JP4905215B2 - 磁歪式軸力センサ - Google Patents

磁歪式軸力センサ Download PDF

Info

Publication number
JP4905215B2
JP4905215B2 JP2007085524A JP2007085524A JP4905215B2 JP 4905215 B2 JP4905215 B2 JP 4905215B2 JP 2007085524 A JP2007085524 A JP 2007085524A JP 2007085524 A JP2007085524 A JP 2007085524A JP 4905215 B2 JP4905215 B2 JP 4905215B2
Authority
JP
Japan
Prior art keywords
magnetic
axial force
force sensor
magnetostrictive
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007085524A
Other languages
English (en)
Other versions
JP2008241613A (ja
Inventor
宗勝 島田
政夫 相原
光昭 藤田
敏光 松岡
正晴 大島
清弘 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007085524A priority Critical patent/JP4905215B2/ja
Priority to US12/529,693 priority patent/US8692545B2/en
Priority to PCT/JP2008/053421 priority patent/WO2008117618A1/ja
Priority to EP08712043A priority patent/EP2128581A4/en
Publication of JP2008241613A publication Critical patent/JP2008241613A/ja
Application granted granted Critical
Publication of JP4905215B2 publication Critical patent/JP4905215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は軸力を検出するセンサに関し、より具体的には磁歪の逆効果を利用して軸力を検出する磁歪式軸力センサに関する。
弾性を有する部材に負荷される応力を検出する方法としては、歪ゲージを貼る方法が一般によく知られている。しかしながら、例えば自動車等の足回りリンクに働く軸力(引張力および圧縮力)を検出するためには、ロバスト性が要求されるため、歪ゲージによる方法は、問題を有する。
そのため、磁歪の逆効果を利用した応力センサ(磁歪式応力センサ)が、提案されている(例えば、非特許文献1参照。)。
Garshelis, Ivan J.,「New types of Magnetoelastic Transducers for Sensing Force Related Parameters」,「SAE Paper」,No.910856,「Sensors and Actuators」,1991年
しかし、従来の磁歪式応力センサは、感度が低く、実際に使用するには至っていないのが現実である。
本発明は、上記従来技術に伴う課題を解決するためになされたものであり、ロバスト性に優れた廉価な磁歪式軸力センサを提供することを目的とする。
上記目的を達成する本発明に係る磁歪式軸力センサは、軸力が作用する軸部材に、当該軸部材の軸方向に沿って複数回折り返された折り返し部が形成され、前記折り返し部には、軸方向と直交する方向に隣り合い、磁歪を有すると共に、作用する軸力により一方には引張応力が生じ他方には圧縮応力が生じる少なくとも一対の磁性部材が設けられ、前記対の磁性部材の間に磁石が配置され、前記対の磁性部材における前記磁石が配置される側と反対側の各々に、磁性部材からの漏れ磁束を検知する磁気センサが配置されることを特徴とする磁歪式軸力センサである。
上記のように構成した本発明に係る磁歪式軸力センサは、作用する軸力により一方には引張応力が生じ他方には圧縮応力が生じる少なくとも一対の磁性部材が設けられ、この対の磁性部材の間に磁石が配置され、磁石が配置される側と反対側に磁気センサが配置されるため、それぞれの磁気センサにより引張と圧縮に対応する漏れ磁束の変化を同時に検知して軸力を計測できる。したがって、ロバスト性が高く廉価な部品を用いているため、ロバスト性に優れ、かつ廉価な磁歪式軸力センサを実現できる。
始めに、前述した従来技術の磁歪による力センサについて説明する。
図14は、前述した非特許文献に記載の磁歪の逆効果による力センサの説明図である。
図14(a)において、PMは永久磁石であり、FSは磁気センサである。中央のコアは磁歪を有している。PMの磁束は図のように分布し、コアを矢印のように磁化するとともに、磁束はコアも通っている。コアに引張が働くと、磁束がコアをより多く通るため、FSを通過する磁束は減少する。一方、圧縮が働くと、磁束はコアを通りにくくなるため、FSを通過する磁束が増加する。かくして、FSの信号の大きさはコアに働く応力の大きさを反映することになる。これが提案されている力センサの原理である。磁束を発生させるのに電源がいらない点が特徴である。FSの位置としては、同図の(b)に示されているように、Aまたは、Bの位置でもよいことが述べられている。引張と圧縮では、FSの信号の変化の仕方は、圧縮の方が大きく、そのセンサの定格の範囲において、圧縮にて、30から80%の変化があることがデータで示されている。
以上の提案では、データは、パイプ(コア)の中に、円筒状のアルニコ磁石を配置し、薄肉パイプの表面に、リニアホールICを置いて、取られている(図14の(a)の状態に対応している)。パイプへの応力印加は、ステンレス製のねじ部をパイプに接着して行っている。したがって、原理確認の段階の域にある。
以下では、図面を参照して、本発明の実施の形態を説明する。
図1および図2は、本実施形態に係る磁歪式軸力センサを説明するための平面図および側面図、図3は、同磁歪式軸力センサの回路を説明するためのブロック図である。
本実施形態に係る磁歪式軸力センサ1は、被計測体である軸部材2に形成される折り返し部3と、折り返し部3に配置される磁石13および2つの磁気センサ4A,4Bと、磁気センサ4A,4Bからの出力信号A1,A2が入力されて磁歪式軸力センサとしてのセンサ出力を出力する回路部5と、温度センサ6とを有している。
軸部材2は、マルエージング鋼を機械加工することによって形成される。マルエージング鋼の適用は、磁歪式軸力センサ1のロバスト性、感度およびセンサ特性に関して好ましい。また、18%Ni系のマルエージング鋼は、磁歪が大きい点で好ましく、時効状態で使用するとヒステリシスのない良好な特性となるため、より好ましい。
軸部材2には、軸力(軸方向の引張力および圧縮力)が作用し、折り返し部3は、軸方向へ複数回折り返して形成されている。折り返し部3は、軸心に沿って対称形状の2つの第1折り返し部3Aと第2折り返し部3Bを有しており、本実施形態では、第1折り返し部3Aに磁石13および磁気センサ4A,4Bが設けられる。
第1折り返し部3Aは、軸部材2の外周側において軸方向の一方側から他方側へ軸方向に延びる第1磁性部材7と、第1磁性部材7の他方側の端部から折り返されて反対の軸方向へ延びる第2磁性部材8と、更に第2磁性部材8の一方側の端部から折り返されて反対の軸方向へ延び、軸部材2の他方側に接続する第3磁性部材9とを有している。第1〜第3磁性部材7〜9は、それぞれ平行な板形状で形成される。
第1〜第3磁性部材7〜9は、磁性部材の並ぶ配列方向(板面の直交方向)および軸方向の両方向と直行する幅方向の幅長hが、軸直径Dよりも短い均一な長さで形成される。したがって、折り返し部3の幅方向の外側には、軸部材2から窪んだ2つの空間部14A,14Bが形成される。
第2折り返し部3Bは、第1折り返し部3Aと対称形状であるため、第1〜第3磁性部材7〜9と対称な第4〜第6磁性部材10〜12を有している。したがって、第1折り返し部3Aおよび第2折り返し部3Bには、全体で6枚(偶数枚)の磁性部材7〜12が形成される。
第1〜第6磁性部材7〜12は、例えばそれぞれの板厚dが1mmで形成される。なお第1磁性部材7と第6磁性部材12は、軸の外周面を形成するため部位によって板厚が異なり、例えば最も薄い部位の板厚が1mmで形成されるが、外周面が平面に加工されていてもよい。
磁石13は、第2磁性部材8と第3磁性部材9の間に配置され、第2磁性部材8および第3磁性部材9の磁石13が配置される面の反対面に、それぞれ磁気センサ4A,4Bが取り付けられる。磁石13の着磁方向は、第2磁性部材8および第3磁性部材9の磁石13と接する面と直交する方向(図1の上下方向)と一致し、第2磁性部材8および第3磁性部材9に生じる応力の方向(図1の左右方向)と直交している。なお、磁気センサ4A,4Bが取り付けられるそれぞれの磁性部材8,9は、磁性部材の板厚dおよび幅長hが等しく、軸方向と直交する面における断面積が等しいため、正負が逆で絶対値の等しい引張応力および圧縮応力が作用する。
第2磁性部材8および第3磁性部材9の板材の間に磁石13が配置されると、それぞれの磁性部材の磁石13が設けられる面と反対面(磁気センサ4A,4Bが設けられる面)において、漏れ磁束が生じる。
