JP4911032B2 - 光信号伝送制御装置および光信号伝送制御方法 - Google Patents

光信号伝送制御装置および光信号伝送制御方法 Download PDF

Info

Publication number
JP4911032B2
JP4911032B2 JP2007539744A JP2007539744A JP4911032B2 JP 4911032 B2 JP4911032 B2 JP 4911032B2 JP 2007539744 A JP2007539744 A JP 2007539744A JP 2007539744 A JP2007539744 A JP 2007539744A JP 4911032 B2 JP4911032 B2 JP 4911032B2
Authority
JP
Japan
Prior art keywords
signal
optical
wavelength
optical signal
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007539744A
Other languages
English (en)
Other versions
JPWO2007043121A1 (ja
Inventor
太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2007043121A1 publication Critical patent/JPWO2007043121A1/ja
Application granted granted Critical
Publication of JP4911032B2 publication Critical patent/JP4911032B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • H04J14/086Medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

本発明は、冗長化された複数の経路を介して伝送される光信号の伝送制御をおこなう光信号伝送制御装置および光信号伝送制御方法に関し、特に、光信号の劣化を防ぎつつ、冗長化された複数の径路を介して伝送される光信号間の伝送遅延差を連続的に調整することができる光信号伝送制御装置および光信号伝送制御方法に関する。
従来、光通信において、波長分割多重(WDM,Wavelength Division Multiplexing)の技術が導入され、光ファイバ回線の伝送容量が大幅に拡大してきている。また、近年では、光ファイバ回線に障害が発生した場合に備えて、運用系および予備系の冗長化された光ファイバ回線を用意し、運用系の光ファイバ回線に障害が発生した際には予備系の光ファイバ回線に切り替えをおこなう方法が採用されつつある。
運用系から予備系の光ファイバ回線に切り替える場合の通信の断時間は、通常50ms以下に規定されている。さらに、1ビット分のデータの通信断をも許さない高品質な通信が要求される場合には、無瞬断切り替え技術が利用される。
この無瞬断切り替え技術においては、運用系および予備系の光ファイバ回線を介して受信した光信号を電気信号に変換し、電気信号に変換したデータを一時的にメモリに記憶する。そして、運用系の光ファイバ回線に障害が発生した場合には、運用系のデータをメモリから読み出す代わりに、予備系のデータをメモリから読み出すように切り替える処理をおこなう。
このようにメモリにデータを一時的に蓄積すると、運用系の光ファイバ回線に障害が発生した場合でも、1ビットのデータエラーも発生させることなく、使用する光ファイバ回線を運用系から予備系に切り替えて通信を継続することができるとともに、運用系の光ファイバ回線と予備系の光ファイバ回線との間で生じるデータの伝送遅延差を吸収することができる。
ところが、メモリを用いる無瞬断切り替え技術にはいくつかの問題があった。具体的には、メモリに必要とされる記憶容量が、データの伝送遅延差の最大値と通信速度の積に比例して急激に大きくなってしまうという問題があった。また、WDMのように異なる波長の光信号を多重化して伝送する場合には、波長ごとにメモリを設ける必要があった。さらに、上記無瞬断切り替え技術では、光信号を電気信号に変換する必要もあるため、波長数の増加にともない構成規模が増大するという問題があった。
そのため、光信号のまま無瞬断切り替えをおこなう技術の開発が望まれているが、電気信号と異なり、光信号は一箇所に留めておくことが難しいため光信号のまま情報を記憶させることが難しい。また、光信号は伝播速度が大きいため、運用系と予備系との間で生じるデータの伝送遅延差がわずかであっても、遅延調整をおこなう場合には、光信号に非常に長い距離の光ファイバを通過させて伝送遅延を発生させる必要がある。
たとえば、運用系および予備系の経路間の距離の差は一般的に600kmあるいはそれ以上であると考えられるが、この差により発生する伝送遅延差を調整するには600kmあるいはそれ以上の光信号の導波路が必要となる。この場合、600kmの導波路を、長さが30kmの光ファイバを複数接続することにより構成するとしても、最大15kmに相当する伝送遅延差が調整不可能となる。
また、距離の差が600kmであれば、運用系と予備系との間の伝送遅延時間差は約3msとなるが、この、距離の差による伝送遅延時間差に加えて光ファイバ回線が設置された地域の温度環境の変化により発生する伝送遅延時間差がある。具体的には、この伝送遅延時間差は、温度環境の変化により光ファイバが膨張または収縮することに起因するものであり、100kmあたり50ns程度(600kmでは300ns程度)の時間差となる。
このような温度環境の変化により発生する伝送遅延時間差を調整するためには、光信号の遅延差を連続的に制御する技術が必要となる。このような技術として、光波長変換回路と高分散光ファイバとを組み合わせ、光波長変換回路の変換波長に応じた遅延を光信号に付加する技術がある(たとえば、特許文献1を参照)。
特開平8−146479号公報
しかしながら、上述した従来技術は、光信号の伝送遅延差を連続的に制御するためのものではあるが、遅延が付加された光信号を無瞬断切り替え用にそのまま用いることができないという問題があった。
具体的には、光信号が高分散光ファイバを通過すると、光信号に遅延が発生し、運用系と予備系との間の伝送遅延差を解消することができるが、波長分散の発生により光信号の波形が崩れてしまうため、光信号の劣化を防ぎつつ無瞬断切り替えをおこなうことができないという問題があった。
この波長分散は、高分散光ファイバの光分散特性と逆の特性をもつ高分散光ファイバを用いることにより補償することができるが、この場合、解消した光信号の伝送遅延差が再び発生してしまい、無瞬断切り替え用には適さなくなる。
そのため、光信号の劣化を防ぎつつ、運用系および予備系の光ファイバ回線を介して伝送される光信号間の伝送遅延差を連続的に調整することができる技術の開発が重要な課題となってきている。
この発明は、上述した従来技術による問題点を解消するためになされたものであり、光信号の劣化を防ぎつつ、冗長化された複数の径路を介して伝送される光信号間の伝送遅延差を連続的に調整することができる光信号伝送制御装置および経路切替方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の好適な一実施態様によれば、冗長化された複数の経路を介して伝送される光信号の伝送制御をおこなう光信号伝送制御装置であって、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより各経路の光信号間の伝送遅延差を調整する遅延差調整手段と、前記遅延差調整手段により調整された伝送遅延差を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償手段と、を備えたことを特徴とする。
また、本発明の好適な一実施態様によれば、前記遅延差調整手段により光信号の波長が変換された場合に、当該光信号の波長を所定の波長に再度変換する波長変換手段をさらに備えたことを特徴とする。
また、本発明の好適な一実施態様によれば、異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整する光バッファ手段をさらに備え、前記遅延差調整手段は、前記光バッファ手段により調整された光信号の伝送遅延差をさらに調整することを特徴とする。
また、本発明の好適な一実施態様によれば、前記遅延差調整手段は、冗長化された複数の経路を介して伝送され、波長分割多重方式を用いて多重化された複数の光信号間の伝送遅延差を同一波長の信号ごとに調整することを特徴とする。
また、本発明の好適な一実施態様によれば、前記遅延差調整手段は、光信号の伝送遅延差検出用に用いられる遅延差検出用信号が多重化された光信号を受信して、当該遅延差検出用信号を参照することにより光信号間の伝送遅延差を調整することを特徴とする。
また、本発明の好適な一実施態様によれば、信号断の発生を検出する信号断検出手段と、各経路の光信号を合成して出力する光信号出力手段と、前記信号断検出手段により信号断が検出された場合に、前記光信号出力手段により出力される光信号の強度レベルが所定のレベルとなるよう前記波形劣化補償手段により波形の劣化が補償された各経路の光信号の強度レベルを調整する信号レベル調整手段とをさらに備えたことを特徴とする。
また、本発明の好適な一実施態様によれば、異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整する光バッファ手段をさらに備え、前記遅延差調整手段は、前記光バッファ手段により伝送遅延差が調整された光信号の遅延差をさらに調整し、前記信号断検出手段は、前記光バッファ手段に入力される以前の信号に発生する信号断を検出することを特徴とする。
また、本発明の好適な一実施態様によれば、前記信号レベル調整手段は、前記信号断検出手段により信号断が検出された場合に、光信号が到達しなくなる状態となる以前に各経路の光信号の強度レベルの調整をおこなうことを特徴とする。
また、本発明の好適な一実施態様によれば、各経路の光信号を合成して出力する光信号出力手段と、前記光信号出力手段により出力される光信号の強度レベルを監視して、当該強度レベルが所定のレベルとなるよう前記波形劣化補償手段により光信号の波形の劣化が補償された各経路の光信号の強度レベルを調整する信号レベル調整手段と、をさらに備えたことを特徴とする。
また、本発明の好適な一実施態様によれば、冗長化された複数の経路を介して伝送される光信号の伝送制御をおこなう光信号伝送制御方法であって、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより各経路の光信号間の伝送遅延差を調整する遅延差調整工程と、前記遅延差調整工程により調整された伝送遅延差を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償工程と、を含んだことを特徴とする。
本発明の好適な一実施態様によれば、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより各経路の光信号間の伝送遅延差を調整し、調整した伝送遅延差を保ったまま、光信号の波形の劣化を補償することとしたので、光信号の劣化を防ぎつつ、冗長化された複数の径路を介して伝送される光信号の伝送遅延差を連続的に調整することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、光信号の波長が変換された場合に、当該光信号の波長を所定の波長に再度変換することとしたので、波長変換がなされた光信号の波長をもとの波長に戻すことなどができるという効果を奏する。
また、本発明の好適な一実施態様によれば、異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整し、さらに、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより、各経路の光信号間の伝送遅延差を調整することとしたので、伝送遅延を離散的に変化させることにより光信号の伝送遅延差を大まかに調整し、その後、伝送遅延を連続的に変化させることにより光信号の伝送遅延差を微調整することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、冗長化された複数の経路を介して伝送され、波長分割多重方式を用いて多重化された複数の光信号間の伝送遅延差を同一波長の信号ごとに調整することとしたので、波長分割多重方式を用いて多重化された同一波長の信号間の伝送遅延差を調整することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、光信号の伝送遅延差検出用に用いられる遅延差検出用信号が多重化された光信号を受信して、当該遅延差検出用信号を参照することにより光信号間の伝送遅延差を調整することとしたので、遅延差検出用信号を光信号に多重化することにより光信号間の伝送遅延差を効率的に調整することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、各経路の光信号を合成して出力し、信号断を検出した場合に、出力する光信号の強度レベルが所定のレベルとなるよう波形の劣化が補償された各経路の光信号の強度レベルを調整することとしたので、信号断を出した場合に光信号の強度レベルの変動を効果的に抑制することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整し、さらに光信号の波長を変換し、波長に応じた伝送遅延を光信号に発生させる導波路に波長を変換した光信号を通過させることにより光信号の伝送遅延差を調整し、光信号の伝送遅延を離散的に変化させる複数の導波路に光信号が入力される以前の信号に発生する信号断を検出することとしたので、信号の伝送遅延差を調整する以前に信号断を早期に検出することにより光信号の強度レベルの変動を効果的に抑制することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、信号断が検出された場合に、光信号が到達しなくなる状態となる以前に各経路の光信号の強度レベルの調整をおこなうこととしたので、光信号の伝送が瞬間的に途絶えることを防止することができるという効果を奏する。
また、本発明の好適な一実施態様によれば、各経路の光信号を合成して出力し、出力した光信号の強度レベルを監視して、当該強度レベルが所定のレベルとなるよう光信号の波形の劣化が補償された各経路の光信号の強度レベルを調整することとしたので、出力した光信号の強度レベルを監視することにより光信号の強度レベルの変動を効果的に抑制することができるという効果を奏する。
以下に添付図面を参照して、本発明に係る光信号伝送制御装置および光信号伝送制御方法の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
まず、本実施例1に係る無瞬断切替システムの機能構成について説明する。この無瞬断切替システムは、冗長化された複数の伝送径路のうちいずれかの伝送径路に障害が発生した場合でも、他の伝送径路の光信号を用いることにより光信号の伝送を無瞬断で継続させるシステムである。
特に、この無瞬断切替システムは、多重化された光信号の各波長を変換する波長変換デバイスと、光信号の伝送速度に波長依存性がある光ファイバとを備えることにより、多重化された各光信号の伝送速度を連続的に調整し、冗長化された複数の伝送径路を通過する光信号間の伝送遅延差を解消する。さらに、この無瞬断切替システムは、光信号間の伝送遅延差が解消された状態のまま、光信号の波形の歪みを補償し、光信号の劣化を防止する。
図1は、本実施例1に係る無瞬断切替システムの機能構成を示す図である。図1に示すように、この無瞬断切替システムは、WDM伝送装置10と、分波装置20と、無瞬断切替装置30と、WDM伝送装置40とから構成される。また、分波装置20と無瞬断切替装置30とは、冗長化された長さの異なる光信号の伝送径路である0系光ファイバ回線50および1系光ファイバ回線60を介して接続されている。
WDM伝送装置10は、光送信機(図示せず)により送信された光信号を波長分割多重(WDM,Wavelength Division Multiplexing)方式により多重化し、多重化された異なる波長を有する複数の光信号を伝送する装置である。また、WDM伝送装置40は、多重化された異なる波長を有する複数の光信号を無瞬断切替装置30から受信し、波長ごとに光信号を分離して光受信機(図示せず)に送信する装置である。
分波装置20は、WDM伝送装置10から受信した光信号に遅延調整用の光信号を多重化し、さらにその光信号を分波して送信する装置である。この分波装置20は、遅延調整用光源200、波長多重部201、分波部202を有する。遅延調整用光源200は、無瞬断切替装置30が0系光ファイバ回線50および1系光ファイバ回線60を通過してきた光信号の遅延を調整するために参照する所定の波長の光信号を生成する光源である。具体的には、この遅延調整用光源200は、波長の異なる2つの遅延調整用信号を生成する。
波長多重部201は、WDM伝送装置10から受信した信号と遅延調整用光源200により生成された波長の異なる2つの遅延調整用信号とを多重化し、分波部202に送信する処理部である。分波部202は、波長多重部201により受信した光信号を分波して0系光ファイバ回線50および1系光ファイバ回線60を介して送信する処理部である。
無瞬断切替装置30は、0系光ファイバ回線50および1系光ファイバ回線60のうちいずれかの光ファイバ回線に障害が発生した場合でも、他の光ファイバ回線の光信号を用いることにより光信号の伝送を無瞬断で継続させる装置である。
また、無瞬断切替装置30は、0系光ファイバ回線50および1系光ファイバ回線60を通過してきた光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、0系光ファイバ回線50および1系光ファイバ回線60を通過してきた光信号の伝送遅延差を連続的に調整する。さらに、無瞬断切替装置30は、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償する。
この無瞬断切替装置30は、増幅器300a,300b、分散補償部301a,301b、増幅器302a,302b、低分散ファイババッファ303a,303b、増幅器304a,304b、多波長光可変遅延部305a,305b、遅延量不変分散補償部306a,306b、増幅器307a,307b、前段可変減衰器308a,308b、波長分離部309a,309b、後段可変減衰器310a,310b、光断検出部311、レベル調整部312、合波部313、および、制御部314を有する。
このうち、増幅器300a,300b,302a,302b,304a,304b,307a,307bは、光信号を増幅する増幅器である。分散補償部301a,301bは、0系光ファイバ回線50および1系光ファイバ回線60を通過してきた光信号の波長分散を補償する処理部であり、DCF(Dispersion Compensation Fiber,分散補償ファイバ)などにより構成される。
低分散ファイババッファ303a,303bは、光信号の遅延量を離散的に調整する処理部である。図2は、低分散ファイババッファ303a,303bの機能構成を示す図である。図2に示すように、この低分散ファイババッファ303a,303bは、光スイッチ3000と、複数の光ファイバ3001a〜3001eと、光スイッチ3002とから構成される。
光スイッチ3000は、必要とされる遅延量に応じて光信号が通過する光ファイバ3001a〜3001eを切り替えるスイッチである。光ファイバ3001a〜3001eは、互いに長さが異なる光ファイバであり、光信号の遅延量は光ファイバ3001a〜3001eの長さに応じて離散的に変化する。光スイッチ3002は、光スイッチ3000と連動して動くスイッチであり、光信号が通過する光ファイバ3001a〜3001eを切り替える。
図1の説明に戻ると、多波長光可変遅延部305a,305bは、WDM伝送装置10により多重化された光信号の波長を一括して別の波長に変換し、変換された各波長の光信号の遅延量を調整し、0系光ファイバ回線50および1系光ファイバ回線60の光信号間の伝送遅延差を解消する処理部である。
図3は、多波長光可変遅延部305a,305bの機能構成を示す図である。図3に示すように、この多波長光可変遅延部305a,305bは、1段波長変換部3010,3012、分散補償ファイバ3011,3014、2段波長変換部3013,3015、温度制御部3016,3017を有する。
1段波長変換部3010,3012は、多重化された光信号の波長を一括して変換する処理部である。図4は、1段波長変換部3010,3012の機能構成を示す図である。図4に示すように、この1段波長変換部3010,3012は、可変波長光源3020と、一括波長変換部3021と、光波長フィルタ3022と、温度制御部3023とを有する。
可変波長光源3020は、さまざまな波長の光信号を生成する光源であり、生成した光信号を励起光として一括波長変換部3021に出力する。一括波長変換部3021は、PPLN(Periodically Poled Lithium Niobate)などの波長変換素子であり、可変波長光源3020により入力される励起光の波長に応じて複数の光信号の波長を一括して変換する変換部である。
光波長フィルタ3022は、一括波長変換部3021により出力される光信号から励起光を除去するフィルタである。温度制御部3023は、1段波長変換部3010,3012の温度を制御する制御部である。
図3の説明に戻ると、分散補償ファイバ3011,3014は、分散補償ファイバ3011,3014内を通過する光信号の波長に応じて光信号の伝送速度が変化する分散特性を有する光ファイバである。
図5は、分散補償ファイバ3011,3014の分散特性曲線の例を示す図である。図5に示すように、分散補償ファイバ3011,3014においては、光信号の波長に応じて光信号が分散補償ファイバ3011,3014を通過する場合の通過遅延時間が連続的に変化する。したがって、光信号の波長を調整することにより、通過遅延時間を制御することができる。
たとえば、多重化された複数の光信号の波長帯範囲が傾斜の緩やかな分散特性曲線の領域に対応する場合には、波長帯内の各光信号に発生する遅延差は小さくなり、また、この波長帯の光信号全体の通過遅延時間も小さくなる。また、多重化された複数の光信号の波長帯範囲が傾斜の急な分散特性曲線の領域に対応する場合には、波長帯内の各光信号に発生する遅延差は大きくなり、また、この波長帯の光信号全体の通過遅延時間も大きくなる。
なお、ここでは、波長が大きくなると通過遅延時間が大きくなる例について説明したが、逆の分散特性曲線の傾斜を有する分散補償ファイバ3011,3014、すなわち、波長が大きくなると通過遅延時間が小さくなる分散補償ファイバ3011,3014も場合により用いられる。
図3の説明に戻ると、2段波長変換部3013,3015は、多重化された光信号の波長の一括変換を2段階に分けておこなう変換部である。図6は、2段波長変換部3013,3015の機能構成を示す図である。図6に示すように、この2段波長変換部3013,3015は、可変波長光源3030,3033と、一括波長変換部3031,3034と、光波長フィルタ3032,3035と、温度制御部3036とを有する。
可変波長光源3030,3033は、さまざまな波長の光信号を生成する光源であり、生成した光信号を励起光として一括波長変換部3031,3034にそれぞれ出力する。一括波長変換部3031,3034は、PPLNなどの波長変換素子であり、可変波長光源3030,3033により入力される励起光の波長に応じて複数の光信号の波長を一括して変換する変換部である。
光波長フィルタ3032,3035は、一括波長変換部3031,3034により出力される光信号から励起光を除去するフィルタである。温度制御部3036は、2段波長変換部3013,3015の温度を制御する制御部である。
また、図7および図8は、2段波長変換部3013,3015が多重化された光信号の波長の一括変換を2段階に分けておこなう場合の変換処理について説明する図(1)および(2)である。
図7に示すように、まず、可変波長光源3030により励起光が一括波長変換部3031に入力されると、一括波長変換部3031の働きにより入力信号Ch1,Ch2,Ch3,Ch4の波長が変換され、入力された励起光の2倍の波長を中心にして折り返した波長を有する変換信号Ch1,Ch2,Ch3,Ch4が生成される。
ここで、変換信号Ch1,Ch2,Ch3,Ch4は、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応するものであり、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きくなるものとすると、変換信号Ch1,Ch2,Ch3,Ch4の波長はこの順に小さくなる。
そして、変換信号Ch1,Ch2,Ch3,Ch4が入力信号として一括波長変換部3034に入力されると、一括波長変換部3034の働きにより入力信号Ch1,Ch2,Ch3,Ch4の波長が変換され、可変波長光源3030により入力された励起光の2倍の波長を中心にして折り返した波長を有する変換信号Ch1,Ch2,Ch3,Ch4が生成される。
ここで、変換信号Ch1,Ch2,Ch3,Ch4は、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応するものであり、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh4,Ch3,Ch2,Ch1の順に大きくなるものとすると、変換信号Ch1,Ch2,Ch3,Ch4の波長はこの順に大きくなる。
このように、2段波長変換部3013,3015を用いると、入力信号Ch1の波長と変換信号Ch1の波長との差だけ波長を大きい方にシフトさせることができる。また、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きい場合に、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応する変換信号Ch1,Ch2,Ch3,Ch4の波長をCh1,Ch2,Ch3,Ch4の順に大きくすることができる。
なお、図4に示した1段波長変換部3010,3012では、波長変換を一回だけおこなうので、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きい場合には、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応する変換信号Ch1,Ch2,Ch3,Ch4の波長は、Ch4,Ch3,Ch2,Ch1の順に大きくなる。
また、図8に示すように、励起光の波長を調整することにより光信号の波長が小さくなるように変換をおこなうこともできる。この場合、可変波長光源3030により励起光が一括波長変換部3031に入力されると、一括波長変換部3031の働きにより入力信号Ch1,Ch2,Ch3,Ch4の波長が変換され、入力された励起光の2倍の波長を中心にして折り返した波長を有する変換信号Ch1,Ch2,Ch3,Ch4が生成される。
ここで、変換信号Ch1,Ch2,Ch3,Ch4は、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応するものであり、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きくなるものとすると、変換信号Ch1,Ch2,Ch3,Ch4の波長はこの順に小さくなる。
そして、変換信号Ch1,Ch2,Ch3,Ch4が入力信号として一括波長変換部3034に入力されると、一括波長変換部3034の働きにより入力信号Ch1,Ch2,Ch3,Ch4の波長が変換され、可変波長光源3030により入力された励起光の2倍の波長を中心にして折り返した波長を有する変換信号Ch1,Ch2,Ch3,Ch4が生成される。
ここで、変換信号Ch1,Ch2,Ch3,Ch4は、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応するものであり、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh4,Ch3,Ch2,Ch1の順に大きくなるものとすると、変換信号Ch1,Ch2,Ch3,Ch4の波長はこの順に大きくなる。
すなわち、この2段波長変換部3013,3015を用いると、入力信号Ch1の波長と変換信号Ch1の波長との差だけ波長を小さいほうにシフトさせることができる。また、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きい場合に、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応する変換信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きくすることができる。
なお、図4に示した1段波長変換部3010,3012では、波長変換を一回だけおこなうので、入力信号Ch1,Ch2,Ch3,Ch4の波長がCh1,Ch2,Ch3,Ch4の順に大きい場合には、入力信号Ch1,Ch2,Ch3,Ch4にそれぞれ対応する変換信号Ch1,Ch2,Ch3,Ch4の波長は、Ch4,Ch3,Ch2,Ch1の順に大きくなる。
図7および図8を用いて説明したような光信号の波長変換をおこない、波長が変換された光信号に図3に示した分散補償ファイバ3011,3014、2段波長変換部3013,3015を通過させることにより、光信号間の遅延時間差を調整することができる。
これを、図9〜図12を用いて説明する。図9は、分散補償ファイバ3041,3042の働きについて説明する図である。ここでは、分散補償ファイバ3041,3042が、図5に示した分散特性を有しているものとする。
図9に示すように、図4に示したものと同様の1段波長変換部3040を用いて入力信号を変換信号に変換すると、入力信号においてはCh1,Ch2,Ch3,Ch4の順に波長が大きい状態であったが、変換信号においてはCh4,Ch3,Ch2,Ch1の順に波長が大きくなる。この変換信号に図5に示したような分散特性を有する分散補償ファイバ3041を通過させると、波長が大きい入力信号ほど遅延時間が大きくなる。
また、分散補償ファイバ3041を通過した信号を入力信号とし、図4に示したものと同様の1段波長変換部3042を用いて入力信号を変換信号に変換すると、入力信号においてはCh4,Ch3,Ch2,Ch1の順に波長が大きい状態であったが、変換信号においてはCh1,Ch2,Ch3,Ch4の順に波長が大きくなる。この変換信号に図5に示したような分散特性を有する分散補償ファイバ3043を通過させると、波長が大きい入力信号ほど遅延時間が大きくなるため、各信号Ch1,Ch2,Ch3,Ch4間のの遅延時間差を補償することができるようになる。
このことは、図3に示した多波長光可変遅延部305a,305bにおいても同様である。図10は、多波長光可変遅延部305a,305bにおける波長変換処理について説明する図である。
図10に示すように、多波長光可変遅延部305a,305bの1段波長変換部3010に入力信号Ch1,Ch2,Ch3,Ch4が入力されたものとする。ここで、入力信号Ch1,Ch2,Ch3,Ch4は、この順に波長が大きいものとする。そして、1段波長変換部3010が、入力信号Ch1,Ch2,Ch3,Ch4に対して波長変換をおこなうと、変換信号Ch1,Ch2,Ch3,Ch4の波長は、この順に小さくなる。
その後、この変換信号Ch1,Ch2,Ch3,Ch4を図5に示したような分散特性を有する分散補償ファイバ3041を通過させると、波長が大きい入力信号ほど遅延時間が大きくなる。また、変換信号Ch1,Ch2,Ch3,Ch4全体の遅延時間は、波長のシフト量Δλを変化させることにより調整することができる。
その後、1段波長変換部3012により変換信号Ch1,Ch2,Ch3,Ch4の波長変換がおこなわれる。ここで、変換信号Ch1,Ch2,Ch3,Ch4の波長の大小関係は、入力信号Ch1,Ch2,Ch3,Ch4の波長の大小関係と逆になる。また、波長のシフト量をΔλとすれば、変換信号Ch1,Ch2,Ch3,Ch4の波長を1段波長変換部3010の入力信号Ch1,Ch2,Ch3,Ch4の波長と同じにすることができる。
続いて、2段波長変換部3013が、1段波長変換部3012により出力された変換信号Ch1,Ch2,Ch3,Ch4を入力信号として受信し、波長変換を2段階でおこなうことにより変換信号Ch1,Ch2,Ch3,Ch4を生成する。ここで、2段波長変換部3013は、2段階で波長変換をおこなうため、入力信号Ch1,Ch2,Ch3,Ch4の波長の大小関係と、最終的に出力される変換信号Ch1,Ch2,Ch3,Ch4の波長の大小関係は変わらない。
そして、この変換信号Ch1,Ch2,Ch3,Ch4に図5に示したような分散特性を有する分散補償ファイバ3041を通過させると、波長が大きい入力信号ほど遅延時間が大きくなるため、分散補償ファイバ3011で発生した信号Ch1,Ch2,Ch3,Ch4間の遅延時間をキャンセルすることができる。また、信号Ch1,Ch2,Ch3,Ch4全体の遅延時間は、波長のシフト量Δλを変化させることにより調整することができる。
なお、ここでは、1段波長変換部3010,3012および2段波長変換部3013,3015がおこなう波長変換における波長のシフト量を同じ量とすることにより、各信号Ch1,Ch2,Ch3,Ch4間の遅延時間差をキャンセルしているが、シフト量を変化させることにより遅延時間差がある状態で各信号Ch1,Ch2,Ch3,Ch4を出力することもできる。
本実施例では、図9および図10を用いて説明したような原理を利用して、冗長化された0系光ファイバ回線50および1系光ファイバ回線60を通過してきた光信号の遅延時間差を解消する。図11は、多波長光可変遅延部305a,305bがおこなう遅延時間差解消処理について説明する図である。図11には、0系あるいは1系の一方のみの光信号の伝送経路を示している。
図11に示すように、最大遅延時間差Wを有する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2が1段波長変換部3010に入力されると、1段波長変換部3010が入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長を変換し、分散補償ファイバ3011が各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長に応じてそれぞれ時間Ta0,Ta1,Ta2,Ta3,Ta4,Ta5の遅延を発生させる。
ここで、各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長のうち隣り合う波長の波長間隔は等しいものとする。また、信号S1およびS2は、分波装置20の遅延調整用光源200により生成された遅延調整用信号である。
そして、分散補償ファイバ3011から出力された信号S1,Ch1,Ch2,Ch3,Ch4,S2が、1段波長変換部3012により波長変換された後、2段波長変換部3013に入力されると、2段波長変換部3013が信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長を変換し、分散補償ファイバ3014が各信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長に応じてそれぞれ時間Tb0,Tb1,Tb2,Tb3,Tb4,Tb5の遅延を発生させる。
したがって、多波長光可変遅延部305a,305bを信号S1,Ch1,Ch2,Ch3,Ch4,S2が通過した際の各信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間T0,T1,T2,T3,T4,T5は、それぞれ、
S1:T0=Ta0+Tb0,
Ch1:T1=Ta1+Tb1,
Ch2:T2=Ta2+Tb2,
Ch3:T3=Ta3+Tb3,
Ch1:T4=Ta4+Tb4,
S2:T5=Ta5+Tb5
となる。
ここで、遅延時間Ta0,Ta1,Ta2,Ta3,Ta4,Ta5および遅延時間Tb0,Tb1,Tb2,Tb3,Tb4,Tb5は、信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長を変化させることにより、図5に示したような分散補償ファイバ3011,3014の波長分散特性にしたがって可変に設定できる。
そのため、1段波長変換部3010,3012および2段波長変換部3013,3015は、波長変換をおこなう場合に、遅延時間T0,T1,T2,T3,T4,T5が、
S1:T0=Ta0+Tb0=W+D
Ch1:T1=Ta1+Tb1=4/5W+D,
Ch2:T2=Ta2+Tb2=3/5W+D,
Ch3:T3=Ta3+Tb3=2/5W+D,
Ch4:T4=Ta4+Tb4=1/5W+D,
S2:T5=Ta5+Tb5=D
となるように、波長シフト量を決定する。ここで、Dは、信号S1,Ch1,Ch2,Ch3,Ch4,S2全体の遅延量である。
このように、1段波長変換部3010,3012および2段波長変換部3013,3015が波長変換をおこなうことにより、各信号S1,Ch1,Ch2,Ch3,Ch4,S2間の遅延時間差を解消するとともに、信号S1,Ch1,Ch2,Ch3,Ch4,S2全体の遅延時間を所定の値Dに調整することができる。このような処理を、0系および1系の両方の径路でおこなうことにより、0系および1系の信号の遅延時間差を解消できるようになる。
この遅延時間差の調整についてさらに詳しく説明する。まず、図5に示したような分散補償ファイバ3011,3014の分散特性曲線をF(x)で表すこととする。ここで、xは波長である。
この場合、所定の波長帯に波長が含まれる信号が分散補償ファイバ3011を通過した場合の遅延時間Taは、
Ta=dF(x)/dx|x=HΔx+F(H)
と表される。
ここで、Hは、1段波長変換部3010により波長変換がなされた各信号の波長帯の中心波長であり、Δxは、波長Hと当該波長帯に含まれるある信号の波長との間の差であり、dF(x)/dx|x=Hは、波長Hに対応する分散特性曲線F(x)の傾きである。したがって、dF(x)/dx|x=HΔxは、波長Hを有する信号と波長H+Δxを有する信号との間の遅延時間差となる。また、F(H)は、波長Hを有する信号の遅延時間である。
同様に、所定の波長帯に波長が含まれる信号に対して波長変換がなされた後、その信号が分散補償ファイバ3014を通過した場合の遅延時間Tbは、
Tb=dF(x)/dx|x=LΔx+F(L)
と表される。
ここで、Lは、2段波長変換部3013により波長変換がなされた各信号の波長帯の中心波長であり、Δxは、波長Lと当該波長帯に含まれるある信号の波長との間の差であり、dF(x)/dx|x=Lは、波長Lに対応する分散特性曲線F(x)の傾きである。したがって、dF(x)/dx|x=LΔxは、波長Lを有する信号と波長L+Δxを有する信号との間の遅延時間差となる。また、F(L)は、波長Lを有する信号の遅延時間である。
以上のことから、信号が分散補償ファイバ3011および分散補償ファイバ3014を通過した場合の遅延時間Tは、
T=dF(x)/dx|x=HΔx+F(H)+dF(x)/dx|x=LΔx+F(L)
=(dF(x)/dx|x=H+dF(x)/dx|x=L)Δx+F(H)+F(L)
=(A1+A2)Δx+B1+B2
となる。
ここで、
A1=dF(x)/dx|x=H
A2=dF(x)/dx|x=L
B1=F(H),
B2=F(L)
である。
この式から分かるように、F(x)がxの2次以上の関数である場合、dF(x)/dxは、xの1次以上の関数となる。すなわち、A1+A2は、HとLとの1次以上の関数となり、B1+B2は、HとLとの2次以上の関数となる。
また、(A1+A2)Δxは、分散補償ファイバ3011,3014通過前に波長がHであった信号と波長がH+Δxであった信号と間の分散補償ファイバ3011,3014通過後の遅延時間差を表しており、B1+B2は、分散補償ファイバ3011,3014通過前に波長がHであった信号の、分散補償ファイバ3011,3014通過後の遅延時間を表している。
そして、信号の波長変換をおこない、信号に分散補償ファイバ3011,3014を通過させることにより、信号間の遅延時間差である(A1+A2)Δxを一定に保ったまま、信号の遅延時間B1+B2を調整することができる。ここで、Δxはある一定の値である。逆に、B1+B2を一定に保ったまま、(A1+A2)Δxを調整することもできる。
たとえば、F(x)=x2である場合には、
(A1+A2)Δx=2(H+L)Δx,
B1+B2=H2+L2
となるので、波長HおよびLを調整することにより、信号間の時間遅延差である2(H+L)Δxを変えることなく(2(H+L)Δx=C(一定値))、信号全体の遅延時間
B1+B2=H2+L2=H2+(C/2/Δx−H)2
を連続的に変化させることができる。逆に、信号全体の遅延時間を変えることなく(H2+L2=C(一定値))として、(A1+A2)Δxを連続的に変化させることもできる。
これにより、0系光ファイバ回線50あるいは1系光ファイバ回線60を通過してきた多重化された信号S1,Ch1,Ch2,Ch3,Ch4,S2間の遅延時間差を解消することができるとともに、0系光ファイバ回線50を通過してきた信号と1系光ファイバ回線60を通過してきた信号との間の遅延時間差も解消することができる。
なお、図11の例では、0系光ファイバ回線50あるいは1系光ファイバ回線60を通過してきた多重化された信号S1,Ch1,Ch2,Ch3,Ch4,S2間の遅延時間差を解消することとしているが、信号S1,Ch1,Ch2,Ch3,Ch4,S2間に遅延時間差があったとしても、0系の各信号S1,Ch1,Ch2,Ch3,Ch4,S2と、1系の各信号S1,Ch1,Ch2,Ch3,Ch4,S2との間の対応する信号間(S1どうし、Ch1どうし、Ch2どうし、Ch3どうし、Ch4どうし、S2どうし)で遅延時間差がなければ、無瞬断切替装置として機能するには十分である。
図12は、多波長光可変遅延部305a,305bがおこなう遅延差解消処理の変形例について説明する図である。この例では、0系の信号S1と1系の信号S1とで遅延時間差T1が発生し、また、0系の信号S2と1系の信号S2とで遅延時間差T2が発生している。さらに、0系の信号S1,Ch1,Ch2,Ch3,Ch4,S2間に遅延時間差W1が発生し、1系の信号S1,Ch1,Ch2,Ch3,Ch4,S2間に遅延時間差W2が発生している。
このような場合も、図11で説明したようにして、1段波長変換部3011,3012および2段波長変換部3013,3015が波長変換をおこなうことにより、0系の各信号S1,Ch1,Ch2,Ch3,Ch4,S2と、1系の各信号S1,Ch1,Ch2,Ch3,Ch4,S2との対応する信号間(S1どうし、Ch1どうし、Ch2どうし、Ch3どうし、Ch4どうし、S2どうし)における遅延時間差の解消がなされる。
ただし、この場合には、0系の信号S1,Ch1,Ch2,Ch3,Ch4,S2間の遅延時間差の解消、および、1系の信号S1,Ch1,Ch2,Ch3,Ch4,S2間の遅延時間差の解消はおこなわない。
なお、0系の信号間の遅延差W1、1系の信号間の遅延差W2、0系の信号と1系の信号との間の遅延差T1をすべて解消する場合は、以下のようにしてそれを実行する。図12に示すように、0系の分散補償ファイバ3011aで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間をそれぞれTa0,Ta1,Ta2,Ta3,Ta4,Ta5とし、0系の分散補償ファイバ3014aで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間をそれぞれTb0,Tb1,Tb2,Tb3,Tb4,Tb5とする。
ここで、各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長のうち隣り合う波長の波長間隔は等しいものとする。また、信号S1およびS2は、分波装置20の遅延調整用光源200により生成された遅延調整用信号である。
また、1系の分散補償ファイバ3011bで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間をそれぞれTc0,Tc1,Tc2,Tc3,Tc4,Tc5とし、1系の分散補償ファイバ3014bで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間をそれぞれTd0,Td1,Td2,Td3,Td4,Td5とする。
すると、0系の分散補償ファイバ3011aおよび分散補償ファイバ3014aで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間は、それぞれ
S1:T0=Ta0+Tb0,
Ch1:T1=Ta1+Tb1,
Ch2:T2=Ta2+Tb2,
Ch3:T3=Ta3+Tb3,
Ch1:T4=Ta4+Tb4,
S2:T5=Ta5+Tb5
となる。
また、1系の分散補償ファイバ3011bおよび分散補償ファイバ3014bで発生する各入力信号S1,Ch1,Ch2,Ch3,Ch4,S2の遅延時間は、それぞれ
S1:T0=Tc0+Td0,
Ch1:T1=Tc1+Td1,
Ch2:T2=Tc2+Td2,
Ch3:T3=Tc3+Td3,
Ch1:T4=Tc4+Td4,
S2:T5=Tc5+Td5
となる。
ここで、遅延時間Ta0,Ta1,Ta2,Ta3,Ta4,Ta5、遅延時間Tb0,Tb1,Tb2,Tb3,Tb4,Tb5、遅延時間Tc0,Tc1,Tc2,Tc3,Tc4,Tc5、および、遅延時間Td0,Td1,Td2,Td3,Td4,Td5は、信号S1,Ch1,Ch2,Ch3,Ch4,S2の波長を変化させることにより、図5に示したような分散補償ファイバ3011a,3011b,3014a,3014bの波長分散特性にしたがって可変に設定できる。
そのため、0系の1段波長変換部3010a,3012aおよび2段波長変換部3013a,3015aは、波長変換をおこなう場合に、遅延時間T0,T1,T2,T3,T4,T5が、
S1:T0=Ta0+Tb0=W1+D1,
Ch1:T1=Ta1+Tb1=4/5W1+D1,
Ch2:T2=Ta2+Tb2=3/5W1+D1,
Ch3:T3=Ta3+Tb3=2/5W1+D1,
Ch4:T4=Ta4+Tb4=1/5W1+D1,
S2:T5=Ta5+Tb5=D1
となるように、波長シフト量を決定する。ここで、D1は、信号S1,Ch1,Ch2,Ch3,Ch4,S2全体の遅延量である。これにより、0系の信号間の遅延差を解消することができる(出力信号においてV=0となる)。
また、1系の1段波長変換部3010b,3012bおよび2段波長変換部3013b,3015bは、波長変換をおこなう場合に、遅延時間T0,T1,T2,T3,T4,T5が、
S1:T0=Tc0+Td0=W2+D2,
Ch1:T1=Tc1+Td1=4/5W2+D2,
Ch2:T2=Tc2+Td2=3/5W2+D2,
Ch3:T3=Tc3+Td3=2/5W2+D2,
Ch4:T4=Tc4+Td4=1/5W2+D2,
S2:T5=Tc5+Td5=D2
となるように、波長シフト量を決定する。ここで、D2は、信号S1,Ch1,Ch2,Ch3,Ch4,S2全体の遅延量である。これにより、1系の信号間の遅延差を解消することができる(出力信号においてV=0となる)。
さらに、
D2=W1+D1−W2−T1
となるように波長シフト量を決定することにより、0系の信号と1系の信号との間の遅延差も解消することができる。
図3の説明に戻ると、温度制御部3016,3017は、1段波長変換部3010,3012、分散補償ファイバ3011,3014、2段波長変換部3013,3015の温度を制御する制御部である。
また、図1の説明に戻ると、遅延量不変分散補償部306a,306bは、信号の伝送遅延量を変えることなく、信号波形の歪みを補償する補償部である。具体的には、遅延量不変分散補償部306a,306bは、ファイバブラッググレーティング(FBG,Fiber Bragg Grating)型分散補償ファイバや、VIPA(Virtually Imaged Phased Array)型分散補償器を用いて信号波形の歪みを補償する。
図13は、遅延量不変分散補償部306a,306bがおこなう信号波形の歪み補正処理について説明する図である。本実施例では、多波長光可変遅延部305a,305bが信号の波長変換をおこない、分散補償ファイバ3011,3014の波長分散特性を利用して信号の遅延量を調整することとしている。そのため、信号波形の歪みは遅延の調整量に応じて大きくなる。
図13に示すように、信号波形の歪みを単に分散補償ファイバ3043を用いて補正する場合には、信号間の遅延の調整量が相殺され、再度遅延時間差が発生してしまう。ここで発生する遅延時間差は、分散補償ファイバ3043の長さによって変化する。
そこで、本実施例では、遅延量不変分散補償部306a,306bが、信号の遅延量を変えることなく、信号波形の歪みを補償することとしている。図14は、ファイバブラッググレーティング型分散補償ファイバを用いた遅延量不変分散補償部306a,306bの機能構成を示す図である。
図14に示すように、この遅延量不変分散補償部306a,306bは、波長分離部3050、光サーキュレータ3051a〜3051f、可変ファイバグレーティングフィルタ3052a〜3052f、波長多重部3053から構成される。
波長分離部3050は、多重化された異なる波長の複数の信号を波長ごとに分離する処理部である。光サーキュレータ3051a〜3051fは、波長ごとに分離された信号を、光サーキュレータ3051a〜3051fに接続される可変ファイバグレーティングフィルタ3052a〜3052fに出力し、また、可変ファイバグレーティングフィルタ3052a〜3052fにより出力された信号を波長多重部3053に出力する処理部である。
可変ファイバグレーティングフィルタ3052a〜3052fは、曲げや応力、環境温度などを変化させることにより分散特性を可変にすることができるファイバブラッググレーティングを用いて信号の分散補償をおこなう処理部である。
図15は、ファイバブラッググレーティングによる分散補償について説明する図である。図15に示すように、ファイバブラッググレーティングは、特定の周期で動波路の屈折率を変化させることにより特定の波長の信号を反射させる。そこで、この周期を段階的に変化させ、信号が反射する反射点を波長に応じてずらすことにより波長分散を補償することができる。
ここで、波長分散の補正量はΔT/Δλ(ps/nm)となる。ΔTは、反射光1の反射点と反射光3の反射点と間の距離ΔLを、信号の群速度Vgで割り算することにより得られる反射光1と反射光3との間の遅延時間差である。Δλは、反射光1の波長と反射光3の波長との差である。
図15に示したような可変ファイバグレーティングフィルタ3052a〜3052fを用いることにより、波長分離部3050により分離された各信号の信号波形の歪みを補償することができる。
図14の説明に戻ると、波長多重部3053は、信号波形の歪みが補正された異なる波長の複数の信号を光サーキュレータ3051a〜3051fから受信し、各信号を多重化する処理部である。
このような遅延量不変分散補償部306a,306bを用い、波長分離部3050から信号が出力されてから波長多重部3053に入力されるまでの時間が各信号間で同じになるように、光サーキュレータ3051a〜3051fや可変ファイバグレーティングフィルタ3052a〜3052fを調整することにより、各信号の遅延量を一定にすることができる。
また、信号の遅延量を変えることなく信号波形の歪みを補償するために、ファイバブラッググレーティング型分散補償ファイバの代わりにVIPA型分散補償器を用いる場合には、曲面ミラーが信号を反射する手段として用いられる。信号波形の歪みは、この曲面ミラーの形状に応じて補正される。
図1の説明に戻ると、前段可変減衰器308a,308bは、信号の強度レベルを調整する処理部である。具体的には、前段可変減衰器308a,308bは、0系と1系とで信号の強度レベルが同一となるよう調整する。ただし、信号断発生時には、強度レベルの調整はおこなわない。
波長分離部309a,309bは、0系の信号あるいは1系の信号にそれぞれ2つずつ含まれる異なる波長の遅延調整用信号を分離して、制御部314に送信する分離部である。
後段可変減衰器310a,310bは、前段可変減衰器308a,308bと同様、信号の強度レベルを調整する処理部である。この後段可変減衰器310a,310bは、0系光ファイバ回線50、あるいは、1系光ファイバ回線60に信号断が発生した場合に、合波部313から出力される信号の強度レベルの変動がなくなるように0系および1系の信号の強度レベルを調整する。
ここで、信号の強度レベルを調整するには、いくつかの方法がある。図16は、信号の強度レベルを調整する第1の方法について説明する図である。ここでは、1系に信号断が発生した場合について説明する。
図16に示すように、第1の方法では、光断検出部311により信号断が検出された場合に、信号断が発生した1系の後段可変減衰器310bが、信号断状態となる前に、信号の出力レベルを減衰させ、0系の後段可変減衰器310aが、信号の出力レベルを上昇させる。
ここで、光断検出部311が信号断を検出してから後段可変減衰器310a,310bにより信号の出力レベルの調整が完了するまでの時間が、光断検出部311が信号断を検出してから信号断が発生した1系の後段可変減衰器310bが信号断となるまでの時間よりも短い時間となるように無瞬断切替装置30の信号径路を設計しておく。
このように、信号断が発生した系統の後段可変減衰器310bが信号断状態となる前に、合波部313から出力される信号が一定の強度レベルとなるよう信号の強度レベルを調整するので、信号断が発生した場合でも光信号の伝送を無瞬断で継続させることができる。
また、図17は、信号の強度レベルを調整する第2の方法について説明する図である。ここでも、1系に信号断が発生した場合について説明する。図17に示すように、第2の方法では、合波部313の出力信号の強度レベルが一定量(たとえば、3dBなど)低下した場合に、信号断が発生していない0統の後段可変減衰器310aが、合波部313の出力信号の強度レベルが信号断発生以前のレベルに戻るまで、信号の出力レベルを上昇させる。
このように、合波部313の出力信号の強度レベルが一定量低下した場合に、合波部313から出力される信号が信号断発生以前の強度レベルと同じになるよう信号の強度レベルを調整するので、信号断が発生した場合でも光信号の伝送を無瞬断で継続させることができる。
図1の説明に戻ると、光断検出部311は、0系光ファイバ回線50、あるいは、1系光ファイバ回線60に信号断が発生したか否かを増幅器300a,300bに入力された信号を監視することにより検出し、信号断を検出した場合に、信号断の発生をレベル調整部312に通知する処理部である。
レベル調整部312は、光断検出部311から信号断の通知を受け付けた場合に、図16で説明したようにして、後段可変減衰器310a,310bにおける信号の出力レベルを調整する調整部である。また、このレベル調整部312は、合波部313から信号の強度レベルが所定量低下したことを示す通知を受け付けた場合に、図17で説明したようにして、後段可変減衰器310a,310bにおける信号の出力レベルを調整する。
合波部313は、0系の信号と1系の信号とを合波する光カプラである。また、この合波部313は、合波後の信号の強度レベルが所定量以上低下したか否かを検出する処理をおこない、強度レベルが所定量以上低下した場合に、レベル調整部312にそれを通知する。
制御部314は、図3に示した1段波長変換部3010,3012、2段波長変換部3013,3015、遅延量不変分散補償部306a,306b、前段可変減衰器308a,308b、後段可変減衰器310a,310bを制御して、0系の信号と1系の信号との間の遅延差、信号波形の歪み、および、信号の強度レベルを調整する制御部である。
図18は、制御部314の機能構成を示す図である。図18に示すように、この制御部314は、インターフェース部3060,3066,3067,3068,3069、3070,3071、遅延調整値算出部3061、強度レベル調整値算出部3062、DCF特性データ記憶部3063、低分散ファイババッファ特性データ記憶部3064、設定情報生成部3065から構成される。
インターフェース部3060は、波長分離部309a,309bにより分離された0系の信号あるいは1系の信号にそれぞれ2つずつ含まれる異なる波長の遅延調整用信号を受信するインターフェースである。
遅延量調整値算出部3061は、0系の各信号間における遅延差、1系の各信号間における遅延差、0系の信号と1系の信号との間の遅延差などを検出し、それらの遅延差を調整する際の目標値を算出する算出部である。具体的には、遅延量調整値算出部3061は、0系および1系の信号の全体の遅延量を調整する際の目標値や、0系および1系の各信号間の遅延差を調整する際の目標値を算出する。
強度レベル調整値算出部3062は、0系および1系の遅延調整用信号の強度レベル差を検出し、強度レベル差が一定となるよう調整する際の強度レベルの目標値を算出する算出部である。
DCF特性データ記憶部3063は、メモリなどの記憶デバイスであり、図5に示した特性曲線のような、分散補償ファイバ3011,3014の分散特性データを記憶する。低分散ファイババッファ特性データ記憶部3064は、メモリなどの記憶デバイスであり、低分散ファイババッファ303a,303bの特性データを記憶する。具体的には、低分散ファイババッファ特性データ記憶部3064は、図2に示した低分散ファイババッファ303a,303bにおいて各光ファイバ3001a〜3001eが発生させる遅延時間の情報などを各光ファイバ3001a〜3001eに対応付けて記憶する。
設定情報生成部3065は、遅延量調整値算出部3061により算出された目標値に光信号の遅延を調整するために必要な、低分散ファイババッファ303a,303bに出力される光ファイバ3001a〜3001eの選択情報、1段波長変換部3010,3012、2段波長変換部3013,3015に出力される励起光の波長の設定情報、遅延量不変分散補償部306a,306bに出力される信号波形の分散補償設定情報、前段可変減衰器308a,308bに出力される光信号の強度レベル設定情報、後段可変減衰器310a,310bに出力される光信号の遅延情報を生成する。
具体的には、設定情報生成部3065は、低分散ファイババッファ特性データ記憶部3064から低分散ファイババッファ303a,303bの特性データを読み出し、0系の信号と1系の信号との間に遅延差がある場合に、その遅延差を最小にする光ファイバ3001a〜3001eを選択した結果である選択情報を生成する。
また、設定情報生成部3065は、低分散ファイババッファ303a,303bが遅延差を調整した後、0系の信号と1系の信号との間に依然遅延差があり、また、0系あるいは1系に含まれる信号間にも遅延差がある場合に、DCF特性データ記憶部3063から分散補償ファイバ3011,3014の分散特性の情報を読み出し、波長変換をおこなう1段波長変換部3010,3012、2段波長変換部3013,3015が用いる励起光の波長を算出する。
その際、設定情報生成部3065は、以下の式を満足するよう励起光の波長を算出する。
Figure 0004911032
ここで、Tは、0系あるいは1系の信号全体の遅延量であり、Vは、0系あるいは1系の信号間の遅延差Vであり、λc1およびλc2は、それぞれ図3に示した分散補償ファイバ3011および分散補償ファイバ3014を通過する各信号の波長帯の中心波長であり、TaおよびTbは、信号が分散補償ファイバ3011および分散補償ファイバ3014をそれぞれ通過した場合に発生する遅延時間であり、Δxは、信号波長帯の幅である。
なお、低分散ファイババッファ303a,303bが0系あるいは1系の信号間での遅延差を完全に補償できる場合にはV=0となるので、設定情報生成部3065は、以下の式を満足するよう、1段波長変換部3010,3012、2段波長変換部3013,3015が用いる励起光の波長を算出する。
Figure 0004911032
また、設定情報生成部3065は、遅延量不変分散補償部306a,306bが信号波形の歪みを補償する際の補償量Dを算出する処理をおこなう。具体的には、設定情報生成部3065は、DCF特性データ記憶部3063に記憶された分散補償ファイバ3011,3014の分散特性データと励起光の波長の情報とから補償量Dを算出する。
さらに、設定情報生成部3065は、強度レベル調整値算出部3062から受信した強度レベルの目標値の情報を基にして、前段可変減衰器308a,308bに出力する強度レベルの設定情報を生成する処理をおこなう。また、設定情報生成部3065は、後段可変減衰器310a,310bに出力用に、0系の信号と1系の信号との間で遅延差が解消されたか否かを示す遅延情報を生成する。後段可変減衰器310a,310bは、無瞬断切替装置30の初期起動時や、信号断から0系または1系が復帰する際に、この遅延情報を受信して、光信号の強度レベルを調整する処理を開始する。
インターフェース部3066,3067,3068,3069,3070,3071は、低分散ファイババッファ303a,303b、1段波長変換部3010,3012、2段波長変換部3013,3015、遅延量不変分散補償部306a,306b、前段可変減衰器308a,308b、後段可変減衰器310a,310bに、光ファイバ選択情報、波長設定情報、分散補償設定情報、強度レベル設定情報、遅延情報などを出力するインターフェースである。
つぎに、無瞬断切替装置30がおこなう起動時の処理の処理手順について説明する。図19は、無瞬断切替装置30がおこなう起動時の処理の処理手順を示すフローチャートである。
図19に示すように、まず、無瞬断切替装置30は電源がONにされた場合に、初期起動処理をおこなう(ステップS101)。具体的には、無瞬断切替装置30は、各増幅器300a,300b,302a,302b,304a,304b,307a,307bを起動する。また、低分散ファイババッファ303a,303bは、図2に示した光ファイバ3001a〜3001eのうち暫定的に用いる光ファイバ3001a〜3001eを選択する。
また、多波長光可変遅延部305a,305bの1段波長変換部3010,3012および2段波長変換部3013,3015は、波長変換における波長のシフト量を暫定的に設定する。また、遅延量分散補償部306a,306bは、信号波形の歪みを補償する補償量を暫定的に設定する。さらに、前段可変減衰器308a,308bは、信号の伝送経路を開放する。
そして、制御部314は、0系および1系の遅延調整用信号が信号段の状態から回復したことを確認する(ステップS102)。続いて、低分散ファイババッファ303a,303bは、制御部314により送信された低分散ファイババッファ303a,303bの光ファイバ3001a〜3001eの選択情報に基づいて光ファイバ3001a〜3001eを選択することにより遅延差を調整する(ステップS103)。
その後、制御部314は、0系および1系の遅延調整用信号の遅延差が低分散ファイババッファ303a,303bを用いて縮小可能か否かを調べる(ステップS104)。そして、遅延差の縮小が可能である場合には(ステップS104,Yes)、再度低分散ファイババッファ303a,303bは遅延差を調整する(ステップS103)。
これ以上遅延差の縮小が低分散ファイババッファ303a,303bではできない場合には(ステップS104,No)、多波長光可変遅延部305a,305bは、0系および1系の遅延差を調整する(ステップS105)。さらに、遅延量不変分散補償部306a,306bは、0系および1系の各信号の遅延量を変化させることなく信号の歪みを補正する分散値調整をおこなう(ステップS106)。
続いて、前段可変減衰器308a,308bは、0系および1系の信号の強度レベルを一定に調整する(ステップS107)。そして、制御部314は、0系および1系の遅延調整用信号の遅延差が解消されたか否かを調べ(ステップS108)、遅延差が解消されていない場合には(ステップS108,No)、多波長光可変遅延部305a,305bは、再度、0系および1系の遅延を調整する処理をおこなう(ステップS105)。
遅延差が解消された場合には(ステップS108,Yes)、後段可変減衰器310a,310bは、0系および1系の信号の強度レベルを一定に調整し(ステップS109)、この無瞬断切替装置30の起動時の処理を終了する。
つぎに、信号断が発生した場合の信号強度レベル調整処理の処理手順について説明する。図20は、信号断が発生した場合の信号強度レベル調整処理の処理手順を示すフローチャートである。
図20に示すように、無瞬断切替装置30の光断検出部311は、増幅器300a,300bに入力される0系および1系の信号を監視する監視処理を実行する(ステップS201)。
そして、光断検出部311は、信号断が発生したか否かを調べ(ステップS202)、信号断が発生していない場合には(ステップS202,No)、信号断監視処理を継続する(ステップS201)。
信号断が発生した場合には(ステップS202,Yes)、後段可変減衰器310a,310bは、光断検出部311からその情報を受信し、図16で説明したような信号の強度レベルの調整をおこない(ステップS203)、この信号強度レベル調整処理を終了する。
なお、上記監視処理において監視される信号は、遅延調整用信号あるいは主信号のいずれでもよいが、遅延調整用信号を監視する場合には、遅延調整用信号を主信号に多重化する分波装置20が故障して多重化できなくなった場合に、0系光ファイバ回線50あるいは1系光ファイバ回線60の信号断を正しく検出することができなくなるため、遅延調整用信号と主信号との両方を監視するのが望ましい。
つぎに、無瞬断切替装置30が信号断から回復する場合におこなう回復処理の処理手順について説明する。図21は、信号断が回復する場合に無瞬断切替装置30がおこなう回復処理の処理手順を示すフローチャートである。なお、ここでは、0系が信号断から回復する場合について説明する。
図21に示すように、無瞬断切替装置30の制御部314は、0系の遅延調整用信号を検出することにより0系が信号断から回復したことを検出する(ステップS301)。ここで、制御部314は、所定の時間(回復保護時間)以上、遅延調整用信号が検出されるのを確認して0系が信号断から回復したものと判定する。
そして、低分散ファイババッファ303aは、制御部314により送信された低分散ファイババッファ303aの光ファイバ3001a〜3001eの選択情報に基づいて光ファイバ3001a〜3001eを選択することにより0系と1系との間の遅延差を調整する(ステップS302)。
その後、制御部314は、0系と1系との間の遅延差が低分散ファイババッファ303a,303bを用いて縮小可能か否かを調べる(ステップS303)。そして、遅延差の縮小が可能である場合には(ステップS303,Yes)、再度低分散ファイババッファ303aは0系と1系との間の遅延差を調整する(ステップS302)。
これ以上遅延差の縮小が低分散ファイババッファ303aではできない場合には(ステップS303,No)、多波長光可変遅延部305aは、0系と1系との間の遅延差を調整する(ステップS304)。さらに、遅延量不変分散補償部306aは、0系および1系の各信号の遅延量を変化させることなく0系の信号の歪みを補正する分散値調整をおこなう(ステップS305)。
続いて、前段可変減衰器308aは、0系の信号の強度レベルを1系の信号の強度レベルと同一レベルとなるように調整する(ステップS306)。そして、制御部314は、0系および1系の遅延調整用信号の遅延差が解消されたか否かを調べ(ステップS307)、遅延差が解消されていない場合には(ステップS307,No)、多波長光可変遅延部305aは、再度、0系および1系の遅延を調整する処理をおこなう(ステップS304)。
遅延が解消された場合には(ステップS307,Yes)、後段可変減衰器310a,310bは、0系および1系の信号の強度レベルを一定に調整し(ステップS308)、この無瞬断切替装置30の回復処理を終了する。
上述してきたように、本実施例1では、多波長光可変遅延部305a,305bが、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する分散補償ファイバ3011,3014を通過させることにより0系および1系の光信号間の伝送遅延差を調整し、遅延量不変分散補償部306a,306bが、調整された伝送遅延差を保ったまま、光信号の波形の劣化を補償することとしたので、光信号の劣化を防ぎつつ、冗長化された0系および1系の径路を介して伝送される光信号の伝送遅延差を連続的に調整することができる。
また、本実施例1では、多波長光可変遅延部305a,305bが、光信号の波長を変換した場合に、当該光信号の波長を所定の波長に再度変換することとしたので、波長変換がなされた光信号の波長をもとの波長に戻すことなどができる。
また、本実施例1では、低分散ファイババッファ303a,303bが、異なる長さを有する複数の光ファイバ3001a〜3001eを切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整し、さらに多波長光可変遅延部305a,305bが、光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する分散補償ファイバ3011,3014を通過させることにより、0系および1系の光信号間の伝送遅延差を調整することとしたので、伝送遅延を離散的に変化させることにより光信号の伝送遅延差を大まかに調整し、その後、伝送遅延を連続的に変化させることにより光信号の伝送遅延差を微調整することができる。
また、本実施例1では、多波長光可変遅延部305a,305bが、冗長化された0系および1系の経路を介して伝送され、波長分割多重方式を用いて多重化された複数の光信号間の伝送遅延差を同一波長の信号ごとに調整することとしたので、波長分割多重方式を用いて多重化された同一波長の信号間の伝送遅延差を調整することができる。
また、本実施例1では、波長分離部309a,309bが、光信号の伝送遅延差検出用に用いられる遅延差検出用信号が多重化された光信号を受信して、制御部314および多波長光可変遅延部305a,305bが、当該遅延差検出用信号を参照することにより光信号間の伝送遅延差を調整することとしたので、遅延差検出用信号を光信号に多重化することにより光信号間の伝送遅延差を効率的に調整することができる。
また、本実施例1では、合波部313が、0系および1系の経路の光信号を合成して出力し、光断検出部311が、信号断を検出した場合に、後段可変減衰器310a,310bが、合波部313により出力される光信号の強度レベルが所定のレベルとなるよう波形の劣化が補償された0系および1系の経路の光信号の強度レベルを調整することとしたので、信号断を出した場合に光信号の強度レベルの変動を効果的に抑制することができる。
また、本実施例1では、低分散ファイババッファ303a,303bが、異なる長さを有する複数の光ファイバ3001a〜3001eを切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整し、さらに多波長光可変遅延部305a,305bが、光信号の波長を変換し、波長に応じた伝送遅延を光信号に発生させる分散補償ファイバ3011,3014に波長を変換した光信号を通過させることにより光信号の遅延差を調整し、光断検出部311が、低分散ファイババッファ303a,303bに光信号が入力される以前の信号に発生する信号断を検出することとしたので、信号断を伝送遅延差を調整する前に早期に検出することにより光信号の強度レベルの変動を効果的に抑制することができる。
また、本実施例1では、光断検出部311により信号断が検出された場合に、後段可変減衰器310a,310bが、後段可変減衰器310a,310bに光信号が到達しなくなる状態となる以前に各経路の光信号の強度レベルの調整をおこなうこととしたので、光信号の伝送が瞬間的に途絶えることを防止することができる。
さて、これまで本発明の実施例について説明したが、本発明は上述した実施例1以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では実施例2として本発明に含まれる他の実施例を説明する。
(1)遅延量の調整対象となる光信号の伝送径路
たとえば、上記実施例1では、図1に示したように、0系および1系の両方の信号に対して遅延量を調整することとしたが、0系あるいは1系のどちらか一方の信号に対してのみ遅延量の調整をおこない、0系の信号と1系の信号との間の遅延差を解消することとしてもよい。
図22は、0系の信号に対してのみ遅延量の調整をおこなう無瞬断切替システムの機能構成を示す図である。なお、ここでは、図1に示した機能部と同様の機能部については、同一の符号を付すこととし、説明を省略する。
図22に示すように、この無瞬断切替システムは、WDM伝送装置10と、分波装置20と、無瞬断切替装置70と、WDM伝送装置40とから構成され、分波装置20と無瞬断切替装置70とは0系光ファイバ回線50および1系光ファイバ回線60を介して接続されている。
WDM伝送装置10、分波装置20、WDM伝送装置40は、図1で説明したWDM伝送装置10、分波装置20、WDM伝送装置40と同様の装置である。無瞬断切替装置70は、図1に示した無瞬断切替装置30と比較すると、1系に属する増幅器304b、多波長光変換遅延部305b、遅延量不変分散補償部306bが省略され、0系の信号に対してのみ遅延量の調整をおこなうように構成されている。
このように、無瞬断切替装置70が0系の信号の遅延量を調整し、1系の信号との間の遅延差を解消することにより、図1の無瞬断切替装置30と同様に、信号断が発生した場合でも光信号の伝送を無瞬断で継続させることができる。
(2)分散補償ファイバの適用数
また、実施例1では、図3に示したように、2つの分散補償ファイバ3011,3014を用いて0系の信号と1系の信号との間の遅延差を解消することとしたが、低分散ファイババッファ303a,303bにおいて0系の多重化された各信号間の遅延差、および、1系の多重化された各信号間の遅延差が等しくなるよう調整すれば、0系の信号と1系の信号との間の遅延差のみを調整すればよいため、分散補償ファイバは1つだけ用いればよいことになる。
図23は、分散補償ファイバを1つだけ備えた多波長光変換部の機能構成を示す図である。図23に示すように、この多波長光変換部は、2段波長変換部3080,3082、分散補償ファイバ3081、温度制御部3083を有する。
2段波長変換部3080,3082、分散補償ファイバ3081、温度制御部3083は、図3に示した多波長光変換部305a,305bの2段波長変換部3013,3015、分散補償ファイバ3014、温度制御部3017と同様のものである。図23に示した多波長光変換部と図3に示した多波長光変換部305a,305bとの違いは、1段波長変換部3010,3012と分散補償ファイバ3011が取り除かれていることである。
このように、低分散ファイババッファ303a,303bにおいて0系の多重化された各信号間の遅延差、および、1系の多重化された各信号間の遅延差が等しくなるよう調整すれば、多波長光変換部の構成を簡略化することができる。
また、ここでは、2段波長変換部3080,3082と分散補償ファイバ3081とを用いることとしているが、1段波長変換部3010,3012と分散補償ファイバ3081とを用いて多波長光変換部を構成することとしてもよい。
(3)2段波長変換部3015の設置位置
また、実施例1では、図3に示したように、多波長光変換部305a,305bの2段波長変換部3015が、各信号の波長を多波長光変換部305a,305bに入力されたときの波長と同じになるよう調整することとしているが、その調整を0系の信号と1系の信号とが合波部313により合波された後におこなうこととしてもよい。
図24は、2段波長変換部3013を1つだけ備えた多波長光変換部の機能構成を示す図である。図24に示すように、この多波長光変換部は、1段波長変換部3010,3012、分散補償ファイバ3011,3014、2段波長変換部3013、温度制御部3016,3017を有する。
1段波長変換部3010,3012、分散補償ファイバ3011,3014、2段波長変換部3013、温度制御部3016,3017は、図3に示した1段波長変換部3010,3012、分散補償ファイバ3011,3014、2段波長変換部3013、温度制御部3016,3017と同様のものである。図24に示した多波長光変換部と図3に示した多波長光変換部305a,305bとの違いは、2段波長変換部3015が取り除かれていることである。
また、図25は、2段波長変換部3015の設置箇所について説明する図である。図25に示すように、多波長光変換部から取り除かれた2段波長変換部3015は、合波部313の後ろに設置される。ここで、図25に示した後段波長変換部310a,310b、および、合波部313は、図1に示した後段波長変換部310a,310b、および、合波部313と同様のものである。これにより、図3に示した場合と同様に、各信号の波長を多波長光変換部305a,305bに入力されたときの波長と同じになるよう調整することができる。
このことは、図23に示したように、多波長光変換部が分散補償ファイバを1つだけ備える場合などでも同様である。図26は、2段波長変換部3080と分散補償ファイバ3081とを1つずつ備えた多波長光変換部の機能構成を示す図である。
図26に示すように、この多波長光変換部は、2段波長変換部3080と分散補償ファイバ3081とを1つずつ備え、各信号の波長を2段波長変換部3080に入力されたときの波長と同じになるよう調整する2段波長変換部は、図25で説明したように合波部313の後ろに設置される。
(4)分散補償ファイバの特性
また、実施例1では、図3に示したように、多波長光変換部の2つの分散補償ファイバ3011,3014が、図5に示したような同じ分散スロープを有することとしたが、2つの分散補償ファイバ3011,3014が、逆の分散スロープを有することとしてもよい。
図27は、2段波長変換部3090,3092と互いに逆の分散スロープを有する分散補償ファイバ3091,3093とからなる多波長光変換部の機能構成を示す図である。ここで、2段波長変換部3090,3092は、図3に示した2段波長変換部3013,3015と同様のものである。また、各信号の波長を2段波長変換部3090に入力されたときの波長と同じになるよう調整する2段波長変換部をさらに設けることとしてもよい。
分散補償ファイバ3091,3093は、分散補償ファイバ3091,3093内を通過する光信号の波長に応じて光信号の伝送速度が変化する分散特性を有する光ファイバであり、互いに逆の分散スロープを有する。
すなわち、一方の分散補償ファイバ3091は、図5に示したように、波長が大きくなるにつれて遅延時間も大きくなるのに対し、もう一方の分散補償ファイバ3093は、波長が大きくなるにつれて遅延時間が小さくなる特性を有する。
そして、2段波長変換部3090に遅延差のある異なる波長の信号が複数入力されると、2段波長変換部3090により波長変換がなされる。この場合、図7で説明したように、複数の信号間の波長の大小関係は変わらないので、それらの信号が分散補償ファイバ3091を通過すると、波長の大きい信号ほど遅延することになる。
その後、2段波長変換部3092は、分散補償ファイバ3091を通過した信号の波長変換をおこなうが、この場合も複数の信号間の波長の大小関係は変わらない。ところが、2段波長変換部3092により波長変換がなされた信号に分散補償ファイバ3093を通過させると、分散補償ファイバ3093は分散補償ファイバ3091と逆の分散スロープを有するため、波長の小さい信号ほど遅延するようになる。
このように、逆の分散スロープを有する分散補償ファイバ3091,3093を組み合わせて用いることによっても、信号の遅延量の調整をおこなうことができる。
なお、図27では、2段波長変換部3090,3092を用いて波長変換をおこなうこととしたが、1段波長変換部と2段波長変換部とを用いて波長変換をおこなってもよい。図28は、1段波長変換部3094、2段波長変換部3096、互いに逆の分散スロープを有する分散補償ファイバ3091,3093とからなる多波長光変換部の機能構成を示す図である。
ここで、1段波長変換部3094、2段波長変換部3096は、図3に示した1段波長変換部3010,3012、2段波長変換部3013,3015と同様のものである。また、各信号の波長を2段波長変換部3090に入力されたときの波長と同じになるよう調整する2段波長変換部をさらに設けることとしてもよい。また、分散補償ファイバ3095,3097は、図27に示した分散補償ファイバ3091,3093と同様のものであり、互いに逆の分散スロープを有する。
そして、1段波長変換部3094に遅延差のある異なる波長の信号が複数入力されると、1段波長変換部3094により波長変換がなされる。この場合、複数の信号間の波長の大小関係は反転するので、それらの信号が分散補償ファイバ3095を通過すると、1段波長変換部3094に入力された際に波長が小さかった信号ほど遅延することになる。
その後、2段波長変換部3096は、分散補償ファイバ3095を通過した信号の波長変換をおこなうが、この場合は複数の信号間の波長の大小関係は変わらない。ところが、2段波長変換部3096により波長変換がなされた信号に分散補償ファイバ3097を通過させると、分散補償ファイバ3097は分散補償ファイバ3095と逆の分散スロープを有するため、1段波長変換部3094に入力された際に波長が大きかった信号ほど遅延するようになる。
このように、図28のような場合でも、逆の分散スロープを有する分散補償ファイバ3095,3097を組み合わせて用いることにより、信号の遅延量の調整をおこなうことができる。
(5)信号断の検出方法
また、実施例1では、図1に示したように、制御部314が、遅延調整用信号を検出して遅延量の調整を実行することとしたが、0系の光信号および1系の光信号が合波された後、SONET/SDH(Synchronous Optical Network / Synchronous Digital Hierarchy)などの通信規格に基づいて光信号を電気信号に変換した場合に、通信エラー信号を検出することにより遅延量の調整を実行することとしてもよい。
具体的には、この通信エラー信号は、0系の信号と1系の電気信号との間に位相差があった場合に生成されるが、その通信エラー信号が生成されなくなるまで遅延量の調整がおこなわれるようにする。
図29は、通信エラーの監視をおこなうことにより0系の信号と1系の信号との間の遅延量を調整する無瞬断切替システムの機能構成を示す図である。この無瞬断切替システムは、光送信機80と、光カプラ90と、無瞬断切替装置100と、光受信機110とから構成され、光カプラ90と無瞬断切替装置100とは0系光ファイバ回線120および1系光ファイバ回線130を介して接続されている。
光送信機80は、光信号を送信する送信機である。光カプラ90は、光送信機80から受信した信号を分波して0系光ファイバ回線120および1系光ファイバ回線130を介して送信する光カプラである。光受信機110は、光送信機80により送信された光信号を無瞬断切替装置100を介して受信する受信機である。
無瞬断切替装置100は、0系光ファイバ回線120および1系光ファイバ回線130のうちいずれかの光ファイバ回線に障害が発生した場合でも、他の光ファイバ回線の光信号を用いることにより光信号の伝送を無瞬断で継続させる装置である。
また、この無瞬断切替装置100は、0系光ファイバ回線120および1系光ファイバ回線130を通過してきた光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する。さらに、無瞬断切替装置100は、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償する。
この無瞬断切替装置100は、増幅器1000a,1000b、分散補償部1001a,1001b、増幅器1002a,1002b、光可変遅延部1003a,1003b、前段可変減衰器1004a,1004b、光カプラ1005a,1005b、後段可変減衰器1006a,1006b、光断検出部1007、レベル調整部1008、光カプラ1009、光カプラ1010、光電気変換部1011、エラー監視部1012、および、遅延調整部1013を有する。
このうち、増幅器1000a,1000b,1002a,1002bは、光信号を増幅する増幅器である。分散補償部1001a,1001bは、0系光ファイバ回線120、および、1系光ファイバ回線130を通過してきた光信号の波長分散を補償する処理部であり、DCFなどにより構成される。
光可変遅延部1003a,1003bは、光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延を連続的に調整する処理部である。さらに、光可変遅延部1003a,1003bは、光信号の伝送遅延を調整した後、その伝送遅延を維持したまま光信号の波形の歪みを補償し、光信号の増幅をおこなって出力する。
この光可変遅延部1003a,1003bは、図1に示した無瞬断切替装置30における低分散ファイババッファ303a,303b、増幅器304a,304b、多波長光可変遅延部305a,305b、遅延量不変分散補償部306a,306b、増幅器307a,307bに相当する機能部である。
前段可変減衰器1004a,1004bは、信号の強度レベルを調整する処理部である。具体的には、前段可変減衰器308a,308bは、制御部(図示せず)による制御の下、0系と1系とで信号の強度レベルが同一となるよう調整する。
光カプラ1005a,1005bは、光信号を分波する光カプラであり、前段可変減衰器1004a,1004bから受信した光信号を分波して、後段可変減衰器1006a,1006bと光カプラ1010とに出力する。
後段可変減衰器1006a,1006bは、前段可変減衰器1004a,1004bと同様、信号の強度レベルを調整する処理部である。この後段可変減衰器1006a,1006bは、0系光ファイバ回線120、あるいは、1系光ファイバ回線130に信号断が発生した場合に、図16で説明したようにして、無瞬断切替装置100から出力される信号に強度レベルの変動がなくなるように調整する。
光断検出部1007は、0系光ファイバ回線120、あるいは、1系光ファイバ回線130に信号断が発生したか否かを増幅器1000a,1000bに入力された信号を監視することにより検出し、信号断を検出した場合に、信号断の発生をレベル調整部1008に通知する処理部である。
レベル調整部1008は、光断検出部1007から信号断の通知を受け付けた場合に、図16で説明したようにして、後段可変減衰器1006a,1006bを制御し、後段可変減衰器1006a,1006bにおける信号の出力レベルを調整する調整部である。光カプラ1009は、0系の信号と1系の信号とを合波する光カプラである。
光カプラ1010は、光カプラ1005a,1005bから受信した光信号を合波する光カプラである。光電気変換部1011は、SONET/SDHなどの通信規格に基づいて、光カプラ1010から受信した光信号を電気信号に変換する処理部である。この光電気変換部1011は、光カプラ1010により合波された0系の信号と1系の信号との間に遅延差がある場合に、通信エラー信号を含んだ電気信号を生成する。
エラー監視部1012は、光電気変換部1011により生成された電気信号に通信エラー信号が含まれているか否かを監視し、監視結果を遅延調整部1013に通知する処理部である。
遅延調整部1013は、エラー監視部1012から電気信号に通信エラー信号が含まれているか否かの監視結果の情報を受け付け、通信エラー信号が検出されなくなるまで0系の信号および1系の信号の遅延量を光可変遅延部1003a,1003bを制御して調整することにより0系の信号と1系の信号との間の遅延差を解消する処理部である。
このように、光電気変換部1011がSONET/SDHなどの通信規格に基づいて光信号を電気信号に変換した場合に、エラー監視部1012が、複数の経路の光信号に遅延差がある場合に生成される通信エラー信号を検出し、光可変遅延部1004a,1004bが、通信エラー信号が検出されなくなるまで各径路の光信号間の伝送遅延差を調整することとしたので、遅延差そのものを検出する代わりに通信エラー信号を検出することにより、光信号の伝送遅延差の調整を容易におこなうことができる。
なお、図29の無瞬断切替装置100の構成において、分散補償部1001a,1001b、および、増幅器1002a,1002bを取り除き、増幅器1000a,1000bから出力された信号が直接光可変遅延部1003a,1003bに入力されるように無瞬断切替装置100を構成することとしてもよい。
(6)無瞬断切替装置の簡易構成
また、実施例1では、無瞬断切替装置の構成を図1に示したような構成としたが、0系の信号と1系の信号との間の遅延差の程度や信号波形の歪みの程度に応じて、図1に示した分散補償部301a,302b、増幅器302a,302b、低分散ファイババッファ303a,303b、増幅器304a,304bは適宜取り除くこととしてもよい。
(7)光スイッチを用いておこなう経路切替処理
また、実施例1では、図1に示した後段可変減衰器310a,310bを制御することにより、信号断が発生した場合でも光信号の伝送を無瞬断で継続させることとしたが、多少の信号の瞬断があっても問題とはならない場合には、光スイッチを用いて伝送経路の切り替えをおこなうこととしてもよい。
図30は、光スイッチを用いて経路切替処理をおこなう経路切替システムの機能構成を示す図である。図30に示すように、この経路切替システムは、光送信機400a〜400dと、WDM伝送装置410と、分波装置420と、経路切替装置430と、WDM伝送装置440と、光受信機450a〜450dとから構成され、分波装置420と経路切替装置430とは0系光ファイバ回線460および1系光ファイバ回線470を介して接続されている。
光送信機400a〜400dは、光信号を送信する送信機である。WDM伝送装置410は、光送信機400a〜400dにより送信された光信号を波長分割多重方式により多重化し、多重化された異なる波長の複数の光信号を伝送する装置である。
分波装置410は、WDM伝送装置410から受信した光信号に遅延調整用の光信号を多重化し、さらにその光信号を分波して送信する装置である。この分波装置410は、遅延調整用光源4200、波長多重部4201、分波部4202を有する。遅延調整用光源4200、波長多重部4201、分波部4202は、図1で説明した遅延調整用光源200、波長多重部201、分波部202と同様のものである。
WDM伝送装置440は、、多重化された異なる波長を有する複数の光信号を経路切替装置430から受信し、波長ごとに光信号を分離して光受信機450a〜450dに送信する装置である。光受信機450a〜450dは、光送信機400a〜400dにより送信された光信号を経路切替装置430を介して受信する受信機である。
経路切替装置430は、0系光ファイバ回線460および1系光ファイバ回線470のいずれか一方に信号断が発生した場合に、信号断が発生していない0系光ファイバ回線460あるいは1系光ファイバ回線470に信号の通信経路を切り替える装置である。
また、この経路切替装置430は、0系光ファイバ回線460および1系光ファイバ回線470を通過してきた光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する。さらに、経路切替装置430は、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償する。
この経路切替装置430は、増幅器4300a,4300b、分散補償部4301a,4301b、増幅器4302a,4302b、光可変遅延部4303a,4303b、波長分離部4304a,4304b、光スイッチ制御部4305、光スイッチ4306、および、制御部4307を有する。
このうち増幅器4300a,4300b,4302a,4302bは、光信号を増幅する増幅器である。分散補償部4301a,4301bは、0系光ファイバ回線460,1系光ファイバ回線470を通過してきた光信号の波長分散を補償する処理部であり、DCFなどにより構成される。
光可変遅延部4303a,4303bは、光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する処理部である。さらに、光可変遅延部4303a,4303bは、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償し、光信号の増幅をおこなって出力する。
この光可変遅延部4303a,4303bは、図1に示した無瞬断切替装置30における低分散ファイババッファ303a,303b、増幅器304a,304b、多波長光可変遅延部305a,305b、遅延量不変分散補償部306a,306b、増幅器307a,307bに相当する機能部である。
波長分離部4304a,4304bは、0系の信号あるいは1系の信号にそれぞれ2つずつ含まれる異なる波長の遅延調整用信号を分離して、制御部4307に送信する分離部である。
光スイッチ制御部4305は、0系光ファイバ回線460、あるいは、1系光ファイバ回線470に信号断が発生したか否かを増幅器4300a,4300bから出力された信号を監視することにより検出し、信号断を検出した場合に、光スイッチ4306を制御して、信号断が発生していない0系あるいは1系に信号の伝送経路を切り替える処理部である。光スイッチ4306は、WDM伝送装置440に出力する信号の伝送経路を0系と1系との間で切り替える光スイッチである。
制御部4307は、光可変遅延部4303a,4303bを制御して、0系の信号と1系の信号との間の遅延差を調整する制御部であり、図1に示した制御部314に対応するものである。
このように、0系と1系とで経路の切り替えをおこなう場合に、多少の信号の瞬断があっても問題とはならない場合には、光スイッチ4306を用いて経路の切り替えをおこなうことができる。
なお、図30の経路切替装置430の構成において、分散補償部4301a,4301b、および、増幅器4302a,4302bを取り除き、増幅器4300a,4300bから出力された信号が直接光可変遅延部4303a,4303bに入力されるように経路切替装置430を構成することとしてもよい。
また、光スイッチ制御部4305は、増幅器4302a,4302bから出力された信号を監視することにより、0系光ファイバ回線460、あるいは、1系光ファイバ回線470に信号断が発生したか否かを検出することとしてもよい。
(8)多重化された光信号の分離出力処理
また、実施例1では、無瞬断切替装置30の合波部313が、0系または1系を通過してきた複数の信号を多重化された状態のまま出力することとしたが、各信号を分離して出力するように無瞬断切替装置を構成することとしてもよい。
図31は、各信号を分離して出力する無瞬断切替システムの機能構成を示す図である。この無瞬断切替システムは、光送信機500a〜500dと、WDM伝送装置510と、分波装置520と、無瞬断切替装置530と、光受信機540とから構成され、分波装置520と無瞬断切替装置530とは0系光ファイバ回線550および1系光ファイバ回線560を介して接続されている。
光送信機500a〜500dは、光信号を送信する送信機である。WDM伝送装置510は、光送信機500a〜500dにより送信された光信号を波長分割多重方式により多重化し、多重化された異なる波長の複数の光信号を伝送する装置である。
分波装置520は、WDM伝送装置510から受信した光信号に遅延調整用の光信号を多重化し、さらにその光信号を分波して送信する装置である。この分波装置520は、遅延調整用光源5200、波長多重部5201、分波部5202を有する。遅延調整用光源5200、波長多重部5201、分波部5202は、図1で説明した遅延調整用光源200、波長多重部201、分波部202と同様のものである。
光受信機540は、光送信機500a〜500dにより送信された光信号を無瞬断切替装置530を介して受信する受信機である。なお、図31では、光受信機540を1つのみ示しているが、無瞬断切替装置530により出力される信号を受信する光受信機540の数は任意である。
無瞬断切替装置530は、0系光ファイバ回線550および1系光ファイバ回線560のうちいずれかの光ファイバ回線に障害が発生した場合でも、他の光ファイバ回線の光信号を用いることにより光信号の伝送を無瞬断で継続させる装置である。また、この無瞬断切替装置530は、多重化された信号を分離して出力する処理をおこなう。
さらに、この無瞬断切替装置530は、0系光ファイバ回線550および1系光ファイバ回線560を通過してきた光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する。また、無瞬断切替装置530は、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償する。
この無瞬断切替装置530は、増幅器5300a,5300b、分散補償部5301a,5301b、増幅器5302a,5302b、光可変遅延部5303a,5303b、波長分離部5304a,5304b、波長分離部5305a,5305b、可変減衰器5306a,5306b、光断検出部5307、レベル調整部5308、合波部5309、および、制御部5310を有する。
増幅器5300a,5300b,5302a,5302bは、光信号を増幅する増幅器である。分散補償部5301a,5301bは、0系光ファイバ回線550、1系光ファイバ回線560を通過してきた光信号の波長分散を補償する処理部であり、DCFなどにより構成される。
光可変遅延部5303a,5303bは、光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する処理部である。さらに、光可変遅延部5303a,5303bは、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償し、光信号の増幅をおこなって出力する。
この光可変遅延部5303a,5303bは、図1に示した無瞬断切替装置30における低分散ファイババッファ303a,303b、増幅器304a,304b、多波長光可変遅延部305a,305b、遅延量不変分散補償部306a,306b、増幅器307a,307bに相当する機能部である。
波長分離部5304a,5304bは、0系の信号あるいは1系の信号にそれぞれ2つずつ含まれる異なる波長の遅延調整用信号を分離して、制御部5310に送信する分離部である。
波長分離部5305a,5305bは、0系および1系をそれぞれ通過する波長の異なる各信号(Ch1,Ch2,Ch3,Ch4)を分離する。そして、波長分離部5305a,5305bは、分離した各信号を可変減衰器5306a,5306bに出力する。なお、図31では、可変減衰器5306a,5306bを2つのみ示しているが、可変減衰器5306a,5306bは、波長分離部5305a,5305bにより分離される信号の数だけ存在する。
可変減衰器5306a,5306bは、図16で説明したようにして、信号の強度レベルを調整する処理部である。光断検出部5307は、0系光ファイバ回線550、あるいは、1系光ファイバ回線560に信号断が発生したか否かを増幅器5300a,5300bに入力された信号を監視することにより検出し、信号断を検出した場合に、信号断の発生をレベル調整部5308に通知する処理部である。
レベル調整部5308は、光断検出部5307から信号断の通知を受け付けた場合に、図16で説明したようにして、可変減衰器5306a,5306bを制御し、可変減衰器5306a,5306bにおける信号の出力レベルを調整する調整部である。
合波部5309は、波長分離部5305a,5305bにより分離された0系の信号(Ch1)と1系の信号(Ch1)とを合波する光カプラである。なお、図31では、合波部5309を1つのみ示しているが、合波部5309は、合波する信号(Ch1,Ch2,Ch3,Ch4)の数だけ存在する。
このように無瞬断切替装置530を構成することにより、0系光ファイバ回線550、あるいは、1系光ファイバ回線560にに障害が発生した場合でも、他の光ファイバ回線の光信号を用いることにより光信号の伝送を無瞬断で継続させることができるとともに、各信号を分離して、光受信機540に信号を出力することができるようになる。
なお、図31の無瞬断切替装置530の構成において、分散補償部5301a,5301b、および、増幅器5302a,5302bを取り除き、増幅器5300a,5300bから出力された信号が直接光可変遅延部5303a,5303bに入力されるように無瞬断切替装置530を構成することとしてもよい。
(9)光遅延処理と信号のメモリへのバッファリング処理との併用
また、実施例1では、図1に示した多波長光遅延部305a,305bを用いることにより0系の信号と1系の信号との間の遅延差を解消することとしているが、多波長光遅延部305a,305bが光遅延処理をおこなった後、光信号を電気信号に変換し、電気信号をメモリにバッファリングして、遅延差を解消することとしてもよい。
信号をメモリにバッファリングして遅延差を解消する技術は従来から知られているが、実施例1で説明した光遅延処理と組み合わせることにより、遅延差の調整に必要なメモリ容量を大幅に削減することができるようになる。
図32は、多波長光遅延部6205a,6205bとメモリ6211a,6211bとを併用する経路切替システムの機能構成を示す図である。この無瞬断切替システムは、WDM伝送装置600と、分波装置610と、経路切替装置620と、受信装置630とから構成され、分波装置610と経路切替装置620とは0系光ファイバ回線640および1系光ファイバ回線650を介して接続されている。
WDM伝送装置600は、光送信機(図示せず)により送信された光信号を波長分割多重方式により多重化し、多重化された異なる波長の複数の光信号を伝送する装置である。
分波装置610は、WDM伝送装置600から受信した光信号に遅延調整用の光信号を多重化し、さらにその光信号を分波して送信する装置である。この分波装置610は、遅延調整用光源6100、波長多重部6101、分波部6102を有する。遅延調整用光源6100、波長多重部6101、分波部6102は、図1で説明した遅延調整用光源200、波長多重部201、分波部202と同様のものである。
受信装置630は、経路切替装置620により光信号が電気信号に変換された場合に、その電気信号を受信する装置である。
経路切替装置620は、0系光ファイバ回線640、1系光ファイバ回線650のいずれか一方に信号断が発生した場合に、信号断が発生していない0系光ファイバ回線640、1系光ファイバ回線650に信号の通信経路を切り替える装置である。
また、この経路切替装置620は、0系光ファイバ回線640、1系光ファイバ回線650を通過してきた光信号の波長を変換し、その光信号に光信号の伝送速度に波長依存性がある光ファイバを通過させることにより、光信号の伝送遅延差を連続的に調整する。さらに、経路切替装置620は、光信号の伝送遅延差を調整した後、その伝送遅延差を維持したまま光信号の波形の歪みを補償する。
また、この経路切替装置620は、遅延差が調整された光信号を電気信号に変換し、メモリにバッファリングする。信号断が発生した場合には、経路切替装置620は、信号断が発生していない0系または1系のメモリから信号を読み出す処理をおこなう。
この経路切替装置620は、増幅器6200a,6200b、分散補償部6201a,6201b、増幅器6202a,6202b、低分散ファイババッファ6203a,6203b、増幅器6204a,6204b、多波長光可変遅延部6205a,6205b、遅延量不変分散補償部6206a,6206b、増幅器6207a,6207b、可変減衰器6208a,6208b、波長分離部6209a,6209b、光電気変換部6210a,6210b、メモリ6211a,6211b、光断検出部6212、スイッチ部6213、および、制御部6214を有する。
増幅器6200a,6200b、分散補償部6201a,6201b、増幅器6202a,6202b、低分散ファイババッファ6203a,6203b、増幅器6204a,6204b、多波長光可変遅延部6205a,6205b、遅延量不変分散補償部6206a,6206b、増幅器6207a,6207b、可変減衰器6208a,6208b、波長分離部6209a,6209bは、それぞれ、図1に示した増幅器300a,300b、分散補償部301a,301b、増幅器302a,302b、低分散ファイババッファ303a,303b、増幅器304a,304b、多波長光可変遅延部305a,305b、遅延量不変分散補償部306a,306b、増幅器307a,307b、前段可変減衰器308a,308b、波長分離部309a,309bと同様の機能部である。
光電気変換部6210a,6210bは、波長分離部309a,309bから受信した光信号を電気信号に変換する処理部である。メモリ6211a,6211bは、光電気変換部6210a,6210bにより出力された電気信号を記憶するメモリである。
光断検出部6212は、0系光ファイバ回線640、あるいは、1系光ファイバ回線650に信号断が発生したか否かを増幅器6200a,6200bに入力された信号を監視することにより検出し、信号断を検出した場合に、信号断の発生をスイッチ部6213に通知する処理部である。
スイッチ部6213は、0系または1系のいずれか一方のメモリ6211a,6211bに記憶された信号を読み出す処理部である。このスイッチ部6213は、0系または1系に信号断が発生した場合に、信号断が発生していない0系または1系のメモリ6211a,6211bから信号を読み出す。
制御部6214は、図18で説明した制御部314と同様の処理をおこなうものであり、1断波長変換部3010,3012、2段波長変換部3013,3015、遅延量不変分散補償部306a,306b、可変減衰器308a,308bを制御して、0系の信号と1系の信号との間の遅延差および強度レベル差を調整する。
また、信号断から回復し、スイッチ部6213が、信号を読み出すメモリ6211a,6211bを再度切り替える場合には、図21に示したステップS301からステップS307の処理を実行することにより遅延差をできるだけ解消するようにする。
このように、波形の劣化が補償された0系および1系の光信号をメモリ6211a,6211bに記憶し、0系および1系の経路のうちいずれかの経路に信号断が発生した場合に、信号断が発生していない経路のメモリ6211a,6211bに記憶された信号を読み出すことにより、メモリ6211a,6211bなどの記憶容量を削減しつつ、信号の伝送に係る信頼性を高めることができる。
また、0系または1系の経路に発生した信号断が解消され、信号断が解消された経路においてメモリ6211a,6211bに記憶された信号が読み出される場合に、多波長光可変遅延部6205a,6205bが、光信号の伝送遅延差を再度調整することとしたので、信号断からの復帰を効率的におこなうことができる。
(10)その他
また、本発明は、上述した実施例以外にも、特許請求の範囲に記載した技術的思想の範囲内において種々の異なる実施例にて実施されてもよいものである。
たとえば、上記実施例において説明した各処理のうち、自動的におこなわれるものとして説明した処理の全部または一部を手動的におこなうこともでき、あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。
この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
以上のように、本発明に係る光信号伝送制御装置および光信号伝送制御方法は、光信号の劣化を防ぎつつ、冗長化された複数の径路を介して伝送される光信号間の伝送遅延差を連続的に調整することが必要な光信号伝送制御システムに有用である。
図1は、本実施例1に係る無瞬断切替システムの機能構成を示す図である。 図2は、低分散ファイババッファ303a,303bの機能構成を示す図である。 図3は、多波長光可変遅延部305a,305bの機能構成を示す図である。 図4は、1段波長変換部3010,3012の機能構成を示す図である。 図5は、分散補償ファイバ3011,3014の分散特性曲線の例を示す図である。 図6は、2段波長変換部3013,3015の機能構成を示す図である。 図7は、2段波長変換部3013,3015が多重化された光信号の波長の一括変換を2段階に分けておこなう場合の変換処理について説明する図(1)である。 図8は、2段波長変換部3013,3015が多重化された光信号の波長の一括変換を2段階に分けておこなう場合の変換処理について説明する図(2)である。 図9は、分散補償ファイバ3041,3042の働きについて説明する図である。 図10は、多波長光可変遅延部305a,305bにおける波長変換処理について説明する図である。 図11は、多波長光可変遅延部305a,305bがおこなう遅延時間差解消処理について説明する図である。 図12は、多波長光可変遅延部305a,305bがおこなう遅延差解消処理の変形例について説明する図である。 図13は、遅延量不変分散補償部306a,306bがおこなう信号波形の歪み補正処理について説明する図である。 図14は、ファイバブラッググレーティング型分散補償ファイバを用いた遅延量不変分散補償部306a,306bの機能構成を示す図である。 図15は、ファイバブラッググレーティングによる分散補償について説明する図である。 図16は、信号の強度レベルを調整する第1の方法について説明する図である。 図17は、信号の強度レベルを調整する第2の方法について説明する図である。 図18は、制御部314の機能構成を示す図である。 図19は、無瞬断切替装置30がおこなう起動時の処理の処理手順を示すフローチャートである。 図20は、信号断が発生した場合の信号強度レベル調整処理の処理手順を示すフローチャートである。 図21は、信号断が回復する場合に無瞬断切替装置30がおこなう回復処理の処理手順を示すフローチャートである。 図22は、0系の信号に対してのみ遅延量の調整をおこなう無瞬断切替システムの機能構成を示す図である。 図23は、分散補償ファイバを1つだけ備えた多波長光変換部の機能構成を示す図である。 図24は、2段波長変換部3013を1つだけ備えた多波長光変換部の機能構成を示す図である。 図25は、2段波長変換部3015の設置箇所について説明する図である。 図26は、2段波長変換部3080と分散補償ファイバ3081とを1つずつ備えた多波長光変換部の機能構成を示す図である。 図27は、2段波長変換部3090,3092と互いに逆の分散スロープを有する分散補償ファイバ3091,3093とからなる多波長光変換部の機能構成を示す図である。 図28は、1段波長変換部3094、2段波長変換部3096、互いに逆の分散スロープを有する分散補償ファイバ3091,3093とからなる多波長光変換部の機能構成を示す図である。 図29は、通信エラーの監視をおこなうことにより0系の信号と1系の信号との間の遅延量を調整する無瞬断切替システムの機能構成を示す図である。 図30は、光スイッチを用いて経路切替処理をおこなう経路切替システムの機能構成を示す図である。 図31は、各信号を分離して出力する無瞬断切替システムの機能構成を示す図である。 図32は、多波長光遅延部6205a,6205bとメモリ6211a,6211bとを併用する経路切替システムの機能構成を示す図である。
符号の説明
10,40,410,440,510,600 WDM伝送装置
110,450a〜450d,540 光受信機
1003a,1003b,4303a,4303b,5303a,5303b 光可変遅延部
1011,6210a,6210b 光電気変換部
1012 エラー監視部
1013 遅延調整部
20,420,520,610 分波装置
200,4200,5200,6100 遅延調整用光源
201,4201,5201,6101 波長多重部
202,4202,5202,6102 分波部
30,70,100,530 無瞬断切替装置
300a,300b,302a,302b,304a,304b,307a,307b,1000a,1000b,1002a,1002b,4300a,4300b,4302a,4302b,5300a,5300b,5302a,5302b,6200a,6200b,6202a,6202b,6204a,6204b,6207a,6207b 増幅器
301a,301b,1001a,1001b,4301a,4301b,5301a,5301b,6201a,6201b 分散補償部
303a,303b,6203a,6203b 低分散ファイババッファ
305a,305b,6205a,6205b 多波長光可変遅延部
306a,306b,6206a,6206b 遅延量不変分散補償部
308a,308b,1004a,1004b 前段可変減衰器
309a,309b,4304a,4304b,5304a,5304b,5305a,5305b,6209a,6209b 波長分離部
310a,310b,1006a,1006b 後段可変減衰器
311,1007,5307,6212 光断検出部
312,1008,5308 レベル調整部
313,5309 合波部
314,4307,5310,6214 制御部
3000,3002,4306 光スイッチ
3001a〜3001e 光ファイバ
3010,3012,3040,3042,3094 1段波長変換部
3011,3014,3041,3042,3043,3081,3091,3093,3095,3097 分散補償ファイバ
3013,3015,3080,3082,3090,3092,3096 2段波長変換部
3016,3017,3023,3035,3083 温度制御部
3020,3030,3033 可変波長光源
3021,3031,3034 一括波長変換部
3022,3032,3035 光波長フィルタ
3050 波長分離部
3051a〜3051f 光サーキュレータ
3052a〜3052f 可変ファイバグレーティングフィルタ
3053 波長多重部
3060,3066,3067,3068,3069、3070,3071 インターフェース部
3061 遅延調整値算出部
3062 強度レベル調整値算出部
3063 DCF特性データ記憶部
3064 低分散ファイババッファ特性データ記憶部
3065 設定情報生成部
430,620 経路切替装置
4305 光スイッチ制御部
50,120,460,550,640 0系光ファイバ回線
5306a,5306b,6208a,6208b 可変減衰器
60,130,470,560,650 1系光ファイバ回線
630 受信装置
6211a,6211b メモリ
6213 スイッチ部
80,400a〜400d,500a〜500d 光送信機
90,1005a,1005b,1009、1010 光カプラ

Claims (10)

  1. 冗長化された複数の経路を介して伝送される光信号の伝送制御をおこなう光信号伝送制御装置であって、
    光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより各経路の光信号間の伝送遅延差を調整する遅延差調整手段と、
    前記遅延差調整手段により調整された伝送遅延差を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償手段と、
    を備えたことを特徴とする光信号伝送制御装置。
  2. 前記遅延差調整手段により光信号の波長が変換された場合に、当該光信号の波長を所定の波長に再度変換する波長変換手段をさらに備えたことを特徴とする請求項1に記載の光信号伝送制御装置。
  3. 異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整する光バッファ手段をさらに備え、前記遅延差調整手段は、前記光バッファ手段により調整された光信号の伝送遅延差をさらに調整することを特徴とする請求項1に記載の光信号伝送制御装置。
  4. 前記遅延差調整手段は、冗長化された複数の経路を介して伝送され、波長分割多重方式を用いて多重化された複数の光信号間の伝送遅延差を同一波長の信号ごとに調整することを特徴とする請求項1に記載の光信号伝送制御装置。
  5. 前記遅延差調整手段は、光信号の伝送遅延差検出用に用いられる遅延差検出用信号が多重化された光信号を受信して、当該遅延差検出用信号を参照することにより光信号間の伝送遅延差を調整することを特徴とする請求項4に記載の光信号伝送制御装置。
  6. 信号断の発生を検出する信号断検出手段と、各経路の光信号を合成して出力する光信号出力手段と、前記信号断検出手段により信号断が検出された場合に、前記光信号出力手段により出力される光信号の強度レベルが所定のレベルとなるよう前記波形劣化補償手段により波形の劣化が補償された各経路の光信号の強度レベルを調整する信号レベル調整手段とをさらに備えたことを特徴とする請求項1に記載の光信号伝送制御装置。
  7. 異なる長さを有する複数の導波路を切り替えて光信号の伝送遅延を離散的に変化させることにより光信号の伝送遅延差を調整する光バッファ手段をさらに備え、前記遅延差調整手段は、前記光バッファ手段により伝送遅延差が調整された光信号の遅延差をさらに調整し、前記信号断検出手段は、前記光バッファ手段に入力される以前の信号に発生する信号断を検出することを特徴とする請求項6に記載の光信号伝送制御装置。
  8. 前記信号レベル調整手段は、前記信号断検出手段により信号断が検出された場合に、光信号が到達しなくなる状態となる以前に各経路の光信号の強度レベルの調整をおこなうことを特徴とする請求項6に記載の光信号伝送制御装置。
  9. 各経路の光信号を合成して出力する光信号出力手段と、前記光信号出力手段により出力される光信号の強度レベルを監視して、当該強度レベルが所定のレベルとなるよう前記波形劣化補償手段により光信号の波形の劣化が補償された各経路の光信号の強度レベルを調整する信号レベル調整手段と、をさらに備えたことを特徴とする請求項1に記載の光信号伝送制御装置。
  10. 冗長化された複数の経路を介して伝送される光信号の伝送制御をおこなう光信号伝送制御方法であって、
    光信号の波長を変換し、波長を変換した光信号に波長に応じて光信号の伝送遅延が連続的に変化する導波路を通過させることにより各経路の光信号間の伝送遅延差を調整する遅延差調整工程と、
    前記遅延差調整工程により調整された伝送遅延差を保ったまま、前記光信号の波形の劣化を補償する波形劣化補償工程と、
    を含んだことを特徴とする光信号伝送制御方法。
JP2007539744A 2005-09-30 2005-09-30 光信号伝送制御装置および光信号伝送制御方法 Expired - Fee Related JP4911032B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018178 WO2007043121A1 (ja) 2005-09-30 2005-09-30 光信号伝送制御装置および光信号伝送制御方法

Publications (2)

Publication Number Publication Date
JPWO2007043121A1 JPWO2007043121A1 (ja) 2009-04-16
JP4911032B2 true JP4911032B2 (ja) 2012-04-04

Family

ID=37942391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007539744A Expired - Fee Related JP4911032B2 (ja) 2005-09-30 2005-09-30 光信号伝送制御装置および光信号伝送制御方法

Country Status (4)

Country Link
US (2) US20090136239A1 (ja)
JP (1) JP4911032B2 (ja)
GB (1) GB2445687B8 (ja)
WO (1) WO2007043121A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138672A1 (ja) * 2006-05-30 2007-12-06 Fujitsu Limited 分散補償装置および分散補償方法
JP4919294B2 (ja) * 2007-09-07 2012-04-18 独立行政法人産業技術総合研究所 可変分散および光遅延制御装置
JP2011142584A (ja) * 2010-01-08 2011-07-21 Fujitsu Optical Components Ltd 光伝送装置
US20120076489A1 (en) * 2010-09-24 2012-03-29 Bogdan Chomycz Optical Amplifier Protection Switch
US10439733B2 (en) * 2014-01-13 2019-10-08 The Johns Hopkins University Fiber optic circuit breaker
JP2022043740A (ja) * 2020-09-04 2022-03-16 富士通株式会社 波長変換装置及び波長変換方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183508A (ja) * 1991-05-29 1993-07-23 Mitsubishi Electric Corp 光伝送装置
JPH09238370A (ja) * 1996-03-01 1997-09-09 Nippon Telegr & Teleph Corp <Ntt> 波長分割型光通話路
JP2004015172A (ja) * 2002-06-04 2004-01-15 Nec Corp 無瞬断切替方式および無瞬断切替方法
US20040105620A1 (en) * 2002-11-29 2004-06-03 Beacken Marc J. Method and apparatus for temporally shifting one or more packets using wavelength selective delays
JP2005017385A (ja) * 2003-06-23 2005-01-20 Fujitsu Ltd 分散補償器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659041B2 (ja) 1987-02-13 1994-08-03 日本電気株式会社 高速光バス
US5280376A (en) 1991-05-29 1994-01-18 Mitsubishi Denki Kabushiki Kaisha Light transmission system
JPH0774730A (ja) * 1993-09-01 1995-03-17 Nippon Telegr & Teleph Corp <Ntt> 多周波数光源
JPH08146479A (ja) * 1994-11-22 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光波長変換回路および光遅延補償回路
JP3033547B2 (ja) 1997-11-14 2000-04-17 日本電気株式会社 波長多重光受信装置、波長多重光通信システム及び光伝送路切り替え方法
JP2001142102A (ja) * 1999-11-11 2001-05-25 Nippon Telegr & Teleph Corp <Ntt> 光可変波長バッファ
WO2003049330A1 (fr) * 2001-12-03 2003-06-12 Fujitsu Limited Systeme de communication optique
JP2003318863A (ja) * 2002-04-26 2003-11-07 Rikogaku Shinkokai 可変遅延型光バッファ回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183508A (ja) * 1991-05-29 1993-07-23 Mitsubishi Electric Corp 光伝送装置
JPH09238370A (ja) * 1996-03-01 1997-09-09 Nippon Telegr & Teleph Corp <Ntt> 波長分割型光通話路
JP2004015172A (ja) * 2002-06-04 2004-01-15 Nec Corp 無瞬断切替方式および無瞬断切替方法
US20040105620A1 (en) * 2002-11-29 2004-06-03 Beacken Marc J. Method and apparatus for temporally shifting one or more packets using wavelength selective delays
JP2005017385A (ja) * 2003-06-23 2005-01-20 Fujitsu Ltd 分散補償器

Also Published As

Publication number Publication date
US20090269079A1 (en) 2009-10-29
GB2445687A8 (en) 2010-07-07
GB2445687A (en) 2008-07-16
JPWO2007043121A1 (ja) 2009-04-16
GB2445687B (en) 2010-06-09
US8515288B2 (en) 2013-08-20
US20090136239A1 (en) 2009-05-28
GB0805505D0 (en) 2008-04-30
WO2007043121A1 (ja) 2007-04-19
GB2445687B8 (en) 2010-07-07
WO2007043121A9 (ja) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4911032B2 (ja) 光信号伝送制御装置および光信号伝送制御方法
US6351323B1 (en) Optical transmission apparatus, optical transmission system, and optical terminal station
JP3463717B2 (ja) 波長多重光伝送装置および波長多重光伝送システム
US7555220B2 (en) Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation
JP4940861B2 (ja) Wdm光伝送システム
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
JP6244670B2 (ja) 光伝送装置、光伝送システム、及び警報機能の試験方法
JP2010139854A (ja) 波長多重伝送装置及び波長多重伝送方法
JP4751934B2 (ja) 光伝送装置および光伝送方法
JP3864338B2 (ja) 分散補償装置及び分散補償制御方法
JP5505098B2 (ja) 波長多重装置および検出方法
JPWO2004045114A1 (ja) 光受信装置
JP2002280966A (ja) Oadmシステムの挿入信号レベル設定システム及びその設定方法
JP3233204B2 (ja) 波長光adm装置
EP3678304B1 (en) Optical transmission device and spectrum control method
US7623791B2 (en) Optical signal multiplexing device and optical signal multiplexing method
JP4246644B2 (ja) 光受信器及び光伝送装置
US20100111536A1 (en) Communication network and design method
JP2005260370A (ja) 光信号劣化補償器
JPWO2007036988A1 (ja) 光信号分離装置および光信号分離方法
US6832019B2 (en) Duplex reflective re-configurable optical add/drop multiplexers
JP3468097B2 (ja) 超広帯域波長分散補償・増幅デバイス
JP3954072B2 (ja) 光レベル制御方法、光レベル制御装置及び波長多重光ネットワーク
JP4851553B2 (ja) 光スイッチとその制御方法
JP6745915B2 (ja) 波長多重光装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4911032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees