横比が、実質的に1:∞すなわち、実質的に線的な形態となった長方形形状を備えてもよい。
また、入射端面55は、2以上の(真円を含む)楕円を一次元的に連結した形状としてよい(図5K)。
入射端面55は、3以上の(真円を含む)楕円を二次元的に連結した形状としてよい(図5L)。
さらに、入射端面55の一部に反射コートを設けてよい。そうすることで、不要光の入射を防止したり、インテグレータ4内を逆行するレーザ光を、出射端面57側へ反射させて利用したりすることができる。
側面形状59は、特に限定されないが、光インテグレータ4内でレーザ光が内部反射して出射端面側へ効率よく導光されるような形状を有することが望まれる。
側面形状59は、台形形状としてよい(図5M)。
側面形状59は、入射端面55から光インテグレータ4中間部まで拡大し、それ以後、出射端面57まで平行な形状としてよい(図5N)。
側面形状59は、入射端面55から光インテグレータ4中間部まで、非線形的に拡大するような形状としてよい(図5O)。
側面形状59は、光インテグレータ4中間部の実質的一点において、その幅が急激に変化するような形状としてよい(図5P)。
側面形状59は、光インテグレータ4中間部において、光軸が屈曲するような形状としてよい。図5Qは、L字型形状の側面形状59を示す。このとき、光軸は略垂直に屈曲する。なお、図5M、図5N、図5O、図5P、および、図5Qに示した光インテグレータ4は、入射端面55と出射端面57を入れ替えて使用することもできる。
次に、ビーム偏向素子部3の構成例を示す。図6は、ビーム偏向素子部3の構成を示す図である。
本発明にかかるレーザ画像表示装置100は、照明用レーザ光の光源像を時間的に変化させることで、スペックルノイズのパターンの時間的変化を与える。そのため、ビーム偏向素子部3は、光インテグレータ4に入射するレーザ光の進行方向(ビーム偏向方向)を時間的に制御することが望まれる。レーザ画像表示装置100では、光インテグレータ(ロッドインテグレータ)4に入射するレーザ光61の進行方向の制御のために、レンチキュラーレンズアレイ3a、3bおよびビーム偏向素子制御部3Cを有する。レンチキュラーレンズアレイ3aおよび3bを回転させることにより、レーザ光の進行方向を時間的に変化させる。レンチキュラーレンズアレイ3aは図6に示すロッドインテグレータ(光インテグレータ4)の長辺方向に関しレーザ光61の進行方向を偏向させ、レンチキュラーレンズアレイ3bはロッドインテグレータ(光インテグレータ4)の短辺方向に関しレーザ光61の進行方向を偏向させる。レンチキュラーレンズアレイ3aおよび3bは、半径方向に略一様な断面形状を有するレンズアレイである。レーザ光61は、レンズの各々の凸形状(または、凹形状)で偏向され、ロッドインテグレータ(光インテグレータ4)に入射する。
図7は、ビーム偏向素子部7のレンチキュラーレンズの変形例である。レンチキュラーレンズ3cは、一方向に略一様な断面を有し、外周部が円形である円形レンチキュラーレンズである。円形レンチキュラーレンズ3cは、外周部において中空モータ71に把持されており、ビーム偏向素子制御部3Cにより、中空モータ71と共に回転可能である。スポット73は、レーザ光源からのレーザ光が円形レンチキュラーレンズを透過する位置を例示する。レーザ光は、円形レンチキュラーレンズ3cの回転により、時々刻々と変化する方向に偏向される。このとき与えられるビーム偏向角θおよび最大ビーム偏向角θは、円形レンチキュラーレンズ3cの開口数(NA)で定めることができる。
≪最大ビーム偏向角θ1、半値散乱角φ1等間の望ましい関係≫
ビーム偏向制御素子部3により偏向されたレーザ光の光軸に対するビーム偏向角の最大値θ、擬似面光源化素子5の平行レーザ光に対する平均散乱角をφは、θ>φであることが好ましい。擬似面光源化素子5の散乱角は、効果的な擬似面光源化作用を発揮させるためには、ガウス分布に近い散乱角分布を有することが好ましい。効果的にスペックルノイズを低減させるためには、変調素子7またはスクリーン10に投射されるレーザ光の角度分布が均一なことが望まれ、また、投射光学系8のロスをなくすためには投射光学系8のエフナンバーFまでの角度分布とすることが望まれる。前記2つを両立させるためには、変調素子7の照明するレーザ光の角度分布は、トップハット型に近い角度分布が望まれる。この望まれる角度分布とするには、厳密な角度分布制御が可能なビーム偏向制御素子部3による角度制御が、有効に照明用レーザ光に残ることが好ましい。そのためには、前記関係θ>φを満たすことが望まれる。角度制御をより厳密に行うには、θ>2×φであることがより望ましい。
本発明の画像表示装置100の投射光学系8のエフナンバーFと投影光学系6の倍率aとビーム偏向制御素子3の最大ビーム偏向角θと擬似面光源化素子5の半値散乱角φの間には、
Figure 0004937125
の関係が成り立つことが好ましい。関係式(1)を満たすとき、スクリーン10に投影するとき、光量のロスが少なく、かつ、スペックルノイズを効率よく除去することができる。
<画質評価の結果>
画像表示装置100を用い、画質評価を行った。評価対象は、スクリーン10に到達する光量とスペックルノイズの多寡である。スクリーン到達光量はパワーメータで測定した。スペックルノイズは、スクリーン10を、視覚カメラで撮影することにより評価した。スクリーン10には、フロントプロジェクション用のマットスクリーンを用いた。視覚カメラは、瞳に対応するレンズと仮想網膜上のスペックルをCCDに拡大するレンズとCCDからなる。スペックルノイズ評価には、緑色レーザ光源1Gのみから緑色レーザ光を出射させ、一様画像をスクリーン10に表示し、一様画像部のCCD受光量平均値Xとスペックルノイズによる強度ばらつきの標準偏差σの比、σ/Xを用いた。ビーム偏向角の制御には回転レンチキュラーレンズを用い、NAの異なるレンチキュラーレンズを用いてビーム偏向角θ(=sin−1NA)を変化させた。擬似面光源化素子5は、ホログラムパターンのランダム凹凸パターンを有する素子に反射防止コートし、2本のロッドインテグレータ間に挟み固定させた。擬似面光源化素子5も、半値散乱角θが異なるものを複数用いた。投影光学系の倍率aは2、投射光学系エフナンバーFは2.5であった。
評価結果を図8に示す。比較のため、条件10ではレンチキュラーレンズの回転を止め、照明に用いるレーザ光の光源像を時間的に静止した状態としている。また条件11は、擬似面光源化素子5をロッドインテグレータ内に挿入していないときの結果であり、このときのスクリーン到達光量を1とし、光量(パワー)比較している。
条件10、11では、スペックルノイズが鑑賞者に目視できる、10%以上のノイズによる強度揺らぎがあるのに対し、条件1〜10はノイズが10%未満に低減された。この結果比較より、照明用レーザ光が擬似面光源化されかつ光源像が時間的に変化することによりスペックルノイズが低減されることがわかる。
ビーム偏向制御素子部3による最大ビーム偏向角θを、面光源化手段の半値散乱角φ以下とした場合(θ≦φ、条件7、8、9)、1割以上の光量(パワー)ロスが生じるが、同様の最大ビーム偏向角θであってもθ>φとした場合には、光学系全体のビーム角度制御が可能となって、条件1ないし4、および、6では光量(パワー)ロスが少なく、かつ、スペックルノイズが低減されていることがわかる。更に0.7×tan−1(1/2F)<[(θ+(φ1/2/aを満足する関係としたとき(条件2ないし6)、スペックルノイズがほぼ鑑賞者が感じない、強度揺らぎ5%以下とすることができ、投射光学系8を含めた十分な照明光の角度変化制御ができていることがわかる。更に[(θ+(φ1/2/a<1.2×tan−1(1/2F)を満足する関係とすることで(条件2ないし4、および、6)、光量(パワー)ロスが少なく、投射光学系8まで含め高効率化されていることがわかる。
<照明光学系2の変形例>
図9は、照明光学系2の変形例の構成概略図である。
レーザ光源を出射した光は、レンズ22、1次元振動ミラー3M、レンズアレイ3ALを経て、矩形の出射端面をもつ中空型光インテグレータ4Hにより内部反射を繰り返して長方形のほぼ均一なビーム形状となった後、擬似面光源化素子5ARに入射する。擬似面光源化素子5ARは、中空型ロッドインテグレータ4H内に挿入されている。
本変形例は、振動ミラー3Mとレンズアレイ3ALを組み合わせて使用することにより、時間的にレーザ光の光源像が変化するように、光インテグレータ4Hに入射するレーザ光のビーム偏向角制御を行う。本変形例では、特に、振動ミラー3Mを、1次元方向のみに振動させることでレーザ光に1次元的偏向角変化を与え、レンズアレイ3ALにより、レーザ光に2次元的偏向角変化を与えている。
図10A、図10B、図10C、および、図10Dは、1次元的振動ミラー3Mを用いた場合に使用するレンズアレイ3ALおよびレンズアレイ3AL代替例を示す図である。図10Aは、レンズアレイ3ALを光軸に対し垂直な方向から見たときの図である。図10Bは、このレンズアレイ3ALを光軸方向から見たときの図である。1次元的振動ミラー3Mが振動することで、レンズアレイ3ALにレーザ光が入射するスポット101は、矢印103の方向に移動する。レンズアレイ3ALは、1次元的振動ミラー3Mによるスポットの移動で、図上下方向に異なる偏向角を与えることができるように、矢印103に対し、ジグザグ状に球面レンズが配される。このようなスポット101の移動により、レンズアレイ3ALは、レーザ光に、時間的に変化する2次元的ビーム偏向角を与えることができる。
図10Cは、レンズアレイ3ALの代替例を示す図である。本代替例は、レンチキュラーレンズを直交して貼り合わされたレンズ形状を有するレンズアレイ3LLである。レンズアレイ3LLは、2つのレンチキュラーレンズアレイを図に対して垂直な方向に有する。第1のレンチキュラーレンズアレイは、スポット101の移動方向(矢印)103に対し、プラス45度の角度を成し、第2のレンチキュラーレンズアレイは、矢印103に対し、マイナス45度の角度を成す。この、平面視において直行する2つのレンチキュラーレンズアレイを備えたレンズアレイ3LLにおいては、スポット101の振動ミラー3Mによる移動により、時間的に2次元的なビーム偏向角変化を与えることができる。
図Dは、さらなるレンズアレイ3AL代替例を示す図である。本代替例は、表面レリーフホログラム素子を備えるホログラム素子3SRである。ホログラム素子3SRは、この非周期的な表面凹凸パターンにより、2次元的な偏向角(発散性)を与える。この素子3SRに対し、矢印103の方向に時間的に移動させながら光線を入射させることで、2次元的に位相が異なるように時間的に変化する光源像が出射される。
レンズアレイ3ALおよび3LLは、特に、レンズの開口数(NA)と振動ミラーの振り角によりビーム偏向角を厳密に制御できるため、好ましい。
またビーム偏向角を、2次元的に均一にするため、レンズアレイ3AL等の偏向角変化を、振動ミラーの振り角方向(矢印103の方向)に関して小さくし、レンズアレイ3AL等と振動ミラー3Mによりレーザ光に付与される合計ビーム偏向角を、矢印103方向および矢印103に垂直な方向で均等化することが好ましい。
レンズアレイ3AL、3LL、および、ホログラム素子3SR等は、光ロッドインテグレータ4の入射側に配置されればよく、入射端面に取り付けたり、中空ロッドインテグレータ4Hの場合は入射側内部に組み込んだ形状としてもよい。
また1次元的振動ミラー3Mを用いる場合、ビーム偏向角の2次元分布(矢印103と平行および垂直な方向)を均等化するため、光インテグレータ4内に挿入される擬似面光源化素子5AR(図9)を、2次元的異方性をもつ拡散角を与える素子を用いることが好ましい。具体的には、擬似面光源化素子5ARの表面に表面レリーフホログラムを構成し、その表面レリーフパターンを、振動ミラー3Mの振動方向について、振動方向に垂直な方向よりも大きな凹凸周期とし、振動方向の拡散角を小さくすることが望ましい。
本変形例では、1次元的振動ミラー3Mを用いたが、2次元的な振動が可能な振動ミラーを用いてもよい。2次元的振動ミラーを用いた場合は単独で、2次元的に変化するビーム偏向角をレーザ光に与えても良いし、レンズアレイなどと組み合わせてレーザ光のビーム偏向角を制御してもよい。
<レーザ光源構成例1>
図11は、レーザ光源の構成例を示す図である。図11において、画像表示装置100の赤色レーザ光源1Rは、半導体レーザであり、変調素子7は、長方形形状の有効面(画像表示に実際に使用される領域)を有する。本発明においては、有効面が長方形形状の変調素子7の有効面の長辺方向1109と、半導体レーザの活性層1105の厚み方向とが平行であることが好ましい。
変調素子7の有効面は、表示する画像の形状に対応して、長方形形状を有し、具体的には横:縦=4:3および16:9、といったアスペクト比を有する。レーザ画像表示装置100においては、有効面を出射するレーザ光が、投射光学系により拡大され、スクリーン10に投影される。ここで、半導体レーザ素子は、一般に、基板上に少なくともクラッド層/活性層1101/クラッド層が積層された層状構造を有し、活性層1101の端面よりレーザ光が出射される。半導体レーザ素子の活性層1101から出射されるレーザ光の広がり角は層の厚み方向1105と、層に平行な方向で異なり、層の厚み方向に関しより大きく広がる。このため、レーザ光をコリメートする場合であっても、出射レーザ光を余すことなく使用する場合、活性層の厚み方向1105に長い楕円形状のレーザ光を使用することになる。
画像表示においては、変調素子7の有効面をほぼ均一に照明する必要がある。有効面が長方形である変調素子7に、レーザ光源から出射したレーザ光を均一に照明するために、光インテグレータ4やホログラム素子を用いてビーム形状を長方形に整形して照明を行う。このとき変調素子7の長辺方向1109と半導体レーザの活性層厚み方向1105が平行になるように光学系を配置することにより、照明用レーザ光の強度の均一化およびレーザ光の有効利用率を高めて照明することができる。例えば、内部反射を利用するロッドインテグレータを光インテグレータ4として用いる場合、照明用レーザ光の均一化の程度は、内部反射の回数に依存する。このとき、光源から出射するレーザ光の広がり角が縦横で同じレーザ光を用いると、長辺方向のレーザ光の内部反射の回数が少なくなり、レーザ光強度の均一化が困難となる。そこで、ロッドインテグレータ4出射端面の長辺方向と変調素子7の長辺方向を平行に配置し、活性層の厚み方向1105を長辺方向と平行にすることで、長辺方向に広がり角が大きなレーザ光をロッドインテグレータ4に入射させることが容易となり、ロッドインテグレータ出射端面長辺方向においても内部反射の回数を出射端面短辺方向と同程度にすることが可能となり、容易に均一化された照明用レーザ光を得ることできるようになる。光インテグレータ4として、フライ・アイ・インテグレータやホログラム素子を用いた場合も、入射レーザ光を長方形にビーム整形するとき、同様に長辺方向への均一化が困難となるが、活性層の厚み方向を長辺方向と平行に配置することで、光インテグレータ4に照射するビームとして、光インテグレータ4の長辺方向に長い楕円レーザ光を用いることができるようになり、ロスなく照明用のレーザ光の強度を均一化することができる。
上記半導体レーザ光源は、出射波長に関係なく、層状構造を有する半導体レーザであればよい。半導体レーザ素子を複数用いたマルチチップアレイとした場合も同様に各チップの活性層厚み方向が変調素子の長辺方向と平行に配置することが望ましい。活性層内に発光スポットを複数有するマルチストライプ、複数の活性層を素子内に有するマルチスタック構造としても同様に、活性層厚み方向と変調素子の長辺方向とが平行な配置とすることが望ましい。
本発明にかかるレーザ画像表示装置100は、半導体レーザのストライプ1103の幅1107が出力波長の10倍以上であることを特徴としている。有効面が長方形である2次元変調素子を用いる場合、ほぼ均一に照明するためビーム形状をほぼ均一強度の長方形に整形するが、ストライプ1103の幅1107を出力波長の10倍以上のとすることで、効率よいビーム整形を可能とする。
半導体レーザのストライプとは、活性層にかかる電流の広がりを限定するための構造であり、電極、絶縁層、活性層の形状により作成し、活性層のストライプ領域のみ電流注入により励起し、ストライプ領域に沿って光が導波し、その端面から光が出射する。ストライプ幅は電流注入される活性層の幅であり、本発明では特にレーザ光が出射する端面のストライプ幅に関するものである。本発明では、ストライプ幅を出力波長の10倍以上とすることで出射レーザ光のニアフィールドパターンを横方向に非常に広がった形状にする。そうすることで、出射レーザ光の、活性層層に平行な方向に広がるレーザ光の半角を約1/10(rad)以下にすることができる。半導体レーザを出射したレーザ光は、ほぼ均一な長方形とするため光インテグレータやホログラム素子からなるビーム整形素子に入射されるが、レーザ出射光の一方向の広がり角を小さくすることで、レーザ光源からビーム整形素子までの光学設計を活性層の厚み方向のみの制御で行うことが可能となる。具体的には、光源からビーム整形素子までの距離は数〜数十ミリメートルのため広がり角が1/10(rad)以下のとき、広がり誤差が1ミリメートル以下となり、特別な制御素子などを必要とせずに光学設計を行うことができる。更に光学系の設計を簡易にするためには、ストライプ幅を出力波長の20倍以上とすることがより好ましい。20倍以上とすることで、出射するレーザ光を、レーザ素子の層に平行な方向に対し略平行光として設計することが可能となる。
また、レーザ画像表示装置100のように(図1参照)、単一の変調素子7を用い、複数波長(色)のレーザ光源1B、1G、および、1Rの変調を行う場合、最も短い波長のレーザ光を出射するレーザ光源が変調素子の最も近くに配置されていることが好ましい。画像表示装置100は、青、緑、赤の波長のレーザ光源1B、1G、および、1Rを有し、最も波長の短い光の青色レーザ光源1Bが、変調素子7の最も近くに配置される。
複数波長のレーザ光を、単一の変調素子7に導光するような構成を有するレーザ画像表示装置の場合、光学部品によるレーザ光の吸収および反射によるロスは短波長のレーザ光で最も大きくなる。そのため、短波長のレーザ光に対する光学材料の選定およびコートの仕様などが最も困難である。最も短い波長のレーザ光を出射するレーザ光源が、変調素子7に最も近くなるように(その光路が最も短くなるように)配置することにより、作用させる光学部品の点数を、より長波長のレーザ光が作用される光学部品点数よりも少なくし、短波長のレーザ光の光量ロスを低減する。特に、レーザ光源の出射するレーザ光の波長のうち最も短い波長が、460ナノメートル未満にピークを有する波長の場合、本発明の効果が顕著となる。
<レーザ光源構成例2>
レーザ画像表示装置100のレーザ光源は、図1に示したように、各光源を個別的に配置してよいが、1つのレーザ光源パッケージを用いてよい。このレーザ光源パッケージは、複数の波長を出射するレーザ光源を実質的に1つの筐体に備える。図12および図13に、そのようなレーザ光源パッケージの構成例を示す。図12および図13においては、図の明瞭性のため、パッケージ筐体を省略して図示する。
図12に示すパッケージ例1は、赤色半導体レーザ光源1R、緑色SHGレーザ光源1Ga、青色半導体レーザ光源1Bを含むレーザ光源パッケージである。レーザ画像表示装置100において、本パッケージは、各レーザ光源、1Rおよび1Bは、その活性層の厚み方向1105が、変調素子7の長辺方向1109(図11)と平行になるように配置される。図示しない半導体レーザ光源マウント部は、半導体レーザ光源の両側部に配され、SHGレーザ光源は、半導体レーザよりも、レーザ光出射方向に関し後方に配置することができる。3色のレーザ光源1R、1Ga、および、1Bを、1つのパッケージとすることで、ダイクロイックミラー21等、合波する光学系を省略し、光学系を簡素化することができ、さらに、半導体レーザ1Rおよび1Bに、上述したような、好ましい楕円形状を有するレーザ光を出射させて変調素子7に対する照明レーザ光の強度の均一化を容易にする。また、赤色レーザ光源1Rのストライプ幅Rと、青色レーザ光源のストライプ幅Bとの間に、R>Bなる関係が成立することが好ましい。この関係を満足させることにより、赤色レーザ光の形状と、青色レーザ光の形状とを近づけることが可能となる。そのため、変調素子7の照明にかかるレーザ光の制御がより容易となる利点が生じる。
図13に示すパッケージ例2は、緑色半導体レーザ光源1Gbを用いたレーザ光源パッケージ例である。本パッケージ例においては、レーザ光源、1R、1Gb、および、1Bの活性層の厚みは全て同一方向を向き、その向きは、レーザ画像表示装置100において、変調素子7の長辺方向1109(図11)と平行である。このとき、上記R>Bなる関係に加え、緑色レーザ光源1Gbのストライプ幅Gについて、R>Gなる関係を満たすことが好ましい。このようにパッケージを構成することで、赤色レーザ光の形状と、緑色レーザ光の形状を近づけることができ、制御が容易となる利点が生じる。さらには、3つの半導体レーザ光源のストライプの幅は、R>G>Bなる関係を満足することが望ましい。
なお、図12および図13に図示した半導体レーザは、1チップについて1ストライプを有するシングルストライプ構造であるが、各半導体レーザの活性層の厚み方向1105が、変調素子7の長辺方向1109(図11)と平行であれば、活性層に複数のストライプを有するマルチストライプ構造、1チップに複数の活性層を有するマルチスタック構造、複数のチップで1光源を構成するマルチチップ構造を用いた半導体レーザを使用することもできる。
(第2の実施形態)
図14は、本発明にかかるレーザ画像表示装置における照明光学系の別例を示す概略図である。本例において、レーザ光源を出射したレーザ光は、レンズ22、揺動的に振動可能な振動ミラー3Mを経て、矩形の出射端面を有するマルチロッドインテグレータ1401に入射する。マルチロッドインテグレータ1401は、複屈折擬似面光源化素子1403を挟み込んだ構造を有するとともに、入射端面にレンズアレイ1405を備える。
第2の実施形態の照明光学系は、振動ミラー3Mと、マルチロッドインテグレータ1401に形成されたレンズアレイ1405の協働的作用により、レーザ光の光源像が時間的に変化するようにマルチロッドインテグレータ1401(光インテグレータ)の入射レーザ光のビーム偏向角制御を行う。本照明光学系において、最大ビーム偏向角θは、振動ミラー3Mの振り角θと、レンズアレイを構成するレンズの開口数(NA)で与えられる。図14の構成では、振動ミラー3Mとレンズアレイ1405の協働により、振動ミラー3Mの振り角θよりも大きな角度のビーム偏向が可能となる。そのため、振動ミラー3Mの振り角θを、所望の最大ビーム偏向角θよりも小さくすることができるため、制御が容易となる利点を有する。また、本例においては、レンズアレイ1405と、ロッドインテグレータ1401とは、一体構成である。そのため、光学部品の一体化による効率向上が可能となる点でも、好ましい構成である。
本発明にかかるレーザ画像表示装置は、照明光学系にレーザ光の偏光をランダム化させる手段である偏光解消手段を有することが好ましい。図14の例では、複屈折擬似面光源化素子1403により偏光解消を行っている。偏光解消により、直線偏光であるレーザ光の偏光面は、ランダムに変化される。十分にランダム化されたレーザ光は、非偏光光となる。スペックルノイズはレーザ光の干渉によって生じるが、偏光方向が直交するレーザ光同士は干渉しないため、スペックルノイズが低減される。偏光解消手段としては、光軸に対し、非一様な厚み分布を持たせた複屈折材料からなる素子を用いることが好ましい。偏光解消手段は、光インテグレータ内に備えずとも、レンズおよびミラーなどと同様にレーザ光の光路上に挿設すればその効果を得ることができる。このような、偏光解消手段を照明光学系が備えるとき、変調素子7には、DMDなどのマイクロミラーデバイスを用いることが好ましい。
本発明において使用する擬似面光源化素子は、複屈折を有する材料からなるとともに光軸に略垂直な面内に厚み分布を有し、偏光解消手段も備えることが好ましい。複屈折擬似面光源化素子1403は、複屈折材料からなり、面内に厚み分布(一定の傾斜など)を有し、光が通過する位置における厚みの違いによって、異なる方向の偏光をレーザ光に生じさせ、偏光解消を行う。具体的には、擬似面光源化素子1403は、ポリカーボネートなど複屈折をもつ有機材料からなり、擬似面光源化のため表面に凹凸パターン加工されていたり、拡散粒子が混入されたりしている。擬似面光源化素子1403は、成形時に決まる光学軸がレーザ光の偏光方向に対し傾くように設置され、面内に厚み分布をもつことで偏光解消する。この複屈折擬似面光源化素子1403は、第1の実施形態と同様に光インテグレータ1401内に具備することが好ましい。光インテグレータ1401内にあれば、複屈折擬似面光源化素子1403の厚み分布による歪や、擬似面光源化作用を司る散乱作用によって生じる変調素子7を照明するレーザ光のロスを最小限に抑えることができる。具体的には、片側に傾斜を持つ複屈折擬似面光源化素子1403を、傾斜端面をもつロッドインテグレータと垂直端面をもつロッドインテグレータに挟み込んで固定することにより作製できる。また、凹凸パターンを有する複屈折材料を用いた場合でも、凹凸パターンによる厚み分布により偏光解消が可能である。
第2の実施形態のマルチロッドインテグレータ1401は、光の均一化、擬似面光源化、偏光解消、ビーム偏向、の機能を一体化し、光学部品点数を減らせることができる好ましい形態である。
なお従来、レーザ光源に対し、フライアイレンズによる照明の均一化および矩形化が提案されているが、フライアイレンズ照明光学系に擬似面光源化素子を挿入した場合、変調素子に結像できない光量ロスが多く発生する問題が生じるため、出射端面が矩形である内部反射型インテグレータ(ロッドインテグレータ)を用いることがより好ましい。
本発明のレーザ画像表示装置で使用するビーム偏向素子部は、可動拡散板を用いてもよい。しかし、可動式のレンズアレイや振動ミラーを用いることがより好ましい。可動レンズアレイもしくは振動ミラーを用いることで、ビーム偏向角の角度分布を含めて厳密な制御が可能となる。このため可動レンズアレイもしくは振動ミラーを用いると、投射光学系8の投射可能角度までの角度変化の制御と一様な角度分布をもたらすことができ、好ましい。また光インテグレータ内における内部反射の回数の制御も容易となる。可動拡散板を用いた場合、ビーム偏向角が比較的小さい成分が強くなり、ビーム偏向角を大きくしようとすると、散乱ロスが大きくなってしまうという不利点がある。
(第3の実施形態)
図15は本発明の第3の実施形態におけるレーザ画像表示装置200の概略図である。図15において図1と同じ構成要素については同じ符号を用いる。
RGB3色のレーザ光源1R、1G、および、1Bから出射したレーザ光は、マイクロレンズアレイ付き2次元変調素子271を照明するレーザ光を出射させるための光学系である照明光学系202に導かれる。照明光学系202は、ビーム偏向素子部を構成する回転レンチキュラーレンズアレイ3a、3b、光インテグレータ4、擬似面光源化素子5、投影光学系206を含み、ほぼ矩形で一様な強度分布を有するレーザ光で、変調素子271を照明する。投影光学系206は、ミラー261やフィールドレンズ262を含む。マイクロレンズアレイ付き空間変調素子271は、各色レーザ光の変調を行い、ダイクロイックプリズム209で合波し、スクリーン210に投影し、空間的加法混色によってカラー画像を表示する。なお、擬似面光源化素子5は、ミラー261上などに配置してもよい。
変調素子271は、レーザ光を変調する画素のそれぞれに対し、1つのマイクロレンズが照明光学系202上流側に形成され、アレイ状に配置された構成を有する。本実施形態のレーザ画像表示装置200は、変調素子271が、照明光学系202上流側に、各画素に対してマイクロレンズを有し、ビームの偏向を拡大させる手段となっている点である。回転レンチキュラーレンズアレイ3aおよび3bによって、ビーム偏向角は時間的に、常時制御されるが、変調素子271のマイクロレンズは、このビーム偏向角をさらに拡大する。例えば、回転レンチキュラーレンズでθrのビーム偏向角を与え、投影光学系206の倍率がa、マイクロレンズの開口数がNAmとしたとき、本レーザ画像表示装置における最大ビーム偏向角θは、θ=θr+a×sin−1(NAm)というように、マイクロレンズアレイにより拡大される。このため、ビーム偏向素子部の、時間的に変化する部分(本実施形態では回転レンチキュラーレンズアレイ3aおよび3b)によるビーム偏向角が比較的小さくとも、変調素子271の備えるマイクロレンズアレイが、ビーム偏向角を拡大することができる。そのため、レーザ画像表示装置200は、比較的大きな最大ビーム偏向角を備えることができ、なおかつ、その制御が容易という、優位性を有する。
変調素子271は、具体的には、透過型液晶素子と偏光板の組み合わせからなり、マイクロレンズアレイは液晶素子上に形成されればよい。またマイクロレンズアレイは液晶素子を動作させる電極部に光が通過しないように集光させることで、素子の開口率をあげることができ、有利である。
なお本実施形態は、図示したような構成に限定されず、単色のレーザ光源を用いたレーザ画像表示装置に用いることもでき、また、3色以上のレーザ光源を用いたレーザ画像表示装置に用いることもできる。本発明の各色のレーザ光源は、ほぼ同じ波長を発光する複数のレーザ素子から構成されても、単一の素子から構成されていても構わない。
また、本発明にかかるレーザ画像表示装置は、散乱反射型スクリーンを用いた前面透過型ディスプレイにも、透過型スクリーンを用いる背面投射型ディスプレイにも用いることができる。
本発明にかかるレーザ画像表示装置は、画像をスクリーンに表示する形態を用いて説明したが、スクリーン以外に画像を表示する場合も適用可能である。例えば、半導体露光装置などにも利用可能である。
本発明にかかる第1の実施形態によるレーザ画像表示装置の構成図 ビーム偏光素子部および光インテグレータの作用を示す図 擬似面光源化素子の作用を示す図 擬似面光源化素子の散乱角分布特性の図 ランダムな凹凸パターンをその表面に有する擬似面光源化素子の図 マイクロレンズアレイを含む擬似面光源化素子の図 基材と屈折率の異なる粒子を散在させて含む擬似面光源化素子の図 擬似面光源化素子を挟んで構成される光インテグレータ具体例図 擬似面光源化素子を挟んで構成される光インテグレータ具体例図 擬似面光源化素子を挟んで構成される光インテグレータ具体例図 擬似面光源化素子を挟んで構成される光インテグレータ具体例図 擬似面光源化素子を挟んで構成される光インテグレータ具体例図 光インテグレータの面を説明する図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面または出射端面の平面図 光インテグレータの入射端面の平面図 光インテグレータの入射端面の平面図 光インテグレータの側面の平面図 光インテグレータの側面の平面図 光インテグレータの側面の平面図 光インテグレータの側面の平面図 光インテグレータの側面の平面図 ビーム偏光素子部の斜視図 ビーム偏光素子部変形例の図 レーザ画像表示装置の画質評価の結果を示す図 照明光学系の変形例の構成概略図 レンズアレイの側面図 レンズアレイの平面図 2つのレンチキュラーレンズを直交させてなるレンズアレイの図 ホログラム素子の図 レーザ光源と変調素子の配置を示す図 レーザ光源パッケージ構成例1 レーザ光源パッケージ構成例2 第2の実施形態による照明光学系を示す図 第3の実施形態によるレーザ画像表示装置の構成図
符号の説明
1R・・赤色レーザ光源
1G・・緑色レーザ光源
1B・・青色レーザ光源
1C・・レーザ光源制御部
2・・・照明光学系
3・・・ビーム偏向素子部
3a・・レンチキュラーレンズアレイ
3b・・レンチキュラーレンズアレイ
3c・・レンチキュラーレンズ変形例
3C・・ビーム偏向素子制御部
3M・・振動ミラー
4・・・光インテグレータ
5・・・擬似面光源化素子
6・・・投影光学系
7・・・変調素子
7C・・変調素子制御部
8・・・投射光学系
10・・・スクリーン
21・・・ダイクロイックミラー
22・・・レンズ
41・・・透明接着剤
55・・・光インテグレータ入射端面
57・・・光インテグレータ出射端面
59・・・光インテグレータ側面
71・・・中空モータ
100・・・レーザ画像表示装置
200・・・レーザ画像表示装置
202・・・照明光学系
206・・・投影光学系
208・・・投射光学系
209・・・ダイクロイックプリズム
210・・・スクリーン
261・・・ミラー
262・・・フィールドレンズ
271・・・マイクロレンズアレイ付2次元光変調素子
1101・・・活性層
1103・・・ストライプ
1401・・・マルチロッドインテグレータ
1403・・・複屈折擬似面光源化素子
1405・・・マルチロッドインテグレータ1401に形成されたレンズアレイ

Claims (14)

  1. レーザ光を出射するレーザ光源と、
    前記レーザ光を受けてその進行方向を偏向させるビーム偏向素子と、
    前記ビーム偏向素子による偏向の程度を制御可能なビーム偏向素子制御部と、
    前記偏向を受けたレーザ光を入射し、導光し、その出射端面より出射する光インテグレータと、
    前記光インテグレータに入射され導光されたレーザ光を散乱させる擬似面光源化素子と、
    前記擬似面光源化素子によって散乱されたレーザ光を受け、それを変調する変調素子と、を有するレーザ画像表示装置。
  2. 前記光インテグレータの出射端面の形状は、前記変調素子の有効面の形状と相似である請求項1に記載のレーザ画像表示装置。
  3. 前記光インテグレータは、レーザ光を導光する光インテグレータ上流部および光インテグレータ下流部を有し、
    前記擬似面光源化素子は、前記光インテグレータ上流部の導光部および光インテグレータ下流部の導光部に、前記レーザ光の光路に沿って、挟まれて配置される請求項1に記載のレーザ画像表示装置。
  4. 前記擬似面光源化素子は、前記レーザ光の光路に沿って、前記光インテグレータの出射端面と、前記変調素子との間に配置される請求項1に記載のレーザ画像表示装置。
  5. 前記ビーム偏向素子制御部は、前記ビーム偏向素子による偏向の程度を、時系列に沿って可変的に制御する請求項1に記載のレーザ画像表示装置。
  6. 前記擬似面光源化素子は、それに入射するレーザ光の位置および入射の角度の少なくともいずれかに依存して、前記レーザ光に異なる位相を与える請求項1に記載のレーザ画像表示装置。
  7. 前記ビーム偏向素子は、その前記レーザ光に及ぼす偏向作用が、光軸に対し0度ないしθ度の間の角度θを成す方向に変化させることができる素子であり、
    前記擬似面光源化素子は、光軸に平行に入射するレーザ光に、半値散乱角φを有する散乱作用を及ぼすことができる素子であり、
    前記θと前記φとの間に、θ>φの関係が成立する請求項1に記載のレーザ画像表示装置。
  8. さらに、前記レーザ光の進行方向にそって、前記擬似面光源化素子と前記変調素子の間に配置され、受けた前記レーザ光を前記変調素子に入射させる投影光学系と、
    前記レーザ光の進行方向にそって、前記変調素子の下流に配置され、前記変調を受けたレーザ光を拡大する投射光学系とを有し、
    前記投影光学系の倍率をaとし、前記投射光学系のエフナンバーをFとしたとき、次の関係式(1)
    Figure 0004937125
    を満足する請求項7に記載のレーザ画像表示装置。
  9. 前記擬似面光源化素子は、それに入射するレーザ光の偏光方向を実質的にランダムに変化させる請求項1に記載のレーザ画像表示装置。
  10. 前記擬似面光源化素子は、それが含まれる光学系の光軸と垂直な方向に関して非一様な厚み分布を示し、複屈折材料を含む請求項9に記載のレーザ画像表示装置。
  11. 前記変調素子は、前記レーザ光の進行方向上流側に、前記変調素子に含まれる画素に入射するレーザ光を偏向させるマイクロレンズを有する請求項1に記載のレーザ画像表示装置。
  12. 前記レーザ光源は、半導体レーザを有し、
    前記変調素子は、その有効面が長方形形状であり、
    前記半導体レーザの活性層の厚み方向と、前記長方形形状の長辺方向が平行である請求項1に記載のレーザ画像表示装置。
  13. 前記半導体レーザは、出射可能なレーザ光の波長の10倍以上のストライプ幅を有する請求項12に記載のレーザ画像表示装置。
  14. 前記レーザ光源は、第1の波長を有する第1レーザ光を出射可能な第1レーザ光源部と、前記第1の波長よりも長い第2の波長を有する第2レーザ光を出射可能な第2レーザ光源部を含み、
    前記第1レーザ光の前記変調素子までの光路長は、前記第2レーザ光の前記変調素子までの光路長よりも短い請求項1に記載のレーザ画像表示装置。
JP2007528362A 2005-07-28 2006-06-01 レーザ画像表示装置 Active JP4937125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528362A JP4937125B2 (ja) 2005-07-28 2006-06-01 レーザ画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005218259 2005-07-28
JP2005218259 2005-07-28
JP2007528362A JP4937125B2 (ja) 2005-07-28 2006-06-01 レーザ画像表示装置
PCT/JP2006/311002 WO2007013221A1 (ja) 2005-07-28 2006-06-01 レーザ画像表示装置、ならびに、それに用いる光インテグレータおよびレーザ光源パッケージ

Publications (2)

Publication Number Publication Date
JPWO2007013221A1 JPWO2007013221A1 (ja) 2009-02-05
JP4937125B2 true JP4937125B2 (ja) 2012-05-23

Family

ID=37683126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528362A Active JP4937125B2 (ja) 2005-07-28 2006-06-01 レーザ画像表示装置

Country Status (4)

Country Link
US (1) US7954962B2 (ja)
JP (1) JP4937125B2 (ja)
CN (1) CN101233443B (ja)
WO (1) WO2007013221A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090681A1 (ja) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 二次元画像形成装置
JP4483763B2 (ja) 2005-10-19 2010-06-16 セイコーエプソン株式会社 照明装置および画像表示装置
US7715453B2 (en) * 2007-11-20 2010-05-11 Corning Incorporated Wavelength control in phase region of semiconductor lasers
CN101446749B (zh) * 2007-11-26 2011-07-20 亚洲光学股份有限公司 一种投影光学系统及其光学投影方法
TWI345128B (en) * 2007-12-18 2011-07-11 Coretronic Corp Displaying method of digital light processing (dlp) projector and dlp projector
CN101952774B (zh) * 2008-03-06 2013-05-22 Nec显示器解决方案株式会社 投影光学系统和使用投影光学系统的投影显示单元
JP5241400B2 (ja) * 2008-09-23 2013-07-17 三菱電機株式会社 投写型表示装置
WO2010061684A1 (ja) * 2008-11-26 2010-06-03 三洋電機株式会社 照明装置および投写型映像表示装置
JP2010231184A (ja) * 2009-03-02 2010-10-14 Mitsubishi Electric Corp 投写型表示装置
JP5706169B2 (ja) * 2010-02-03 2015-04-22 リコー光学株式会社 偏光解消素子及びその素子を用いた光学機器
US9128363B2 (en) * 2010-04-28 2015-09-08 Intel Corporation Micro-projection device with antispeckle vibration mode
JP2013530418A (ja) * 2010-04-28 2013-07-25 レモプティックス ソシエテ アノニム スペックル防止撮像モードを備えるマイクロプロジェクションデバイス
CN105425516B (zh) * 2010-09-07 2017-07-18 大日本印刷株式会社 投射型影像显示装置及其空间光调制器的照明方法
CN106933014B (zh) 2010-09-07 2020-05-22 大日本印刷株式会社 光学模块
WO2012032668A1 (ja) 2010-09-07 2012-03-15 大日本印刷株式会社 スキャナ装置および物体の三次元形状測定装置
KR101225560B1 (ko) 2010-09-07 2013-01-24 다이니폰 인사츠 가부시키가이샤 코히렌트 광원을 이용한 조명 장치
WO2012033175A1 (ja) * 2010-09-08 2012-03-15 大日本印刷株式会社 照明装置、投射装置および投写型映像表示装置
JP5195991B2 (ja) 2010-10-04 2013-05-15 ソニー株式会社 照明装置および表示装置
KR101798063B1 (ko) * 2010-12-14 2017-11-15 삼성전자주식회사 조명 광학계 및 이를 포함하는 3차원 영상 획득 장치
WO2012100261A1 (en) * 2011-01-21 2012-07-26 Clear Align Llc System and apparatuses providing laser illumination with reduced or zero speckle
US8847919B2 (en) * 2011-02-02 2014-09-30 Apple Inc. Interactive holographic display device
ES2770329T3 (es) 2011-04-12 2020-07-01 Barco Nv Proyector láser con moteado reducido
JP5978612B2 (ja) * 2011-07-13 2016-08-24 ソニー株式会社 照明装置および表示装置
JP5849727B2 (ja) * 2012-01-26 2016-02-03 株式会社Jvcケンウッド 投射型表示装置
JP5867721B2 (ja) * 2012-04-02 2016-02-24 ソニー株式会社 照明装置および表示装置
JP2014071979A (ja) * 2012-09-28 2014-04-21 Ushio Inc コヒーレント光源装置およびプロジェクタ
JP6137526B2 (ja) * 2012-12-21 2017-05-31 カシオ計算機株式会社 光源装置及びプロジェクタと画像投影方法
JP2014126723A (ja) * 2012-12-27 2014-07-07 Funai Electric Co Ltd 画像表示装置
JP2014132302A (ja) * 2013-01-07 2014-07-17 Seiko Epson Corp 照明装置およびプロジェクター
DE102013007661A1 (de) * 2013-05-06 2014-11-06 Prüftechnik Dieter Busch AG Vorrichtung zum Ermitteln der Lage von mechanischen Elementen
CN105158913B (zh) * 2013-05-13 2019-06-21 深圳光峰科技股份有限公司 激光光源、波长转换光源、合光光源及投影系统
US8896899B1 (en) 2013-05-15 2014-11-25 Zhen Tang Laser marker
JP6008810B2 (ja) * 2013-09-05 2016-10-19 ウシオ電機株式会社 レーザ光源装置
JP6237107B2 (ja) * 2013-10-21 2017-11-29 セイコーエプソン株式会社 プロジェクター
CN104154495B (zh) * 2014-05-20 2017-12-15 广州市浩洋电子股份有限公司 混合型光学积分器组件及其光学系统
US9507157B2 (en) 2014-12-17 2016-11-29 Zhen Tang Size-adjustable elliptical laser marker
US10571696B2 (en) * 2014-12-26 2020-02-25 Cy Vision Inc. Near-to-eye display device
CN104950467A (zh) * 2015-07-10 2015-09-30 南京先进激光技术研究院 一种激光投影消散斑装置及消散斑方法
EP3641306A1 (en) * 2015-10-11 2020-04-22 Dolby Laboratories Licensing Corp. Improved optical system for image projectors
US20190082151A1 (en) * 2016-02-24 2019-03-14 Hon Hai Precision Industry Co., Ltd. Projector
JP6885735B2 (ja) 2017-01-23 2021-06-16 浜松ホトニクス株式会社 走査装置
DE102017101363A1 (de) * 2017-01-25 2018-07-26 Osram Opto Semiconductors Gmbh Strahlungsemittierende Halbleiteranordnung und Vorrichtung mit einer strahlungsemittierenden Halbleiteranordnung
WO2018187654A1 (en) * 2017-04-06 2018-10-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Speckle reduction instrument
CN207122801U (zh) * 2017-04-17 2018-03-20 深圳市绎立锐光科技开发有限公司 一种舞台灯照明装置
JP2022076489A (ja) * 2019-03-26 2022-05-20 昭和電工マテリアルズ株式会社 スペックルノイズ低減光学系
CN209590522U (zh) * 2019-04-16 2019-11-05 中强光电股份有限公司 照明系统及投影装置
CN109946918B (zh) * 2019-04-26 2021-04-20 四川省派瑞克斯光电科技有限公司 3d投影角度控制方法、装置和系统
JP7434808B2 (ja) 2019-11-01 2024-02-21 株式会社リコー 光源装置及び画像投射装置
CA3130374A1 (en) 2020-09-10 2022-03-10 Saco Technologies Inc. Light shaping element and light shaping assembly
CN213069459U (zh) * 2020-10-28 2021-04-27 中强光电股份有限公司 照明系统及投影装置
WO2024047946A1 (ja) * 2022-08-31 2024-03-07 浜松ホトニクス株式会社 光照射装置、測定装置、観察装置、及び膜厚測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208089A (ja) * 1992-07-29 1994-07-26 Texas Instr Inc <Ti> コヒーレント光を用いる無スペックル・ディスプレイ装置
JPH10293268A (ja) * 1997-04-17 1998-11-04 Sony Corp レーザディスプレイ装置
JPH1164789A (ja) * 1997-08-15 1999-03-05 Sony Corp レーザディスプレイ装置
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600590B2 (en) * 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6625381B2 (en) * 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
US6445487B1 (en) * 2001-02-20 2002-09-03 Eastman Kodak Company Speckle suppressed laser projection system using a multi-wavelength doppler shifted beam
DE60332140D1 (de) * 2002-09-20 2010-05-27 Sony Corp Halbleiterlaserbauelement und dessen herstellungsverfahren
JP2004144936A (ja) 2002-10-23 2004-05-20 Sony Corp 照明装置及び画像表示装置
CN100524000C (zh) * 2003-07-22 2009-08-05 松下电器产业株式会社 二维成像装置
US7646518B2 (en) * 2005-02-25 2010-01-12 Panasonic Corporation Two dimensional image forming device
JP4311382B2 (ja) * 2005-07-20 2009-08-12 セイコーエプソン株式会社 プロジェクタ
US20080239498A1 (en) * 2007-03-26 2008-10-02 Reynolds Meritt W Random phase mask for light pipe homogenizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208089A (ja) * 1992-07-29 1994-07-26 Texas Instr Inc <Ti> コヒーレント光を用いる無スペックル・ディスプレイ装置
JPH10293268A (ja) * 1997-04-17 1998-11-04 Sony Corp レーザディスプレイ装置
JPH1164789A (ja) * 1997-08-15 1999-03-05 Sony Corp レーザディスプレイ装置
JP2003098476A (ja) * 2001-08-27 2003-04-03 Eastman Kodak Co レーザ投影型表示システム

Also Published As

Publication number Publication date
CN101233443B (zh) 2010-06-23
US7954962B2 (en) 2011-06-07
US20100165307A1 (en) 2010-07-01
WO2007013221A1 (ja) 2007-02-01
JPWO2007013221A1 (ja) 2009-02-05
CN101233443A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4937125B2 (ja) レーザ画像表示装置
JP6340807B2 (ja) 画像表示装置及び移動体
CN102483565B (zh) 激光投影仪
TW201932922A (zh) 圖像投影儀
JP5090900B2 (ja) 2次元画像形成装置
US7874680B2 (en) Projector that displays an image using laser beams
JP2019168720A (ja) 画像表示装置および移動体
JP2010541001A (ja) マイクロプロジェクタ
EP1328128A1 (en) Laser projection display system
US20110234985A1 (en) Despeckling laser-image-projection system
US20090168134A1 (en) Image display apparatus
US20160182871A1 (en) Illumination device, projection apparatus, lens array, and optical module
TW201730660A (zh) 投影機
JP2004144936A (ja) 照明装置及び画像表示装置
CN106125314A (zh) 一种光源及激光投影设备
JP5144508B2 (ja) 画像表示装置
JP5590628B2 (ja) 投写型表示装置
JP4903711B2 (ja) 投影システム
JPH11502040A (ja) 2つのマイクロレンズアレイを有する画像表示装置
CN103034031A (zh) 投影显示器
US8235531B2 (en) Optical interference reducing element for laser projection
WO2023030016A1 (zh) 激光投影设备
JP2021135472A (ja) 表示装置、及び移動体
US20240012318A1 (en) Light source and laser projection apparatus
JP2020074025A (ja) 画像表示装置及び移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150