軸部材2に例えば引張力が作用すると、第1、第3板、第4および第6磁性部材7,9,10および12には引張応力が生じ、第2および第5磁性部材8,11には圧縮応力が生じる。逆に軸部材2に圧縮力が作用すると、第1、第3板、第4および第6磁性部材7,9,10および12には圧縮応力が生じ、第2および第5磁性部材8,11には引張応力が生じる。したがって、軸部材2に引張力または圧縮力のいずれが作用しても、軸方向と直交する方向に隣り合う対の磁性部材(本実施形態においては、第2磁性部材8と第3磁性部材9)において、引張応力と圧縮応力の両方が発生する。第2磁性部材8および第3磁性部材9に軸方向の応力が生じると、磁気センサ4A,4Bにおける漏れ磁束が逆磁歪の効果によって変化する。
例えば、引張応力が磁性部材8または9に負荷される場合、磁石13からの磁束は、磁性部材8または9を透過し易くなるため、漏れ磁束は減少する。一方、圧縮応力が磁性部材8または9に負荷される場合、磁石13からの磁束は、磁性部材8または9を透過し難くなるため、漏れ磁束は増加する。漏れ磁束の減少および増加は、磁気センサ4A,4Bによって検出することができる。
本実施形態に係る軸部材2は、2つの折り返し部3A,3Bが軸心に沿って対称形状で形成されるため、軸力が軸心を中心に釣り合い、軸部材2に曲がりが生じ難い構造となっている。
磁気センサ4A,4Bは、例えばリニアホールICであり、リニアホールIC4A,4Bからの出力信号A1,A2は、回路部5に入力される。回路部5には、磁歪式軸力センサ1における信号処理回路が一体的に形成されることが好ましい。
本実施形態では、リニアホールIC4A,4Bのそれぞれが引張応力、圧縮応力に対応した磁束変化を同時に検知するため、両者の信号を差動することにより略2倍の感度の信号が得られ、かつ良好な直線性が確保される。
温度センサ6は、リニアホールIC4A,4Bの近傍において、リニアホールIC4A,4Bが取り付けられた第2磁性部材8または第3磁性部材9に取り付けられる。なお、温度センサ6の取り付け位置は、逆磁歪が生じる部位の温度環境を計測できれば、特に限定されない。
回路部5は、軸部材2に形成される収容空間15に配置される。回路部5は、軸部材2の一部の空間に納めることができるため、プラグイン型の小型のセンサとすることができる。なお、回路部5の配置位置は、他の位置でもよく、例えば空間部14A,14Bに収めることもできる。
図3に示すように、温度センサ6により計測される温度によって、リニアホールIC4A,4Bへの供給電圧Vccを制御することにより、磁歪式軸力センサ1の温度補償を達成することができる。図のようにリニアホールIC4A,4Bからの出力信号A1,A2が差動回路16に入力され、差動回路16で差動された出力が、磁歪式軸力センサ1のセンサ出力である。
温度センサ6からの信号は、電圧制御部17へ入力され、温度センサ6からの信号に基づいて、リニアホールIC4A,4Bへの供給電圧Vccが制御される。リニアホールIC4A,4Bのゼロ点は差動により補償され、リニアホールIC4A,4Bの感度、磁石磁束の温度依存、逆磁歪の温度依存は供給電圧Vccの制御により、温度補償される。
温度補償を行うには、温度の異なる2点における感度が同じになるように、予め電圧制御部17を校正する必要がある。2点の温度の間は線形補間し、その外側では線形で外挿する。
図4は、磁歪式軸力センサの他の温度補償回路を説明するためのブロック図である。
図4に示すように、リニアホールIC4A,4Bの両出力A1,A2が加算回路19に入力され、リニアホールIC4A,4Bの出力A1,A2が加算された加算回路19からの信号が、電圧制御部18に入力される。電圧制御部18では、加算回路19からの信号(リニアホールIC4A,4Bの出力の和を表す信号)が常に一定に保たれるように、供給電圧Vccが制御される。
なお、リニアホールIC4A,4Bの出力信号A1,A2のゼロ点が0Vから外れている場合には、両リニアホールIC4A,4Bの感度分に相当する電圧の和が常に室温のときと同じになるように供給電圧Vccを制御することにより、より精度の高い感度補償ができる。リニアホールIC4A,4Bのゼロ点が(絶対値にて)0.1Vより大きい場合には、この方法が特に好適である。
図5は、ヨークが設けられた磁歪式軸力センサの変形例を示す正面図および側面図である。
本実施形態の変形例として、図5に示すように、それぞれの磁気センサ4A,4Bの外側を囲むように、磁気センサ4A,4Bが取り付けられた第2,第3磁性部材8,9にコ字状のヨーク20A,20Bを設けることもできる。
ヨーク20A,20Bは、例えばPB(Ni−Fe)パーマロイ(軟磁性材)からなり、集磁効果による感度向上および外部磁界に対する耐性向上を図ることが可能である。また、磁気センサ4A,4Bの位置設定に対して磁気センサ特性が鈍感になるというメリットも有する。また、2つの磁気センサ4A,4Bを同一形状のヨーク20A,20Bで囲むことにより、それぞれの磁場環境を均一にすることができ、精度の高い感度補償が可能となる。なお、PBパーマロイは、純水素中、1200℃で2時間熱処理が施されている。
図6および7は、ストッパ機構が設けられた磁歪式軸力センサの他の変形例を示す正面図および側面図である。
他の実施形態として、図6,7に示すように、軸部材2の軸方向への変形を規制するストッパ機構25を設けることもできる。ストッパ機構25は、折り返し部3の軸方向両側において、それぞれ軸部材2に外周側から形成される凹部22A,22Bに、ストッパ部材23の軸方向両端の凸部24A,24Bが嵌合することにより構成される。凸部24A,24Bの軸方向の幅L1は、凹部22A,22Bの軸方向の幅L2よりも小さく形成され、凹部22A,22B内において、凸部24A,24Bの軸方向の移動が、所定量許容される。軸部材2に高い負荷が入力される際には、凸部24A,24Bが凹部22A,22Bに接触し、ストッパ部材23が荷重を担って軸部材2の変形を制限する。したがって、磁歪式軸力センサ1の起歪部(磁性部材の磁歪の生じる部位)を薄肉化できるため磁性部材8〜12を高応力状態にでき、感度を高めることが可能になるとともに、ロバスト性を高く保つことができる。
図8および9は、保護カバーが設けられた磁歪式軸力センサの更に他の変形例を示す正面図および側面図である。
図8,9に示すように、折り返し部3を、保護カバー26で覆って保護することもできる。保護カバー26には、種々の材料を適用できるが、外部磁界に対する耐性向上をも考慮すると、磁性体で作成することが好ましい。
上述のように、本実施形態に係る磁歪式軸力センサ1は、廉価であり、歪ゲージと比較してロバスト性が高い磁石13および磁気センサ4A,4Bを用いるため、磁歪式軸力センサ1自体もロバスト性が高く廉価で作製できる。
また、磁石13の着磁方向が、第2磁性部材8および第3磁性部材9の磁石13と接する面と直交する方向(図1の上下方向)と一致するため、センサ特性(感度)の良好な磁歪式軸力センサ1を実現できる。
(基礎試験)
まず、基本的な磁歪式センサの実験および実験結果について説明する。
図10は、基礎試験に使用した磁歪式センサを説明するための平面図である。
基礎試験では、被計測体31に応力を作用させ、被計測体31の一方側に磁石32を配置すると共に反対側に磁気センサ33を設置し、磁気センサ33により漏れ磁束を検知した。被計測体31は、幅長20mm、板厚2mmのマルエージング鋼(磁歪を有する磁性体)製の板材であり、マルエージング鋼(18%Ni−9%Co−5%Mo)である日立金属製のYAG300を用いた。板材を機械加工した後、固溶化および時効熱処理を施した。固溶化は真空中にて820℃×1h保持後、室温まで冷却し、時効はその後、真空中にて490℃×5h保持後、空冷した。磁石32は、円筒状の薄肉磁石であり、軸方向に着磁されており、軸方向が被計測体31の面と直交している。磁石32は、φ10mm、長さ7mmのSmCo磁石を用いた。磁石単体での端面磁束密度は約4kGであった。磁気センサ33は、被計測体31の面に垂直方向の磁束成分を検知する。具体的にはガウスメータの薄板プローブを用い、表面から約0.5mm付近の磁束を検知した。
図11は、基礎試験における応力と磁束密度の関係の計測結果を示すグラフである。
図11の縦軸は、被計測体31に、板の延在方向(図中の矢印方向)に圧縮および引張力を印加したときの、磁気センサ33で計測された磁束密度の変化量を表している。なお、荷重0kNでの磁束密度は約150Gであった。結果として、図11に示すように、直線的で、ヒステリシスのない良好な特性が得られた。なお、圧縮荷重では−8kNの荷重(200MPa)で25Gの変化(増加)、引張荷重では+8kNの荷重で20Gの変化(減少)であり、感度は引張荷重の方が低い。
また、ガウスメータプローブを、取り付け面における前後左右に1mm動かした位置においても、まったく同じ特性であった。
以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例にのみ限定されることはない。
(実施例1)
温度補正を実施しない磁歪式軸力センサを試作した。なお、構成は、上述した本実施形態(図1、2参照)と略同様であるが、温度センサ6、ストッパ機構25および保護カバー26は設けていない。
軸部材2および磁性部材7〜12を構成する磁歪材料として、マルエージング鋼(18%Ni−9%Co−5%Mo)である日立金属製のYAG300を用いた。磁性部材7〜12の板厚dは1.0mmで、幅長hは10mmであった。
機械加工の後、固溶化および時効熱処理を施した。固溶化は真空中にて820℃×1h保持後、室温まで冷却し、時効は真空中にて490℃×5h保持後、空冷した。
磁石13には、φ3mm、長さ3.5mmのSmCo磁石を用いた。磁石13は10Tのパルス磁界で着磁した後、200℃で1時間、熱枯らしを行った。その後の磁石単体での端面の磁束密度は、約4.1kGであった。
磁気センサにはリニアホールIC4A,4Bを用いた。磁気感度は約7mV/Gであった。
図12は、実施例1における磁歪式軸力センサの感度の計測結果を示すグラフである。横軸の応力は、磁性部材の応力に換算している。図のように、応力200MPaあたり、45Gのセンサ出力(磁束の変化を差動した値)が得られた。これにより、センサ出力から応力値を換算できることが確認された。
(実施例2)
実施例1の磁歪式軸力センサ1の近傍に温度センサ6を設置し、温度センサ6からの信号に基づいて、リニアホールIC4A,4Bへの供給電圧であるVccを制御して温度補償を行った(図3参照)。具体的には、まず、室温で供給電圧を5.00Vに設定し、次に、センサ全体を100℃に昇温し、2つの条件におけるセンサ感度が同じになるような供給電圧Vccを出力できるように、校正値を設定した。次に、2点の温度(室温および100℃)の間の温度では線形補間し、その外側(室温未満および100℃超)では線形で外挿した校正値を設定した。
この後、温度を変化させつつ、温度信号をもとに供給電圧Vccを制御して、感度の計測を行った。
図13は実施例2における磁歪式軸力センサの温度特性の計測結果を示すグラフである。縦軸の感度比は、センサ出力を20℃における値を基準として正規化した感度である。破線は供給電圧の制御無しの場合であり、実線は制御有りの場合である。図13に示すように、破線では温度変化によって感度比が変化するが、実線では温度が変化しても、感度は略一定となっており、−20℃から100℃の範囲において良好に感度の温度補償が行われていることが確認できた。
なお、本発明は上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、本実施形態では、磁気センサ4A,4BとしてリニアホールICを使用しているが、省電力で小型であるホール素子ならびにGMRセンサを使うこともできることは言うまでもない。
また、磁歪を有する磁性体としてはマルエージング鋼についての例示のみであったが、FeAl合金であるアルフェル、FeCoV合金であるパーメンジュール、FeGa合金、FeGaAl合金であるガルフェノール等の磁歪効果の大きい他の磁性体を用いることができることは言うまでもない。また、必ずしも軸部材2の全体が磁性体である必要はなく、最低限、折り返し部3のリニアホールIC4A,4Bが取り付けられる部位およびその近傍が磁歪を有する磁性体であればよい。
また、軸部材2の形状は円柱形状に限定されず、軸力が作用する部材であれば、本実施形態に係る磁歪式軸力センサ1を適用できる。
また、折り返し部3における磁石13および磁気センサ4A,4Bの取り付け位置は、第2および第3磁性部材8,9に限定されず、第1および第2磁性部材7,8、第4および第5磁性部材10,11、または第5および第6磁性部材11,12であってもよい。また、取り付け位置が、これらの複数個所であってもよい。また、折り返し部3における折り返しの回数(磁性部材の数)が、本実施形態と異なってもよい。
本実施形態に係る磁歪式軸力センサを説明するための平面図である。 本実施形態に係る磁歪式軸力センサを説明するための側面図である。 同磁歪式軸力センサの回路を説明するためのブロック図である。 磁歪式軸力センサの他の温度補償回路を説明するためのブロック図である。 ヨークが設けられた磁歪式軸力センサの変形例を示す正面図である。 ストッパ機構が設けられた磁歪式軸力センサの他の変形例を示す正面図である。 ストッパ機構が設けられた磁歪式軸力センサの他の変形例を示す側面図である。 保護カバーが設けられた磁歪式軸力センサの更に他の変形例を示す正面図である。 保護カバーが設けられた磁歪式軸力センサの更に他の変形例を示す側面図である。 基礎試験に使用した磁歪式センサを説明するための平面図である。 基礎試験における応力と磁束密度の関係の計測結果を示すグラフである。 実施例1における磁歪式軸力センサの感度の計測結果を示すグラフである。 実施例2における磁歪式軸力センサの温度特性の計測結果を示すグラフである。 従来技術における磁歪の逆効果による力センサの説明図である。
符号の説明
1 磁歪式軸力センサ、
2 軸部材、
3 折り返し部、
3A,3B 第1,第2折り返し部、
4A,4B リニアホールIC(磁気センサ)、
5 回路部、
6 温度センサ、
7〜12 第1〜第6磁性部材、
13 磁石、
16 差動回路、
17,18 電圧制御部、
19 加算回路、
20A,20B ヨーク、
25 ストッパ機構、
26 保護カバー、
A1,A2 磁気センサ出力信号、
D 軸直径、
d 板厚、
h 幅長、
Vcc 供給電圧。

Claims (11)

  1. 軸力が作用する軸部材に、当該軸部材の軸方向に沿って複数回折り返された折り返し部が形成され、
    前記折り返し部には、軸方向と直交する方向に隣り合い、磁歪を有すると共に、作用する軸力により一方には引張応力が生じ他方には圧縮応力が生じる少なくとも一対の磁性部材が設けられ、
    前記対の磁性部材の間に磁石が配置され、
    前記対の磁性部材における前記磁石が配置される側と反対側の各々に、磁性部材からの漏れ磁束を検知する磁気センサが配置されることを特徴とする磁歪式軸力センサ。
  2. 前記対の磁性部材に配置される各々の磁気センサの出力を差動した値を出力することを特徴とする請求項1に記載の磁歪式軸力センサ。
  3. 前記磁性部材の前記磁石が取り付けられる面に対し、前記磁石の着磁方向が直交していることを特徴とする請求項1または2に記載の磁歪式軸力センサ。
  4. 前記磁性部材は、板形状で形成されることを特徴とする請求項1〜3のいずれか1項に記載の磁歪式軸力センサ。
  5. 前記折り返し部が、軸部材の中心軸に対して対称形状で形成されることを特徴とする請求項1〜4のいずれか1項に記載の磁歪式軸力センサ。
  6. 前記軸部材に所定量以上の軸力が作用する際に、前記軸部材の軸方向への変形を規制するストッパ機構を有することを特徴とする請求項1〜5のいずれか1項に記載の磁歪式軸力センサ。
  7. 前記磁性部材がマルエージング鋼であることを特徴とする請求項1〜6のいずれか1項に記載の磁歪式軸力センサ。
  8. 前記磁気センサがリニアホールICであることを特徴とする請求項1〜7のいずれか1項に記載の磁歪式軸力センサ。
  9. 前記磁性部材の磁気センサが取り付けられる部位の温度を検知して前記リニアホールICへの供給電圧を制御することにより、前記磁気センサからの信号の温度特性を補償したことを特徴とする請求項8に記載の磁歪式軸力センサ。
  10. 前記リニアホールICの出力電圧の和を基に、前記リニアホールICへの供給電圧を制御することにより、前記磁気センサからの信号の温度特性を補償したことを特徴とする請求項8または9に記載の磁歪式軸力センサ。
  11. 前記磁気センサからの信号が入力され、信号処理回路が一体的に形成される回路部を有することを特徴とする請求項1〜10のいずれか1項に記載の磁歪式軸力センサ。
JP2007085524A 2007-03-28 2007-03-28 磁歪式軸力センサ Expired - Fee Related JP4905215B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007085524A JP4905215B2 (ja) 2007-03-28 2007-03-28 磁歪式軸力センサ
US12/529,693 US8692545B2 (en) 2007-03-28 2008-02-27 Magnetostrictive stress sensor
PCT/JP2008/053421 WO2008117618A1 (ja) 2007-03-28 2008-02-27 磁歪式応力センサ
EP08712043A EP2128581A4 (en) 2007-03-28 2008-02-27 MAGNETOSTRICTIVE STRAIN SENSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085524A JP4905215B2 (ja) 2007-03-28 2007-03-28 磁歪式軸力センサ

Publications (2)

Publication Number Publication Date
JP2008241613A JP2008241613A (ja) 2008-10-09
JP4905215B2 true JP4905215B2 (ja) 2012-03-28

Family

ID=39913135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085524A Expired - Fee Related JP4905215B2 (ja) 2007-03-28 2007-03-28 磁歪式軸力センサ

Country Status (1)

Country Link
JP (1) JP4905215B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458745B1 (ko) * 2018-12-28 2022-10-24 닛폰 하츠죠 가부시키가이샤 응력 검출 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037264A (ja) * 2003-07-16 2005-02-10 Komatsu Ltd 力検出センサ
JP2006038648A (ja) * 2004-07-27 2006-02-09 Tdk Corp センサ及び磁歪センサのセンシング方法
JP4993401B2 (ja) * 2005-06-29 2012-08-08 日産自動車株式会社 応力センサ

Also Published As

Publication number Publication date
JP2008241613A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5684442B2 (ja) 磁気センサ装置
US8692545B2 (en) Magnetostrictive stress sensor
JP5376859B2 (ja) 磁気式力センサ及び磁気式力センサを有するロボットアーム
US8893562B2 (en) System and method for detecting magnetic noise by applying a switching function to magnetic field sensing coils
EP1181516B1 (en) Magnetoelastic load cell
US9574953B2 (en) Magnetic force sensor
JP2013032970A (ja) 磁気式荷重センサ
EP3171126B1 (en) Temperature tolerant magnetic linear displacement sensor
Bieńkowski et al. Industrial application of magnetoelastic force and torque sensors
DE102017104547A1 (de) Drucksensor sowie Druckmessverfahren
JP2016176928A (ja) 冗長トルクセンサ−多重バンドアレイ
JP4546108B2 (ja) 走査型プローブ顕微鏡用微動機構ならびに走査型プローブ顕微鏡
JPWO2009041682A1 (ja) 検知装置及び、計測装置
JP4905215B2 (ja) 磁歪式軸力センサ
WO2019146347A1 (ja) 磁気センサおよび電流センサ
JP2000019034A (ja) 磁界検出センサ
JP5119880B2 (ja) 磁歪式応力センサ
JP2012088185A (ja) 磁気検知デバイス及び磁歪力センサ
CN115452204A (zh) 一种基于逆磁致伸缩效应的力传感测量方法
JP5136330B2 (ja) 磁歪式応力センサ
JP2006300902A (ja) 応力検出方法及び装置
Ehle et al. Self-sensing Actuators Based on Ferromagnetic Shape Memory Alloys
TW201115129A (en) Torque sensing device
JP5187099B2 (ja) 磁歪式応力センサ
CN218724901U (zh) 一种基于逆磁致伸缩效应的力传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees