JP4936287B2 - 内径測定装置 - Google Patents

内径測定装置 Download PDF

Info

Publication number
JP4936287B2
JP4936287B2 JP2007157959A JP2007157959A JP4936287B2 JP 4936287 B2 JP4936287 B2 JP 4936287B2 JP 2007157959 A JP2007157959 A JP 2007157959A JP 2007157959 A JP2007157959 A JP 2007157959A JP 4936287 B2 JP4936287 B2 JP 4936287B2
Authority
JP
Japan
Prior art keywords
light beam
light
measured
interferometer
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007157959A
Other languages
English (en)
Other versions
JP2008309655A (ja
Inventor
薫 佐々木
信之 大澤
亜紀子 平井
弘一 松本
徹 清水
正敏 荒井
Original Assignee
株式会社東京精密
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東京精密, 独立行政法人産業技術総合研究所 filed Critical 株式会社東京精密
Priority to JP2007157959A priority Critical patent/JP4936287B2/ja
Publication of JP2008309655A publication Critical patent/JP2008309655A/ja
Application granted granted Critical
Publication of JP4936287B2 publication Critical patent/JP4936287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円筒状の被測定物の内径を測定する内径測定装置に関し、特に、白色干渉を用いた内径測定装置に関する。

従来より、円筒状の部品を、非接触で精密に測定する方法として、白色干渉の原理を用いた方法が提案されている。例えば、白色干渉を用いて、シリンダの内径を測定するための干渉計が知られている(非特許文献1参照)。非特許文献1に記載された干渉計では、白色光源から放射された光を、コリメータで平行光とし、シリンダ内に配置されたハーフミラーで二つの光束に分割する。そして、それらの光束は、シリンダの内面または平面鏡で反射された後、例えばシリンダの内径の2倍に相当する光路差を生じて再度ハーフミラーで結合されてシリンダ内から出射する。そして、シリンダ内から出射した光束を、別途設けられた干渉計で再度二つの光束に分割し、シリンダ内で生じた光路差と略等しい光路差を生じさせることにより、白色干渉縞を生じさせる。白色干渉縞は、シリンダ内で生じた光路差と干渉計側で生じさせた光路差とが等しい場合に最大振幅を有するので、干渉計側で生じさせた二つの光束の光路差を測定することにより、正確にシリンダの内径を測定することができる。

植木、大岩、「シリンダの内径測定用干渉計」、計量研究所報告、昭和63年1月、第37巻、第1号、p.53-57

ここで、シリンダ内で分岐する二つの光束は、ハーフミラーを複数回透過するかまたは反射されるため、光強度が大きく低下する。さらに、シリンダの内面は、シリンドリカル状の反射面となるため、平行光束が入射すると、シリンダの軸方向に直交する円筒断面内ではそのシリンダの直径によって定まる収束点に集まる収束光として反射される。そして、その光束は、収束点を過ぎると発散光となる。そのため、シリンダの内面で反射された光束の一部しか干渉計に導くことができず、白色干渉を形成するために利用可能な光量がわずかしかないため、干渉縞の観察が難しいという問題点があった。

上記の問題点に鑑み、本発明の目的は、白色干渉を用いた円筒状の被測定物の内径寸法測定において、干渉縞の測定に用いる測定光を効率良く利用可能な内径測定装置を提供することにある。

本発明の一つの実施態様によれば、円筒状の被測定物の内径寸法を測定する内径測定装置が提供される。係る内径測定装置は、白色光源と、白色光源から放射された光を、被測定物に向かう第1の光束と第2の光束に分岐し、第1の光束を被測定物で反射させて第2の光束との間に被測定物の内径に対応する第1の光路差を生じさせ、第1の光束と第2の光束を一つの光束に合わせて出射させる光束分割手段と、白色光源から放射された光に、光束分割手段上に焦点を結ばせる結像レンズとを有する第1の干渉計と、位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、第1の干渉計を出射した光束を、参照鏡に向かう第3の光束と、移動鏡に向かう第4の光束に分岐して、第3の光束と第4の光束との間に第2の光路差を生じさせる第2の干渉計と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、その干渉信号に対応する信号を出力する検出器と、干渉信号の最大値に対応する移動鏡の位置を測定し、その位置から第2の光路差を計算することにより、被測定物の内径の測定値を求めるコントローラと、を有することを特徴とする。

また、本発明によれば、光束分割手段は半透過面を有し、その半透過面は、白色光源から放射された光のうち、半透過面で反射された光束が第1の光束となり、白色光源から放射された光のうち、半透過面を透過した光束が第2の光束となるように、白色光源から放射された光の光路に対して傾斜して配置され、結像レンズは、第1の光束が半透過面で反射された後に被測定物の円周断面内で発散するように、光束分割手段の半透過面の傾斜方向と被測定物の軸方向を含む面内においては白色光源からの光に焦点を結ばせず、傾斜方向と略直交し、被測定物の軸方向を含む面内においては白色光源からの光に焦点を結ばせるシリンドリカルレンズであることが好ましい。

あるいは、本発明によれば、光束分割手段は、被測定物と対向する面の少なくとも何れかに、光束分割手段を出射する第1の光束を被測定物の軸方向面内において平行光にするシリンドリカルレンズ面を有することが好ましい。
なお、上記の各実施態様において、白色光源とは、可視光域において広帯域発光する光源に限られず、所定の波長を中心波長とした一定の波長帯域の光を放射する光源をいう。

また、本発明の他の実施態様によれば、円筒状の被測定物の内径寸法を測定する内径測定装置が提供される。係る内径測定装置は、白色光源と、位置が固定された参照鏡と光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、白色光源から放射された光を、参照鏡に向かう第1の光束と、移動鏡に向かう第2の光束に分岐して、第1の光束と第2の光束との間に第1の光路差を生じさせる第1の干渉計と、第1の干渉計から出射された第1の光束及び第2の光束を、被測定物に向かう第3の光束と第4の光束に分岐し、第3の光束を被測定物で反射させて第4の光束との間に被測定物の内径に対応する第2の光路差を生じさせ、第3の光束と第4の光束を一つの光束に合わせて出射させる光束分割手段と、第1の干渉計から出射された第1の光束及び第2の光束に、光束分割手段上に焦点を結ばせる結像レンズとを有する第2の干渉計と、第3の光束と第4の光束を受光し、第1の光路差と第2の光路差とが略等しい場合に生じる干渉信号を検出し、干渉信号に対応する信号を出力する検出器と、干渉信号の最大値に対応する移動鏡の位置を測定し、その位置から第1の光路差を計算することにより、被測定物の内径の測定値を求めるコントローラとを有する。

本発明によれば、白色干渉を用いた円筒状の被測定物の内径寸法測定において、干渉縞の測定に用いる測定光を効率良く利用可能な内径測定装置を提供することが可能となった。

以下、本発明を、リングゲージ、シリンダなど、円筒状の被測定物の内径を計測する内径測定装置に適用した実施の形態を、図を参照しつつ説明する。
本発明を適用した内径測定装置は、白色光源からの光を第1の干渉計に入射させ、第1の干渉計で、被測定物の内径に対応する光路差を有する二つの光束を生成する。その二つの光束を第2の干渉計に入射して、上記光路差とほぼ等しい光路差を生じる二つの光路に光束を分割して干渉させることにより、白色干渉縞を生じさせる。そして、検出器で白色干渉縞の最大信号値を検出して第2の干渉計の二つの光路間の光路差を測定することにより、被測定物の内径を求める。ここで、第1の干渉計は、白色光源からの測定光を平行光にするコリメータレンズと、その測定光を被測定物の内側面へ向かう光束と、そのまま直進する光束の二つに分岐させる半透過面を有する光束分割手段であるビームスプリッタと、白色光源からの測定光にビームスプリッタ上で焦点を結ばせる結像レンズであるシリンドリカルレンズを有する。そのシリンドリカルレンズは、ビームスプリッタの半透過面が、白色光源からの測定光の光路に対して傾斜する方向と略直交する方向に対して、その測定光に焦点を結ばせるように配置される。係る構成により、ビームスプリッタの半透過面で反射され、被測定物の内面へ向かう光束は、被測定物の円筒断面内ではビームスプリッタ上の反射面を中心として広がる発散光となり、被測定物の内面で反射されるとビームスプリッタ上に結像する収束光となる。一方、被測定物の軸方向に平行な面内においては、その光束は平行光となる。そのため、被測定物で反射された光のうち、ビームスプリッタを通らない光をなくすことができるので、白色光源からの測定光を、干渉縞を生成するために有効に利用することができる。

図1は、本発明を適用した内径測定装置1の概略構成を示す図である。内径測定装置1は、白色光源2と、被測定物の内径の2倍に相当する光路差を生じさせる第1の干渉計3と、第1の干渉計3で生じた光路差と同程度の光路差を生じさせて白色干渉縞を発生させる第2の干渉計4と、第2の干渉計4で発生した干渉縞を検出する検出器5と、各部の制御及び検出された干渉縞から被測定物の内径を求めるコントローラ6を有する。さらに、内径測定装置1は、白色光源2からの光を第1の干渉計3に伝える光ファイバ7と、第1の干渉計3を出射した光を第2の干渉計へ伝える光ファイバ8を有する。

白色光源2は、コヒーレンス長が短く、広帯域な波長の光を放射可能な光源である。白色光源2として、例えば、LED、SLD(スーパールミネッセントダイオード)、SOA(Semiconductor Optical Amplifier)光源、ASE(Amplified Spontaneous Emission)光源などを用いることができる。また、白色光源2から出射される光の中心波長は、例えば750nm、1300nm、1550nmなどに設定することができる。本実施形態では、白色光源2として、中心波長1550nmの赤外LEDを用いた。

図2(a)に、第1の干渉計3の概略側面図を示す。また図2(b)に、第1の干渉計3に設置された被測定物10の概略平面図を示す。第1の干渉計3では、XYZステージ38の上に配置された被測定物10の内径の2倍に対応する光路差を有する二つの光束B1、B2を生成する。そのために、第1の干渉計3では、白色光源2から第1の光ファイバ7を経て入射した光をコリメータレンズ31で平行光とする。その平行光は、第1のシリンドリカルレンズ32に入射する。シリンドリカルレンズ32は、入射した平行光の一方向について、後述するビームスプリッタ34の半透過面HM上に焦点を結ばせる。シリンドリカルレンズ32を出射した光は、出射する位置を調整する第1のウェッジプリズム33に入射する。そして、ウェッジプリズム33を出射した光は、被測定物10の内径の略中心に配置されたビームスプリッタ34に入射する。その入射光は、ビームスプリッタ34の半透過面HMで反射され、被測定物10の内面S1に向かう光束と、ビームスプリッタ34を透過して直進する光束B2に分岐される。

被測定物10の内面S1に向かう光束は、被測定物10の内面S1で反射された後、ビームスプリッタ34に戻る。ビームスプリッタ34に戻った光束の一部は、ビームスプリッタ34を透過し、被測定物10の内面S1と反対側の内面S2へ向かう。そして、S2へ向かった光束は、内面S2で反射され、再びビームスプリッタ34に戻る。ビームスプリッタ34に戻った光束の一部は、ビームスプリッタ34で反射される。この光束をB1と呼ぶ。光束B1と光束B2とは、ビームスプリッタ34を出射する際に合わさって出射する。光束B1と光束B2は、ビームスプリッタ34を出射した後、位置調整用の第2のウェッジプリズム35に入射し、第2のシリンドリカルレンズ36に入射するように位置調整される。ウェッジプリズム35を出射した光束B1及びB2は、シリンドリカルレンズ36及び集光レンズ37を経て集光されて第1の干渉計を出射し、光ファイバ8に入射する。

このとき、第1の干渉計3を出射する光束B1は、被測定物10の内面S1とS2の間を往復するので、被測定物10の内径をDとすれば、光束B1と光束B2との間に、2Dの光路差が生じる。そして、2Dの光路差を有する光束B1と光束B2は、光ファイバ8を通じて第2の干渉計4へ入射する。
ここで、第1のシリンドリカルレンズ32は、白色光源2から放射された測定光について、半透過面HMがその測定光の光路に対して傾斜する方向には平行光とし、その傾斜方向と略直交する方向にはビームスプリッタ34の半透過面HM上に焦点を結ばせる。すなわち、第1のシリンドリカルレンズ32は、半透過面HMが白色光源2のからの測定光の光路に対して傾斜する方向と平行な方向の光束には平板ガラスとして機能し、半透過面HMの傾斜方向と略直交する方向の光束には凸レンズとして機能するように配置される。そのため、図2(b)に示すように、光束B1は、ビームスプリッタ34の半透過面HMで反射された後、被測定物10の軸方向に直交する円筒断面内では、その焦点を中心として発散する発散光となる。そして、光束B1は、非測定物10の内面S1に対してほぼ垂直に入射するので、その内面S1で反射された後、ビームスプリッタ34の半透過面HM上の焦点に収束する収束光となる。そして、ビームスプリッタ34を透過した後、再びその焦点を中心として発散する発散光となる。その後、光束B1は、非測定物10の内面S2に対してほぼ垂直に入射するので、光束B1は、その内面S2で反射された後、再びビームスプリッタ34の半透過面HM上の焦点に収束する収束光となる。

一方、図2(a)に示すように、被測定物10の軸方向に平行な面内では、光束B1は平行光となる。また、その軸方向面内では、被測定物10の内面S1、S2もそれぞれ平面であるため、光束B1は、その内面S1、S2で反射されても平行光のままである。
したがって、光束B1は、被測定物10の円筒断面内においても、軸方向面内においても、ビームスプリッタ34の半透過面HMから外れることがない。そのため、光束B1について、光量低下を抑制することができ、干渉縞の生成に有効に利用できる。

ビームスプリッタ34を出射した光束B1は、半透過面HMの傾斜方向と略直交する面内では発散光となる。そこで、光束B1の半透過面HMの傾斜方向と略直交する方向についても平行光として、光ファイバ8に集光できるように、第2のシリンドリカルレンズ36を使用する。この第2のシリンドリカルレンズ36も、第1のシリンドリカルレンズ32と同様に、半透過面HMが白色光源2のからの測定光の光路に対して傾斜する方向と平行な方向の光束には平板ガラスとして機能し、半透過面HMの傾斜方向と略直交する方向の光束には凸レンズとして機能するように配置される。
また、ビームスプリッタ34を出射した光束B2についても、半透過面HMの傾斜方向と略直交する面内では発散光となる。そのため、光束B2も、第2のシリンドリカルレンズ36を透過することにより、その面内で平行光となる。したがって、第2のシリンドリカルレンズ36を透過した光束B1、B2ともに、集光レンズ37で光ファイバ8に良好に入射させることができる。

なお、XYZステージ38は、被測定物10の軸方向(すなわち、光束B2に平行な方向)、被測定物10の円筒断面内で光束B1に平行な方向及び光束B1に垂直な方向の3方向に移動可能であり、ステージコントローラ39により駆動される。またステージコントローラ39は、コントローラ6と電気的に接続され、コントローラ6によって制御される。

図3に、第2の干渉計4の概略構成図を示す。光ファイバ8を出射した光束B1及びB2は、第2の干渉計4のコリメータレンズ41を経て、平行光となる。そして、ビームスプリッタ42へ入射する。光束B1及びB2は、ビームスプリッタ42で反射されて第1の光路へ向かう光束B11、B21と、ビームスプリッタ42を透過して第2の光路へ向かう光束B12、B22に分岐する。なお、光束B11は、第1の干渉計3を出射した光束B1のうち、第2の干渉計4の第1の光路へ向かう光束を表し、光束B21は、第1の干渉計3を出射した光束B2のうち、第2の干渉計4の第1の光路へ向かう光束を表す。同様に、光束B12は、第1の干渉計3を出射した光束B1のうち、第2の干渉計4の第2の光路へ向かう光束を表し、光束B22は、第1の干渉計3を出射した光束B2のうち、第2の干渉計4の第2の光路へ向かう光束を表す。

第1の光路には、位置が固定された参照鏡43が設置される。そして、第1の光路へ向かう光束B11、B21は、参照鏡43で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42を透過して検出器5へ向かう。一方、第2の光路には、その光路に沿って移動可能な移動鏡44が設けられる。そして、第2の光路へ向かう光束B12、B22は、移動鏡44で反射されてビームスプリッタ42へ戻り、その一部はビームスプリッタ42で反射されて、B11、B21とともに検出器5へ向かう。

移動鏡44は、支持部材45に取り付けられる。そして、移動鏡44及び支持部材45は、移動範囲が狭いものの、移動鏡44の位置の微調整が可能なピエゾ微動ステージ46の上に設置される。また、移動鏡44及び支持部材45は、ピエゾ微動ステージ46とともに、移動範囲が相対的に大きく、移動鏡44の位置を大まかに決定する粗動ステージ47上に設置される。ピエゾ微動ステージ46及び粗動ステージ47は、それぞれピエゾコントローラ51及びステージコントローラ52と電気的に接続される。そして、ピエゾ微動ステージ46及び粗動ステージ47は、ピエゾコントローラ51及びステージコントローラ52からの制御信号に基づいて、移動鏡44を第2の光路に沿って移動させる。
なお、移動鏡44を移動させつつ、その移動の間に連続的に干渉信号を測定する場合には、ピエゾ微動ステージ46及びピエゾコントローラ51を省略してもよい。

また、支持部材45の背面には、コーナーキューブ48が取り付けられる。さらに、支持部材45よりも後方(すなわち、支持部材45を中心として、ビームスプリッタ42の反対側)には、移動鏡44の位置計測用干渉計49が設置される。そして、位置計測用干渉計49は、コーナーキューブ48へ向けて照射され、コーナーキューブ48で反射されて位置計測用干渉計49に戻ってきたコヒーレント光と、参照光との間で観測される干渉縞の移動本数を計数することにより、移動鏡44の移動量を計測することができる。

検出器5は、検出した光量を電気信号として出力するものである。検出器5として、例えば、フォトダイオード、CCDまたはC−MOSなどの半導体検出素子を使用することができる。本実施形態では、検出器5として、CCD素子を2次元アレイ状に並べたものを用いた。
また、検出器5は、コントローラ6と電気的に接続され、検出した光量に対応する電気信号を、コントローラ6へ送信する。

コントローラ6は、いわゆるPCで構成され、電気的に書き換え可能な不揮発性メモリ、磁気ディスク、光ディスク及びそれらの読取装置等からなる記憶部と、RS232C、イーサネット(登録商標)などの通信規格にしたがって構成された電子回路及びデバイスドライバなどのソフトウェアからなる通信部を有する。
さらにコントローラ6は、図示していないCPU,ROM,RAM及びその周辺回路と、CPU上で実行されるコンピュータプログラムによって実現される機能モジュールとして、検出された光量及び移動鏡44の位置に基づいて、被測定物10の内径Dを求めたり、位置計測用干渉計49、ピエゾコントローラ51、ステージコントローラ52及び検出器5など、コントローラ6に接続された機器を制御する制御部とを有する。

以下、内径測定装置1による被測定物10の内径を測定する動作について説明する。
白色光源2からの光は、コヒーレンス長が短いため、光路差がほぼ等しい場合にのみ干渉縞を生じる。ここで、第2の干渉計4の第1の光路における、ビームスプリッタ42から参照鏡43までの距離がL1であり、第2の光路における、ビームスプリッタ42から移動鏡44までの距離がL2であるとすると、第3の光束と第4の光束との間に、2(L2−L1)の光路差が生じる(ただし、L2>L1とする)。このとき、(L2−L1)とDが等しければ、第1の干渉計3において、被測定物10の内面S1、S2で反射された光束B1のうち、第2の干渉計4において、第1の光路を通った光束B11と、第1の干渉計3においてビームスプリッタ34を素通りした光束B2のうち、第2の干渉計4において、第2の光路を通った光束B22との光路差が0となる。そのため、最大の干渉信号を観測することができる。そして、(L2−L1)とDとの差が大きくなるにつれて、干渉信号の大きさは急激に低下する。したがって、干渉信号が最大となるときの(L2−L1)を計測することにより、被測定物10の内径Dを求めることができる。

また、移動鏡44をビームスプリッタ42に近づけていくと、第3の光束と第4の光束との間に生じる光路差2(L1−L2)が、被測定物10の内径Dの2倍と等しいところでも干渉縞を観測することができる(ただし、L1>L2である)。この場合、第1の干渉計3において、被測定物10の内面S1、S2で反射された光束B1のうち、第2の干渉計4において、第2の光路を通った光束B12と、第1の干渉計3においてビームスプリッタ34を素通りした光束B2のうち、第2の干渉計4において、第1の光路を通った光束B21との光路差が0となるためである。そこで、光束B11と光束B22との間で生じる干渉信号が最大となる移動鏡44の位置と、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置との差を2で割ることにより、被測定物10の内径Dを求めることができる。

図4に、被測定物10の内径Dを測定する際の内径測定装置1の動作フローチャートを示す。
最初に、初期化手順として、移動鏡44の基準位置、すなわち、第2の干渉計4の第1の光路と第2の光路間の光路差が0となる移動鏡44の位置を決定する(ステップS101)。そのために、内径測定装置1の第1の干渉計3に、被測定物10を設置せず、第2の干渉計4で干渉縞の検出される位置を求める。このとき、被測定物10の内面で反射される光束は存在しないから、第1の干渉計3を出射する光束は、全てB2となる。そのため、第2の干渉計4では、第1の光路におけるビームスプリッタ42から参照鏡43までの距離L1と、第2の光路におけるビームスプリッタ42から移動鏡44までの距離L2との差が0のとき、干渉信号は最大となる。そこで、コントローラ6は、移動鏡44を移動させて、複数の測定点で検出器5で検出される光量を観測し、検出光量が最大、すなわち、干渉信号が最大値となる位置を見つける。そして、コントローラ6は、干渉信号が最大値となったときの移動鏡44の位置を、位置計測用干渉計49から受信し、L1=L2となる位置P1として、コントローラ6の記憶部に記憶する。

次に、内径測定装置1の第1の干渉計3に、被測定物10を設置する。このとき、上述したように、白色干渉縞は、被測定物10の内径Dと、(L2−L1)がほぼ等しい位置でのみ観測される。そこで、コントローラ6は、ステージコントローラ52を通じて粗動ステージ47を駆動し、第2の干渉計4の移動鏡44を、被測定物10の内径Dとほぼ等しい距離だけ後退させる。そして、コントローラ6は、上記と同様に、移動鏡44を移動させて、複数の測定点で検出器5で検出される光量の増減を調べ、出力信号値の最大値、すなわち干渉信号の最大値を求める(ステップS102)。出力信号が最大となったときの移動鏡44の位置P2を、位置計測用干渉計49から受信する(ステップS103)。そして、コントローラ6は、記憶部からL1=L2のときの移動鏡44の位置P1を読み出してP2−P1の値を計算し、被測定物10の内径Dとする(ステップS104)。

なお、ステップS101で移動鏡44の基準位置P1を測定する代わりに、上記のように、移動鏡44を参照鏡43よりもビームスプリッタ42に近づけて、光束B12と光束B21との間で生じる干渉信号が最大となる移動鏡44の位置P3を求めてもよい。そして、(P2−P3)/2の値を計算し、その値を被測定物10の内径Dとして求めてもよい。基準位置P1で観測される干渉信号の強度と、位置P2で観測される干渉信号の強度は、大きく異なる。一方、位置P2で観測される干渉信号と、位置P3で観測される干渉信号とは、ほぼ同程度の強度となる。そのため、位置P2と位置P3の差に基づいて被測定物10の内径Dを求める場合、基準位置P1と位置P2の差に基づいて内径Dを求める場合よりも、検出器5の受光量の変化に対する出力信号の変化を大きくすることができるので、干渉信号が最大値となる移動鏡44の位置をより正確に特定することができる。

以上説明してきたように、本発明を適用した内径測定装置1は、白色光源2からの測定光を、コリメータレンズ31で平行光とし、シリンドリカルレンズ32でビームスプリッタ34の半透過面HMの測定光の光路に対して傾斜する方向と略直交する面内において、半透過面HM上の焦点を結ばせる。そのため、半透過面HMで反射され、被測定物10に向かう光束B1は、被測定物10の円筒断面内においては被測定物10の内面S1、S2で反射された後、半透過面HM上に焦点を結ぶように戻る。また、被測定物10の軸方向面内においては、光束B1は、内面S1、S2で反射されても平行光のまま半透過面HMに戻る。そのため、光束B1は、ビームスプリッタ34から外れることがなく、第1の干渉計3から第2の干渉計4へ向けて出射させられるため、白色干渉縞の生成に有効に利用することができる。したがって、観察し易い白色干渉縞を得ることが可能となる。

なお、本発明は、上記の実施形態に限定されるものではない。例えば、第1の干渉計3のビームスプリッタ34の代わりに、ハーフミラーを用いてもよい。また、シリンドリカルレンズ32の代わりに、光軸対称な通常のレンズを用い、白色光源2からの光が、半透過面HMの傾斜方向についても半透過面HM上に焦点を結ぶようにしてもよい。この場合、ビームスプリッタ34の被測定物10の内面S1、S2に対向する面に、半透過面HM上の上記の焦点から拡散する光を、被測定物10の軸方向面内において平行光にするシリンドリカルレンズ面を設けることが好ましい。このように構成することにより、上記の実施形態と同様の効果を得ることができる。
また、上記の実施形態において、第1のシリンドリカルレンズ32と第1のウェッジプリズム33の配置順序を入れ替えてもよい。同様に、第2のウェッジプリズム35と第2のシリンドリカルレンズ36の配置順序を入れ替えてもよい。あるいは、コリメータレンズ31と第1のシリンドリカルレンズ32を一体に形成してもよく、同様に、第2のシリンドリカルレンズ36と集光レンズ37を一体に形成してもよい。さらに、上記の実施形態の測定装置において、第2の干渉計をフィゾー型の干渉計としてもよい。

さらに、第1の干渉計3側に配置された白色光源と、第2の干渉計4側に配置された検出器を入れ替えてもよい。この場合、第2の干渉計4側で予め被測定物の測定対象寸法に相当する光路差を有する二つの光束を発生させ、それらの光束を光ファイバを通じて第1の干渉計3側へ送る。そして、第1の干渉計3では、受け取った二つの光束を、被測定物10の内面S1、S2で反射される光束とビームスプリッタ34を直進する二つの光束にさらに分割し、それらを一つに合わせて検出器で検出することにより、白色干渉縞を観察する。ここで、第1の干渉計3において、シリンドリカルレンズ36は、被測定物10の内面S1、S2で反射される光束を、ビームスプリッタ34の半透過面HMで反射された後に円周断面内で発散光にする。具体的には、シリンドリカルレンズ36は、光ファイバから出射した二つの光束を、半透過面HMがその測定光の光路に対して傾斜する方向には平行光とし、その傾斜方向と略直交する方向にはビームスプリッタ34の半透過面HM上に焦点を結ばせる。このように構成することで、上記の実施形態と同様の効果を得ることができる。この場合も、第2の干渉計4側で発生させた光路差を測定することにより、被測定物10の内径Dを求めることができる。
以上のように、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。

本発明を適用した内径測定装置の概略構成図である。 (a)は内径測定装置を構成する第1の干渉計の概略側面図であり、(b)は第1の干渉計に設置された被測定物の概略平面図である。 内径測定装置を構成する第2の干渉計の概略構成図である。 内径測定装置の動作フローチャートである。

符号の説明

1 内径測定装置
10 被測定物
2 白色光源
3、4 干渉計
5 検出器
6 コントローラ
31 コリメータレンズ
32、36 シリンドリカルレンズ
33、35 ウェッジプリズム
34、42 ビームスプリッタ
37 集光レンズ
38 XYZステージ
39 ステージコントローラ
43 参照鏡
44 移動鏡
45 支持部材
46 ピエゾ微動ステージ
47 粗動ステージ
48 コーナーキューブ
49 位置計測用干渉計
51 ピエゾコントローラ
52 ステージコントローラ
7,8 光ファイバ
HM 半透過面

Claims (4)

  1. 円筒状の被測定物の内径寸法を測定する内径測定装置であって、
    白色光源と、
    前記白色光源から放射された光を、前記被測定物に向かう第1の光束と第2の光束に分岐し、該第1の光束を前記被測定物で反射させて該第2の光束との間に前記被測定物の内径に対応する第1の光路差を生じさせ、該第1の光束と該第2の光束を一つの光束に合わせて出射させる光束分割手段と、前記白色光源から放射された光に、該光束分割手段上に焦点を結ばせる結像レンズとを有する第1の干渉計と、
    位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第2の干渉計であって、前記第1の干渉計を出射した光束を、該参照鏡に向かう第3の光束と、該移動鏡に向かう第4の光束に分岐して、該第3の光束と該第4の光束との間に第2の光路差を生じさせる第2の干渉計と、
    前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
    前記干渉信号の最大値に対応する前記移動鏡の位置を測定し、該位置から前記第2の光路差を計算することにより、前記被測定物の内径の測定値を求めるコントローラと、
    を有することを特徴とする内径測定装置。
  2. 前記光束分割手段は半透過面を有し、該半透過面は、前記白色光源から放射された光のうち、該半透過面で反射された光束が前記第1の光束となり、前記白色光源から放射された光のうち、該半透過面を透過した光束が前記第2の光束となるように、前記白色光源から放射された光の光路に対して傾斜して配置され、
    前記結像レンズは、前記第1の光束が前記半透過面で反射された後に前記被測定物の円周断面内で発散するように、前記半透過面の前記傾斜方向と前記被測定物の軸方向を含む面内においては前記白色光源からの光に焦点を結ばせず、前記傾斜方向と略直交し、前記被測定物の軸方向を含む面内においては前記白色光源からの光に焦点を結ばせるシリンドリカルレンズである、請求項1に記載の内径測定装置。
  3. 前記光束分割手段は、前記被測定物と対向する面の少なくとも何れかに、前記光束分割手段を出射する前記第1の光束を前記被測定物の軸方向面内において平行光にするシリンドリカルレンズ面を有する、請求項1に記載の内径測定装置。
  4. 円筒状の被測定物の内径寸法を測定する内径測定装置であって、
    白色光源と、
    位置が固定された参照鏡と、光路に沿って移動可能な移動鏡とを有する第1の干渉計であって、前記白色光源から放射された光を、該参照鏡に向かう第1の光束と、該移動鏡に向かう第2の光束に分岐して、該第1の光束と該第2の光束との間に第1の光路差を生じさせる第1の干渉計と、
    前記第1の干渉計から出射された前記第1の光束及び第2の光束を、前記被測定物に向かう第3の光束と第4の光束に分岐し、該第3の光束を前記被測定物で反射させて該第4の光束との間に前記被測定物の内径に対応する第2の光路差を生じさせ、該第3の光束と該第4の光束を一つの光束に合わせて出射させる光束分割手段と、前記第1の干渉計から出射された前記第1の光束及び第2の光束に、該光束分割手段上に焦点を結ばせる結像レンズとを有する第2の干渉計と、
    前記第3の光束と前記第4の光束を受光し、前記第1の光路差と前記第2の光路差とが略等しい場合に生じる干渉信号を検出し、該干渉信号に対応する信号を出力する検出器と、
    前記干渉信号の最大値に対応する前記移動鏡の位置を測定し、該位置から前記第1の光路差を計算することにより、前記被測定物の内径の測定値を求めるコントローラと、
    を有することを特徴とする内径測定装置。
JP2007157959A 2007-06-14 2007-06-14 内径測定装置 Active JP4936287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157959A JP4936287B2 (ja) 2007-06-14 2007-06-14 内径測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157959A JP4936287B2 (ja) 2007-06-14 2007-06-14 内径測定装置

Publications (2)

Publication Number Publication Date
JP2008309655A JP2008309655A (ja) 2008-12-25
JP4936287B2 true JP4936287B2 (ja) 2012-05-23

Family

ID=40237386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157959A Active JP4936287B2 (ja) 2007-06-14 2007-06-14 内径測定装置

Country Status (1)

Country Link
JP (1) JP4936287B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240801A (en) * 1988-03-22 1989-09-26 Nikon Corp Apparatus and method for detecting position
JP2551276B2 (ja) * 1991-09-12 1996-11-06 三菱電機株式会社 光学式位置検出装置
JPH07190714A (ja) * 1993-12-24 1995-07-28 Olympus Optical Co Ltd 干渉計
JP3354675B2 (ja) * 1993-12-27 2002-12-09 オリンパス光学工業株式会社 円周面形状測定方法
JP3431290B2 (ja) * 1994-06-30 2003-07-28 オリンパス光学工業株式会社 干渉計
JP2803667B2 (ja) * 1997-11-17 1998-09-24 株式会社ニコン 露光方法
JP2001021327A (ja) * 1999-07-07 2001-01-26 Nikon Corp 面形状測定装置
JP3520327B2 (ja) * 2000-10-03 2004-04-19 独立行政法人産業技術総合研究所 長さ情報伝送方法
KR101185473B1 (ko) * 2003-09-15 2012-10-02 지고 코포레이션 표면에 대한 간섭 측정의 분석
US7259862B2 (en) * 2004-09-20 2007-08-21 Opsens Inc. Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer

Also Published As

Publication number Publication date
JP2008309655A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP2017096956A (ja) 構造物体を検査するための光学装置及び方法
US8928891B2 (en) Optical distance sensor with tilt error correction
US8773757B2 (en) Slit-scan multi-wavelength confocal lens module and slit-scan microscopic system and method using the same
EP1405037B1 (de) Vorrichtung zur optischen distanzmessung über einen grossen messbereich
TWI480501B (zh) Displacement measurement method and displacement measuring device
US5790242A (en) Chromatic optical ranging sensor
JP5966982B2 (ja) 共焦点計測装置
JP4644707B2 (ja) 特にマイクロシステム技術における幾何構成の干渉と画像化の組合せに基づく検出のための装置
EP2773980B1 (de) Laserdiode als interferometer-laserstrahlquelle in einem lasertracker
JP6256995B2 (ja) 座標測定システムおよび方法
CN100425944C (zh) 位置检测装置和方法
EP1794540B1 (de) Optische messvorrichtung zur vermessung von mehreren flächen eines messobjektes
KR100940435B1 (ko) 2차원 광섬유 스캐닝 모듈, 이를 구비하는 광섬유 스캐닝 시스템 및 방법
US7723657B2 (en) Focus detection apparatus having extended detection range
TWI618915B (zh) 用於檢測物件的三維結構的設備
CN101238348B (zh) 表面的测量装置和方法
US7271919B2 (en) Confocal displacement sensor
JP5593227B2 (ja) 光学センサーデバイス
US20040109170A1 (en) Confocal distance sensor
CN102679880A (zh) 共焦计测装置
JP5607392B2 (ja) 光干渉測定装置
US10612913B2 (en) Apparatus and methods for performing tomography and/or topography measurements on an object
US20020085208A1 (en) Interferometer system and interferometric method
US8102537B2 (en) Optical displacement gage
US9759545B2 (en) Optical tomograph and optical tomographic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4936287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250