JP4899825B2 - Semiconductor light emitting device, light emitting device - Google Patents

Semiconductor light emitting device, light emitting device Download PDF

Info

Publication number
JP4899825B2
JP4899825B2 JP2006320401A JP2006320401A JP4899825B2 JP 4899825 B2 JP4899825 B2 JP 4899825B2 JP 2006320401 A JP2006320401 A JP 2006320401A JP 2006320401 A JP2006320401 A JP 2006320401A JP 4899825 B2 JP4899825 B2 JP 4899825B2
Authority
JP
Japan
Prior art keywords
layer
light
light emitting
conductive
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006320401A
Other languages
Japanese (ja)
Other versions
JP2008135554A (en
Inventor
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2006320401A priority Critical patent/JP4899825B2/en
Publication of JP2008135554A publication Critical patent/JP2008135554A/en
Application granted granted Critical
Publication of JP4899825B2 publication Critical patent/JP4899825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は、半導体発光素子に関し、特にパッド電極を有する半導体発光素子、発光装置関する。 The present invention relates to a semiconductor light emitting device, the semiconductor light-emitting device having a particularly pad electrode, relates to a light-emitting device.

窒化物系化合物半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子である発光素子は球切れ等の心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(Light Emitting Diode:LED)、レーザーダイオード(Laser Diode:LD)等の半導体発光素子は、各種の光源として利用されている。特に近年は、蛍光灯に代わる照明用の光源として、より低消費電力で長寿命の次世代照明として注目を集めており、更なる発光出力の向上及び発光効率の改善が求められている。   Nitride-based compound semiconductor light-emitting elements emit light of a bright color that is small and power efficient. In addition, a light emitting element which is a semiconductor element does not have a concern about a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, semiconductor light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources. In particular, in recent years, as a light source for illumination replacing a fluorescent lamp, attention has been attracted as next-generation illumination with lower power consumption and longer life, and further improvement in light emission output and improvement in light emission efficiency are required.

半導体発光素子は、ワイヤボンディング用のワイヤやフリップチップ用のバンプ等、外部電極と電気的に接続するためのパッド電極を有する。このようなパッド電極を有する従来のGaN系化合物半導体発光素子の一例を図11の断面図に示す。この図に示すGaN系化合物半導体素子70は、サファイア基板71上に成長されたn型半導体層72と、発光層73と、p型半導体層74と、透明電極75と、p側パッド電極76と、n側パッド電極77とを有する。n側パッド電極77はpn接合の下側と接続するため、発光面の一部を切り欠き、n型半導体層72を露出させて形成される。また表面には保護膜78が被覆される。さらにパッド電極76、77の上に、ボンディングワイヤ(図示せず)を接続させる。   The semiconductor light emitting device has a pad electrode for electrically connecting to an external electrode, such as a wire for wire bonding or a bump for flip chip. An example of a conventional GaN-based compound semiconductor light emitting device having such a pad electrode is shown in the cross-sectional view of FIG. A GaN-based compound semiconductor element 70 shown in this figure includes an n-type semiconductor layer 72 grown on a sapphire substrate 71, a light emitting layer 73, a p-type semiconductor layer 74, a transparent electrode 75, a p-side pad electrode 76, N-side pad electrode 77. Since the n-side pad electrode 77 is connected to the lower side of the pn junction, the n-type semiconductor layer 72 is exposed by cutting out a part of the light emitting surface. The surface is covered with a protective film 78. Further, bonding wires (not shown) are connected on the pad electrodes 76 and 77.

このGaN系化合物半導体素子70では、その構造上p側パッド電極76の直下に電流がよく流れるため、この部分から電流が発光層73側に注入され、本来は最も良く発光する部分となる。しかしながら、p側パッド電極76の直下に位置する透明電極75を構成する金属によって下面、すなわち発光層73からの発光が吸収されてしまうという問題があった。このため、p側パッド電極76の下面に注入される電流は寧ろ発光に寄与せず、発光効率の面からは逆にp側パッド電極76下への電流注入を抑制し、発光を抑える構成が採用されている。   In this GaN-based compound semiconductor element 70, current flows well under the p-side pad electrode 76 due to its structure, so that current is injected from this portion to the light emitting layer 73 side, and becomes a portion that emits light best. However, there is a problem in that light emitted from the lower surface, that is, the light emitting layer 73 is absorbed by the metal constituting the transparent electrode 75 located immediately below the p-side pad electrode 76. For this reason, the current injected into the lower surface of the p-side pad electrode 76 does not contribute to light emission, but from the viewpoint of light emission efficiency, the current injection under the p-side pad electrode 76 is suppressed to suppress light emission. It has been adopted.

例えば、図12及び図13に示すGaN系化合物半導体素子80では、p側パッド電極81下にSiOからなる絶縁膜82を設けて、この部分での通電を阻止し、非発光面としている(特許文献1参照)。この構成により、p側パッド電極81の電流が電極直下でなく電極外側に流れるように回り込ませ、p側パッド電極81から直下に流れる電流をなくしてこの領域を非発光とし、透明電極83による光の吸収をなくして全体としての光取り出し効率を向上させている。
特開平8−250769号公報 特開2003−124517号公報 特開2005−197289号公報
For example, in the GaN-based compound semiconductor device 80 shown in FIG. 12 and FIG. 13, an insulating film 82 made of SiO 2 is provided under the p-side pad electrode 81 to prevent energization in this portion, thereby providing a non-light emitting surface ( Patent Document 1). With this configuration, the current of the p-side pad electrode 81 is circulated so as to flow outside the electrode, not directly under the electrode, the current flowing directly under the p-side pad electrode 81 is eliminated, and this region is made non-light emitting. As a result, the light extraction efficiency as a whole is improved.
JP-A-8-250769 JP 2003-124517 A JP 2005-197289 A

しかしながら、上記構成では、電流をp側パッド電極の周囲に偏在させるように通電するため、局所的な劣化が生じ、ひいては素子の寿命に悪影響を及ぼすという問題があった。また一方で、照明用光源としての更なる光取り出し効率の改善や高出力化、高効率化が求められている。   However, in the above configuration, since current is applied so as to be unevenly distributed around the p-side pad electrode, there is a problem in that local degradation occurs and, consequently, the life of the element is adversely affected. On the other hand, further improvement of light extraction efficiency as light source for illumination, higher output, and higher efficiency are required.

本発明は、このような状況に鑑みなされたものである。本発明の一の目的は、半導体層と透光性導電層やパッド電極との界面で吸収されていた光を効果的に外部に取り出すことにより、高効率で光り取り出し効率の高い半導体発光素子、発光装置提供することにある。 The present invention has been made in view of such a situation. One object of the present invention is to efficiently extract light absorbed at the interface between a semiconductor layer and a light-transmitting conductive layer or a pad electrode to the outside, thereby providing a semiconductor light emitting device with high efficiency and high light extraction efficiency, The object is to provide a light emitting device.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

以上の目的を達成するために第1の半導体発光素子は、第1導電型の半導体層と、第1導電型半導体層上の少なくとも一部に形成された発光層と、発光層の上に形成された第2導電型の半導体層と、第2導電型半導体層上の少なくとも一部に形成された透光性絶縁層と、透光性絶縁層上の少なくとも一部に形成された第2導電型パッド電極とを備える半導体発光素子であって、さらに、透光性絶縁層と第2導電型半導体層との界面に介在される介在領域と、第2導電型半導体層上の、透光性絶縁層を設けた部分を除く領域を覆う被覆領域とを有する透光性導電層を備え、介在領域の層厚が、被覆領域の層厚よりも薄く構成されており、透光性絶縁層の屈折率を第2導電型半導体層よりも低く、かつ第2導電型半導体層と透光性絶縁層との間に介在する透光性導電層の層厚が、該発光素子の光の波長λ、透光性導電層の屈折率nに対し、略(λ/4n)以下であり、第2導電型半導体層上で透光性絶縁層を除く領域を被覆する被覆領域における透光性導電層の層厚が、該発光素子の光の波長λ、透光性導電層の屈折率nに対し、(λ/4n)より大きく、透光性絶縁層下面の透光性導電層を電流注入領域とすることができる。これにより、透光性導電層の被覆領域における断面積を介在領域よりも大きくすることで、シート抵抗を低減でき、第2導電型パッド電極の周囲の発光を増やすこと、パッド電極直下の発光を減らすことができる上、介在領域により被覆領域間が分断されずに連絡されるため、電流を均一に分散して光の取り出し効率を改善できる。 In order to achieve the above object, a first semiconductor light emitting element is formed on a light emitting layer, a light emitting layer formed on at least part of the first conductive semiconductor layer, and a light emitting layer. A second conductive type semiconductor layer formed thereon, a translucent insulating layer formed on at least a part of the second conductive type semiconductor layer, and a second conductive formed on at least a part of the translucent insulating layer. A semiconductor light emitting device comprising a mold pad electrode, and further, an intervening region interposed at an interface between the light transmissive insulating layer and the second conductive type semiconductor layer, and a light transmissive property on the second conductive type semiconductor layer A light-transmitting conductive layer having a covering region that covers a region excluding a portion provided with an insulating layer, the layer thickness of the intervening region is configured to be thinner than the layer thickness of the covering region , The refractive index is lower than that of the second conductivity type semiconductor layer, and between the second conductivity type semiconductor layer and the translucent insulating layer. The thickness of the light-transmitting conductive layer is approximately (λ / 4n) or less with respect to the wavelength λ of light of the light-emitting element and the refractive index n of the light-transmitting conductive layer, and is on the second conductive type semiconductor layer. The thickness of the light-transmitting conductive layer in the covering region covering the region excluding the light-transmitting insulating layer is (λ / 4n) with respect to the wavelength λ of light of the light-emitting element and the refractive index n of the light-transmitting conductive layer. The light-transmitting conductive layer on the lower surface of the light-transmitting insulating layer can be a current injection region . Thereby, the sheet resistance can be reduced by making the cross-sectional area in the covering region of the translucent conductive layer larger than the intervening region, the light emission around the second conductivity type pad electrode can be increased, and the light emission directly under the pad electrode can be performed. In addition, since the covering regions are connected without being divided by the intervening region, the current can be uniformly distributed to improve the light extraction efficiency.

第2の半導体発光素子は、第1導電型の半導体層と、第1導電型半導体層上の少なくとも一部に形成された発光層と、発光層の上に形成された第2導電型の半導体層と、第2導電型半導体層上の少なくとも一部に形成された透光性絶縁層と、透光性絶縁層上の少なくとも一部に形成された第2導電型パッド電極と、第2導電型半導体層上のほぼ全面を覆う被覆領域と、一部が被覆領域と連続して第2導電型半導体層と透光性絶縁層との間に介在される第1介在領域と、透光性絶縁層の周囲から上面を被覆して第2導電型パッド電極との界面に介在する第2介在領域とを有す透光性導電層とを備え、第1介在領域の層厚が、被覆領域の層厚よりも薄く構成されており、透光性絶縁層の屈折率を第2導電型半導体層よりも低く、かつ第2導電型半導体層と透光性絶縁層との間に介在する透光性導電層の層厚が、該発光素子の光の波長λ、透光性導電層の屈折率nに対し、略(λ/4n)以下であり、第2導電型半導体層上で透光性絶縁層を除く領域を被覆する被覆領域における透光性導電層の層厚が、該発光素子の光の波長λ、透光性導電層の屈折率nに対し、(λ/4n)より大きく、透光性絶縁層下面の透光性導電層を電流注入領域とすることができる。これにより、透光性絶縁層の直下の透光性導電層の層厚よりも、透光性絶縁層以外の領域における透光性電極の層厚を厚くして抵抗率を相対的に低下させ、電流を透光性絶縁層の周囲に効率よく流して発光効率を改善できる。 The second semiconductor light emitting element includes a first conductive type semiconductor layer, a light emitting layer formed on at least a part of the first conductive type semiconductor layer, and a second conductive type semiconductor formed on the light emitting layer. A light-transmitting insulating layer formed on at least part of the second conductive semiconductor layer, a second conductive pad electrode formed on at least part of the light-transmitting insulating layer, and second conductive A covering region covering substantially the entire surface of the type semiconductor layer, a first intervening region partially interposed between the second conductive type semiconductor layer and the light-transmitting insulating layer continuously with the covering region, and a light-transmitting property and a transparent conductive layer that have a second intermediate region interposed at the interface between the second conductivity-type pad electrode by covering the upper surface from the surrounding insulating layer, the layer thickness of the first intermediate region, covering It is configured thinner than the thickness of the region, a low refractive index of the translucent insulating layer than the second conductive type semiconductor layer, and the second conductivity type The thickness of the light-transmitting conductive layer interposed between the conductor layer and the light-transmitting insulating layer is approximately (λ / 4n) with respect to the light wavelength λ of the light-emitting element and the refractive index n of the light-transmitting conductive layer. ), And the thickness of the light-transmitting conductive layer in the covering region covering the region excluding the light-transmitting insulating layer on the second conductive type semiconductor layer is the light wavelength λ of the light-emitting element, the light-transmitting conductivity The light-transmitting conductive layer on the lower surface of the light-transmitting insulating layer, which is larger than (λ / 4n) with respect to the refractive index n of the layer, can be used as the current injection region . As a result, the layer thickness of the translucent electrode in the region other than the translucent insulating layer is made thicker than the thickness of the translucent conductive layer immediately below the translucent insulating layer, and the resistivity is relatively lowered. The light emission efficiency can be improved by passing a current efficiently around the light-transmitting insulating layer.

一実施の形態に係る半導体発光素子は、第1導電型の半導体層と、第1導電型半導体層上の少なくとも一部に形成された発光層と、発光層の上に形成された第2導電型の半導体層と、第2導電型半導体層上の少なくとも一部に形成された透光性絶縁層と、透光性絶縁層上の少なくとも一部に形成された第2導電型パッド電極と、第2導電型半導体層上のほぼ全面を覆い、一部が第2導電型半導体層と透光性絶縁層との間に介在される第1介在領域を含む第1の透光性導電層と、第1の透光性導電層上の、透光性絶縁層を除く領域を被覆する第2被覆領域と、第2被覆領域と連続して透光性絶縁層の周囲から上面を被覆して第2導電型パッド電極との界面に介在する第2介在領域とを有する第2の透光性導電層とを備えることができる。これにより、透光性絶縁層の直下の透光性導電層の層厚よりも、透光性絶縁層以外の領域における透光性電極の層厚を厚くして抵抗率を相対的に低下させ、電流を透光性絶縁層の周囲に効率よく流して発光効率を改善できる。 A semiconductor light emitting device according to an embodiment includes a first conductive type semiconductor layer, a light emitting layer formed on at least a part of the first conductive type semiconductor layer, and a second conductive type formed on the light emitting layer. A type semiconductor layer, a translucent insulating layer formed on at least a part of the second conductive type semiconductor layer, a second conductive type pad electrode formed on at least a part of the translucent insulating layer, A first light-transmitting conductive layer that covers a substantially entire surface of the second conductivity-type semiconductor layer and includes a first intervening region partially interposed between the second conductivity-type semiconductor layer and the light-transmitting insulating layer; A second covering region covering a region excluding the light-transmitting insulating layer on the first light-transmitting conductive layer; and covering the upper surface from the periphery of the light-transmitting insulating layer continuously with the second covering region. And a second translucent conductive layer having a second intervening region interposed at the interface with the second conductivity type pad electrode. As a result, the layer thickness of the translucent electrode in the region other than the translucent insulating layer is made thicker than the thickness of the translucent conductive layer immediately below the translucent insulating layer, and the resistivity is relatively lowered. The light emission efficiency can be improved by passing a current efficiently around the light-transmitting insulating layer.

一実施の形態に係る半導体発光素子は、透光性絶縁層の屈折率を第2導電型半導体層よりも低く、かつ第2導電型半導体層と透光性絶縁層との間に介在する透光性導電層の層厚が、該発光素子の光の波長λ、第1の透光性導電層の屈折率nに対し、略(λ/4n)以下とできる。これにより、第1介在領域の層厚を光が感じない程度の層厚として、第1介在領域と第2導電型半導体層との界面を、実質的に透光性絶縁層と第2導電型半導体層との界面として屈折率差による全反射角をより広くし、全反射を生じやすくして上方に位置するp側パッド電極による光の吸収を低減し、光の取り出し効率を改善できる。他方、透光性絶縁層を除く領域では、介在領域より厚膜で透光性導電層が形成され、この領域では好適な光取り出しとできる。 The semiconductor light-emitting device according to one embodiment has a light-transmitting insulating layer having a refractive index lower than that of the second conductive semiconductor layer and interposed between the second conductive semiconductor layer and the light-transmitting insulating layer. The layer thickness of the photoconductive layer can be approximately (λ / 4n) or less with respect to the wavelength λ of light of the light emitting element and the refractive index n of the first translucent conductive layer. As a result, the layer thickness of the first intervening region is set to a layer thickness that does not allow light to be felt, and the interface between the first intervening region and the second conductive semiconductor layer is substantially set between the translucent insulating layer and the second conductive type. The total reflection angle due to the difference in refractive index as the interface with the semiconductor layer can be made wider, total reflection can be easily generated, light absorption by the p-side pad electrode positioned above can be reduced, and light extraction efficiency can be improved. On the other hand, in the region excluding the light-transmitting insulating layer, the light-transmitting conductive layer is formed with a thicker film than the intervening region, and suitable light extraction can be performed in this region.

一実施の形態に係る半導体発光素子は、第2導電型半導体層上で透光性絶縁層を除く領域を被覆する被覆領域における透光性導電層の層厚が、該発光素子の光の波長λ、第1の透光性導電層の屈折率nに対し、(λ/4n)より大きくできる。これにより、パッド以外の領域では、素子の発光を効率的に外部に取り出すことができる。特に第1の透光性導電層の屈折率nをn2とし、第2導電型半導体層の屈折率をn1、透光性絶縁層の屈折率をn3とした場合、n2≧n1、若しくは|n1−n2|<|n1−n3|の場合に、効果的である。また、第2導電型半導体層から、パッドとの介在領域では低屈折率の透光性絶縁層を近くに、パッド以外の領域では、低屈折率の封止部材、大気を遠くに、配して、パッド領域では絶縁層と半導体層界面反射、パッド以外の領域では素子外部への光取り出しを効率的に実現できる。 In the semiconductor light-emitting device according to one embodiment , the thickness of the light-transmitting conductive layer in the covering region covering the region excluding the light-transmitting insulating layer on the second conductive type semiconductor layer is the wavelength of light of the light-emitting device. λ can be larger than (λ / 4n) with respect to the refractive index n of the first translucent conductive layer. Thereby, in the area other than the pad, the light emission of the element can be efficiently extracted outside. In particular, when the refractive index n of the first translucent conductive layer is n 2 , the refractive index of the second conductive semiconductor layer is n 1 , and the refractive index of the translucent insulating layer is n 3 , n 2 ≧ n 1, or | n 1 -n 2 | <| n 1 -n 3 | when the is effective. Further, from the second conductive type semiconductor layer, a low refractive index light-transmitting insulating layer is located close to the intervening region with the pad, and a low refractive index sealing member and the atmosphere are arranged far away from the other region than the pad. Thus, it is possible to efficiently realize reflection at the interface between the insulating layer and the semiconductor layer in the pad region, and light extraction to the outside of the element in the region other than the pad.

一実施の形態に係る半導体発光素子は、透光性絶縁層下面の透光性導電層を電流注入領域とすることができる。これにより、従来は非発光としていた第2導電型パッド電極の下面にも電流を注入することで電流を均一に流し、電流の局所的な集中を回避して劣化を低減して信頼性を向上できる。また発光量を増加させ、全体としての発光出力向上及び取り出し効率の向上に寄与できる。また、第2導電型電極を反射性、半導体層側を光取り出し側とした素子構造では、パッド電極下の領域を発光領域であることで出力を向上できる。 In the semiconductor light emitting device according to one embodiment, the light-transmitting conductive layer on the lower surface of the light-transmitting insulating layer can be used as a current injection region. This allows current to flow evenly by injecting current into the bottom surface of the second conductivity type pad electrode, which was previously non-light-emitting, and avoids local concentration of current to reduce deterioration and improve reliability. it can. Further, it is possible to increase the light emission amount and contribute to the improvement of the light emission output and the extraction efficiency as a whole. In the element structure in which the second conductivity type electrode is reflective and the semiconductor layer side is the light extraction side, the output can be improved by making the region under the pad electrode a light emitting region.

の半導体発光素子は、第2導電型半導体層と透光性導電層との界面の接触抵抗は、透光性絶縁層が形成された領域より、第2導電型半導体層表面を被覆する領域を低くできる。これにより、この界面での電流注入を阻害して、第2導電型パッド電極からの電流を透光性絶縁層の周囲に効率よく流して全体としての発光効率を改善できる。 In the third semiconductor light emitting device, the contact resistance at the interface between the second conductive semiconductor layer and the translucent conductive layer covers the surface of the second conductive semiconductor layer from the region where the translucent insulating layer is formed. The area can be lowered. Accordingly, current injection at this interface is inhibited, and the current from the second conductivity type pad electrode can be efficiently flowed around the translucent insulating layer to improve the light emission efficiency as a whole.

一実施の形態に係る半導体発光素子は、第1の透光性導電層と第2の透光性導電層を合わせた層厚が、100nm以下とできる。これにより透光性導電層を伝播する光の損失を低減して、光取り出し効率を高くできる。 In the semiconductor light-emitting element according to one embodiment , the total thickness of the first light-transmitting conductive layer and the second light-transmitting conductive layer can be 100 nm or less. Thereby, loss of light propagating through the translucent conductive layer can be reduced, and light extraction efficiency can be increased.

の半導体発光素子は、第2導電型層が窒化物半導体層であり、透光性絶縁層の屈折率を、2.46以下とできる。これにより窒化物半導体層と透光性絶縁層との間で、好適な光反射界面を形成できる。 In the fourth semiconductor light emitting device, the second conductivity type layer is a nitride semiconductor layer, and the refractive index of the translucent insulating layer can be 2.46 or less. Thereby, a suitable light reflection interface can be formed between the nitride semiconductor layer and the translucent insulating layer.

一実施の形態に係る半導体発光素子は、第1の透光性導電層と第2の透光性導電層を、In、Snを含む酸化物材料で構成できる。これにより、窒化物半導体層と屈折率差の小さい透光性導電層と半導体層の界面を形成でき、パッド電極以外の領域での光取り出し向上の効果が得られる。 In the semiconductor light-emitting element according to one embodiment , the first light-transmitting conductive layer and the second light-transmitting conductive layer can be formed using an oxide material containing In and Sn. As a result, an interface between the nitride semiconductor layer, the translucent conductive layer having a small refractive index difference, and the semiconductor layer can be formed, and an effect of improving light extraction in a region other than the pad electrode can be obtained.

の半導体発光素子は、第2導電型パッド電極が、上面から見て透光性絶縁層の内部に入るよう構成できる。これによって、電極形成面内で透光性絶縁層より外側にパッド電極が延設されていないため、延設部による電極と半導体界面での光吸収が無く、光損失を抑えることができる。 The fifth semiconductor light emitting device can be configured such that the second conductivity type pad electrode enters the translucent insulating layer when viewed from above. Accordingly, since the pad electrode is not extended outside the translucent insulating layer within the electrode formation surface, there is no light absorption at the interface between the electrode and the semiconductor by the extended portion, and light loss can be suppressed.

一実施の形態に係る半導体発光素子は、基板と、基板の上に形成され、一部が露出するように形成されたn型半導体層と、n型半導体層上の少なくとも一部に形成された発光層と、発光層の上に形成されたp型半導体層と、p型半導体層上に形成された透光性絶縁層と、透光性絶縁層上の少なくとも一部に形成されたp側パッド電極と、p型半導体層上のほぼ全面を覆い、一部がp型半導体層と透光性絶縁層との間に介在される第1介在領域を含む第1の透光性導電層と、第1の透光性導電層上の、透光性絶縁層を除く領域を被覆する第2被覆領域と、第2被覆領域と連続して透光性絶縁層の周囲から上面を被覆してp型半導体層との界面に介在する第2介在領域とを有する第2の透光性導電層とを備えることができる。これにより、透光性絶縁層の直下の透光性導電層の層厚よりも、透光性絶縁層以外の領域における透光性電極の層厚を厚くして抵抗率を相対的に低下させ、電流を透光性絶縁層の周囲に効率よく流してp側パッド電極直下の発光を抑え、全体としての発光効率を改善できる。 A semiconductor light emitting device according to an embodiment is formed on a substrate, an n-type semiconductor layer formed on the substrate so as to be partially exposed, and at least a portion on the n-type semiconductor layer. A light-emitting layer, a p-type semiconductor layer formed on the light-emitting layer, a light-transmitting insulating layer formed on the p-type semiconductor layer, and a p-side formed on at least a part of the light-transmitting insulating layer A first translucent conductive layer that includes a pad electrode and a first intervening region that covers substantially the entire surface of the p-type semiconductor layer and a portion of which is interposed between the p-type semiconductor layer and the translucent insulating layer; A second covering region covering a region excluding the light-transmitting insulating layer on the first light-transmitting conductive layer; and covering the upper surface from the periphery of the light-transmitting insulating layer continuously with the second covering region. and a second translucent conductive layer having a second intervening region interposed at the interface with the p-type semiconductor layer. As a result, the layer thickness of the translucent electrode in the region other than the translucent insulating layer is made thicker than the thickness of the translucent conductive layer immediately below the translucent insulating layer, and the resistivity is relatively lowered. The current can be efficiently passed around the translucent insulating layer to suppress the light emission directly under the p-side pad electrode, and the overall light emission efficiency can be improved.

の発光装置は、半導体発光素子と、半導体発光素子が発する光を波長変換する波長変換部材とを備える発光装置であって、半導体発光素子を上記のように構成できる。 The sixth light-emitting device is a light-emitting device including a semiconductor light-emitting element and a wavelength conversion member that converts the wavelength of light emitted from the semiconductor light-emitting element, and the semiconductor light-emitting element can be configured as described above.

一実施の形態に係るの半導体発光素子の製造方法は、基板と、基板の上に形成され、一部が露出するように形成されたn型半導体層と、n型半導体層上の少なくとも一部に形成された発光層と、発光層の上に形成されたp型半導体層と、p型半導体層上に形成された透光性絶縁層と、透光性絶縁層上の少なくとも一部に形成されたp側パッド電極とを有する半導体発光素子の製造方法であって、基板上に、n型半導体層と、発光層と、p型半導体層を順次積層する工程と、n型半導体層が部分的に露出するようエッチングする工程と、p型半導体層上に接して、略全面に第1の透光性導電層を形成する工程と、第1透光性導電層上の、p側パッド電極を形成する位置に、透光性絶縁層を形成する工程と、第1透光性導電層及び透光性絶縁層の上面に、第2の透光性導電層を形成し、オーミック接触を得るための熱処理を行う工程と、透光性絶縁層上の第2透光性導電層の上面に、略等しい面積のp側パッド電極を形成する工程とを含むことができる。これにより、比較的容易な製造プロセスにて透光性絶縁層の下面よりも層厚の厚い透光性導電層を、p側パッド電極以外の部分に形成でき、電流を分散してp型半導体層に注入でき、均一な発光を得ることができる。 A method for manufacturing a semiconductor light emitting device according to an embodiment includes a substrate, an n-type semiconductor layer formed on the substrate and partially exposed, and at least a portion on the n-type semiconductor layer. A light-emitting layer formed on the light-emitting layer, a p-type semiconductor layer formed on the light-emitting layer, a light-transmitting insulating layer formed on the p-type semiconductor layer, and at least part of the light-transmitting insulating layer A method for manufacturing a semiconductor light emitting device having a p-side pad electrode, comprising: sequentially stacking an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer on a substrate; Etching step so as to be exposed, forming a first light-transmitting conductive layer on substantially the entire surface in contact with the p-type semiconductor layer, and p-side pad electrode on the first light-transmitting conductive layer Forming a translucent insulating layer at a position where the first translucent conductive layer and the translucent insulating layer are formed. Forming a second light-transmitting conductive layer on the surface and performing a heat treatment to obtain ohmic contact; and p having a substantially equal area on the upper surface of the second light-transmitting conductive layer on the light-transmitting insulating layer. Forming a side pad electrode. As a result, a light-transmitting conductive layer thicker than the bottom surface of the light-transmitting insulating layer can be formed in a portion other than the p-side pad electrode by a relatively easy manufacturing process, and the current is dispersed to form a p-type semiconductor. The layer can be injected and uniform light emission can be obtained.

一実施の形態に係る半導体発光素子の製造方法は、さらに、第1透光性導電層の形成後に、オーミック接触を得るための熱処理を行う工程を備え、熱処理工程により、p側パッド電極形成領域において、第2導電型半導体層と透光性導電層との界面の接触抵抗を下げて、その領域を電流注入領域とすることができる。これにより、p側パッド電極の直下でもオーミック接触を取り、発光させることができ、さらに発光出力及び光取り出し効率を高めることができる。特に、透光性導電層の層厚をp側パッド電極の下面と周囲の領域で変化させることにより、下面においては発光層の発光を全反射させて横方向に光を伝播させつつ、周囲においては厚い層厚としてシート抵抗を低減させて発光量を増し、さらにこの領域から外部に光を取り出すことが可能となる。 The method for manufacturing a semiconductor light emitting device according to an embodiment further includes a step of performing a heat treatment for obtaining ohmic contact after the formation of the first light-transmitting conductive layer, and the p-side pad electrode forming region is formed by the heat treatment step. In this case, the contact resistance at the interface between the second conductive type semiconductor layer and the translucent conductive layer can be lowered to make that region a current injection region. As a result, ohmic contact can be obtained even immediately below the p-side pad electrode, and light can be emitted, and the light emission output and light extraction efficiency can be further increased. In particular, by changing the layer thickness of the translucent conductive layer between the lower surface of the p-side pad electrode and the surrounding area, the light emission of the light emitting layer is totally reflected on the lower surface and the light is propagated in the lateral direction. The thick layer thickness reduces the sheet resistance to increase the amount of light emission, and it is possible to extract light from this region to the outside.

一実施の形態に係る半導体発光素子の製造方法は、さらに、第1透光性導電層上の透光性絶縁層形成後に、オーミック接触を得るための熱処理を行う工程を備え、熱処理工程により、第2導電型半導体層と透光性導電層との界面の接触抵抗を、透光性絶縁層が形成された領域より、第2導電型半導体層表面を被覆する領域で低くすることができる。これにより、パッド領域外で、優先的、選択的に電流注入され、パッド領域より高出力の発光領域とでき、好適な発光構造を得ることができる。 The method for manufacturing a semiconductor light emitting device according to an embodiment further includes a step of performing a heat treatment to obtain ohmic contact after forming the light transmissive insulating layer on the first light transmissive conductive layer, The contact resistance at the interface between the second conductive type semiconductor layer and the translucent conductive layer can be made lower in the region covering the surface of the second conductive type semiconductor layer than in the region where the translucent insulating layer is formed. As a result, a current is selectively and selectively injected outside the pad region, so that a light-emitting region having a higher output than the pad region can be obtained, and a suitable light-emitting structure can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための半導体発光素子、発光装置例示するものであって、本発明は半導体発光素子、発光装置以下のものに特定しない。さらに、本明細書は、特許請求の範囲を理解しやすいように、実施の形態に示される部材に対応する番号を、特許請求の範囲、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments shown below, the semiconductor light emitting device for embodying the technical idea of the present invention, intended to illustrate the light emitting device, the present invention is a specific semiconductor light emitting device, a light emitting device in the following do not do. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the scope of claims and “Means for Solving the Problems”. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
(Embodiment 1)

図1に、本発明の実施の形態1に係る半導体発光素子として、LED100を示す。この図に示すLED100は、成長基板10と、成長基板10の上に形成される第1導電型の半導体層であるn型半導体層12と、n型半導体層12上の一部に形成された発光層14と、発光層14の上に形成された第2導電型の半導体層であるp型半導体層16と、p型半導体層16上に形成された第1の透光性導電層20aと、第1透光性導電層20a上の一部に形成された透光性絶縁層18と、第1透光性導電層20aと連続して透光性絶縁層18の周囲及び上面を被覆するよう形成された第2の透光性導電層20bと、第2透光性導電層20bの上面に形成された第2導電型パッド電極であるp側パッド電極30と、一方でn型半導体層12の一部を露出させ、この部分に形成された第1導電型パッド電極であるn側パッド電極32とを備える。さらに、n側パッド電極32及びp側パッド電極30の表面のみを露出させ、他の部分を被覆するよう保護膜34で覆う。
(半導体層)
FIG. 1 shows an LED 100 as a semiconductor light emitting element according to Embodiment 1 of the present invention. The LED 100 shown in this figure is formed on a growth substrate 10, an n-type semiconductor layer 12 that is a first conductivity type semiconductor layer formed on the growth substrate 10, and a part on the n-type semiconductor layer 12. A light-emitting layer 14, a p-type semiconductor layer 16 that is a second-conductivity-type semiconductor layer formed on the light-emitting layer 14, and a first light-transmitting conductive layer 20a formed on the p-type semiconductor layer 16. The translucent insulating layer 18 formed on a part of the first translucent conductive layer 20a and the first translucent conductive layer 20a and the periphery and the upper surface of the translucent insulating layer 18 are covered. The second translucent conductive layer 20b formed in this manner, the p-side pad electrode 30 which is the second conductive type pad electrode formed on the upper surface of the second translucent conductive layer 20b, and the n-type semiconductor layer 12 is exposed, and the n-side pad electrode 32 which is a first conductivity type pad electrode formed in this portion. Equipped with a. Furthermore, only the surfaces of the n-side pad electrode 32 and the p-side pad electrode 30 are exposed and covered with a protective film 34 so as to cover other portions.
(Semiconductor layer)

LEDは、成長基板10であるサファイア基板上にそれぞれ窒化物半導体からなるn型半導体層12、活性層である発光層14及びp型半導体層16の順に積層されてなる半導体層を有している。互いに分離されてライン上に露出されたn型半導体層12上にはn側パッド電極32が形成され、一方p型半導体層16にはコンタクト層であるp側オーミック電極(図示せず)を介してp側パッド電極30が形成されている。   The LED has a semiconductor layer in which an n-type semiconductor layer 12 made of a nitride semiconductor, a light-emitting layer 14 that is an active layer, and a p-type semiconductor layer 16 are sequentially stacked on a sapphire substrate that is a growth substrate 10. . An n-side pad electrode 32 is formed on the n-type semiconductor layer 12 which is separated from each other and exposed on the line, while the p-type semiconductor layer 16 is provided with a p-side ohmic electrode (not shown) as a contact layer. Thus, the p-side pad electrode 30 is formed.

発光素子は具体的には、成長基板10上に半導体層をエピタキシャル成長させた半導体発光素子が好適に利用できる。成長基板10としてはサファイアが挙げられるが、これに限定されず例えばスピネル、SiC、GaN、GaAs等、公知の部材を用いることができる。また、サファイアのような絶縁性基板でなく、SiC、GaN、GaAs等の導電性基板を用いることにより、p電極及びn電極を対向して配置させることもできる。なお成長基板10は、半導体層の積層後に除去することもできる。さらに成長基板として表面に多数の凹凸を設けた基板を使用することもできる。これにより、半導体層と基板界面が粗面化され、散乱、回折作用により、光取り出し効率向上等の効果が得られる。   Specifically, a semiconductor light emitting device in which a semiconductor layer is epitaxially grown on the growth substrate 10 can be suitably used as the light emitting device. Examples of the growth substrate 10 include sapphire, but are not limited thereto, and known members such as spinel, SiC, GaN, and GaAs can be used. In addition, by using a conductive substrate such as SiC, GaN, or GaAs instead of an insulating substrate such as sapphire, the p electrode and the n electrode can be arranged to face each other. The growth substrate 10 can also be removed after the semiconductor layers are stacked. Further, a substrate having a large number of irregularities on the surface can be used as the growth substrate. As a result, the semiconductor layer and the substrate interface are roughened, and effects such as improved light extraction efficiency can be obtained by scattering and diffraction.

具体的には、図7及び図8の変形例(図7は変形例に係るLEDチップの平面図、図8は図7のVIII−VIII線における断面図)に示すように、凹凸部10Cとして示すように、基板10と半導体層との界面など、異種材料、屈折率が相違する材料間に、凹凸構造を設けて、その材料界面間で凹凸界面で、上記光取り出し効率向上を図ることができる。このような凹凸部、突起部、凸部若しくは凹部の平面形状としては、高密度な配置、量産性を考慮して所望の形状とされ、具体的な形状としては、楕円形状、四角・矩形状、多角形状、それらの複合的な形状であっても良い。また、その平面配置は、これら形状に応じて、四角・矩形状,平行四辺形状,三角形状,六角形状(蜂の巣状)、などが適宜選択され、高密度な配置がなされる。これら構造物(突起・凹・溝の各部)の平面の大きさとしては、λ/4nより大きく、好ましくはλ/2n超、量産性を考慮した具体的な寸法としては、幅0.5〜5μm、好ましくは1〜3μmであると、好適に製造できる。断面形状も、同様に、四角、矩形状、台形状、円弧、半円などの円形状、などを用いることができ、寸法も平面形状と同様なものとできる。   Specifically, as shown in the modified example of FIG. 7 and FIG. 8 (FIG. 7 is a plan view of the LED chip according to the modified example, FIG. 8 is a sectional view taken along line VIII-VIII of FIG. 7) As shown, an uneven structure is provided between different materials, such as an interface between the substrate 10 and the semiconductor layer, and materials having different refractive indexes, and the light extraction efficiency is improved at the uneven interface between the material interfaces. it can. The planar shape of such irregularities, protrusions, protrusions or recesses is a desired shape in consideration of high-density arrangement and mass productivity. Specific shapes include elliptical shapes, square / rectangular shapes. Further, it may be a polygonal shape or a complex shape thereof. In addition, as for the planar arrangement, a square / rectangular shape, a parallelogram shape, a triangular shape, a hexagonal shape (honeycomb shape), and the like are appropriately selected according to these shapes, and a high-density arrangement is made. The plane size of these structures (protrusions, recesses and grooves) is larger than λ / 4n, preferably more than λ / 2n, and specific dimensions considering mass productivity are 0.5 to It can manufacture suitably that it is 5 micrometers, Preferably it is 1-3 micrometers. Similarly, the cross-sectional shape may be a square shape, a rectangular shape, a trapezoidal shape, a circular shape such as an arc or a semicircle, and the like, and the dimensions may be the same as the planar shape.

図示する基板の凹凸は、半導体層を挟んで、上記透光性電極構造に対向した面側に設けられることから、第1,2の透光性導電層、特にパッド領域Aを発光領域、非発光領域に依存して、その効果が変わる傾向がある。具体的には、領域Aを非発光領域とする方が、発光領域、すなわち介在領域B1を電流注入部とするより、光取り出し効率の向上効果、引いては発光出力、電力効率向上効果が高くなる傾向がある。このため、領域Aを非発光領域、被覆領域Bに比して弱発光領域、として、凹凸構造10Cを設けることが好ましい。   The unevenness of the substrate shown in the figure is provided on the surface facing the translucent electrode structure with the semiconductor layer in between, so that the first and second translucent conductive layers, in particular, the pad region A is a light emitting region, a non-illuminating region. Depending on the light emitting area, the effect tends to change. Specifically, the region A is a non-light emitting region, and the light extraction efficiency is improved, and the light emission output and power efficiency are improved more effectively than the light emitting region, that is, the intervening region B1 is a current injection part. Tend to be. For this reason, it is preferable to provide the concavo-convex structure 10 </ b> C with the region A as a non-light emitting region and a weak light emitting region as compared with the covering region B.

上記材料間界面などに設けられる凹凸構造としては、半導体層に設けられた複数の孔構造、発光層上の凹凸構造、半導体層に設けられた分離溝により、n電極形成面上に設けられた突起構造など、半導体層に、光学的な構造物を設けることもできる。また、半導体層を被覆する透光性膜、例えば、透光性導電層20、保護膜34に、凹凸構造を設けることもでき、これら半導体層、被覆膜、電極などを組み合わせて、凹凸構造、光学的機能の構造部を設けることができる。以上の構造物は、半導体、その他各材料の加工技術、エッチング、レーザ加工、型押し加工などを用いて作製できる。   The concavo-convex structure provided at the interface between the materials is provided on the n-electrode formation surface by a plurality of hole structures provided in the semiconductor layer, a concavo-convex structure on the light emitting layer, and a separation groove provided in the semiconductor layer. An optical structure such as a protruding structure can be provided on the semiconductor layer. In addition, a concavo-convex structure can be provided on a light-transmitting film that covers the semiconductor layer, for example, the light-transmitting conductive layer 20 and the protective film 34. , An optically functional structure can be provided. The above structure can be manufactured by using a processing technique for semiconductors and other materials, etching, laser processing, embossing, and the like.

発光素子は、BN、SiC、ZnSeやGaN、InGaN、InAlGaN、AlGaN、BAlGaN、BInAlGaN等種々の材料を有する。同様に、これらの元素に不純物元素としてSiやZn等を含有させ発光中心とすることもできる。発光層14の材料として、窒化物半導体(例えば、AlやGaを含む窒化物半導体、InやGaを含む窒化物半導体としてInXAlYGa1-X-YN(0≦X≦1、0≦Y≦1、X+Y≦1)等が利用できる。また、半導体の構造としては、MIS接合、PIN接合やPN接合等を有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが好適に挙げられる。また、半導体層の材料やその混晶比によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることで、より出力を向上させることもできる。さらに、発光素子は、紫外線領域から可視光領域までの光を発することができる。特に350nm〜550nm近傍に発光ピーク波長を有する発光素子を使用し、蛍光物質を効率よく励起可能な発光波長を有する光を発光できる発光層14を有することが好ましい。ここでは発光素子として窒化物半導体発光素子、特に青色発光(波長455nm)を例にとって説明するが、これに限定されるものではない。
(n側パッド電極32)
The light emitting element includes various materials such as BN, SiC, ZnSe, GaN, InGaN, InAlGaN, AlGaN, BAlGaN, and BInAlGaN. Similarly, these elements can contain Si, Zn, or the like as an impurity element to serve as a light emission center. The material of the light emitting layer 14 is a nitride semiconductor (for example, a nitride semiconductor containing Al or Ga, or a nitride semiconductor containing In or Ga, In X Al Y Ga 1-XY N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, X + Y ≦ 1) etc. Further, as the semiconductor structure, a homostructure having a MIS junction, a PIN junction, a PN junction, etc., a heterostructure, or a double hetero configuration is preferably exemplified. The emission wavelength can be selected in various ways depending on the material of the semiconductor layer and the mixed crystal ratio, and the semiconductor active layer can be a single quantum well structure or a multiple quantum well structure formed in a thin film that produces a quantum effect. In addition, the light emitting element can emit light from the ultraviolet region to the visible light region, particularly having a light emission peak wavelength in the vicinity of 350 nm to 550 nm. It is preferable to use a light emitting layer 14 that can emit light having a light emission wavelength that can efficiently excite a fluorescent substance using a light emitting element, in which a nitride semiconductor light emitting element, particularly blue light emission (wavelength 455 nm) is taken as an example. However, the present invention is not limited to this.
(N-side pad electrode 32)

n側パッド電極32は、半導体発光素子の少なくとも1つの辺に近接するように形成される。例えば図示しないが、1つの辺の中央部において、p型半導体層及び活性層の一部をエッチングにより除去してn型コンタクト層が露出した切り欠き部を設け、その切り欠き部にn側パッド電極を形成する。n側パッド電極32の材料としてはTi、Rh、Pt、Au等の金属あるいはこれらの合金が利用できる。本実施の形態ではTi/Rh/Auとしている。
(p側パッド電極30)
The n-side pad electrode 32 is formed so as to be close to at least one side of the semiconductor light emitting element. For example, although not shown in the drawing, a notch part in which the n-type contact layer is exposed by removing a part of the p-type semiconductor layer and the active layer by etching is provided at the center part of one side, and the n-side pad is provided in the notch part. An electrode is formed. As a material for the n-side pad electrode 32, metals such as Ti, Rh, Pt, Au, or alloys thereof can be used. In this embodiment, Ti / Rh / Au is used.
(P-side pad electrode 30)

p側パッド電極30は、突起状に延伸した幅細の延伸導電部31を有する。図2に、LEDチップの平面図の例を示す。この図の例ではn側パッド電極32はLEDチップ100Bの1つの隅部に2つの辺に近接するように設けられ、p側パッド電極30はn側パッド電極32が近接する隅部と対角をなす他の隅部に設けられる。またp側パッド電極30のパターンは、好適には図2に示すように円状のp側パッド電極30から延伸させた補助電極として延伸導電部31を1又は複数設ける。延伸導電部31はそれぞれ、n側パッド電極32から等距離になるように円弧状に形成されていることが好ましく、これによってより半導体発光素子に投入された電流を透光性電極全体に拡散させ、高輝度でかつより均一な発光が得られる。延伸導電部31の材料としては、例えばRh/Pt/Auをそれぞれの層厚を100nm/200nm/500nmとして形成できる。なお延伸導電部31は3本以上とすることもでき、例えば図3の変形例に係るLEDチップ100Cでは、9本の延伸導電部31を設けている。   The p-side pad electrode 30 has a narrow extending conductive portion 31 extending in a protruding shape. FIG. 2 shows an example of a plan view of the LED chip. In the example of this figure, the n-side pad electrode 32 is provided at one corner of the LED chip 100B so as to be close to two sides, and the p-side pad electrode 30 is diagonally opposite the corner at which the n-side pad electrode 32 is adjacent. It is provided in the other corner part which makes. The p-side pad electrode 30 preferably has one or more extended conductive portions 31 as auxiliary electrodes extended from the circular p-side pad electrode 30 as shown in FIG. Each of the stretched conductive portions 31 is preferably formed in an arc shape so as to be equidistant from the n-side pad electrode 32, thereby further diffusing the current input to the semiconductor light emitting element throughout the translucent electrode. High luminance and more uniform light emission can be obtained. As the material of the stretched conductive portion 31, for example, Rh / Pt / Au can be formed with each layer thickness being 100 nm / 200 nm / 500 nm. In addition, the extending | stretching electroconductive part 31 can also be made into three or more, for example, in the LED chip 100C which concerns on the modification of FIG. 3, the nine extending | stretching electroconductive parts 31 are provided.

延伸導電部は、無くすこともでき、また、発光素子の構造、面積によりn側電極に、両電極に設けられた構造でも良く、また、パッド電極、透光性導電層上の金属層と異なる構造、工程で形成されても良く、好ましくはパッド電極と一体で形成される。
(保護膜34)
The stretched conductive portion may be eliminated, or may be provided on the n-side electrode and on both electrodes depending on the structure and area of the light emitting element, and is different from the pad electrode and the metal layer on the translucent conductive layer. It may be formed by a structure or a process, and is preferably formed integrally with a pad electrode.
(Protective film 34)

パッド電極30、32を形成した後、ワイヤボンディングを行う領域を除いて半導体発光素子のほぼ前面に絶縁性の保護膜34が形成される。保護膜34にはSiO2、TiO2、Al23、ポリイミド等が利用できる。
(透光性絶縁層18)
透光性絶縁層18は高抵抗あるいは絶縁性を備える層であり、これによってp側パッド電極形成領域において、透光性導電層20を、その間に介在させて下層側の第1介在領域B1と、上層側の第2介在領域B2とを絶縁する。また、透光性絶縁層18を設けない領域を導通経路として、透光性導電層20に効率的に通電して電流拡散と低抵抗化とを図る。また透光性絶縁層18は、半導体発光素子からの光を効率よく取り出せるように高い透光性を有する。そのため透光性絶縁層18は、好ましくは酸素を含み、より好ましくは酸化物とし、さらに好ましくはSi、Alよりなる群から選択された少なくとも一種の元素の酸化物とする。具体的には、SiO2、Al23等とし、好ましくはSiO2を使用する。透光性絶縁層18の厚さは特に限定するものではなく、数オングストローム〜数μmの厚さで形成可能である。特に、透光性絶縁層18の上面に形成されるp側パッド電極30の金属層と共に設けられる場合の透光性絶縁層18の層厚は、λ/4n3(λは発光波長、n3は絶縁層の屈折率)より大きくし、具体例としては、78nmから1μmとすることが好ましい。透光性絶縁層18は、発光層の上に設けられた電極、金属層に対応して設けられ、電極の例では、パッド電極30、電極の延伸導電部31の少なくとも一方、好ましくは導電部・金属層に比較して大面積若しくは断面幅広のパッド電極に少なくとも設けられ、最も好ましくは両方に対応して設けられる。このような構造は、他の実施の形態、その各例にも同様に適用できる。すなわち、延伸導電部を、透光性絶縁層18を介さずに透光性導電層上に直接設けた構造とすることもできるが、この場合、延伸導電部による光の吸収、損失が発生するため、延伸導電部の断面幅、総面積が大きくなると、その傾向が大きくとなるため、それよりも好ましくは、パッド電極及び延伸導電部を、透光性絶縁層18を介して設ける。その具体例としては、図7の変形例に係るLEDチップ100Dの平面図に示すように、延伸導電部31が、透光性絶縁層18を介して設けられた構造となる。
(透光性導電層20)
After the pad electrodes 30 and 32 are formed, an insulating protective film 34 is formed almost on the front surface of the semiconductor light emitting device except for the region where wire bonding is performed. The protective film 34 is SiO 2, TiO 2, Al 2 O 3, available polyimide and the like.
(Translucent insulating layer 18)
The translucent insulating layer 18 is a layer having a high resistance or insulating property. With this, in the p-side pad electrode formation region, the translucent conductive layer 20 is interposed between the first intervening region B1 on the lower layer side. Insulating the second intermediate region B2 on the upper layer side. In addition, by using a region where the light-transmitting insulating layer 18 is not provided as a conduction path, the light-transmitting conductive layer 20 is efficiently energized to achieve current diffusion and low resistance. The translucent insulating layer 18 has high translucency so that light from the semiconductor light emitting element can be extracted efficiently. Therefore, the translucent insulating layer 18 preferably contains oxygen, more preferably an oxide, and further preferably an oxide of at least one element selected from the group consisting of Si and Al. Specifically, SiO 2 , Al 2 O 3 or the like is used, and preferably SiO 2 is used. The thickness of the translucent insulating layer 18 is not particularly limited, and can be formed with a thickness of several angstroms to several μm. In particular, the thickness of the translucent insulating layer 18 when provided together with the metal layer of the p-side pad electrode 30 formed on the upper surface of the translucent insulating layer 18 is λ / 4n 3 (λ is the emission wavelength, n 3 Is larger than the refractive index of the insulating layer). As a specific example, it is preferable that the refractive index is 78 nm to 1 μm. The translucent insulating layer 18 is provided corresponding to the electrode and metal layer provided on the light emitting layer. In the example of the electrode, at least one of the pad electrode 30 and the extended conductive portion 31 of the electrode, preferably the conductive portion. It is provided at least on a pad electrode having a larger area or a wider cross section than the metal layer, and most preferably provided for both. Such a structure can be similarly applied to other embodiments and examples thereof. In other words, the stretched conductive portion may be directly provided on the translucent conductive layer without the translucent insulating layer 18, but in this case, light absorption and loss by the stretched conductive portion occurs. Therefore, since the tendency increases as the cross-sectional width and total area of the stretched conductive portion increase, the pad electrode and the stretched conductive portion are preferably provided via the translucent insulating layer 18. As a specific example thereof, as shown in the plan view of the LED chip 100D according to the modification of FIG. 7, the extended conductive portion 31 has a structure provided through the light-transmitting insulating layer 18.
(Translucent conductive layer 20)

p型半導体層16上には、透光性導電層20を形成する。露出したp型半導体層16のほぼ全面に導電層が形成されることにより、電流をp型半導体層16全体に均一に広げることができる。しかも透光性を備えることで、電極側を発光観測面とすることもできる。なお透光性とは、半導体発光素子の発光波長を透過できるという意味であって、必ずしも無色透明を意味するものではない。透光性導電層20は、オーミック接触を得るために、好ましくは酸素を含むものとする。酸素を含む透光性導電層20には数々の種類があるが、好ましくは亜鉛(Zn)、インジウム(In)、スズ(Sn)よりなる群から選択された少なくとも一種の元素を含む酸化物とする。具体的には、ITO、ZnO、In23、SnO2等、Zn、In、Snの酸化物を含む透光性導電層20を形成することが望ましい。中でもITOは酸化物インジウムにスズを含有する酸化物導電性材料であり、低抵抗、高透明度を備えているので、透明電極として好適である。あるいはNi等の金属を3nm等の層厚でスパッタして透明にした金属層でもよい。導電性酸化物層と半導体層との界面では、良好なオーミック特性が得られるように熱処理される。ITOは窒化物半導体層とのオーミック接続にも優れているため、窒化物半導体発光素子として、p型窒化物半導体層との界面での接触抵抗を小さくして順方向電圧Vfが低い実用的な窒化物半導体発光素子を実現できる。 A translucent conductive layer 20 is formed on the p-type semiconductor layer 16. By forming the conductive layer on almost the entire surface of the exposed p-type semiconductor layer 16, the current can be uniformly spread over the entire p-type semiconductor layer 16. Moreover, by providing translucency, the electrode side can be used as a light emission observation surface. Note that translucency means that the light emission wavelength of the semiconductor light emitting element can be transmitted, and does not necessarily mean colorless and transparent. The translucent conductive layer 20 preferably contains oxygen in order to obtain ohmic contact. There are various types of the light-transmitting conductive layer 20 containing oxygen, and preferably an oxide containing at least one element selected from the group consisting of zinc (Zn), indium (In), and tin (Sn) To do. Specifically, it is desirable to form the translucent conductive layer 20 containing an oxide of Zn, In, Sn, such as ITO, ZnO, In 2 O 3 , SnO 2 or the like. In particular, ITO is an oxide conductive material containing tin in indium oxide, and is suitable as a transparent electrode because it has low resistance and high transparency. Alternatively, a metal layer formed by sputtering a metal such as Ni with a layer thickness of 3 nm or the like to make it transparent may be used. Heat treatment is performed at the interface between the conductive oxide layer and the semiconductor layer so as to obtain good ohmic characteristics. Since ITO is also excellent in ohmic connection with the nitride semiconductor layer, it is practical as a nitride semiconductor light emitting device to reduce the contact resistance at the interface with the p-type nitride semiconductor layer and to lower the forward voltage Vf. A nitride semiconductor light emitting device can be realized.

図1に示す透光性導電層20は、p型半導体層16上のほぼ全面を覆う被覆領域Aと、一部が被覆領域Aと連続してp型半導体層16と透光性絶縁層18との間に介在される第1介在領域B1と、透光性絶縁層18の周囲から上面を被覆してp側パッド電極30との界面に介在する第2介在領域B2とを有する。ここで第1介在領域B1の層厚d1を、被覆領域Aの層厚d2よりも薄く構成することにより、透光性絶縁層18の直下の抵抗率を相対的に増加させ、被覆領域Aの抵抗率を低下させる。この結果、p側パッド電極30からの電流を透光性絶縁層18の周囲に効率よく流して、p側パッド電極30を設けた部分以外での発光量を増す。またp側パッド電極30の下面に設けた透光性絶縁層18の全反射を利用して、p側パッド電極30下面を導波する光を全反射で通過させ、p側パッド電極を設けていない領域である被覆領域Aや端面からの光の取り出しを図る。   The translucent conductive layer 20 shown in FIG. 1 includes a covering region A that covers almost the entire surface of the p-type semiconductor layer 16, and a p-type semiconductor layer 16 and a translucent insulating layer 18 that are partially continuous with the covering region A. And a second intervening region B2 that covers the upper surface from the periphery of the translucent insulating layer 18 and intervenes at the interface with the p-side pad electrode 30. Here, by configuring the layer thickness d1 of the first intervening region B1 to be thinner than the layer thickness d2 of the covering region A, the resistivity immediately below the translucent insulating layer 18 is relatively increased, and Reduce resistivity. As a result, the current from the p-side pad electrode 30 is allowed to flow efficiently around the translucent insulating layer 18 to increase the amount of light emission except at the portion where the p-side pad electrode 30 is provided. Further, by utilizing total reflection of the translucent insulating layer 18 provided on the lower surface of the p-side pad electrode 30, light guided through the lower surface of the p-side pad electrode 30 is transmitted by total reflection, and the p-side pad electrode is provided. Extraction of light from the covered area A or the end face, which is a non-existing area, is intended.

さらに、第1介在領域B1の層厚は、光の波長λに対しほぼ(λ/4n2)以下とする(n2は透光性導電層の屈折率)。こうすることで、第1介在領域B1の層厚を光が感じ難くなり、第1介在領域B1とp型半導体層16との界面が実質的に透光性絶縁層18とp型半導体層16との界面となる。第1介在領域B1であるITO(屈折率2.00)とp型半導体層16であるGaN(屈折率2.46)との界面では、屈折率差が小さいため、全反射角が狭くなり大部分の光が透過される結果、上方に位置するp側パッド電極30の金属で光の吸収が生じ、光の取り出し効率が低下する。一方、透光性絶縁層18であるSiO2(屈折率1.46)とp型半導体層16であるGaN層との界面では屈折率差が大きいため、全反射角が大きくなる結果、全反射が生じる比率が高くなり、第1介在領域B1での光が全反射により被覆領域Aに伝播される率が高くなり、端面から外部に放出される光となって光取り出し効率が高くなる。また被覆領域Aにおいては層厚が相対的に厚いため、この部分での屈折率差が少なくなる結果、光が透過される比率も高くなるが、この領域には光を吸収する金属が存在しないため、そのまま外部に取り出される。このように、p側パッド電極30下方の透光性導電層20の層厚をその周囲よりも薄くすることで、屈折率差による全反射角をより広くし、全反射を生じやすくして上方に位置するp側パッド電極30による光の吸収を低減する一方、側面及び上方への光の取り出し効率を大きく改善することができる。第1介在領域B1の層厚は、この例(GaN層、ITO、SiO2、発光波長455nm)では、好ましくは57nm以下とする。特に、透光性導電層の屈折率n2が、n2≧n1、若しくは、|n1−n2|<|n1−n3|(ここで、n1、n3は、それぞれ第2導電型半導体層、透光性絶縁層の屈折率)の場合に、さらに好ましくはその後者を満たす場合、さらに好ましくはその両方を満たす場合に、上記光の取り出し効率をさらに向上させることができる。 Furthermore, the layer thickness of the first intervening region B1 is approximately (λ / 4n 2 ) or less with respect to the wavelength λ of light (n 2 is the refractive index of the translucent conductive layer). This makes it difficult for light to feel the layer thickness of the first intervening region B1, and the interface between the first intervening region B1 and the p-type semiconductor layer 16 substantially becomes the translucent insulating layer 18 and the p-type semiconductor layer 16. And the interface. Since the refractive index difference is small at the interface between ITO (refractive index 2.00) as the first intervening region B1 and GaN (refractive index 2.46) as the p-type semiconductor layer 16, the total reflection angle becomes narrow and large. As a result of the transmission of part of the light, light is absorbed by the metal of the p-side pad electrode 30 located above, and the light extraction efficiency is reduced. On the other hand, since the refractive index difference is large at the interface between SiO 2 (refractive index 1.46) as the translucent insulating layer 18 and the GaN layer as the p-type semiconductor layer 16, the total reflection angle increases, resulting in total reflection. The rate at which light is generated increases, the rate at which light in the first intervening region B1 is propagated to the coating region A by total reflection increases, and light is emitted from the end face to the outside, thereby increasing light extraction efficiency. In addition, since the layer thickness is relatively large in the covering region A, the difference in the refractive index in this portion is reduced. As a result, the ratio of light transmission is increased, but there is no metal that absorbs light in this region. Therefore, it is taken out as it is. Thus, by making the layer thickness of the translucent conductive layer 20 below the p-side pad electrode 30 thinner than its surroundings, the total reflection angle due to the difference in refractive index is made wider and total reflection is more likely to occur. While the light absorption by the p-side pad electrode 30 located in the region can be reduced, the light extraction efficiency to the side and upward can be greatly improved. The layer thickness of the first intervening region B1 is preferably 57 nm or less in this example (GaN layer, ITO, SiO 2 , emission wavelength 455 nm). In particular, the refractive index n 2 of the translucent conductive layer is n 2 ≧ n 1 or | n 1 −n 2 | <| n 1 −n 3 | (where n 1 and n 3 are In the case of the two-conductivity-type semiconductor layer and the refractive index of the light-transmitting insulating layer), the light extraction efficiency can be further improved when the latter is satisfied, more preferably when both are satisfied. .

以上の構造のLEDは、第1介在領域B1と半導体層16とを導通させて、p側パッド電極30の下面も発光させる。従来、この部分に注入する電流を抑制し、発光に寄与しない成分を低減することで相対的に発光に寄与する電流成分を多くして発光効率を上げるという考え方が一般的であった。これに対し、実施の形態1に係るLEDでは、逆にp側パッド電極30の下面も含めた全面を発光させ、p側パッド電極30に流れる電流を均一にすることで、電流の偏在を解消してp側パッド電極30の劣化を抑制し、ひいてはLED素子そのものの信頼性を向上させている。この構造のLEDは、p側パッド電極30の下面を発光させ、p側パッド電極30の下面を導波する光は、全反射によりp側パッド電極30の下面から側面の位置まで伝搬されて、外部に取り出される。
(実施の形態2)
In the LED having the above structure, the first intervening region B1 and the semiconductor layer 16 are electrically connected, and the lower surface of the p-side pad electrode 30 also emits light. Conventionally, the idea of suppressing the current injected into this part and reducing the components that do not contribute to light emission to increase the light emission efficiency by relatively increasing the current components that contribute to light emission has been common. On the other hand, in the LED according to the first embodiment, on the contrary, the entire surface including the lower surface of the p-side pad electrode 30 emits light, and the current flowing through the p-side pad electrode 30 is made uniform, thereby eliminating the uneven distribution of current. As a result, the deterioration of the p-side pad electrode 30 is suppressed, and as a result, the reliability of the LED element itself is improved. The LED having this structure causes the lower surface of the p-side pad electrode 30 to emit light, and light guided through the lower surface of the p-side pad electrode 30 is propagated from the lower surface of the p-side pad electrode 30 to the position of the side surface by total reflection. Take out to the outside.
(Embodiment 2)

上記の構成では、一の透光性導電層20の層厚をp側パッド電極30の下方と周囲で変更しているが、透光性導電層20を多層構成として層厚を変更することもできる。このような構成に係るLEDチップ200を、実施の形態2として図4に示す。この図において図1と同じ部材については同じ符号を付し、詳細説明を省略する。図4においては、まずp型半導体層16の上面のほぼ全面に均一な層厚の第1透光性導電層20cを形成し、透光性絶縁層18を形成した後、さらにその上面に均一な層厚の第2透光性導電層20dを形成する。これにより、透光性絶縁層18とp型半導体層16との間の第1介在領域B1における透光性導電層の層厚d1が第1透光性導電層20cの層厚となり、それ以外の被覆領域Aにおける層厚d2は、第1透光性導電層20cと第2透光性導電層20dの層厚の和となって、これらの領域で層厚に差を設けることができる。この構成では、均一な層厚の透光性導電層を段階的に形成できるので、層厚差を形成する製造工程を簡素化できる。ここで、第1透光性導電層20cと第2透光性導電層20dの膜厚は、この例のように、略同一でも良く、異なっていても良く、異なる場合は、第1透光性導電層20cを小さくする方が、絶縁層18との距離d1を小さくして光反射性に優れ、第2透光性導電層20dのシート抵抗を小さくして電流拡散性を高めることができ好ましい。   In the above configuration, the thickness of one translucent conductive layer 20 is changed below and around the p-side pad electrode 30, but the translucent conductive layer 20 may be changed to a multilayer configuration. it can. An LED chip 200 having such a configuration is shown in FIG. In this figure, the same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 4, first, a first light-transmitting conductive layer 20c having a uniform thickness is formed on almost the entire top surface of the p-type semiconductor layer 16, and a light-transmitting insulating layer 18 is formed. The second light-transmissive conductive layer 20d having a sufficient thickness is formed. Thereby, the layer thickness d1 of the translucent conductive layer in the first intervening region B1 between the translucent insulating layer 18 and the p-type semiconductor layer 16 becomes the layer thickness of the first translucent conductive layer 20c. The layer thickness d2 in the covering region A is the sum of the layer thicknesses of the first light-transmitting conductive layer 20c and the second light-transmitting conductive layer 20d, and a difference in the layer thickness can be provided in these regions. In this configuration, since the light-transmitting conductive layer having a uniform layer thickness can be formed stepwise, the manufacturing process for forming the layer thickness difference can be simplified. Here, the film thicknesses of the first translucent conductive layer 20c and the second translucent conductive layer 20d may be substantially the same as or different from each other as in this example. If the conductive layer 20c is made smaller, the distance d1 to the insulating layer 18 can be made smaller to provide better light reflectivity, and the sheet resistance of the second translucent conductive layer 20d can be made smaller to increase current diffusibility. preferable.

上記の例では、p側パッド電極30の下面を発光させる構成を説明した。ただ、p側パッド電極30の下面を発光させない構成としてもよい。発光の有無は、p側パッド電極30下面の透光性導電層20とp型半導体層16との界面を、他の透光性導電層の被覆領域における界面の接触抵抗より大きくするか小さくすること、好ましくはオーミック接触とするか、非オーミック接触とするかで切り分けられる。具体的には、p側パッド電極30下面の透光性導電層20に対して、パッド電極、絶縁層以外の領域と同様の熱処理を行うことでオーミック接触を得ることができ、熱処理しないこと、その上に設けられる絶縁層、電極、金属層で被覆保護して熱処理することで非オーミック接触とできる。この時、熱処理温度としては、300〜600℃程度とすることができる。このパッド電極30下面を非発光とする例に係るLEDを試作し、発光出力を実施の形態1に係るLEDと比較したところ、ほぼ同様の出力を得ることができる。これは、p側パッド電極30以外の領域での光取り出し効率が改善されるためと思われる。
(実施の形態3)
In the above example, the configuration in which the lower surface of the p-side pad electrode 30 emits light has been described. However, the lower surface of the p-side pad electrode 30 may be configured not to emit light. The presence or absence of light emission makes the interface between the translucent conductive layer 20 and the p-type semiconductor layer 16 on the lower surface of the p-side pad electrode 30 larger or smaller than the contact resistance of the interface in the covered region of the other translucent conductive layer. It is preferably divided according to whether it is ohmic contact or non-ohmic contact. Specifically, ohmic contact can be obtained by performing the same heat treatment as the region other than the pad electrode and the insulating layer on the translucent conductive layer 20 on the lower surface of the p-side pad electrode 30, and no heat treatment is performed. Non-ohmic contact can be achieved by covering and protecting with an insulating layer, an electrode, and a metal layer provided thereon, followed by heat treatment. At this time, the heat treatment temperature can be about 300 to 600 ° C. When an LED according to an example in which the lower surface of the pad electrode 30 is made non-light-emitting is prototyped and the light emission output is compared with the LED according to the first embodiment, substantially the same output can be obtained. This is probably because the light extraction efficiency in the region other than the p-side pad electrode 30 is improved.
(Embodiment 3)

また上記の例では、透光性導電層20であるITOを2層として介在領域の層厚を被覆領域Aの層厚よりも薄くしている。ただ、この構成に限られず、例えばITOを2層以上積層して同様の層厚差を形成することもできる。あるいはITOを1層として、エッチングなどにより層厚差を形成することもできる。さらに、透光性絶縁層18の下面の透光性導電層20の層厚を部分的に薄く形成することもできる。図5に実施の形態3として、1層のITOの透光性導電層20Bの層厚を部分的に変化させたLEDチップ300を説明する。この図において、図1と同様の部材については同一の符号を付し、詳細説明を省略する。この例では、一旦ITOを成膜後、SiO2を形成する領域をエッチングより除去し、膜厚を部分的に薄くしている。その後、エッチングした領域上にSiO2を形成する。さらにSiO2の周囲を覆うように、第2介在領域B2を形成する透光性導電層を、下層側の透光性導電層20B上まで延設して導通させ、その層20B上で部分的に形成し、その上にp側パッド電極30を形成する。この構成では下層側のITOを膜厚変化させ、それをエッチング工程により、距離d1を制御しているため、上記例の被覆領域を2層構造として、下層側成膜の膜厚制御よりも、精度が低くなる傾向にある。 In the above example, the light-transmitting conductive layer 20 is made of two ITO layers, and the layer thickness of the intervening region is made thinner than the layer thickness of the covering region A. However, the present invention is not limited to this configuration. For example, two or more layers of ITO can be stacked to form a similar layer thickness difference. Alternatively, it is possible to form a layer thickness difference by etching or the like with one layer of ITO. Furthermore, the layer thickness of the translucent conductive layer 20 on the lower surface of the translucent insulating layer 18 can be partially reduced. FIG. 5 illustrates an LED chip 300 in which the layer thickness of the light-transmitting conductive layer 20B made of ITO is partially changed as a third embodiment. In this figure, members similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In this example, once the ITO film is formed, the region where SiO 2 is formed is removed by etching, and the film thickness is partially reduced. Thereafter, SiO 2 is formed on the etched region. Further, the translucent conductive layer forming the second intervening region B2 is extended to the lower translucent conductive layer 20B so as to cover the periphery of the SiO 2 , and is partially connected on the layer 20B. The p-side pad electrode 30 is formed thereon. In this configuration, the thickness of the lower ITO layer is changed, and the distance d1 is controlled by the etching process. The accuracy tends to be low.

また、この例において、その変形例として、上層側の透光性導電層B2を無くして、それと同様な形状でパッド電極を形成すると、上層側のITOの成膜工程を簡素化できる半面、上述したエッチング工程が必要になること、及び距離d1の精度が低くなる問題がある。この変形例では、図5に示すようにSiO2の端縁でITOの膜厚が厚くなる領域にてSiO2を介在させずパッド電極がITOと接触する領域が存在させることになるため、この部分で強く発光し、またその端縁部分のパッド電極による光の吸収も有り、若干光の取り出し効率が低下する。このように、絶縁層18より外側にパッド電極30、金属層を延設させると、光吸収、損失があるため、絶縁層18内部にパッド電極30が設けられることが好ましく、他の実施の形態、その各例においても同様に適用できる。 Further, in this example, as a modification, the upper layer side light-transmitting conductive layer B2 is eliminated and the pad electrode is formed in the same shape as that, but the upper layer side ITO film forming process can be simplified. There is a problem that the etching process is required and the accuracy of the distance d1 is lowered. In this modification, since that would be present region in the region where the film thickness of the ITO at the edge of the SiO 2 is thick pad electrode without interposing the SiO 2 in contact with the ITO, as shown in FIG. 5, this The portion emits light strongly, and there is also absorption of light by the pad electrode at the edge portion, so that the light extraction efficiency is slightly lowered. As described above, when the pad electrode 30 and the metal layer are extended outside the insulating layer 18, there is light absorption and loss. Therefore, the pad electrode 30 is preferably provided inside the insulating layer 18. The same applies to each example.

以上の各実施の形態、各例では、透光性導電層20の被覆領域Aと、パッド電極30領域若しくは透光性絶縁層18領域Bと、が発光層上にそれぞれ配置された構造を有している。また、その被覆領域Bにおける透光性導電層20の膜厚d2が、パッド電極・絶縁層領域Aの透光性導電層の膜厚d1より大きい構造を有して、被覆領域Bでは光の取り出しを、パッド電極・絶縁層領域Aでは光反射を効率的にでき、光取り出し効率が向上する。この時、膜厚d1をλ/4n2未満、膜厚d2をλ/4n2以上、好ましくはλ/2n2以上とすることで、上記各効果を高めることができる。 Each of the above embodiments and examples has a structure in which the covering region A of the translucent conductive layer 20 and the pad electrode 30 region or the translucent insulating layer 18 region B are respectively disposed on the light emitting layer. is doing. Further, the thickness d2 of the translucent conductive layer 20 in the covering region B has a structure larger than the thickness d1 of the translucent conductive layer in the pad electrode / insulating layer region A. In the pad electrode / insulating layer region A, the light can be efficiently reflected and the light extraction efficiency is improved. At this time, the above effects can be enhanced by setting the film thickness d1 to less than λ / 4n 2 and the film thickness d2 to λ / 4n 2 or more, preferably λ / 2n 2 or more.

また、上述したように、これら各実施の形態、その各例は、発光層上の電極側を出射側とする発光素子に好適に用いられ、反対側の半導体層側、基板側を実装側として、発光装置の載置部に接着されて発光装置とすることができる。一方、下記実施の形態4に示すように、電極側を反射側として、半導体層側、基板側を出射側とする発光素子とすることもできる。また、半導体層の各電極は、半導体層の同一面側に設けられた例を示したが、半導体層を挟んで対向して、各導電型半導体層の電極を各々設けた構造とすることもできる。この場合、少なくとも一方の導電型半導体層側の電極構造を上述した絶縁層を有する構造とすることであり、両方の導電型半導体層側の電極構造に適用することもできる。
(実施の形態4)
In addition, as described above, each of these embodiments and each example thereof is preferably used for a light emitting element having an electrode side on the light emitting layer as an emission side, and the opposite semiconductor layer side and the substrate side as a mounting side. The light emitting device can be bonded to the mounting portion of the light emitting device. On the other hand, as shown in Embodiment Mode 4 below, a light emitting element in which the electrode side is a reflection side, the semiconductor layer side, and the substrate side is an emission side can be provided. In addition, although the example in which each electrode of the semiconductor layer is provided on the same surface side of the semiconductor layer is shown, a structure in which electrodes of each conductive type semiconductor layer are provided to face each other with the semiconductor layer interposed therebetween may be employed. it can. In this case, the electrode structure on the side of at least one conductive type semiconductor layer is the structure having the insulating layer described above, and can be applied to the electrode structure on the side of both conductive type semiconductor layers.
(Embodiment 4)

さらに本発明をフリップチップ型のLEDに適用した実施の形態4に係る発光装置を図6の断面図に示す。この図では、窒化物半導体発光素子であるLEDチップ400を配線基板の一であるサブマウント40上にフリップチップ実装している。フリップチップは、窒化物半導体層の電極形成面を主光取出し面とするフェイスアップ実装と異なり、電極形成面と対向する成長基板10B側を主光取出し面とする実装方式であり、フェイスダウン実装等とも呼ばれる。   Further, a light emitting device according to Embodiment 4 in which the present invention is applied to a flip-chip type LED is shown in a sectional view of FIG. In this figure, an LED chip 400 which is a nitride semiconductor light emitting element is flip-chip mounted on a submount 40 which is one of wiring boards. The flip chip is a mounting method in which the main light extraction surface is the growth substrate 10B side facing the electrode formation surface, unlike face-up mounting in which the electrode formation surface of the nitride semiconductor layer is the main light extraction surface. Also called etc.

図6のLEDチップ400は、成長基板10B上にバッファ層11、n型半導体層12B、発光層14B、p型半導体層16Bを順にエピタキシャル成長し、さらに透光性導電層20と反射層42を積層している。また図6においては詳細に図示しないが、発光層14B及びp型半導体層16Bの一部を選択的にエッチング除去して、n型半導体層12Bの一部を露出させて、n側パッド電極を形成している。またn側電極と同一面側で、p型半導体層16Bにはp側パッド電極30が形成される。パッド電極の上には、外部電極等と接続させるためのメタライズ層(バンプ44)を形成する。メタライズ層は、Ag、Au、Sn、In、Bi、Cu、Zn等の材料から成る。これらLEDチップ400の電極形成面側をサブマウント40上に設けられた正負一対の外部電極と対向させ、バンプ44にて各々の電極を接合する。さらにサブマウント40に対してワイヤ46等が配線される。一方、フェイスダウンで実装されたLEDチップ400の成長基板10Bの主面側を、主光取出し面としている。このようなフリップチップ実装においては、実装の容易さ等を考慮して複数のパッド電極を設けることもできる。この場合も、各p側パッド電極30Bに対しフェイスアップ実装と同様に介在領域の層厚を被覆領域の層厚よりも薄く構成することで、パッド電極の電流を均一にして素子劣化を効果的に阻止できる。   In the LED chip 400 of FIG. 6, the buffer layer 11, the n-type semiconductor layer 12B, the light-emitting layer 14B, and the p-type semiconductor layer 16B are epitaxially grown in this order on the growth substrate 10B, and the transparent conductive layer 20 and the reflective layer 42 are further laminated. is doing. Although not shown in detail in FIG. 6, a part of the light emitting layer 14B and the p-type semiconductor layer 16B is selectively removed by etching to expose a part of the n-type semiconductor layer 12B, and an n-side pad electrode is formed. Forming. A p-side pad electrode 30 is formed on the p-type semiconductor layer 16B on the same surface side as the n-side electrode. On the pad electrode, a metallized layer (bump 44) for connection with an external electrode or the like is formed. The metallized layer is made of a material such as Ag, Au, Sn, In, Bi, Cu, or Zn. The electrode forming surface side of the LED chip 400 is opposed to a pair of positive and negative external electrodes provided on the submount 40, and each electrode is joined by a bump 44. Further, a wire 46 and the like are wired to the submount 40. On the other hand, the main surface side of the growth substrate 10B of the LED chip 400 mounted face down is a main light extraction surface. In such flip chip mounting, a plurality of pad electrodes can be provided in consideration of ease of mounting and the like. Also in this case, for each p-side pad electrode 30B, the layer thickness of the intervening region is made thinner than the layer thickness of the covering region in the same manner as face-up mounting, so that the current of the pad electrode is made uniform and element degradation is effectively performed. Can be prevented.

以上のように本実施の形態によれば、パッド電極下面の透光性導電層20を発光させることにより、パッド電極から広い面積で電流を均一に通電して局所的な劣化を防止し、半導体発光素子の信頼性を改善することができる。また従来であれば半導体層と透光性導電層の界面や半導体層とパッド電極との界面で吸収されていた光を、効果的に外部に取り出して利用可能とでき、発光効率を改善できる。特に、従来はp−GaN層とパッド電極で吸収されていた光成分を、透光性導電膜の下にGaN層よりも低屈折率の膜を挿入することにより、全反射させてパッド電極の外部に伝播させ、外部への取り出しを可能とできる。
(実施の形態5)
As described above, according to the present embodiment, the translucent conductive layer 20 on the lower surface of the pad electrode is caused to emit light, so that a current is uniformly supplied over a wide area from the pad electrode, thereby preventing local deterioration. The reliability of the light emitting element can be improved. Further, conventionally, light absorbed at the interface between the semiconductor layer and the translucent conductive layer or the interface between the semiconductor layer and the pad electrode can be effectively taken out and used, and the light emission efficiency can be improved. In particular, the light component that has been absorbed by the p-GaN layer and the pad electrode in the past is totally reflected by inserting a film having a lower refractive index than the GaN layer under the light-transmitting conductive film. It can be propagated to the outside and taken out to the outside.
(Embodiment 5)

次に、実施の形態5に係る発光装置として、砲弾型の発光装置を図9に示す。この発光装置500は導電性の部材からなるリードフレーム52で成型された凹形状のカップ54内であって、リードフレーム52上に載置されている発光素子500bと、この発光素子500bから放出される光の少なくとも一部を波長変換する波長変換部材として蛍光体56を有する。発光素子500bに形成された正負の電極は、導電性のボンディングワイヤ58を介してリードフレーム52と電気的に接続される。さらにリードフレーム52の一部であるリードフレーム電極52aが突出するように、発光素子500bと、リードフレーム52と、ボンディングワイヤ58は、砲弾形状のモールド59で覆われる。モールド部材等に用いられる樹脂60は、耐光性からシリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることもできる。この樹脂60から突出しているリードフレーム電極52aが電源(図示せず)と電気的に接続されれば、発光素子500bの層内に含有される発光層14bから光が放出される。この発光層14bから出力される発光ピーク波長は紫外から青色領域の500nm以下近傍の発光スペクトルを有する。この放出された光の一部が蛍光体56を励起し、発光層14bからの主光源の波長とは異なった波長を持つ光が得られる。   Next, as a light-emitting device according to Embodiment 5, a bullet-type light-emitting device is shown in FIG. The light emitting device 500 is in a concave cup 54 formed by a lead frame 52 made of a conductive member. The light emitting device 500b is placed on the lead frame 52, and is emitted from the light emitting element 500b. The phosphor 56 is provided as a wavelength conversion member that converts the wavelength of at least a part of the light. The positive and negative electrodes formed on the light emitting element 500 b are electrically connected to the lead frame 52 through the conductive bonding wires 58. Further, the light emitting element 500b, the lead frame 52, and the bonding wire 58 are covered with a shell-shaped mold 59 so that the lead frame electrode 52a which is a part of the lead frame 52 protrudes. The resin 60 used for the mold member or the like is preferably a silicone resin composition because of light resistance, but an insulating resin composition having translucency such as an epoxy resin composition and an acrylic resin composition can also be used. . When the lead frame electrode 52a protruding from the resin 60 is electrically connected to a power source (not shown), light is emitted from the light emitting layer 14b contained in the layer of the light emitting element 500b. The emission peak wavelength output from the light emitting layer 14b has an emission spectrum near 500 nm or less in the ultraviolet to blue region. A part of the emitted light excites the phosphor 56, and light having a wavelength different from the wavelength of the main light source from the light emitting layer 14b is obtained.

図9の発光装置500は、リードフレーム52で成型された凹形状のカップ54内に、蛍光体56を含む樹脂60が充填されている。モールド59内であって、カップ54の外部に充填されている樹脂60b内には蛍光体56は含有されていない。蛍光体56を含有している樹脂と、含有していない樹脂の種類は同一が好ましいが、異なっていてもかまわない。異種の樹脂であれば、各々の樹脂が硬化するのに要する温度の差を利用して、軟度を変化させることもできる。   In the light emitting device 500 of FIG. 9, a resin 60 including a phosphor 56 is filled in a concave cup 54 formed by the lead frame 52. The phosphor 56 is not contained in the resin 60 b filled in the outside of the cup 54 in the mold 59. The resin containing phosphor 56 and the type of resin not containing are preferably the same, but they may be different. In the case of different types of resins, the softness can be changed using the difference in temperature required for each resin to cure.

このように、発光素子500bの載置部周辺の一部に蛍光体を含有するモールド部材を設けても良く、また発光装置の基材、例えばモールド59内に含有されていても良く、モールド59の表面に蛍光体を分散させた光透過性樹脂からなるキャップを被せることにより構成させることもできる。キャップの樹脂の具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等の温度特性、耐候性に優れた透明樹脂、シリカゲル、ガラス、無機バインダー等が用いられる。
(実施の形態6)
As described above, a mold member containing a phosphor may be provided in a part of the periphery of the mounting portion of the light emitting element 500b, or may be contained in a base material of the light emitting device, for example, the mold 59. It is also possible to cover the surface with a cap made of a light-transmitting resin in which a phosphor is dispersed. Specific materials for the cap resin include transparent resins, silica gel, glass, inorganic binders, and the like that are excellent in temperature characteristics and weather resistance, such as epoxy resins, urea resins, and silicone resins.
(Embodiment 6)

さらに、実施の形態6に係る発光装置として、表面実装タイプの発光装置600を図10に示す。図10(a)は平面図、図10(b)は断面図をそれぞれ示している。発光素子600bには、紫外光励起の窒化物半導体発光素子を用いることができる。また、発光素子600bは、青色励起の窒化物半導体発光素子を用いても良い。ここでは、紫外光励起の発光素子600bを例にとって説明する。発光素子600bは、発光層として発光ピーク波長が約370nmのInGaN半導体層を有する窒化物半導体発光素子を用いる。発光素子600bには、p型半導体層とn型半導体層とが形成されており(図示せず)、p型半導体層とn型半導体層には、リード電極64へ連結される導電性ワイヤ66が形成されている。リード電極64の外周を覆うように絶縁封止材65が形成され、短絡を防止している。発光素子600bの上方にはパッケージ61の上部にあるコバール製リッド63から延びる透光性の窓部67が設けられている。透光性の窓部67の内面には、蛍光体56、56a及びコーティング部材68の均一混合物がほぼ全面に塗布されている。   Further, as a light-emitting device according to Embodiment 6, a surface-mounted light-emitting device 600 is illustrated in FIG. FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view. The light-emitting element 600b can be an ultraviolet light-excited nitride semiconductor light-emitting element. The light-emitting element 600b may be a blue-excited nitride semiconductor light-emitting element. Here, the light-emitting element 600b excited by ultraviolet light will be described as an example. The light emitting element 600b uses a nitride semiconductor light emitting element having an InGaN semiconductor layer having an emission peak wavelength of about 370 nm as the light emitting layer. In the light emitting element 600b, a p-type semiconductor layer and an n-type semiconductor layer are formed (not shown), and a conductive wire 66 connected to the lead electrode 64 is connected to the p-type semiconductor layer and the n-type semiconductor layer. Is formed. An insulating sealing material 65 is formed so as to cover the outer periphery of the lead electrode 64 to prevent a short circuit. A light-transmitting window 67 extending from a Kovar lid 63 at the top of the package 61 is provided above the light emitting element 600b. A uniform mixture of the phosphors 56 and 56a and the coating member 68 is applied to the entire inner surface of the translucent window 67.

ダイボンドされた発光素子600bの各電極と、パッケージ凹部底面から露出された各リード電極64とをそれぞれAgワイヤ等の導電性ワイヤ66にて電気的導通を取る。パッケージの凹部内の水分を十分に排除した後、中央部にガラス窓部67を有するコバール製リッド63にて封止しシーム溶接を行う。ガラス窓部には、予めニトロセルロース90wt%とγ−アルミナ10wt%からなるスラリーに対して波長変換部材である酸窒化物系蛍光体56、56aを含有させ、リッド63の透光性窓部67の背面に塗布し、220℃にて30分間加熱硬化させることにより色変換部材を構成してある。こうして形成された発光装置600の発光素子600bから出力された光が、蛍光体56、56aを励起し、所望の色を高輝度に発光可能な発光装置とすることができる。これによって色度調整が極めて簡単で量産性、信頼性に優れた発光装置とすることができる。
(半導体発光素子の製造方法)
The respective electrodes of the die-bonded light emitting device 600b and the respective lead electrodes 64 exposed from the bottom of the package recess are electrically connected by a conductive wire 66 such as an Ag wire. After sufficiently removing moisture in the recess of the package, sealing is performed with a Kovar lid 63 having a glass window 67 at the center, and seam welding is performed. In the glass window portion, oxynitride phosphors 56 and 56a which are wavelength conversion members are previously contained in a slurry composed of 90 wt% of nitrocellulose and 10 wt% of γ-alumina, and the translucent window portion 67 of the lid 63 is contained. The color conversion member is configured by applying to the back surface of the film and curing by heating at 220 ° C. for 30 minutes. The light output from the light emitting element 600b of the light emitting device 600 thus formed excites the phosphors 56 and 56a, so that a light emitting device capable of emitting a desired color with high luminance can be obtained. As a result, it is possible to obtain a light emitting device that is extremely easy to adjust the chromaticity and has excellent mass productivity and reliability.
(Manufacturing method of semiconductor light emitting device)

次に、半導体発光素子の製造方法を説明する。この半導体層は窒化ガリウム系化合物半導体であり、活性層を含む発光層14からの発光ピークが紫外域にある発光波長460nmのInAlGaN半導体を有する窒化物半導体素子を用いる。より具体的には、洗浄させたサファイア基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiH4とCp2Mgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる。 Next, a method for manufacturing a semiconductor light emitting element will be described. This semiconductor layer is a gallium nitride-based compound semiconductor, and a nitride semiconductor element having an InAlGaN semiconductor with an emission wavelength of 460 nm in which the emission peak from the emission layer 14 including the active layer is in the ultraviolet region is used. More specifically, by flowing TMG (trimethylgallium) gas, TMI (trimethylindium) gas, nitrogen gas and dopant gas together with a carrier gas on a cleaned sapphire substrate, a nitride semiconductor is formed by MOCVD. Can be formed. A layer to be an n-type nitride semiconductor or a p-type nitride semiconductor is formed by switching between SiH 4 and Cp 2 Mg as the dopant gas.

半導体素子の構造としてはサファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、n型クラッド層となるSiが含有されたAlGaN層、次に発光層14として井戸層を構成するAlInGaN層、井戸層よりもAl含有量が多いバリア層となるAlInGaN層を1セットとし5セット積層させた多重量子井戸構造としてある。発光層14上にはMgがドープされたp型クラッド層としてAlGaN層、静電耐圧を高めるGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。(なお、サファイア基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある。)。   As the structure of the semiconductor element, an n-type GaN layer which is an undoped nitride semiconductor on a sapphire substrate, a GaN layer where an Si-doped n-type electrode is formed to become an n-type contact layer, and an n-type which is an undoped nitride semiconductor A set of a GaN layer, an AlGaN layer containing Si serving as an n-type cladding layer, an AlInGaN layer constituting a well layer as the light emitting layer 14, and an AlInGaN layer serving as a barrier layer having a higher Al content than the well layer It is a multi-quantum well structure in which five sets are stacked. On the light emitting layer 14, an AlGaN layer as a p-type cladding layer doped with Mg, a GaN layer for increasing electrostatic withstand voltage, and a GaN layer as a p-type contact layer doped with Mg are sequentially laminated. (Note that a GaN layer is formed on the sapphire substrate at a low temperature to serve as a buffer layer. In addition, the p-type semiconductor is annealed at 400 ° C. or higher after film formation).

詳細に記載すると、2インチφ、(0001)C面を主面とするサファイア基板上に、500℃にてGaNよりなるバッファ層を20nmの膜厚にて成長させた後、温度を1050℃にしてアンドープGaN層を5μmの膜厚にて成長させる。尚、この成長させる膜厚は、5μmに限定されるものではなく、バッファ層よりも厚い膜厚で成長させて、10μm以下の膜厚に調整することが望ましい。
(n型半導体層12)
More specifically, after a buffer layer made of GaN is grown at a temperature of 20 nm on a sapphire substrate having a main surface of 2 inches φ and a (0001) C plane, the temperature is set to 1050 ° C. An undoped GaN layer is grown to a thickness of 5 μm. Note that the film thickness to be grown is not limited to 5 μm, and it is desirable to grow the film thicker than the buffer layer and adjust the film thickness to 10 μm or less.
(N-type semiconductor layer 12)

次に、n型コンタクト層、およびn型窒化ガリウム系化合物半導体層を形成する。まず、1050℃で、同じく原料ガスTMG、アンモニアガス、不純物ガスにシランガスを用い、Siを4.5×1018/cm3ドープしたGaNよりなるn型コンタクト層を2.25μmの膜厚で成長させる。次に、シランガスのみを止め、1050℃で、TMG、アンモニアガスを用い、アンドープGaN層を7.5nmの膜厚で成長させ、続いて同温度にてシランガスを追加しSiを4.5×1018/cm3ドープしたGaN層を2.5nmの膜厚で成長させる。このようにして、7.5nmのアンドープGaNからなるA層と、SiドープGaN層を有する2.5nmのB層とからなるペアを成長させる。そしてペアを25層積層して250nm厚として、超格子構造の多層膜よりなるn型窒化ガリウム系化合物半導体層を成長させる。
(活性層)
Next, an n-type contact layer and an n-type gallium nitride compound semiconductor layer are formed. First, an n-type contact layer made of GaN doped with Si of 4.5 × 10 18 / cm 3 is grown at a thickness of 2.25 μm at 1050 ° C. using silane gas as the source gas TMG, ammonia gas, and impurity gas. Let Next, only the silane gas is stopped, TMG and ammonia gas are used at 1050 ° C., and an undoped GaN layer is grown to a thickness of 7.5 nm. Subsequently, silane gas is added at the same temperature, and Si is added to 4.5 × 10. A 18 / cm 3 -doped GaN layer is grown to a thickness of 2.5 nm. In this way, a pair consisting of an A layer made of 7.5 nm undoped GaN and a 2.5 nm B layer having an Si doped GaN layer is grown. Then, 25 pairs are stacked to a thickness of 250 nm, and an n-type gallium nitride compound semiconductor layer made of a multilayer film having a superlattice structure is grown.
(Active layer)

次に、アンドープGaNよりなる障壁層を25nmの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニアを用いアンドープIn Ga Nよりなる井戸層を3nmの膜厚で成長させる。そして、障壁+井戸+障壁+井戸+……+障壁の順で障壁層を7層、井戸層を6層、交互に積層して、総膜厚193nmの多重量子井戸構造よりなる活性層を成長させる。
(p型半導体層16)
Next, a barrier layer made of undoped GaN is grown to a thickness of 25 nm, and then the temperature is raised to 800 ° C., and a well layer made of undoped InGaN is grown to a thickness of 3 nm using TMG, TMI, and ammonia. . Then, seven barrier layers and six well layers are alternately stacked in the order of barrier + well + barrier + well + ... + barrier to grow an active layer having a multiple quantum well structure with a total film thickness of 193 nm. Let
(P-type semiconductor layer 16)

次に、p側多層膜クラッド層及びp型コンタクト層からなるp型半導体層16を形成する。まず、温度1050℃でTMG、TMA、アンモニア、Cp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cm3ドープしたp型Al0.2Ga0.8Nよりなる第3の窒化物半導体層を4nmの膜厚で成長させ、続いて温度を800℃にして、TMG、TMI、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたIn0.03Ga0.97Nよりなる第4の窒化物半導体層を2.5nmの膜厚で成長させる。そしてこれらの操作を繰り返し、第3+第4の順で交互に5層ずつ積層し、最後に第3の窒化物半導体層を4nmの膜厚で成長させた超格子構造の多層膜よりなるp側多層膜クラッド層を36.5nmの膜厚で成長させる。続いて1050℃で、TMG、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層を70nmの膜厚で成長させる。反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウエハを反応容器内において、700℃でアニールを行い、p型半導体層16をさらに低抵抗化する。 Next, a p-type semiconductor layer 16 composed of a p-side multilayer clad layer and a p-type contact layer is formed. First, a third nitride made of p-type Al 0.2 Ga 0.8 N doped with Mg at 1 × 10 20 / cm 3 using TMG, TMA, ammonia, Cp 2 Mg (cyclopentadienyl magnesium) at a temperature of 1050 ° C. The semiconductor layer is grown to a film thickness of 4 nm, and subsequently made of In 0.03 Ga 0.97 N doped with 1 × 10 20 / cm 3 of Mg using TMG, TMI, ammonia, Cp 2 Mg at a temperature of 800 ° C. A fourth nitride semiconductor layer is grown to a thickness of 2.5 nm. Then, these operations are repeated, and 5 layers are alternately laminated in the order of 3 + 4, and finally the p-side made of a multilayer film having a superlattice structure in which a third nitride semiconductor layer is grown to a thickness of 4 nm. A multilayer clad layer is grown to a thickness of 36.5 nm. Subsequently, at 1050 ° C., a p-side contact layer made of p-type GaN doped with 1 × 10 20 / cm 3 of Mg is grown to a thickness of 70 nm using TMG, ammonia, and Cp 2 Mg. After the completion of the reaction, the temperature is lowered to room temperature, and the wafer is annealed at 700 ° C. in a reaction vessel in a nitrogen atmosphere to further reduce the resistance of the p-type semiconductor layer 16.

次に、エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。具体的には、ウエハを反応容器から取り出し、表面に所定の形状のマスクを形成し、RIE(反応イオンエッチング)装置にてp型窒化ガリウム系化合物半導体層側からエッチングを行い、第二角部にn型コンタクト層の表面を露出させた。
(第1透光性導電層20a)
Next, the surface of each pn contact layer is exposed on the same side as the nitride semiconductor on the sapphire substrate by etching. Specifically, the wafer is taken out of the reaction vessel, a mask having a predetermined shape is formed on the surface, and etching is performed from the p-type gallium nitride compound semiconductor layer side with an RIE (reactive ion etching) apparatus, and the second corner portion The surface of the n-type contact layer was exposed.
(First translucent conductive layer 20a)

次に、p型窒化物半導体層の上のマスクを除去し、スパッタ装置にウエハを設置し、スパッタリングすることにより、ウエハのp型コンタクト層のほぼ全面に、ITOよりなる透光性電極を10nmの膜厚で形成した。得られた透光性電極は良好な透光性を有し、サファイア基板まで透けて観測できた。このように、露出したp型窒化物半導体層15のほぼ全面に第1透光性導電層20aが形成されることにより、電流をp型窒化物半導体層全体に均一に広げることができる。続いて、300℃以上の熱処理で、電極をアニーリング処理する。このように、電極のオーミック性を高める為に、電極アニーリング処理を施しても良い。なお、p側パッド電極30下方を発光させない場合は、透光性絶縁層を形成した後、及び/又はパッド電極を形成した後に、電極アニーリング処理することで、絶縁層、パッド電極が熱処理保護膜として機能し、保護膜の無い透光性導電層の被覆領域とで、異なるアニーリング条件として、それぞれの領域の接触抵抗をことならしめることが出来る。通常、電極アニーリング処理により、その絶縁層、パッド電極で被覆された領域が、半導体層との接触抵抗が透光性導電層被覆領域より高くなり、その被覆領域に優先的、選択的に電流注入されて、発光される。この時、好ましくは、少なくとも、透光性絶縁層を形成した後にアニーリング処理する工程を有することであり、更に、絶縁層、パッド電極の領域の接触抵抗が高抵抗化して、非オーミック接触となるようにして、透光性導電層の被覆領域に選択的に電流注入することが好ましい。
(透光性絶縁層18)
Next, the mask on the p-type nitride semiconductor layer is removed, the wafer is placed in a sputtering apparatus, and sputtering is performed, so that a translucent electrode made of ITO is formed on the entire surface of the p-type contact layer of the wafer by 10 nm. The film thickness was formed. The obtained translucent electrode had good translucency and could be observed through the sapphire substrate. As described above, the first light-transmissive conductive layer 20a is formed on almost the entire surface of the exposed p-type nitride semiconductor layer 15, so that the current can be uniformly spread over the entire p-type nitride semiconductor layer. Subsequently, the electrode is annealed by heat treatment at 300 ° C. or higher. Thus, in order to improve the ohmic property of an electrode, you may perform an electrode annealing process. When light is not emitted under the p-side pad electrode 30, the insulating layer and the pad electrode are heat-treated protective film by performing electrode annealing after forming the translucent insulating layer and / or after forming the pad electrode. As a different annealing condition from the coating region of the light-transmitting conductive layer without the protective film, the contact resistance of each region can be made different. In general, the electrode annealing process makes the region covered with the insulating layer and pad electrode have a higher contact resistance with the semiconductor layer than the light-transmitting conductive layer covered region, and current injection is preferentially and selectively applied to the covered region. Is emitted. At this time, it is preferable that at least a step of annealing is performed after the formation of the light-transmitting insulating layer, and further, the contact resistance in the region of the insulating layer and the pad electrode is increased, resulting in non-ohmic contact. Thus, it is preferable to selectively inject current into the covered region of the translucent conductive layer.
(Translucent insulating layer 18)

さらに、この上にスパッタにより透光性絶縁層18としてSiO2を10nmの膜厚で成膜する。
(第2透光性導電層20b)
Further, a SiO 2 film having a thickness of 10 nm is formed thereon as a light-transmitting insulating layer 18 by sputtering.
(Second translucent conductive layer 20b)

次に、p型半導体層16のほぼ全面を覆うように、膜厚11nmの透光性のp側透光性導電層としてITOを形成させる。またこのとき、n側透光性導電層も同時に形成させる。これにより同じ材料を用いて少ない工程で各電極を形成させることができるが、材料が異なる場合は、別工程で形成させてもよい。透光性導電層形成後、電極アニール処理として300℃以上で熱処理する。これにより、2層目のITOと1層目をなじませ、また、p型半導体層16とオーミック接触を良好にさせる。
(p側パッド電極30、n側パッド電極32)
Next, ITO is formed as a light-transmitting p-side light-transmitting conductive layer having a thickness of 11 nm so as to cover almost the entire surface of the p-type semiconductor layer 16. At this time, an n-side translucent conductive layer is also formed at the same time. Thus, each electrode can be formed with a small number of steps using the same material, but may be formed in a separate step when the materials are different. After forming the translucent conductive layer, heat treatment is performed at 300 ° C. or higher as an electrode annealing treatment. As a result, the second layer of ITO is blended with the first layer, and the ohmic contact with the p-type semiconductor layer 16 is improved.
(P-side pad electrode 30, n-side pad electrode 32)

絶縁層の上にp側パッド電極30(Ti/Rh/Au=15/2000/6000)を膜厚約800nmで形成させる。また、n型半導体層12からなるコンタクト層の表面のn側透光性導電層上にも、p側パッド電極30と同一構造からなるnパッド電極を形成する。同一の材料を用いることで工程を少なくすることができる。しかし、異なる材料を用いても何ら問題はない。パッド電極形成後、成長基板10を約80μmになるまで研磨する。このように研磨して成長基板10を薄くしておくことで、分割しやすくなる。出来上がった半導体ウエハにスクライブラインを引いた後、外力により分割させて、半導体発光素子を得る。得られた半導体発光素子は、Vfが3.1V、発光出力が30mW、となり、電流値20mAでの電力変換効率が約48.3%である。   A p-side pad electrode 30 (Ti / Rh / Au = 15/2000/6000) is formed with a film thickness of about 800 nm on the insulating layer. In addition, an n-pad electrode having the same structure as that of the p-side pad electrode 30 is also formed on the n-side translucent conductive layer on the surface of the contact layer made of the n-type semiconductor layer 12. The number of steps can be reduced by using the same material. However, there is no problem even if different materials are used. After the formation of the pad electrode, the growth substrate 10 is polished to about 80 μm. By making the growth substrate 10 thin by polishing in this way, it becomes easy to divide. A scribe line is drawn on the completed semiconductor wafer and then divided by an external force to obtain a semiconductor light emitting device. The obtained semiconductor light emitting device has Vf of 3.1 V, light emission output of 30 mW, and power conversion efficiency at a current value of 20 mA is about 48.3%.

以上の例で示す各構造の寸法の具体例としては、基板10の厚さとしては50〜200μm程度(上記例では約80μm)、半導体積層構造では、バッファ層など導電型層の下地となる下地層の厚さは1〜2μm程度、n型半導体層12の厚さは1〜2μm程度、活性層・発光層14の厚さは50〜150nm程度、p型半導体層16の厚さは、100〜300nm程度、n型層露出表面から半導体層表面までの高さは1〜3μm(上記例では約1.2μm)程度、素子外縁のn型層露出幅は5〜50μm、パッド電極・延伸導電部の厚さは0.3〜1.5μm程度、外部接続部(保護膜34の窓部)・パッド電極の幅・径は50〜150μm、延伸導電部側を光取り出し側とする場合の導電部の幅は3〜20μm、パッド電極・延伸導電部が絶縁層18内に設ける場合(図示する例)の導電部と絶縁層の端部間距離は3〜10μm程度である。図2、3、7Aで示す各発光素子100B〜Dの例の外形寸法は、□320μm(320×320μm)である。これに限らず、各寸法のものに本発明は適用できる。
(実施例)
As specific examples of the dimensions of the structures shown in the above examples, the thickness of the substrate 10 is about 50 to 200 μm (about 80 μm in the above example). The thickness of the base layer is about 1 to 2 μm, the thickness of the n-type semiconductor layer 12 is about 1 to 2 μm, the thickness of the active layer / light emitting layer 14 is about 50 to 150 nm, and the thickness of the p-type semiconductor layer 16 is 100 ˜300 nm, height from the exposed surface of the n-type layer to the surface of the semiconductor layer is about 1 to 3 μm (about 1.2 μm in the above example), the exposed width of the n-type layer at the outer edge of the device is 5 to 50 μm, The thickness of the part is about 0.3 to 1.5 μm, the width and diameter of the external connection part (window part of the protective film 34) and the pad electrode are 50 to 150 μm, and the conductive when the stretched conductive part side is the light extraction side The width of the part is 3-20μm, the pad electrode and the stretched conductive part are insulated If provided in the 18 end distance between the conductive portion and the insulating layer (the illustrated example) is about 3 to 10 [mu] m. The external dimensions of the examples of the light emitting elements 100B to 100D shown in FIGS. 2, 3, and 7A are □ 320 μm (320 × 320 μm). However, the present invention is not limited to this, and the present invention can be applied to those of various dimensions.
(Example)

上記の手順により図1に示す半導体発光素子でアニーリング処理によりp側パッド電極30下面を発光させたものを実施例1として作製した。また第1の透光性導電層形成後のアニーリング処理を行わなず、第2の透光性導電層形成後のアニーリング処理を施すことでp側パッド電極30下面を非発光とした半導体発光素子を実施例2として作製した。これらのp側パッド電極30のパターンは、図3Aに示す9本の延伸導電部31を有するパターンを使用した。一方、比較のためp側パッド電極30の下方に透光性絶縁層18を設け、透光性導電層20を設けない半導体発光素子を比較例1として作製した。これらの半導体発光素子の仕様及び発光特性を、表1に示す。表1ではITOの膜厚、p側パッド電極の延伸導電部の本数、順方向電圧Vf、光束としてIf=20mAでの積分球結果φe、主波長λd、ピーク波長λpをそれぞれ示している。   A semiconductor light emitting device shown in FIG. 1 that emits light on the lower surface of the p-side pad electrode 30 by the annealing process was manufactured as Example 1. Further, a semiconductor light emitting device that does not emit light on the lower surface of the p-side pad electrode 30 by performing an annealing process after forming the second light-transmitting conductive layer without performing the annealing process after forming the first light-transmitting conductive layer. Was made as Example 2. As a pattern of these p-side pad electrodes 30, a pattern having nine extended conductive portions 31 shown in FIG. 3A was used. On the other hand, for comparison, a semiconductor light-emitting element in which the light-transmitting insulating layer 18 was provided below the p-side pad electrode 30 and the light-transmitting conductive layer 20 was not provided was fabricated as Comparative Example 1. Table 1 shows the specifications and light emission characteristics of these semiconductor light emitting devices. Table 1 shows the ITO film thickness, the number of stretched conductive portions of the p-side pad electrode, the forward voltage Vf, the integrating sphere result φe at If = 20 mA, the main wavelength λd, and the peak wavelength λp as the luminous flux.

Figure 0004899825
Figure 0004899825

このように、透光性導電層20の層厚を変化させる本発明の構成により、高い発光出力を得られることが確認された。なお延伸導電部の本数を変化させた他の試験結果によれば、延伸導電部が4本(図3B)のとき、より高い発光出力が得られる。具体例としては、下表2に示すように、上記実施例1において、延伸導電部31が2本(図2)、9本(図3A)、4本(図7)とする他は、同様な構造にて作製し、それぞれ、実施例3〜5として、各実施例で得られる電気特性、出力特性を下表2に示す。(表中の記号は表1に同じであるが、下表2では上記電力変換効率の項目を追加している)   Thus, it was confirmed that a high light emission output can be obtained by the configuration of the present invention in which the layer thickness of the translucent conductive layer 20 is changed. In addition, according to the other test result which changed the number of extending | stretching electroconductive parts, when the extending | stretching electroconductive part is four (FIG. 3B), a higher light emission output is obtained. As a specific example, as shown in Table 2 below, the same applies to Example 1 except that the stretched conductive portions 31 are two (FIG. 2), nine (FIG. 3A), and four (FIG. 7). The electrical characteristics and output characteristics obtained in each example are shown in Table 2 below as Examples 3 to 5, respectively. (The symbols in the table are the same as those in Table 1, but the item of power conversion efficiency is added in Table 2 below)

Figure 0004899825
Figure 0004899825

また、実施例3において、図8で示すような基板凸部の断面が台形状で、その平面が円形状で各凸部がハニカム状に配置して、基板凸部の高さ、各凸部の間隔を数μmにRIEエッチング加工されて、凹凸構造10Cを有する基板を用い、パッド領域Aが発光、非発光の発光素子をそれぞれ用意する。その発光特性を比較すると、非発光型の発光素子が、発光型の発光素子より出力が高く、また、非発光型は、実施例3と同様に基板が平坦なものに比較しても、出力が低下する傾向が観られる。さらに、この凹凸構造10C基板を有する発光型、非発光型の発光素子について、パッド電極・延伸導電部の最下層の金属層に反射率の高いAg層を有するものをそれぞれ用意して比較すると、非発光型の発光素子は、発光型の出力同等に回復する傾向が観られる。これらのことから、領域A,Bを有する電極構造が設けられた面に対向する半導体層面側に、光学的構造部が設けられる場合には、当該電極構造は、発光型より非発光型が好ましいことがわかる。これは凹凸構造の散乱作用により透光性絶縁層と半導体層界面の反射が減少し、パッド電極下面での反射が増加し、発光型では非発光よりその傾向が顕著になると考えられる。   Further, in Example 3, the cross section of the substrate convex portion as shown in FIG. 8 is trapezoidal, the plane is circular, and each convex portion is arranged in a honeycomb shape. A light emitting element in which the pad region A emits light and does not emit light is prepared using a substrate having a concavo-convex structure 10C that is RIE etched to several μm. Comparing the light emission characteristics, the output of the non-light emitting type light emitting element is higher than that of the light emitting type light emitting element, and the output of the non light emitting type is similar to that of Example 3 even when the substrate is flat. There is a tendency to decrease. Furthermore, for the light-emitting and non-light-emitting light-emitting elements having this concavo-convex structure 10C substrate, each having a highly reflective Ag layer in the lowermost metal layer of the pad electrode / stretched conductive part is compared and prepared. Non-light emitting light emitting elements tend to recover to the same light emitting output. Therefore, when the optical structure portion is provided on the semiconductor layer surface side facing the surface provided with the electrode structure having the regions A and B, the electrode structure is preferably a non-light emitting type rather than a light emitting type. I understand that. This is considered to be due to the scattering effect of the concavo-convex structure, the reflection at the interface between the translucent insulating layer and the semiconductor layer is decreased, the reflection on the lower surface of the pad electrode is increased, and the tendency is more pronounced than the non-light emission in the light emitting type.

以上から、透光性導電層上に反射層を有し、領域A,Bを有する電極構造の形成面側に対向する半導体層面側を出射側とする発光素子、例えば図6の発光素子400、では、発光型の発光素子が好適に機能すると考えられる。   From the above, a light-emitting element having a reflective layer on a light-transmitting conductive layer and having a semiconductor layer surface opposite to the formation surface side of the electrode structure having regions A and B, for example, the light-emitting element 400 in FIG. Then, it is considered that a light emitting type light emitting element functions suitably.

以上のように、p型半導体層16よりも屈折率の低い透光性絶縁層18をp型半導体層16の上面に配置し、かつこの間に介在させる透光性導電層20の層厚を薄く、好ましくはλ/4n以下として、実質上透光性絶縁層18とp型半導体層16との界面とすることで、半導体層とパッド電極で吸収される光を全反射させて、効果的に光を外部に取り出すことが可能となる。ここでは半導体発光素子の発光波長460nmとし、半導体層であるGaN層の屈折率n=2.46よりも低い屈折率の透光性絶縁層18を用いることで、GaN層と透光性絶縁層18の間で全反射を生じさせている。透光性導電膜は、In、Oを含む材料とすることで、良好なオーミック接続と、低抵抗化が可能となる。また透光性絶縁層18が屈折率の低いSiO2で構成することで、全反射光の比率を増し、効率よく光を外部に取り出し効率を改善できる。 As described above, the translucent insulating layer 18 having a refractive index lower than that of the p-type semiconductor layer 16 is disposed on the upper surface of the p-type semiconductor layer 16 and the thickness of the translucent conductive layer 20 interposed therebetween is reduced. , Preferably λ / 4n or less, so that the interface between the light-transmitting insulating layer 18 and the p-type semiconductor layer 16 causes the light absorbed by the semiconductor layer and the pad electrode to be totally reflected and effectively Light can be extracted outside. Here, the light-emitting wavelength of the semiconductor light-emitting element is set to 460 nm, and the light-transmitting insulating layer 18 having a refractive index lower than the refractive index n = 2.46 of the GaN layer, which is a semiconductor layer, is used. Total reflection occurs between 18. When the light-transmitting conductive film is made of a material containing In and O, good ohmic connection and low resistance can be achieved. Further, since the translucent insulating layer 18 is made of SiO 2 having a low refractive index, the ratio of the total reflected light can be increased, and the light can be efficiently taken out to improve the efficiency.

また、絶縁層18と半導体層との間に介在する導電層B1を有する構造であることにより、パッド電極、延伸導電部が複雑化、発光素子の大面積化によらずに、発光の均一性を保持して、光取り出し効率、電力効率を向上させることができる。また、電極構造側、その反対側を出射側とする素子の種類の違いについても、それぞれに対応した非発光、発光型の発光素子を適用することで、好適な発光特性とすることができる。   In addition, the structure having the conductive layer B1 interposed between the insulating layer 18 and the semiconductor layer complicates the pad electrode and the extended conductive portion, and makes it possible to achieve uniform light emission without increasing the area of the light emitting element. The light extraction efficiency and power efficiency can be improved. In addition, regarding the difference in the types of elements having the electrode structure side and the opposite side as the emission side, suitable light emission characteristics can be obtained by applying the non-light emitting and light emitting type light emitting elements corresponding to each.

本発明の半導体発光素子、発光装置、ディスプレイ、光通信やOA機器の光源に最適な紫外域光から赤色光を発光する発光ダイオードやこれを用いたディスプレイ、照明等に好適に利用できる。 The semiconductor light-emitting device of the present invention, the light emitting device, a display can be suitably used from the optimum ultraviolet light as a light source for optical communications and OA equipment emitting diode or a display using the same that emits red light, the lighting and the like.

本発明の実施の形態1に係る半導体発光素子を示す断面図である。It is sectional drawing which shows the semiconductor light-emitting device concerning Embodiment 1 of this invention. LEDチップを示す平面図である。It is a top view which shows a LED chip. 変形例に係るLEDチップの平面図である。It is a top view of the LED chip which concerns on a modification. 実施の形態2に係る半導体発光素子を示す断面図である。FIG. 6 is a cross-sectional view showing a semiconductor light emitting element according to Embodiment 2. 実施の形態3に係る半導体発光素子を示す断面図である。FIG. 6 is a cross-sectional view showing a semiconductor light emitting element according to a third embodiment. 実施の形態4に係る窒化物半導体発光素子を実装したLEDを示す概略断面図である。6 is a schematic cross-sectional view showing an LED mounted with a nitride semiconductor light emitting element according to Embodiment 4. FIG. 変形例に係るLEDチップの平面図である。It is a top view of the LED chip which concerns on a modification. 図7のVIII−VIII線断面図である。It is the VIII-VIII sectional view taken on the line of FIG. 実施の形態5に係る砲弾型の発光装置を示す断面図である。10 is a cross-sectional view showing a bullet-type light emitting device according to Embodiment 5. FIG. (a)は、実施の形態6に係る表面実装型の発光装置を示す平面図であり、(b)は、(a)の発光装置を示す断面図である。(A) is a top view which shows the surface mount type light-emitting device based on Embodiment 6, (b) is sectional drawing which shows the light-emitting device of (a). 従来のGaN系化合物半導体発光素子を示す断面図である。It is sectional drawing which shows the conventional GaN-type compound semiconductor light-emitting device. 従来の他のGaN系化合物半導体発光素子を示す斜視図である。It is a perspective view which shows the other conventional GaN-type compound semiconductor light-emitting device. 図12のGaN系化合物半導体発光素子を示す断面図である。It is sectional drawing which shows the GaN-type compound semiconductor light-emitting device of FIG.

100…LED
100B、100C、100D、200、300、400…LEDチップ
500、600…発光装置
500b、600b…発光素子
10、10B…成長基板;10C…凹凸部
11…バッファ層;12、12B…n型半導体層
14、14B、14b…発光層
16、16B…p型半導体層
18…透光性絶縁層
20、20B…透光性導電層
20a、20c…第1透光性導電層
20b、20d…第2透光性導電層
30、30B…p側パッド電極
31…延伸導電部
32…n側パッド電極
34…保護層
40…サブマウント
42…反射層
44…バンプ
46…ワイヤ
52…リードフレーム
52a…リードフレーム電極
54…カップ
56…蛍光体
58…ボンディングワイヤ
59…モールド
60、60b…樹脂
61…パッケージ
62…キャップ
63…リッド
64…リード電極
65…絶縁封止材
66…導電性ワイヤ
67…窓部
68…コーティング部材
70…GaN系化合物半導体素子
71…サファイア基板
72…n型半導体層
73…発光層
74…p型半導体層
75…透明電極
76…p側パッド電極
77…n側パッド電極
78…保護膜
80…GaN系化合物半導体素子
81…p側パッド電極
82…絶縁膜
83…透明電極
A…被覆領域;B…被覆領域;B1…第1介在領域;B2…第2介在領域
100 ... LED
100B, 100C, 100D, 200, 300, 400 ... LED chip 500, 600 ... Light emitting device 500b, 600b ... Light emitting element 10, 10B ... Growth substrate; 10C ... Concavity and convexity 11 ... Buffer layer; 12, 12B ... n-type semiconductor layer 14, 14B, 14b ... Light-emitting layer 16, 16B ... p-type semiconductor layer 18 ... Translucent insulating layer 20, 20B ... Translucent conductive layer 20a, 20c ... First translucent conductive layer 20b, 20d ... Second translucent Photoconductive layer 30, 30B ... p-side pad electrode 31 ... extended conductive portion 32 ... n-side pad electrode 34 ... protective layer 40 ... submount 42 ... reflective layer 44 ... bump 46 ... wire 52 ... lead frame 52a ... lead frame electrode 54 ... Cup 56 ... Phosphor 58 ... Bonding wire 59 ... Mold 60, 60b ... Resin 61 ... Package 62 ... Cap DESCRIPTION OF SYMBOLS 3 ... Lid 64 ... Lead electrode 65 ... Insulation sealing material 66 ... Conductive wire 67 ... Window part 68 ... Coating member 70 ... GaN-type compound semiconductor element 71 ... Sapphire substrate 72 ... N-type semiconductor layer 73 ... Light emitting layer 74 ... p Type semiconductor layer 75 ... transparent electrode 76 ... p-side pad electrode 77 ... n-side pad electrode 78 ... protective film 80 ... GaN-based compound semiconductor element 81 ... p-side pad electrode 82 ... insulating film 83 ... transparent electrode A ... covering region; B ... Covering area; B1 ... First intervening area; B2 ... Second interposing area

Claims (6)

第1導電型の半導体層と、
前記第1導電型半導体層上の少なくとも一部に形成された発光層と、
前記発光層の上に形成された第2導電型の半導体層と、
前記第2導電型半導体層上の少なくとも一部に形成された透光性絶縁層と、
前記透光性絶縁層上の少なくとも一部に形成された第2導電型パッド電極と、
を備える半導体発光素子であって、さらに、
前記透光性絶縁層と第2導電型半導体層との界面に介在される介在領域と、
前記第2導電型半導体層上の、前記透光性絶縁層を設けた部分を除く領域を覆う被覆領域と、
を有する透光性導電層を備え、
前記介在領域の層厚が、被覆領域の層厚よりも薄く構成されており、
前記透光性絶縁層の屈折率を前記第2導電型半導体層よりも低く、かつ
前記第2導電型半導体層と前記透光性絶縁層との間に介在する透光性導電層の層厚が、該発光素子の光の波長λ、前記透光性導電層の屈折率nに対し、略(λ/4n)以下であり、
前記第2導電型半導体層上で前記透光性絶縁層を除く領域を被覆する被覆領域における透光性導電層の層厚が、該発光素子の光の波長λ、前記透光性導電層の屈折率nに対し、(λ/4n)より大きく、
前記透光性絶縁層下面の透光性導電層を電流注入領域とすることを特徴とする半導体発光素子。
A first conductivity type semiconductor layer;
A light emitting layer formed on at least a part of the first conductive semiconductor layer;
A second conductive type semiconductor layer formed on the light emitting layer;
A translucent insulating layer formed on at least a part of the second conductive type semiconductor layer;
A second conductivity type pad electrode formed on at least a part of the light-transmitting insulating layer;
A semiconductor light emitting device comprising:
An intervening region interposed at an interface between the translucent insulating layer and the second conductive semiconductor layer;
A covering region covering a region on the second conductive type semiconductor layer excluding a portion provided with the light-transmissive insulating layer;
A translucent conductive layer having
The thickness of the intervening region is configured to be thinner than the layer thickness of the covering region ,
A refractive index of the translucent insulating layer is lower than that of the second conductive semiconductor layer, and
The thickness of the translucent conductive layer interposed between the second conductive type semiconductor layer and the translucent insulating layer is such that the light wavelength λ of the light emitting element and the refractive index n of the translucent conductive layer. On the other hand, it is approximately (λ / 4n) or less,
The layer thickness of the light-transmitting conductive layer in the covering region covering the region excluding the light-transmitting insulating layer on the second conductive type semiconductor layer is the light wavelength λ of the light-emitting element, the light-transmitting conductive layer For refractive index n, greater than (λ / 4n),
The semiconductor light emitting device characterized to Rukoto and current injection region transmitting conductive layer on the lower surface the transparent insulating layer.
第1導電型の半導体層と、
前記第1導電型半導体層上の少なくとも一部に形成された発光層と、
前記発光層の上に形成された第2導電型の半導体層と、
前記第2導電型半導体層上の少なくとも一部に形成された透光性絶縁層と、
前記透光性絶縁層上の少なくとも一部に形成された第2導電型パッド電極と、
前記第2導電型半導体層上のほぼ全面を覆う被覆領域と、一部が被覆領域と連続して前記第2導電型半導体層と透光性絶縁層との間に介在される第1介在領域と、前記透光性絶縁層の周囲から上面を被覆して前記第2導電型パッド電極との界面に介在する第2介在領域とを有す透光性導電層と、
を備え、
前記第1介在領域の層厚が、被覆領域の層厚よりも薄く構成されており、
前記透光性絶縁層の屈折率を前記第2導電型半導体層よりも低く、かつ
前記第2導電型半導体層と前記透光性絶縁層との間に介在する透光性導電層の層厚が、該発光素子の光の波長λ、前記透光性導電層の屈折率nに対し、略(λ/4n)以下であり、
前記第2導電型半導体層上で前記透光性絶縁層を除く領域を被覆する被覆領域における透光性導電層の層厚が、該発光素子の光の波長λ、前記透光性導電層の屈折率nに対し、(λ/4n)より大きく、
前記透光性絶縁層下面の透光性導電層を電流注入領域とすることを特徴とする半導体発光素子。
A first conductivity type semiconductor layer;
A light emitting layer formed on at least a part of the first conductive semiconductor layer;
A second conductive type semiconductor layer formed on the light emitting layer;
A translucent insulating layer formed on at least a part of the second conductive type semiconductor layer;
A second conductivity type pad electrode formed on at least a part of the light-transmitting insulating layer;
A covering region covering substantially the entire surface of the second conductive type semiconductor layer, and a first intervening region partially interposed between the second conductive type semiconductor layer and the translucent insulating layer continuously to the covering region When a transparent conductive layer that have a second intermediate region interposed at the interface between the second conductivity-type pad electrode by covering the upper surface from the periphery of the translucent insulating layer,
With
The layer thickness of the first intervening region is configured to be thinner than the layer thickness of the covering region ,
A refractive index of the translucent insulating layer is lower than that of the second conductive semiconductor layer, and
The thickness of the translucent conductive layer interposed between the second conductive type semiconductor layer and the translucent insulating layer is such that the light wavelength λ of the light emitting element and the refractive index n of the translucent conductive layer. On the other hand, it is approximately (λ / 4n) or less,
The layer thickness of the light-transmitting conductive layer in the covering region covering the region excluding the light-transmitting insulating layer on the second conductive type semiconductor layer is the light wavelength λ of the light-emitting element, the light-transmitting conductive layer For refractive index n, greater than (λ / 4n),
The semiconductor light emitting device characterized to Rukoto and current injection region transmitting conductive layer on the lower surface the transparent insulating layer.
請求項1又は2に記載の半導体発光素子であって、
前記第2導電型半導体層と透光性導電層との界面の接触抵抗は、前記透光性絶縁層が形成された領域より、前記第2導電型半導体層表面を被覆する領域が低いことを特徴とする半導体発光素子。
The semiconductor light-emitting device according to claim 1 or 2 ,
The contact resistance at the interface between the second conductive type semiconductor layer and the translucent conductive layer is such that the region covering the surface of the second conductive type semiconductor layer is lower than the region where the translucent insulating layer is formed. A semiconductor light emitting device characterized.
請求項1からのいずれか一に記載の半導体発光素子であって、
前記第2導電型層が窒化物半導体層であり、
前記透光性絶縁層の屈折率が、2.46以下であることを特徴とする半導体発光素子。
A semiconductor light emitting device as claimed in any one of 3,
The second conductivity type layer is a nitride semiconductor layer;
The semiconductor light-emitting device, wherein the light-transmitting insulating layer has a refractive index of 2.46 or less.
請求項1からのいずれか一に記載の半導体発光素子であって、
前記第2導電型パッド電極は、上面から見て透光性絶縁層の内部に入っていることを特徴とする半導体発光素子。
A semiconductor light emitting device as claimed in any one of 4,
The semiconductor light emitting device, wherein the second conductivity type pad electrode is inside the translucent insulating layer as viewed from above.
半導体発光素子と、
前記半導体発光素子が発する光を波長変換する波長変換部材と、
を備える発光装置であって、
前記半導体発光素子が請求項1からのいずれか一に記載の半導体発光素子であることを特徴とする発光装置。
A semiconductor light emitting device;
A wavelength conversion member that converts the wavelength of light emitted from the semiconductor light emitting element;
A light emitting device comprising:
The light emitting device which is a semiconductor light-emitting device according semiconductor light emitting element in any one of claims 1-5.
JP2006320401A 2006-11-28 2006-11-28 Semiconductor light emitting device, light emitting device Active JP4899825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320401A JP4899825B2 (en) 2006-11-28 2006-11-28 Semiconductor light emitting device, light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320401A JP4899825B2 (en) 2006-11-28 2006-11-28 Semiconductor light emitting device, light emitting device

Publications (2)

Publication Number Publication Date
JP2008135554A JP2008135554A (en) 2008-06-12
JP4899825B2 true JP4899825B2 (en) 2012-03-21

Family

ID=39560198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320401A Active JP4899825B2 (en) 2006-11-28 2006-11-28 Semiconductor light emitting device, light emitting device

Country Status (1)

Country Link
JP (1) JP4899825B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779918B (en) 2007-02-01 2015-09-02 日亚化学工业株式会社 Semiconductor light-emitting elements
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
TWI394296B (en) * 2008-09-09 2013-04-21 Bridgelux Inc Light-emitting device with improved electrode structures
JP5588882B2 (en) * 2008-12-28 2014-09-10 有限会社Mtec Light emitting diode module
WO2010074288A1 (en) * 2008-12-28 2010-07-01 有限会社Mtec Light emitting diode module driven with high voltage
JP2011066047A (en) * 2009-09-15 2011-03-31 Sharp Corp Nitride semiconductor light emitting element
WO2011083923A2 (en) * 2010-01-07 2011-07-14 Seoul Opto Device Co., Ltd. Light emitting diode having electrode pads
JP2012028381A (en) 2010-07-20 2012-02-09 Sharp Corp Semiconductor light emitting device and method of manufacturing the same
JP2012028749A (en) 2010-07-22 2012-02-09 Seoul Opto Devices Co Ltd Light-emitting diode
JP5095785B2 (en) 2010-08-09 2012-12-12 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
TWI452730B (en) * 2010-09-14 2014-09-11 Formosa Epitaxy Inc Light emitting diode
KR102399278B1 (en) * 2014-12-31 2022-05-19 서울바이오시스 주식회사 Light emitting diode
CN102074629B (en) 2010-12-16 2012-12-19 厦门市三安光电科技有限公司 Light emitting diode with sandwich-type current blocking structure
KR101762787B1 (en) * 2010-12-20 2017-07-28 엘지이노텍 주식회사 Light emitting device, Light emitting device package and light system
KR101834277B1 (en) 2011-09-20 2018-03-07 주성엔지니어링(주) Light emitting device
CN102544294A (en) * 2012-02-28 2012-07-04 江苏新广联科技股份有限公司 LED (Light Emitting Diode) chip capable of improving current transmission
JP5826693B2 (en) * 2012-04-04 2015-12-02 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP6136701B2 (en) 2013-07-24 2017-05-31 日亜化学工業株式会社 Light emitting device
KR102080779B1 (en) * 2013-10-11 2020-02-24 엘지이노텍 주식회사 A light emitting device
JP6485019B2 (en) * 2013-12-19 2019-03-20 日亜化学工業株式会社 Semiconductor light emitting device
JP6617401B2 (en) * 2014-09-30 2019-12-11 日亜化学工業株式会社 Semiconductor light emitting device
JP6519464B2 (en) 2015-12-24 2019-05-29 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
JP6651843B2 (en) 2015-12-25 2020-02-19 日亜化学工業株式会社 Light emitting element
JP6976039B2 (en) * 2016-05-17 2021-12-01 ローム株式会社 Semiconductor light emitting device
JPWO2020100297A1 (en) * 2018-11-16 2021-10-14 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
JPWO2020100299A1 (en) * 2018-11-16 2021-09-24 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
US20210336099A1 (en) * 2018-11-16 2021-10-28 Sakai Display Products Corporation Micro led device and method for manufacturing same
CN209804697U (en) * 2019-05-13 2019-12-17 厦门三安光电有限公司 Light-emitting diode
CN113889558B (en) * 2021-09-26 2024-01-05 泉州三安半导体科技有限公司 Light emitting diode, light emitting module and display device
CN115172555B (en) * 2022-09-08 2022-11-18 江西兆驰半导体有限公司 Epitaxial wafer of high-luminous-efficiency light-emitting diode, preparation method of epitaxial wafer and light-emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353506A (en) * 2001-05-23 2002-12-06 Sharp Corp Semiconductor light-emitting element and manufacturing method therefor
JP4977957B2 (en) * 2004-03-29 2012-07-18 日亜化学工業株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2008135554A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4899825B2 (en) Semiconductor light emitting device, light emitting device
USRE49298E1 (en) Semiconductor light emitting element
JP5040355B2 (en) Semiconductor light emitting device and light emitting device having the same
US9240433B2 (en) Light emitting device
KR102087933B1 (en) Light Emitting device and light emitting array
JP5634003B2 (en) Light emitting device
KR101888604B1 (en) Light emitting device and light emitting device package
JP4882792B2 (en) Semiconductor light emitting device
JP4572604B2 (en) Semiconductor light emitting element and light emitting device using the same
US8314431B2 (en) LED semiconductor element having increased luminance
US8829559B2 (en) Nitride semiconductor light-emitting device and production method thereof
US20070290216A1 (en) Semiconductor light emitting element, manufacturing method therefor, and compound semiconductor light emitting diode
KR102548428B1 (en) Interconnects for light emitting diode chips
US8791495B2 (en) Light emitting device package and lighting system
US8637893B2 (en) Light emitting device package, method of manufacturing the same, and lighting system
WO2011090112A1 (en) Light-emitting diode, light-emitting diode lamp and lighting device
JP4581540B2 (en) Semiconductor light emitting element and light emitting device using the same
JP2020533778A (en) Light emitting element package
KR20120002130A (en) Flip-chip light-emitting device and method of manufacturing the same
KR101746002B1 (en) Light emitting device
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
JP5557648B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
TW201901987A (en) Light-emitting element
WO2010092741A1 (en) Light-emitting diode, and light-emitting diode lamp
CN112823427B (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250