JP5826693B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device Download PDF

Info

Publication number
JP5826693B2
JP5826693B2 JP2012085945A JP2012085945A JP5826693B2 JP 5826693 B2 JP5826693 B2 JP 5826693B2 JP 2012085945 A JP2012085945 A JP 2012085945A JP 2012085945 A JP2012085945 A JP 2012085945A JP 5826693 B2 JP5826693 B2 JP 5826693B2
Authority
JP
Japan
Prior art keywords
conductive layer
layer
semiconductor
light emitting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012085945A
Other languages
Japanese (ja)
Other versions
JP2012129574A (en
Inventor
泰輔 佐藤
泰輔 佐藤
俊行 岡
俊行 岡
浩一 橘
浩一 橘
布上 真也
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012085945A priority Critical patent/JP5826693B2/en
Publication of JP2012129574A publication Critical patent/JP2012129574A/en
Application granted granted Critical
Publication of JP5826693B2 publication Critical patent/JP5826693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明の実施形態は、半導体発光素子の製造方法に関する。   Embodiments described herein relate generally to a method for manufacturing a semiconductor light emitting device.

窒化ガリウム(GaN)などの窒化物半導体は、ワイドバンドギャップを有する特徴を活かし、紫外、青色または緑色の発光ダイオード(LED:Light Emitting Diode)、及び、青紫色または青色のレーザダイオード(LD:Laser Diode)などに応用されている。   Nitride semiconductors such as gallium nitride (GaN) make use of the characteristic of having a wide band gap, and light emitting diodes (LED: Light Emitting Diodes) of ultraviolet, blue, or green, and laser diodes (LD: Laser) of blue-violet or blue. Diode).

半導体発光素子において、透光性電極の上に設けられる電極が、台座電極と、台座電極から延長する補助電極と、を有する構成がある。台座電極は、例えばボンディングパッド電極として用いることができる。補助電極は、例えば電流を均一に分配する機能を有する。   In a semiconductor light emitting device, there is a configuration in which an electrode provided on a translucent electrode includes a pedestal electrode and an auxiliary electrode extending from the pedestal electrode. The base electrode can be used as, for example, a bonding pad electrode. The auxiliary electrode has a function of uniformly distributing current, for example.

半導体発光素子において、高いボンディング性と、高い効率と、を得ることが望まれている。   In a semiconductor light emitting device, it is desired to obtain high bondability and high efficiency.

特開2001−345480号公報JP 2001-345480 A

本発明の実施形態は、高いボンディング性と高い効率とを有する半導体発光素子の製造方法を提供する。   Embodiments of the present invention provide a method for manufacturing a semiconductor light emitting device having high bondability and high efficiency.

本発明の実施形態によれば、積層構造体と、第1電極と、第2電極と、を含む半導体発光素子の製造方法が提供される。前記積層構造体は、窒化物半導体を含む第1導電形の第1半導体層と、窒化物半導体を含む第2導電形の第2半導体層と、前記第1半導体層と前記第2半導体層との間に設けられ、窒化物半導体層を含む発光層と、を含む。前記積層構造体の前記第2半導体層の側の第2主面において前記第1半導体層の一部が露出している。前記第1電極は、前記第2主面の側において前記第1半導体層に接する。前記第2電極は、前記第2主面の側において前記第2半導体層に接し、第1導電層、第2導電層及び反射性の第3導電層を含む。前記製造方法は、前記第2半導体層の上に、前記発光層から放出される発光に対して透過性を有し、100ナノメートル以上250ナノメートル以下で、一様な厚さを有し、電流を広げる第1導電層を形成することを含む。前記製造方法は、前記第1導電層の一部と、前記第1半導体層の前記露出された前記一部と、の上に、前記発光に対する前記第2導電層の反射率よりも高い反射率を有する高反射導電膜を形成し、前記高反射導電膜を加工して、前記第1電極の少なくとも一部と、前記第1導電層の前記第2半導体層とは反対の側の第1主面に沿って延在し、延在方向に対して垂直で前記第1主面に対して平行な方向に沿った幅が1マイクロメートル以上50マイクロメートル以下の延在部を有し、アルミニウム、銀及びロジウムの少なくともいずれかを含む前記第3導電層と、を形成することを含む。前記製造方法は、前記第1導電層の一部の上に、前記第3導電層の前記延在部の少なくとも一部を露出させ、前記第1導電層に対する密着力が前記第3導電層の前記第1導電層に対する密着力よりも大きく、前記第1主面に対して平行な方向に沿った幅が30マイクロメートル以上80マイクロメートル以下の前記第2導電層を形成することをさらに含む。 According to the embodiment of the present invention, a method for manufacturing a semiconductor light emitting device including a laminated structure, a first electrode, and a second electrode is provided. The stacked structure includes a first semiconductor layer of a first conductivity type including a nitride semiconductor, a second semiconductor layer of a second conductivity type including a nitride semiconductor, the first semiconductor layer, and the second semiconductor layer. And a light emitting layer including a nitride semiconductor layer. A part of the first semiconductor layer is exposed on the second main surface of the stacked structure on the second semiconductor layer side. The first electrode is in contact with the first semiconductor layer on the second main surface side. The second electrode is in contact with the second semiconductor layer on the second main surface side, and includes a first conductive layer, a second conductive layer, and a reflective third conductive layer. The manufacturing method, on the second semiconductor layer has a transparency to light emission emitted from the light emitting layer, at 100 nm or more 250 nm or less, have a uniform thickness, and forming a first conductive layer Ru spread current. The manufacturing method has a reflectance higher than a reflectance of the second conductive layer with respect to the light emission on a part of the first conductive layer and the exposed part of the first semiconductor layer. And processing the high-reflection conductive film to form at least a part of the first electrode and the first main layer on the opposite side of the first conductive layer from the second semiconductor layer. An extending portion extending along the surface and having a width in a direction perpendicular to the extending direction and parallel to the first main surface that is not less than 1 micrometer and not more than 50 micrometers, aluminum, Forming the third conductive layer containing at least one of silver and rhodium. In the manufacturing method, at least a part of the extended portion of the third conductive layer is exposed on a part of the first conductive layer, and an adhesion force to the first conductive layer is increased in the third conductive layer. The method further includes forming the second conductive layer having a width greater than 30 micrometers and not more than 80 micrometers along a direction parallel to the first main surface, which is greater than the adhesion to the first conductive layer.

図1(a)及び図1(b)は、実施形態に係る半導体発光素子を示す模式図である。FIG. 1A and FIG. 1B are schematic views showing a semiconductor light emitting device according to an embodiment. 図2(a)〜図2(e)は、実施形態に係る半導体発光素子の製造方法を示す工程順模式的断面図である。FIG. 2A to FIG. 2E are schematic cross-sectional views in order of steps showing the method for manufacturing the semiconductor light emitting device according to the embodiment. 図3(a)〜図3(c)は、実施形態に係る別の半導体発光素子を示す模式的平面図である。FIG. 3A to FIG. 3C are schematic plan views showing other semiconductor light emitting elements according to the embodiment. 図4(a)及び図4(b)は、実施形態に係る別の半導体発光素子を示す模式的平面図である。FIG. 4A and FIG. 4B are schematic plan views showing other semiconductor light emitting elements according to the embodiment. 実施形態に係る別の半導体発光素子を示す模式的断面図である。It is a typical sectional view showing another semiconductor light emitting element concerning an embodiment. 図6(a)及び図6(b)は、実施形態に係る半導体発光素子の別の製造方法を示す工程順模式的断面図である。FIG. 6A and FIG. 6B are schematic cross-sectional views in order of steps showing another method for manufacturing the semiconductor light emitting element according to the embodiment. 実施形態に係る半導体発光素子の製造方法を示すフローチャート図である。It is a flowchart figure which shows the manufacturing method of the semiconductor light-emitting device concerning embodiment.

以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Embodiments of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

(第1の実施の形態)
図1(a)及び図1(b)は、第1の実施形態に係る半導体発光素子の構成を例示する模式図である。
すなわち、図1(b)は模式的平面図であり、図1(a)は図1(b)のA1−A2線断面図である。
(First embodiment)
FIG. 1A and FIG. 1B are schematic views illustrating the configuration of the semiconductor light emitting device according to the first embodiment.
1B is a schematic plan view, and FIG. 1A is a cross-sectional view taken along line A1-A2 of FIG. 1B.

図1に表したように、本実施形態に係る半導体発光素子110は、積層構造体10sと、第1導電層51と、第2導電層52と、第3導電層53と、を備える。   As shown in FIG. 1, the semiconductor light emitting device 110 according to this embodiment includes a stacked structure 10 s, a first conductive layer 51, a second conductive layer 52, and a third conductive layer 53.

積層構造体10sは、窒化物半導体を含む第1導電形の第1半導体層10と、窒化物半導体を含む第2導電形の第2半導体層20と、第1半導体層10と第2半導体層20との間に設けられ、窒化物半導体層を含む発光層30と、を含む。   The laminated structure 10s includes a first conductivity type first semiconductor layer 10 including a nitride semiconductor, a second conductivity type second semiconductor layer 20 including a nitride semiconductor, a first semiconductor layer 10, and a second semiconductor layer. And a light emitting layer 30 including a nitride semiconductor layer.

例えば、第1半導体層10はn形であり、第2半導体層20はp形である。ただし、実施形態はこれに限らず、第1半導体層10がp形で、第2半導体層20がn形でも良い。以下では第1半導体層10がn形で、第2半導体層20がp形である場合として説明する。   For example, the first semiconductor layer 10 is n-type, and the second semiconductor layer 20 is p-type. However, the embodiment is not limited thereto, and the first semiconductor layer 10 may be p-type and the second semiconductor layer 20 may be n-type. In the following description, it is assumed that the first semiconductor layer 10 is n-type and the second semiconductor layer 20 is p-type.

半導体発光素子110の積層構造体10sにおいては、第1半導体層10、発光層30及び第2半導体層20が積層される。第1半導体層10から第2半導体層20に向かう方向をZ軸方向(第1方向)とする。
ここで、本願明細書において、「積層」とは、互いに接して重ねられる場合の他に、間に他の層が挿入されて重ねられる場合も含む。
In the stacked structure 10s of the semiconductor light emitting device 110, the first semiconductor layer 10, the light emitting layer 30, and the second semiconductor layer 20 are stacked. A direction from the first semiconductor layer 10 toward the second semiconductor layer 20 is defined as a Z-axis direction (first direction).
Here, in the specification of the present application, “lamination” includes not only the case of being stacked in contact with each other but also the case of being stacked with another layer inserted therebetween.

発光層30は、複数の障壁層31と、複数の障壁層31どうしの間に設けられた井戸層32と、を含む。例えば、発光層30は、2つの障壁層31と、その障壁層31の間に設けられた井戸層32と、を含む単一量子井戸(SQW:Single Quantum Well)構造を有することができる。例えば、発光層30は、3つ以上の障壁層31と、障壁層31どうしのそれぞれの間に設けられた井戸層32と、を含む多重量子井戸(MQW:Multi Quantum Well)構造を有することができる。   The light emitting layer 30 includes a plurality of barrier layers 31 and a well layer 32 provided between the plurality of barrier layers 31. For example, the light emitting layer 30 may have a single quantum well (SQW) structure including two barrier layers 31 and a well layer 32 provided between the barrier layers 31. For example, the light emitting layer 30 may have a multiple quantum well (MQW) structure including three or more barrier layers 31 and a well layer 32 provided between the barrier layers 31. it can.

すなわち、発光層30は、例えば、(n+1)個の障壁層31と、n個の井戸層32と、を含む(nは、1以上の整数)。第i番目の障壁層BLiは、第1半導体層10と第i番目の井戸層WLiとの間に設けられる(iは1以上n以下の整数)。第i番目の井戸層WLiは、第i番目の障壁層と第(i+1)番目の障壁層BL(n+1)との間に設けられる。第(n+1)番目の障壁層は、第n番目の井戸層WLnと第2半導体層20との間に設けられる。   That is, the light emitting layer 30 includes, for example, (n + 1) barrier layers 31 and n well layers 32 (n is an integer of 1 or more). The i-th barrier layer BLi is provided between the first semiconductor layer 10 and the i-th well layer WLi (i is an integer of 1 to n). The i-th well layer WLi is provided between the i-th barrier layer and the (i + 1) -th barrier layer BL (n + 1). The (n + 1) th barrier layer is provided between the nth well layer WLn and the second semiconductor layer 20.

井戸層32は、例えば、インジウム(In)とガリウム(Ga)とを含む窒化物半導体を含む。障壁層31のバンドギャップエネルギーは、井戸層32のバンドギャップエネルギーよりも大きい。障壁層31は、Inを含んでも良く、含まなくても良い。障壁層31がInを含む場合は、障壁層31のIII族元素中におけるInの組成比は、井戸層32のIII族元素中におけるInの組成比よりも低い。   The well layer 32 includes, for example, a nitride semiconductor containing indium (In) and gallium (Ga). The band gap energy of the barrier layer 31 is larger than the band gap energy of the well layer 32. The barrier layer 31 may or may not contain In. When the barrier layer 31 contains In, the In composition ratio in the group III element of the barrier layer 31 is lower than the In composition ratio in the group III element of the well layer 32.

障壁層31として、例えば、In0.02Ga0.98N層が用いられる。障壁層31の厚さは例えば12.5ナノメートル(nm)とされる。井戸層32として、アンドープのIn0.2Ga0.8N層が用いられる。井戸層32の厚さは、例えば2.5nmとされる。本具体例の発光層30は、室温における発光層30のフォトルミネッセンスの波長が450nmになるように設計されている。 For example, an In 0.02 Ga 0.98 N layer is used as the barrier layer 31. The thickness of the barrier layer 31 is, for example, 12.5 nanometers (nm). As the well layer 32, an undoped In 0.2 Ga 0.8 N layer is used. The thickness of the well layer 32 is, for example, 2.5 nm. The light emitting layer 30 of this specific example is designed so that the photoluminescence wavelength of the light emitting layer 30 at room temperature is 450 nm.

第1半導体層10には、例えばn形不純物がドープされたn形GaN層が用いられる。n形不純物には、Si、Ge及びSnの少なくともいずれかが用いられる。本具体例では、n形不純物としてSiが用いられる。第1半導体層10におけるSiの濃度(ドーピング量)は、例えば、2×1018cm−3程度とされる。 For example, an n-type GaN layer doped with an n-type impurity is used for the first semiconductor layer 10. As the n-type impurity, at least one of Si, Ge, and Sn is used. In this specific example, Si is used as the n-type impurity. The concentration (doping amount) of Si in the first semiconductor layer 10 is, for example, about 2 × 10 18 cm −3 .

第2半導体層20は、例えば、第1p形半導体層21と、第1p形半導体層21と発光層30との間に設けられた第2p形半導体層22と、を含む。第2p形半導体層22には、例えばp形GaN層が用いられる。第2p形半導体層22の厚さは、例えば約90nm程度とされる。p形不純物には、Mg及びZnの少なくともいずれかを用いることができる。本具体例では、p形不純物としてMgが用いられる。第2形半導体層22におけるMgの濃度は、例えば4×1018cm−3とされる。第1p形半導体層21には、例えばp形GaN層が用いられる。第1p形半導体層21は、コンタクト層として機能する。第1p形半導体層21の厚さは、例えば約10nmとされる。第1p形半導体層21におけるMgの濃度は、例えば、約1×1020cm−3とされる。 The second semiconductor layer 20 includes, for example, a first p-type semiconductor layer 21 and a second p-type semiconductor layer 22 provided between the first p-type semiconductor layer 21 and the light emitting layer 30. For example, a p-type GaN layer is used for the second p-type semiconductor layer 22. The thickness of the second p-type semiconductor layer 22 is, for example, about 90 nm. As the p-type impurity, at least one of Mg and Zn can be used. In this specific example, Mg is used as the p-type impurity. The concentration of Mg in the second type semiconductor layer 22 is, for example, 4 × 10 18 cm −3 . For example, a p-type GaN layer is used for the first p-type semiconductor layer 21. The first p-type semiconductor layer 21 functions as a contact layer. The thickness of the first p-type semiconductor layer 21 is about 10 nm, for example. The Mg concentration in the first p-type semiconductor layer 21 is, for example, about 1 × 10 20 cm −3 .

第1半導体層10、発光層30及び第2半導体層20を含む積層構造体10sの第2半導体層20の側の第2主面10aにおいて、第1半導体層10の一部、並びに、その一部に対応する発光層30の一部及び第2半導体層20の一部が除去されている。積層構造体10sの、第2半導体層20の側の第2主面10aの側において、第1半導体層10が露出している。   In the second main surface 10a on the second semiconductor layer 20 side of the stacked structure 10s including the first semiconductor layer 10, the light emitting layer 30, and the second semiconductor layer 20, a part of the first semiconductor layer 10 and one of A part of the light emitting layer 30 corresponding to the part and a part of the second semiconductor layer 20 are removed. The first semiconductor layer 10 is exposed on the second major surface 10a side of the stacked structure 10s on the second semiconductor layer 20 side.

積層構造体10sの第2半導体層20の側の第2主面10aの側において、第1半導体層10に接する第1電極40が設けられている。   A first electrode 40 in contact with the first semiconductor layer 10 is provided on the second main surface 10a side of the stacked structure 10s on the second semiconductor layer 20 side.

本具体例では、第1電極40は、第1n側導電膜41と、第1n側導電膜41と第1半導体層10との間に設けられた第2n側導電膜42と、第2n側導電膜42と第1半導体層10との間に設けられた第3n側導電膜43と、を含む。第1n側導電膜41には、例えば金膜(Au膜)が用いられる。第1n側導電膜41の厚さは例えば約0.2マイクロメートル(μm)とされる。第2n側導電膜42には、例えば白金膜(Pt膜)が用いられる。第2n側導電膜42の厚さは、例えば約0.05μmとされる。第3n側導電膜43には、例えばチタン膜(Ti膜)が用いられる。第3n側導電膜43の厚さは例えば約0.05μmとされる。第1n側導電膜41は、例えば、第1電極40のうちのパッド部となる。   In this specific example, the first electrode 40 includes a first n-side conductive film 41, a second n-side conductive film 42 provided between the first n-side conductive film 41 and the first semiconductor layer 10, and a second n-side conductive. A third n-side conductive film 43 provided between the film 42 and the first semiconductor layer 10. For example, a gold film (Au film) is used for the first n-side conductive film 41. The thickness of the first n-side conductive film 41 is, for example, about 0.2 micrometers (μm). For the second n-side conductive film 42, for example, a platinum film (Pt film) is used. The thickness of the second n-side conductive film 42 is, for example, about 0.05 μm. For the third n-side conductive film 43, for example, a titanium film (Ti film) is used. The thickness of the third n-side conductive film 43 is about 0.05 μm, for example. For example, the first n-side conductive film 41 serves as a pad portion of the first electrode 40.

一方、積層構造体10sの第2半導体層20の側の第2主面10aの側において、第2半導体層20に接する第2電極50が設けられている。第1導電層51と、第2導電層52と、第3導電層53と、は、第2電極50に含まれる。   On the other hand, the second electrode 50 in contact with the second semiconductor layer 20 is provided on the second major surface 10a side on the second semiconductor layer 20 side of the multilayer structure 10s. The first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are included in the second electrode 50.

第1導電層51は、第2半導体層20の第1半導体層10とは反対の側に設けられる。第1導電層51は、発光層30から放出される発光光に対して透過性を有する。第1導電層51は、In、Sn、Zn及びTiよなる群から選ばれた少なくとも1つの元素を含む酸化物を含む。第1導電層51には、例えば、ITO(Indium Tin Oxide)が用いられる。 The first conductive layer 51 is provided on the opposite side of the second semiconductor layer 20 from the first semiconductor layer 10. The first conductive layer 51 is transmissive to the emitted light emitted from the light emitting layer 30. The first conductive layer 51 includes In, Sn, an oxide containing at least one element selected from Zn and Ti by Ri group consisting. For the first conductive layer 51, for example, ITO (Indium Tin Oxide) is used.

第2導電層52は、第1導電層51の第2半導体層20とは反対の側の第1主面51aに接する。例えば、第2導電層52は、第2電極50のボンディングパッド部となる。第2導電層52は、第1導電層51に電気的に接続されている。   The second conductive layer 52 is in contact with the first main surface 51 a on the opposite side of the first conductive layer 51 from the second semiconductor layer 20. For example, the second conductive layer 52 becomes a bonding pad portion of the second electrode 50. The second conductive layer 52 is electrically connected to the first conductive layer 51.

第3導電層53は、第1導電層51の上記の第1主面51aに接する。第3導電層53は、発光光に対する第2導電層52の反射率よりも高い反射率を有する。第3導電層53は、延在部53pを含む。延在部53pの少なくとも一部は第2導電層52に覆われていない。延在部53pは、第1主面51aに対して平行に延在する。すなわち、延在部53pは、Z軸方向に対して垂直な方向に延在する。   The third conductive layer 53 is in contact with the first main surface 51 a of the first conductive layer 51. The third conductive layer 53 has a reflectance higher than that of the second conductive layer 52 with respect to the emitted light. The third conductive layer 53 includes an extending portion 53p. At least a part of the extending portion 53p is not covered with the second conductive layer 52. The extending portion 53p extends in parallel to the first main surface 51a. That is, the extending part 53p extends in a direction perpendicular to the Z-axis direction.

本具体例では、第3導電層53の延在部53pは、第2導電層52から第1電極40に向かう方向に沿って延在する。延在部53pは細長い形状を有している。第3導電層53は、電流を広げる機能を有する。   In this specific example, the extending portion 53 p of the third conductive layer 53 extends along the direction from the second conductive layer 52 toward the first electrode 40. The extending part 53p has an elongated shape. The third conductive layer 53 has a function of spreading current.

なお、図1(a)及び図1(b)に示した例では、第2導電層52が第3導電層53の一部を覆っている。実施形態はこれに限らず、第2導電層52の一部が第3導電層53の一部と接していても良い。また、第3導電層53が第2導電層52の一部を覆っても良い。   In the example shown in FIGS. 1A and 1B, the second conductive layer 52 covers a part of the third conductive layer 53. The embodiment is not limited to this, and a part of the second conductive layer 52 may be in contact with a part of the third conductive layer 53. Further, the third conductive layer 53 may cover a part of the second conductive layer 52.

第2導電層52の第1導電層51に対する密着力は、第3導電層53の第1導電層51に対する密着力よりも大きい。すなわち、ボンディングパッド部として機能する第2導電層52の密着力を大きく設定することで、ボンディングパッド部における高いボンディング性が確保できる。   The adhesion of the second conductive layer 52 to the first conductive layer 51 is greater than the adhesion of the third conductive layer 53 to the first conductive layer 51. That is, by setting the adhesive force of the second conductive layer 52 functioning as a bonding pad portion to be large, high bonding performance in the bonding pad portion can be ensured.

一方、電流を均一化させる機能を有する第3導電層53には、高い密着力は必ずしも必要とされない。このため、第3導電層53の第1導電層51との密着力に対する要求が緩和される。これにより、第3導電層53には、第2導電層52に用いられる材料よりも高い反射率を有する材料を用いることができる。このような第3導電層53を用いることで、電流が均一化され高い発光効率が得られると同時に、高反射率による高い光取り出し効率が得られる。すなわち、高い効率が得られる。   On the other hand, the third conductive layer 53 having the function of equalizing the current does not necessarily require high adhesion. For this reason, the request | requirement with respect to the adhesive force of the 3rd conductive layer 53 with the 1st conductive layer 51 is eased. Thereby, a material having a higher reflectance than the material used for the second conductive layer 52 can be used for the third conductive layer 53. By using such a third conductive layer 53, the current is made uniform and high luminous efficiency is obtained, and at the same time, high light extraction efficiency due to high reflectance is obtained. That is, high efficiency can be obtained.

これにより、第2導電層52によって高いボンディング性が得られると共に、第3導電層53によって高発光効率と高光取り出し効率が得られる。すなわち、高い効率が得られる。   Thereby, high bonding properties are obtained by the second conductive layer 52, and high light emission efficiency and high light extraction efficiency are obtained by the third conductive layer 53. That is, high efficiency can be obtained.

第2導電層52は、第1導電層51に接し、ニッケル、チタン、バナジウム、白金及び金の少なくともいずれかを含む層を含むことができる。上記のニッケル、チタン、バナジウム、白金及び金の少なくともいずれかを含む層は、ニッケル、チタン、バナジウム、白金及び金の少なくともいずれか2つ以上を含む合金を含むことができる。例えば、ニッケルはITOに対する密着力が高い。これにより、第2導電層52と第1導電層51との高い密着力が確保できる。なお、ニッケルの青色光に対する反射率は約40%と比較的低い。   The second conductive layer 52 may include a layer in contact with the first conductive layer 51 and including at least one of nickel, titanium, vanadium, platinum, and gold. The layer containing at least one of nickel, titanium, vanadium, platinum, and gold can include an alloy containing at least two of nickel, titanium, vanadium, platinum, and gold. For example, nickel has high adhesion to ITO. Thereby, a high adhesive force between the second conductive layer 52 and the first conductive layer 51 can be ensured. The reflectance of nickel with respect to blue light is relatively low at about 40%.

第3導電層53は、アルミニウム、銀、白金及びロジウムの少なくともいずれかを含むことができる。第3導電層53は、アルミニウム、及び銀、白金及びロジウムの少なくともいずれか2つ以上を含む合金を含むことができる。例えば、Alの紫外及び青色光に対する反射率は、89%と高い。Agの紫外及び青色光に対する反射率は、98%とさらに高い。これにより、このような高い反射率を有する材料を第3導電層53に用いることで、高い光取り出し効率が得られる。なお、例えばAl及びAgのITOに対する密着力は、例えばニッケルよりも小さい。   The third conductive layer 53 can include at least one of aluminum, silver, platinum, and rhodium. The third conductive layer 53 can include aluminum and an alloy including at least two of silver, platinum, and rhodium. For example, the reflectance of Al to ultraviolet and blue light is as high as 89%. The reflectance of Ag with respect to ultraviolet and blue light is as high as 98%. Accordingly, by using a material having such a high reflectance for the third conductive layer 53, high light extraction efficiency can be obtained. For example, the adhesion of Al and Ag to ITO is smaller than that of nickel, for example.

このように、第2導電層52及び第3導電層53に互いに異なる材料を用いることで、第2導電層52及び第3導電層53のそれぞれに要求される性能が十分に満足される。
本実施形態に係る半導体発光素子110によれば、高いボンディング性と高い効率とを有する半導体発光素子が提供できる。
Thus, by using different materials for the second conductive layer 52 and the third conductive layer 53, the performance required for each of the second conductive layer 52 and the third conductive layer 53 is sufficiently satisfied.
According to the semiconductor light emitting device 110 according to the present embodiment, a semiconductor light emitting device having high bondability and high efficiency can be provided.

なお、半導体層の上に形成された透光性電極、及び、その透光性電極上に形成されたボンディングパッド電極と、を含む正極において、ボンディングパッド電極が透光性電極と接する面に反射層を有する構成が知られている。これにより、ボンディングパッド部の光吸収を抑制することが提案されている。しかしながら、この構成においては、上記の反射層はボンディングパッド電極の一部である。従って、反射層をZ軸方向からみたときの形状は、ボンディングパッド電極をZ軸方向に沿ってみたときの形状に一致する。すなわち、反射層は、透光性電極の主面に沿ってボンディングパッド電極から延在する部分を有していない。このため、この構成においては、電流を均一化する効果は得られない。   In the positive electrode including the translucent electrode formed on the semiconductor layer and the bonding pad electrode formed on the translucent electrode, the bonding pad electrode reflects on the surface in contact with the translucent electrode. Configurations having layers are known. Thus, it has been proposed to suppress light absorption of the bonding pad portion. However, in this configuration, the reflective layer is part of the bonding pad electrode. Therefore, the shape when the reflective layer is viewed from the Z-axis direction matches the shape when the bonding pad electrode is viewed along the Z-axis direction. That is, the reflective layer does not have a portion extending from the bonding pad electrode along the main surface of the translucent electrode. For this reason, in this configuration, the effect of equalizing the current cannot be obtained.

これに対し、実施形態に係る半導体発光素子110においては、高反射率を有する第3導電層53は、第1導電層51の第1主面51aに沿って延在する延在部53pを有する。この延在部53pにより、第2導電層52と第1電極40との間に流れる電流を均一化し発光効率を向上することができる。
すなわち、実施形態によれば、電流の均一化によって発光効率を向上しつつ、光吸収を抑制し、高いボンディング性を確保する。
On the other hand, in the semiconductor light emitting device 110 according to the embodiment, the third conductive layer 53 having a high reflectance has an extending portion 53p extending along the first main surface 51a of the first conductive layer 51. . By this extending portion 53p, the current flowing between the second conductive layer 52 and the first electrode 40 can be made uniform, and the light emission efficiency can be improved.
That is, according to the embodiment, light emission is suppressed and high bonding property is ensured while improving luminous efficiency by equalizing current.

なお、透光性電極の上に設けられる電極が、台座電極と、台座電極から延長した補助電極と、を有する構成において、例えば、台座電極と補助電極とに同じ材料を用いた場合は、ボンディング性が低いか、または、光吸収が大きく効率が低くなる。   In the configuration in which the electrode provided on the translucent electrode includes a pedestal electrode and an auxiliary electrode extended from the pedestal electrode, for example, when the same material is used for the pedestal electrode and the auxiliary electrode, bonding is performed. Or low light absorption or large efficiency.

例えば、第2導電層52が、延在部53pと同じパターン形状を有する場合においては、光取り出し効率を向上するために延在部53pを細くすると第2導電層52の加工が困難になる。また、第2導電層52が延在部53pの全体を覆う幅が広いパターン形状を有する場合は、反射率の低い第2導電層52が発光層30に対向することになるので、光の吸収が大きくなり、光取り出し効率が低下する。   For example, in the case where the second conductive layer 52 has the same pattern shape as the extending portion 53p, it is difficult to process the second conductive layer 52 if the extending portion 53p is thinned in order to improve the light extraction efficiency. In addition, when the second conductive layer 52 has a wide pattern shape covering the entire extending portion 53p, the second conductive layer 52 having a low reflectance is opposed to the light emitting layer 30, so that light is absorbed. Increases and the light extraction efficiency decreases.

これに対し、本実施形態に係る半導体発光素子110においては、第2導電層52のパターン形状と、第3導電層53の延在部53pのパターン形状と、を互いに異ならせる。すなわち、ボンディングパッド部として機能する第2導電層52は、ボンディングパッド部として適正な特性が発揮できるパターン形状とされる。例えば、第2導電層52のパターン形状は、例えば、略円形、略扁平円形、略矩形及び略多角形などとされる。一方、第3導電層53のパターン形状は、電流を均一化しつつ、高い光取り出し効率が得られるように、例えば、線状の形状とされる。そして、このように形状が互いに異なる第2導電層52と第3導電層53とに、それぞれに適正な特性の材料が用いられる。すなわち、第2導電層52には、第1導電層51に対するボンディング性が良好な材料が用いられる。第3導電層53には、高反射率の材料が用いられる。これにより、高いボンディング性と高い効率とを有する半導体発光素子が提供できる。   On the other hand, in the semiconductor light emitting device 110 according to the present embodiment, the pattern shape of the second conductive layer 52 and the pattern shape of the extending portion 53p of the third conductive layer 53 are different from each other. That is, the second conductive layer 52 functioning as a bonding pad portion has a pattern shape that can exhibit appropriate characteristics as the bonding pad portion. For example, the pattern shape of the second conductive layer 52 is, for example, a substantially circular shape, a substantially flat circular shape, a substantially rectangular shape, or a substantially polygonal shape. On the other hand, the pattern shape of the third conductive layer 53 is, for example, a linear shape so as to obtain high light extraction efficiency while equalizing the current. In addition, materials having appropriate characteristics are used for the second conductive layer 52 and the third conductive layer 53 having different shapes as described above. In other words, the second conductive layer 52 is made of a material having a good bonding property to the first conductive layer 51. The third conductive layer 53 is made of a highly reflective material. Thereby, a semiconductor light emitting device having high bonding properties and high efficiency can be provided.

実施形態において、第1導電層51の厚さは、例えば、50nm以上300nm以下とされる。第1導電層51の厚さが50nmよりも薄いと第1導電層51のシート抵抗が高すぎ、電流が広がり難くなり、効率が低下し易い。第1導電層51の厚さが300nmよりも厚いと、光取り出し特性が劣化し易くなる。第1導電層51は、100nm以上250nm以下がさらに好ましい。   In the embodiment, the thickness of the first conductive layer 51 is, for example, not less than 50 nm and not more than 300 nm. If the thickness of the first conductive layer 51 is less than 50 nm, the sheet resistance of the first conductive layer 51 is too high, the current is difficult to spread, and the efficiency tends to decrease. If the thickness of the first conductive layer 51 is greater than 300 nm, the light extraction characteristics are likely to deteriorate. The first conductive layer 51 is more preferably 100 nm or more and 250 nm or less.

図1(a)に表したように、半導体発光素子110は、第1半導体層10の第2半導体層20とは反対の側に設けられた基板5をさらに備えることができる。基板5には、サファイア、GaN、SiC、Si及びGaAsの少なくともいずれかを用いることができる。本具体例では、基板5には、サファイア基板が用いられる。半導体発光素子110は、基板5と第1半導体層10との間に設けられたバッファ層6をさらに備えることができる。基板5の上にバッファ層6が形成され、バッファ層6の上に第1半導体層10、発光層30及び第2半導体層20を含む積層構造体10sが形成される。積層構造体10sが形成された後に、基板5と、バッファ層6(の少なくとも一部)と、は除去されても良い。すなわち、半導体発光素子110において、基板5及びバッファ層6は必要に応じて設けられ、省略可能である。   As shown in FIG. 1A, the semiconductor light emitting device 110 may further include a substrate 5 provided on the side of the first semiconductor layer 10 opposite to the second semiconductor layer 20. As the substrate 5, at least one of sapphire, GaN, SiC, Si, and GaAs can be used. In this specific example, the substrate 5 is a sapphire substrate. The semiconductor light emitting device 110 can further include a buffer layer 6 provided between the substrate 5 and the first semiconductor layer 10. A buffer layer 6 is formed on the substrate 5, and a stacked structure 10 s including the first semiconductor layer 10, the light emitting layer 30, and the second semiconductor layer 20 is formed on the buffer layer 6. After the stacked structure 10s is formed, the substrate 5 and the buffer layer 6 (at least a part thereof) may be removed. That is, in the semiconductor light emitting device 110, the substrate 5 and the buffer layer 6 are provided as necessary and can be omitted.

なお、第1半導体層10と発光層30との間に図示しない多層構造体をさらに設けても良い。多層構造体は、Z軸方向に積層された複数の第1層(図示しない)と、第1層どうしの間のそれぞれに設けられた第2層と、を含む。すなわち、多層構造体は、Z軸方向に交互に積層された複数の第1層と複数の第2層とを含む。多層構造体は、例えば超格子層である。多層構造体は必要に応じて設けられ、省略しても良い。多層構造体は、第1半導体層10に含まれるものと見なすこともできる。   Note that a multilayer structure (not shown) may be further provided between the first semiconductor layer 10 and the light emitting layer 30. The multilayer structure includes a plurality of first layers (not shown) stacked in the Z-axis direction, and a second layer provided between each of the first layers. That is, the multilayer structure includes a plurality of first layers and a plurality of second layers that are alternately stacked in the Z-axis direction. The multilayer structure is, for example, a superlattice layer. The multilayer structure is provided as necessary and may be omitted. The multilayer structure can also be regarded as being included in the first semiconductor layer 10.

また、後述するように、第1電極40の一部を除き、第2導電層52の一部を除き、積層構造体10sを覆う絶縁膜(図1(a)及び図1(b)では図示しない)をさらに設けても良い。この絶縁膜は、第1導電層51及び第2導電層52を覆うことができる。   Further, as will be described later, an insulating film (not shown in FIGS. 1A and 1B) that covers the laminated structure 10 s except a part of the first electrode 40 and a part of the second conductive layer 52. No) may be further provided. This insulating film can cover the first conductive layer 51 and the second conductive layer 52.

ここで、第2導電層52から第1電極40向かう方向をX軸方向(第2方向)とする。Z軸方向に対して垂直でX軸方向に対して垂直な方向をY軸方向(第3方向)とする。 Here, the direction from the second conductive layer 52 toward the first electrode 40 is defined as an X-axis direction (second direction). A direction perpendicular to the Z-axis direction and perpendicular to the X-axis direction is defined as a Y-axis direction (third direction).

以下、半導体発光素子110の製造方法の例について説明する。
図2(a)〜図2(e)は、第1の実施形態に係る半導体発光素子の製造方法を例示する工程順模式的断面図である。
図2(a)に表したように、例えば、サファイアからなる基板5の主面上に、バッファ層6を形成した後、第1半導体層10として、n形不純物がドープされたn形GaN層の結晶を成長させる。
Hereinafter, an example of a method for manufacturing the semiconductor light emitting device 110 will be described.
FIG. 2A to FIG. 2E are schematic cross-sectional views in order of the processes, illustrating the method for manufacturing the semiconductor light emitting element according to the first embodiment.
As shown in FIG. 2A, for example, after forming the buffer layer 6 on the main surface of the substrate 5 made of sapphire, the n-type GaN layer doped with the n-type impurity as the first semiconductor layer 10. Grow crystals.

結晶成長には、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)が用いられる。結晶成長には、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)を用いても良い。   For crystal growth, for example, metal organic chemical vapor deposition (MOCVD) is used. For crystal growth, molecular beam epitaxy (MBE) may be used.

第1半導体層10の上に、発光層30の結晶を成長させる。例えば、障壁層31を形成する。その上に、井戸層32と障壁層31とを交互に成長させる。最後に成長された井戸層32の上に障壁層31が成長される。これより、MQW構造の発光層30が形成される。障壁層31及び井戸層32の成長温度は、例えば700℃以上800℃以下とされる。   A crystal of the light emitting layer 30 is grown on the first semiconductor layer 10. For example, the barrier layer 31 is formed. On top of this, the well layers 32 and the barrier layers 31 are grown alternately. The barrier layer 31 is grown on the last grown well layer 32. Thereby, the light emitting layer 30 of MQW structure is formed. The growth temperature of the barrier layer 31 and the well layer 32 is, for example, 700 ° C. or higher and 800 ° C. or lower.

発光層30の上に、第2半導体層20の結晶を成長させる。第2p形半導体層22となるp形GaN層の結晶を成長させ、その上に、第1p形半導体層21となるp形GaN層の結晶を成長させる。これらのp形GaN層の成長温度は、例えば1000℃以上1100℃以下とされる。
これにより、図2(a)に例示する積層構造体10sが形成される。
A crystal of the second semiconductor layer 20 is grown on the light emitting layer 30. A crystal of a p-type GaN layer to be the second p-type semiconductor layer 22 is grown, and a crystal of a p-type GaN layer to be the first p-type semiconductor layer 21 is grown thereon. The growth temperature of these p-type GaN layers is, for example, 1000 ° C. or more and 1100 ° C. or less.
Thereby, the laminated structure 10s illustrated in FIG. 2A is formed.

図2(b)に表したように、第2半導体層20(具体的には第1p形半導体層21)の上に、第1導電層51を形成する。すなわち、第1導電層51となるITO膜を第2半導体層20の上に形成し、ITO膜を所定の形状に加工することで、第1導電層51が得られる。本具体例では、第1導電層51の厚さは、170nmとされる。   As shown in FIG. 2B, the first conductive layer 51 is formed on the second semiconductor layer 20 (specifically, the first p-type semiconductor layer 21). That is, the first conductive layer 51 is obtained by forming an ITO film to be the first conductive layer 51 on the second semiconductor layer 20 and processing the ITO film into a predetermined shape. In this specific example, the thickness of the first conductive layer 51 is 170 nm.

図2(c)に表したように、積層構造体10sを例えばドライエッチングにより加工し、第1半導体層10(例えばn形GaN層)を露出させる。露出した第1半導体層10の上に第1電極40を形成する。すなわち、第1半導体層10の上に第3n側導電膜43となるTi膜を形成し、その上に第2n側導電膜42となるPt膜を形成し、その上に、第1n側導電膜41となるAu膜を形成する。   As shown in FIG. 2C, the stacked structure 10s is processed by, for example, dry etching to expose the first semiconductor layer 10 (for example, an n-type GaN layer). A first electrode 40 is formed on the exposed first semiconductor layer 10. That is, a Ti film to be the third n-side conductive film 43 is formed on the first semiconductor layer 10, a Pt film to be the second n-side conductive film 42 is formed thereon, and the first n-side conductive film is formed thereon. An Au film to be 41 is formed.

第1導電層51の第1主面51aの上に、第3導電層53として、Al膜を形成する。Al膜の厚さは例えば約0.5μmとされる。Al膜が所定の形状に加工され、第3導電層53が得られる。このとき、第1導電層51の一部は露出している。   An Al film is formed as the third conductive layer 53 on the first main surface 51 a of the first conductive layer 51. The thickness of the Al film is about 0.5 μm, for example. The Al film is processed into a predetermined shape, and the third conductive layer 53 is obtained. At this time, a part of the first conductive layer 51 is exposed.

図2(d)に表したように、露出している第1導電層51の上に第2導電層52を形成する。すなわち、第2導電層52となるNi膜を形成する。さらに、Ni膜の上にAu膜を形成しても良い。これらのNi膜(及びAu膜)を所定の形状に加工することで、第2導電層52が得られる。   As shown in FIG. 2D, the second conductive layer 52 is formed on the exposed first conductive layer 51. That is, a Ni film to be the second conductive layer 52 is formed. Further, an Au film may be formed on the Ni film. The second conductive layer 52 is obtained by processing these Ni films (and Au films) into a predetermined shape.

図2(e)に表したように、被加工体の全面に、例えばSiO膜を形成し、このSiO膜を加工して絶縁膜60を形成する。絶縁膜60は、第1電極40の一部を除き、第2導電層52の一部を除き、積層構造体10sを覆う。絶縁膜60は、第1導電層51及び第2導電層52を覆っている。絶縁膜60は、パッシベーション膜として機能する。
このようにして、実施形態に係る半導体発光素子110が得られる。
As shown in FIG. 2E, for example, an SiO 2 film is formed on the entire surface of the workpiece, and the insulating film 60 is formed by processing the SiO 2 film. The insulating film 60 covers the stacked structure 10 s except for a part of the first electrode 40 and a part of the second conductive layer 52. The insulating film 60 covers the first conductive layer 51 and the second conductive layer 52. The insulating film 60 functions as a passivation film.
In this way, the semiconductor light emitting device 110 according to the embodiment is obtained.

半導体発光素子110においては、第3導電層53として、青色光に対する反射率が高いAl膜が用いられる。第3導電層53として、青色光に対する反射率が高いAg膜を用いても良い。ただし、第3導電層53の第1導電層51に対する密着力は、第2導電層52の第1導電層51に対する密着力よりも低い。一方、ボンディングパッド部となる第2導電層52には、密着力が強いNi膜が用いられている。   In the semiconductor light emitting device 110, an Al film having a high reflectance for blue light is used as the third conductive layer 53. As the third conductive layer 53, an Ag film having a high reflectance with respect to blue light may be used. However, the adhesion of the third conductive layer 53 to the first conductive layer 51 is lower than the adhesion of the second conductive layer 52 to the first conductive layer 51. On the other hand, a Ni film having strong adhesion is used for the second conductive layer 52 to be the bonding pad portion.

このように、半導体発光素子110においては、透光性の第1導電層51の上に、ボンディング強度が高い第2導電層52と、反射率が高い第3導電層53と、をそれぞれ別の材料で形成する。これにより、ボンディングパッド部となる第2導電層52において高いボンディング強度が確保でき、電流を拡散し発光層30に効率的に電流を供給する機能を有する第3導電層53において高反射性による高い光取り出し効率を得る。   As described above, in the semiconductor light emitting device 110, the second conductive layer 52 having a high bonding strength and the third conductive layer 53 having a high reflectance are separately provided on the first conductive layer 51 having a light-transmitting property. Form with material. As a result, high bonding strength can be secured in the second conductive layer 52 serving as a bonding pad portion, and the third conductive layer 53 having a function of diffusing current and supplying current efficiently to the light emitting layer 30 has high reflectivity. Get light extraction efficiency.

第1導電層51の上に、第3導電層53とは別の材料によって、ボンディングパッド部となる第2導電層52を形成することで、ワイヤーボンディング時のパッド電極剥れを抑制することができる。   By forming the second conductive layer 52 to be a bonding pad portion on the first conductive layer 51 by using a material different from that of the third conductive layer 53, it is possible to suppress pad electrode peeling during wire bonding. it can.

図1(b)に表したように、第3導電層53の延在部53pは、第1電極40(第1電極40のうちの特にパッド部)との距離が、第2導電層52と第1電極40(第1電極40のうちの特にパッド部)との距離よりも短い部分(近接部分53q)を有する。この近接部分53qは、例えば、延在部53pの先端である。近接部分53qと第1電極40(第1電極40のうちの特にパッド部)との距離は、第2導電層52と第1電極40(第1電極40のうちの特にパッド部)との距離よりも長い。これにより、第2電極50と第1電極40との間に流れる電流を平均化できる。これにより発光効率を向上できる。   As shown in FIG. 1B, the extension portion 53 p of the third conductive layer 53 has a distance from the first electrode 40 (particularly, the pad portion of the first electrode 40) such that the distance from the second conductive layer 52. It has a portion (proximity portion 53q) shorter than the distance from the first electrode 40 (particularly the pad portion of the first electrode 40). The proximity portion 53q is, for example, the tip of the extending portion 53p. The distance between the proximity portion 53q and the first electrode 40 (especially the pad portion of the first electrode 40) is the distance between the second conductive layer 52 and the first electrode 40 (especially the pad portion of the first electrode 40). Longer than. Thereby, the current flowing between the second electrode 50 and the first electrode 40 can be averaged. Thereby, luminous efficiency can be improved.

半導体発光素子110においては、延在部53pは、X軸方向に沿って延在している。すなわち、延在部53pは、Z軸方向に対して垂直で、第2導電層52から第1電極40に向かうX軸方向に沿って延在する部分(第1部分53a)を含む。   In the semiconductor light emitting device 110, the extending portion 53p extends along the X-axis direction. That is, the extending portion 53p includes a portion (first portion 53a) that is perpendicular to the Z-axis direction and extends along the X-axis direction from the second conductive layer 52 toward the first electrode 40.

電流を均一化するための延在部53pの幅は、ボンディングパッド部となる第2導電層52の幅よりも狭い。
すなわち、図1(b)に表したように、延在部53pの延在方向に対して垂直で第1主面51aに対して平行な方向に沿った幅w3は、第2導電層52の第1主面51aに対して平行な方向に沿った幅w2よりも狭い。すなわち、延在部53pは、細線である。これにより、遮光性の第3導電層53の面積を小さくしたまま、第2導電層52と第1導電層51との間に効率的に電流を流すことができる。これにより、光取り出し効率の低下を抑制しつつ高い発光効率が得られる。
The width of the extending portion 53p for equalizing the current is narrower than the width of the second conductive layer 52 serving as a bonding pad portion.
That is, as shown in FIG. 1B, the width w3 along the direction perpendicular to the extending direction of the extending portion 53p and parallel to the first main surface 51a is equal to the width of the second conductive layer 52. It is narrower than the width w2 along the direction parallel to the first major surface 51a. That is, the extending part 53p is a thin line. Accordingly, it is possible to efficiently pass a current between the second conductive layer 52 and the first conductive layer 51 while reducing the area of the light-shielding third conductive layer 53. Thereby, high luminous efficiency is obtained while suppressing a decrease in light extraction efficiency.

延在部53pの、延在方向に対して垂直で第1主面51aに対して平行な方向に沿った幅w3は、1μm以上50μm以下であることが望ましい。幅w3が1μmより小さいと、例えば延在部53pの加工が難しくなり、また、延在部53pの抵抗が上昇する。幅w3が50μmよりも大きいと、延在部53pによって遮蔽される発光光の割合が増し、光取り出し効率が低下する。   The width w3 of the extending portion 53p along the direction perpendicular to the extending direction and parallel to the first main surface 51a is preferably 1 μm or more and 50 μm or less. When the width w3 is smaller than 1 μm, for example, it becomes difficult to process the extending portion 53p, and the resistance of the extending portion 53p increases. When the width w3 is larger than 50 μm, the ratio of the emitted light shielded by the extending portion 53p increases and the light extraction efficiency decreases.

第2導電層52の第1主面51aに対して平行な方向に沿った幅w2は、30μm以上80μm以下であることが望ましい。幅w2が30μmより小さいと、例えばボンディング作業が難しくなり、また、ボンディングワイヤの密着力が低下する。幅w2が80μmよりも大きいと、反射率の低い第2導電層52の面積が大きくなるため、光取り出し効率が低下する。なお、このときも、延在部53pの幅w3が第2導電層52の幅w2よりも狭いという関係は維持される。   The width w2 along the direction parallel to the first major surface 51a of the second conductive layer 52 is desirably 30 μm or more and 80 μm or less. If the width w2 is smaller than 30 μm, for example, the bonding operation becomes difficult, and the bonding force of the bonding wire decreases. When the width w2 is larger than 80 μm, the area of the second conductive layer 52 having a low reflectance is increased, so that the light extraction efficiency is lowered. At this time, the relationship that the width w3 of the extending portion 53p is narrower than the width w2 of the second conductive layer 52 is maintained.

なお、延在部53pの延在方向に沿った長さL3は、延在部53pの延在方向に対して垂直な方向に沿った幅w3よりも長い。すなわち、延在部53pは細線である。これにより、第2導電層52と第1電極40との間を流れる電流を均一化しつつ、延在部53pの面積を小さくでき光取り出し効率を向上させることができる。   The length L3 along the extending direction of the extending part 53p is longer than the width w3 along the direction perpendicular to the extending direction of the extending part 53p. That is, the extending part 53p is a thin line. Thereby, the area of the extending portion 53p can be reduced and the light extraction efficiency can be improved while the current flowing between the second conductive layer 52 and the first electrode 40 is made uniform.

図3(a)〜図3(c)は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的平面図である。
図3(a)に表したように、実施形態に係る半導体発光素子111の第3導電層53においては、延在部53pが3つの部分(第1部分53a、第2部分53b及び第3部分53c)を有する。第1部分53aは、第2導電層52から第1電極40に向かうX軸方向に沿って延在する。第2部分53bは、第2導電層52からY軸方向の正の方向に延在した後にX軸方向に沿って第1電極40に向かう方向に延在する。第3部分53cは、第2導電層52からY軸方向の負の方向に延在した後にX軸方向に沿って第1電極40に向かう方向に延在する。このように、延在部53pは複数の部分を含むことができる。
FIG. 3A to FIG. 3C are schematic plan views illustrating the configuration of another semiconductor light emitting element according to the first embodiment.
As shown in FIG. 3A, in the third conductive layer 53 of the semiconductor light emitting device 111 according to the embodiment, the extending portion 53p has three portions (a first portion 53a, a second portion 53b, and a third portion. 53c). The first portion 53 a extends along the X-axis direction from the second conductive layer 52 toward the first electrode 40. The second portion 53b extends from the second conductive layer 52 in the positive direction of the Y-axis direction and then extends in the direction toward the first electrode 40 along the X-axis direction. The third portion 53c extends from the second conductive layer 52 in the negative direction of the Y-axis direction and then extends in the direction toward the first electrode 40 along the X-axis direction. As described above, the extending portion 53p can include a plurality of portions.

図3(b)に表したように、実施形態に係る半導体発光素子112の第3導電層53においては、延在部53pの延在方向に沿った長さL3は、延在部53pの延在方向に対して垂直な方向に沿った幅w3と、実質的に同じである。このように延在部53pの延在方向に沿った長さL3は、延在部53pの延在方向に対して垂直な方向に沿った幅w3以上であれば良い。半導体発光素子112のように、延在部53pの長さL3が比較的短い場合も、第3導電層53の延在部53pは、第1電極40との距離が、第2導電層52と第1電極40との距離よりも短い近接部分53qを有する。このような延在部53pを有する第3導電層53の場合も、第3導電層53を設けず第1導電層51と第2導電層52とを設ける構成に比べて第2導電層52と第1電極40との間を流れる電流が均一化できる。このとき、第3導電層53に、第2導電層52よりも反射率が高い材料を用いることで、第3導電層53における光の損失を抑制でき、効率が向上できる。   As shown in FIG. 3B, in the third conductive layer 53 of the semiconductor light emitting device 112 according to the embodiment, the length L3 along the extending direction of the extending portion 53p is the extension of the extending portion 53p. It is substantially the same as the width w3 along the direction perpendicular to the present direction. Thus, the length L3 along the extending direction of the extending portion 53p may be equal to or greater than the width w3 along the direction perpendicular to the extending direction of the extending portion 53p. Even when the length L3 of the extending portion 53p is relatively short as in the semiconductor light emitting device 112, the extending portion 53p of the third conductive layer 53 is separated from the second conductive layer 52 by a distance from the first electrode 40. The proximity portion 53q is shorter than the distance from the first electrode 40. Also in the case of the third conductive layer 53 having such an extended portion 53p, the second conductive layer 52 and the third conductive layer 53 are not provided and the first conductive layer 51 and the second conductive layer 52 are provided. The current flowing between the first electrodes 40 can be made uniform. At this time, by using a material having a higher reflectance than that of the second conductive layer 52 for the third conductive layer 53, light loss in the third conductive layer 53 can be suppressed, and efficiency can be improved.

図3(c)に表したように、実施形態に係る半導体発光素子113においては、第2導電層52と、第1電極40の第1n側導電膜41(パッド部)と、が、積層構造体10sの主面の互いに対向する角に設けられている。第3導電層53の延在部53pは、積層構造体10sの1つの辺に沿って延在している。第1電極40の第2n側導電膜42及び第3n側導電膜43は、第1n側導電膜41から、積層構造体10sの主面の1つの辺に沿って延在している。すなわち、第2n側導電膜42及び第3n側導電膜43は、第1n側導電膜41から延在するn側延在部40pを有する。   As shown in FIG. 3C, in the semiconductor light emitting device 113 according to the embodiment, the second conductive layer 52 and the first n-side conductive film 41 (pad portion) of the first electrode 40 are stacked structures. The main surfaces of the body 10s are provided at opposite corners. The extending portion 53p of the third conductive layer 53 extends along one side of the multilayer structure 10s. The second n-side conductive film 42 and the third n-side conductive film 43 of the first electrode 40 extend from the first n-side conductive film 41 along one side of the main surface of the multilayer structure 10s. That is, the second n-side conductive film 42 and the third n-side conductive film 43 have an n-side extension 40 p that extends from the first n-side conductive film 41.

第3導電層53の延在部53pの延在方向と、n側延在部40pの延在方向と、は、互いに実質的に平行である。このような構成においても、延在部53pとn側延在部40pとが設けられることで、電流が均一化でき発光効率が向上する。そして、第3導電層53に、第2導電層52よりも反射率が高い材料を用いることで、高いボンディング性と高い効率とが得られる。   The extending direction of the extending part 53p of the third conductive layer 53 and the extending direction of the n-side extending part 40p are substantially parallel to each other. Even in such a configuration, by providing the extending portion 53p and the n-side extending portion 40p, the current can be made uniform and the light emission efficiency can be improved. Further, by using a material having a higher reflectance than the second conductive layer 52 for the third conductive layer 53, high bondability and high efficiency can be obtained.

図4(a)及び図4(b)は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的平面図である。
図4(a)に表したように、実施形態に係る半導体発光素子114の第3導電層53においては、延在部53pが2つの部分(第2部分53b及び第3部分53c)を有する。第2部分53bは、第2導電層52からY軸方向の正の方向に延在した後にX軸方向に沿って第1電極40に向かう方向に延在する。第3部分53cは、第2導電層52からY軸方向の負の方向に延在した後にX軸方向に沿って第1電極40に向かう方向に延在する。
4A and 4B are schematic plan views illustrating the configuration of another semiconductor light emitting element according to the first embodiment.
As shown in FIG. 4A, in the third conductive layer 53 of the semiconductor light emitting device 114 according to the embodiment, the extending portion 53p has two portions (a second portion 53b and a third portion 53c). The second portion 53b extends from the second conductive layer 52 in the positive direction of the Y-axis direction and then extends in the direction toward the first electrode 40 along the X-axis direction. The third portion 53c extends from the second conductive layer 52 in the negative direction of the Y-axis direction and then extends in the direction toward the first electrode 40 along the X-axis direction.

一方、第1電極40の第2n側導電膜42及び第3n側導電膜43は、第1n側導電膜41から、第2導電層52に向かうX軸方向に沿って延在するn側延在部40pを有する。n側延在部40pは、Y軸方向において、延在部53pの2つの部分(第2部分53b及び第3部分53c)どうしの間に配置される。このような構成においても、延在部53pとn側延在部40pとが設けられることで、電流が均一化でき発光効率が向上する。そして、第3導電層53に、第2導電層52よりも反射率が高い材料を用いることで、高いボンディング性と高い効率とが得られる。   On the other hand, the second n-side conductive film 42 and the third n-side conductive film 43 of the first electrode 40 extend from the first n-side conductive film 41 along the X-axis direction toward the second conductive layer 52. Part 40p. The n-side extending part 40p is disposed between two parts (the second part 53b and the third part 53c) of the extending part 53p in the Y-axis direction. Even in such a configuration, by providing the extending portion 53p and the n-side extending portion 40p, the current can be made uniform and the light emission efficiency can be improved. Further, by using a material having a higher reflectance than the second conductive layer 52 for the third conductive layer 53, high bondability and high efficiency can be obtained.

図4(b)に表したように、実施形態に係る半導体発光素子115においては、第2導電層52と、第1電極40の第1n側導電膜41と、が、積層構造体10sの主面の互いに対向する角に設けられている。第3導電層53の延在部53pは2つの部分(第4部分53d及び第5部分53e)を有する。この2つの部分は、第2導電層52から、積層構造体10sの交差する2つの辺に沿ってそれぞれ延在している。このような構成においても、第3導電層53に延在部53pが設けられることで、電流が均一化でき発光効率が向上する。そして、第3導電層53に、第2導電層52よりも反射率が高い材料を用いることで、高いボンディング性と高い効率とが得られる。
このように、実施形態に係る半導体発光素子は種々の変形が可能である。
As shown in FIG. 4B, in the semiconductor light emitting device 115 according to the embodiment, the second conductive layer 52 and the first n-side conductive film 41 of the first electrode 40 are the main components of the stacked structure 10s. It is provided in the mutually opposing corners of the surface. The extending part 53p of the third conductive layer 53 has two parts (a fourth part 53d and a fifth part 53e). These two portions respectively extend from the second conductive layer 52 along two intersecting sides of the laminated structure 10s. Even in such a configuration, by providing the extended portion 53p in the third conductive layer 53, the current can be made uniform and the light emission efficiency can be improved. Further, by using a material having a higher reflectance than the second conductive layer 52 for the third conductive layer 53, high bondability and high efficiency can be obtained.
As described above, the semiconductor light emitting device according to the embodiment can be variously modified.

図5は、第1の実施形態に係る別の半導体発光素子の構成を例示する模式的断面図である。
図5に表したように、実施形態に係る別の半導体発光素子120においては、第3導電層53と第2導電層52とが互いに接していない。例えば、第1導電層51のシート抵抗が比較的低く、第3導電層53と第2導電層52との間隔が比較的短い場合には、第3導電層53と第2導電層52とが互いに接していなくても良い。すなわち、第2導電層52は第1導電層51に接しており、第3導電層53が第1導電層51に接していれば良い。この場合にも、高いボンディング性と高い効率とが得られる。
FIG. 5 is a schematic cross-sectional view illustrating the configuration of another semiconductor light emitting element according to the first embodiment.
As shown in FIG. 5, in another semiconductor light emitting device 120 according to the embodiment, the third conductive layer 53 and the second conductive layer 52 are not in contact with each other. For example, when the sheet resistance of the first conductive layer 51 is relatively low and the distance between the third conductive layer 53 and the second conductive layer 52 is relatively short, the third conductive layer 53 and the second conductive layer 52 are They do not have to touch each other. That is, the second conductive layer 52 may be in contact with the first conductive layer 51 and the third conductive layer 53 may be in contact with the first conductive layer 51. Also in this case, high bondability and high efficiency can be obtained.

実施形態に係る半導体発光素子(例えば半導体発光素子110など)において、第1n側導電膜41にAu膜を用い、第2n側導電膜42にAl膜を用い、第3n側導電膜43にTi膜を用いることができる。このときに、第3導電層53としてAl膜を用いることができる。第2n側導電膜42のAl膜と、第3導電層53のAl膜と、は同時に形成することができる。   In the semiconductor light emitting device according to the embodiment (for example, the semiconductor light emitting device 110), an Au film is used for the first n-side conductive film 41, an Al film is used for the second n-side conductive film 42, and a Ti film is used for the third n-side conductive film 43. Can be used. At this time, an Al film can be used as the third conductive layer 53. The Al film of the second n-side conductive film 42 and the Al film of the third conductive layer 53 can be formed simultaneously.

図6(a)及び図6(b)は、第1の実施形態に係る半導体発光素子の別の製造方法を例示する工程順模式的断面図である。
図6(a)は、図2(a)に関して説明した工程の後の工程に対応する。
第1導電層51を形成した後に、図6(a)に表したように、積層構造体10sを加工し、第1半導体層10を露出させ、露出した第1半導体層10の上、及び、第1導電層51の上に、Al膜を形成する。そして、このAlを所定の形状に加工する。このAl膜が、第3n側導電膜43及び第3導電層53となる。
FIGS. 6A and 6B are schematic cross-sectional views in order of the processes, illustrating another method for manufacturing the semiconductor light emitting element according to the first embodiment.
FIG. 6A corresponds to a step after the step described with reference to FIG.
After forming the first conductive layer 51, as shown in FIG. 6A, the stacked structure 10s is processed to expose the first semiconductor layer 10, and on the exposed first semiconductor layer 10, and An Al film is formed on the first conductive layer 51. Then, this Al is processed into a predetermined shape. This Al film becomes the third n-side conductive film 43 and the third conductive layer 53.

図6(b)に表したように、第1導電層51及び第3n側導電膜43の上にNi膜を形成し、所定の形状に加工する。このNi膜が、第2導電層52及び第2n側導電膜42となる。   As shown in FIG. 6B, a Ni film is formed on the first conductive layer 51 and the third n-side conductive film 43 and processed into a predetermined shape. This Ni film becomes the second conductive layer 52 and the second n-side conductive film 42.

らに、この第2導電層52及び第2n側導電膜42の上に、Au膜(図示しない)を形成する。第2n側導電膜42の上のAu膜が第1n側導電膜41となる。
これにより、本実施形態に係る半導体発光素子が得られる。
Et al is, on the second conductive layer 52 and the 2n Gawashirubedenmaku 42, forming an Au film (not shown). The Au film on the second n-side conductive film 42 becomes the first n-side conductive film 41.
Thereby, the semiconductor light emitting device according to this embodiment is obtained.

この構成においては、第1半導体層10のn形GaN層に接して、第2n側導電膜42のAl膜が設けられている。Alはn形GaN層に対してオーミック性を示すため、第1半導体層10と第1電極40(すなわち第2n側導電膜42)とのオーミック接触が確保できる。この場合には、半導体発光素子の構成がさらに簡略化される。すなわち、第3導電層53と、第1電極40の少なくとも一部と、を同時に形成でき、生産性が向上できる。   In this configuration, the Al film of the second n-side conductive film 42 is provided in contact with the n-type GaN layer of the first semiconductor layer 10. Since Al exhibits ohmic properties with respect to the n-type GaN layer, ohmic contact between the first semiconductor layer 10 and the first electrode 40 (that is, the second n-side conductive film 42) can be ensured. In this case, the configuration of the semiconductor light emitting element is further simplified. That is, the third conductive layer 53 and at least a part of the first electrode 40 can be formed simultaneously, and productivity can be improved.

このように、実施形態に係る半導体発光素子は、積層構造体10sの第2半導体層20の側の第2主面10aの側において、第1半導体層10上に設けられた第1電極40をさらに備え、第1電極40は、第3導電層53に用いられる材料を含む層を含むことができる。例えば、第3導電層は、アルミニウム、銀、白金及びロジウムの少なくともいずれかを含み、第1電極40は、アルミニウム、銀、白金及びロジウムの上記の少なくともいずれかを含む層を含む。   As described above, the semiconductor light emitting device according to the embodiment includes the first electrode 40 provided on the first semiconductor layer 10 on the second main surface 10a side on the second semiconductor layer 20 side of the stacked structure 10s. In addition, the first electrode 40 may include a layer including a material used for the third conductive layer 53. For example, the third conductive layer includes at least one of aluminum, silver, platinum, and rhodium, and the first electrode 40 includes a layer that includes at least one of aluminum, silver, platinum, and rhodium.

(第2の実施の形態)
第2の実施形態は、半導体発光素子の製造方法である。
すなわち、本製造方法は、窒化物半導体を含む第1導電形の第1半導体層10と、窒化物半導体を含む第2導電形の第2半導体層20と、第1半導体層10と第2半導体層20との間に設けられ、窒化物半導体層を含む発光層30と、を含む積層構造体10sであって、積層構造体10sの第2半導体層20の側の第2主面10aに第1半導体層10の一部が露出している積層構造体10sと、第2主面10aの側において第1半導体層10に接する第1電極40と、第2主面10aの側において第2半導体層20に接し、第1導電層51、第2導電層52及び第3導電層53を含む第2電極50と、を有する半導体発光素子の製造方法である。
(Second Embodiment)
The second embodiment is a method for manufacturing a semiconductor light emitting device.
That is, the present manufacturing method includes a first conductivity type first semiconductor layer 10 including a nitride semiconductor, a second conductivity type second semiconductor layer 20 including a nitride semiconductor, and the first semiconductor layer 10 and the second semiconductor. A laminated structure 10s provided between the layer 20 and the light emitting layer 30 including the nitride semiconductor layer, and is formed on the second main surface 10a on the second semiconductor layer 20 side of the laminated structure 10s. The laminated structure 10s in which a part of the first semiconductor layer 10 is exposed, the first electrode 40 in contact with the first semiconductor layer 10 on the second main surface 10a side, and the second semiconductor on the second main surface 10a side This is a method for manufacturing a semiconductor light-emitting element having a second electrode 50 in contact with the layer 20 and including a first conductive layer 51, a second conductive layer 52, and a third conductive layer 53.

図7は、第2の実施形態に係る半導体発光素子の製造方法を例示するフローチャート図である。
図7に表したように、本製造方法においては、第2半導体層20の上に、発光層30から放出される発光光に対して透過性を有する第1導電層51を形成する(ステップS110)。例えば、図2(a)に関して説明した処理を行う。
FIG. 7 is a flowchart illustrating the method for manufacturing the semiconductor light emitting element according to the second embodiment.
As shown in FIG. 7, in the present manufacturing method, the first conductive layer 51 that is transmissive to the emitted light emitted from the light emitting layer 30 is formed on the second semiconductor layer 20 (step S110). ). For example, the processing described with reference to FIG.

第1導電層51の一部と、第1半導体層10の露出された一部と、の上に、発光光に対する第2導電層52の反射率よりも高い反射率を有する高反射導電膜を形成する(ステップS120)。例えば、高反射導電膜として、図6(a)に関して説明したAl膜を形成する。   On the part of the first conductive layer 51 and the exposed part of the first semiconductor layer 10, a highly reflective conductive film having a reflectance higher than the reflectance of the second conductive layer 52 with respect to the emitted light. Form (step S120). For example, the Al film described with reference to FIG. 6A is formed as the highly reflective conductive film.

この高反射導電膜を加工して、第1電極40の少なくとも一部(例えば第3n側導電膜43)と、第1導電層51の第2半導体層20とは反対の側の第1主面51aに沿って延在する延在部53pを有する第3導電層53と、を形成する(ステップS130)。例えば、図6(a)に関して説明した処理を行う。   By processing this highly reflective conductive film, at least a part of the first electrode 40 (for example, the third n-side conductive film 43) and the first main surface of the first conductive layer 51 on the side opposite to the second semiconductor layer 20 are processed. A third conductive layer 53 having an extending portion 53p extending along 51a is formed (step S130). For example, the processing described with reference to FIG.

第1導電層51の一部の上に、第3導電層53の延在部53pの少なくとも一部を露出させる第2導電層52を形成する(ステップS140)。例えば、図6(b)に関して説明した処理を行う。   On the part of the first conductive layer 51, the second conductive layer 52 that exposes at least a part of the extending part 53p of the third conductive layer 53 is formed (step S140). For example, the processing described with reference to FIG.

本実施形態に係る半導体発光素子の製造方法によれば、高いボンディング性と高い効率とを有する半導体発光素子を高い生産性で製造できる。   According to the method for manufacturing a semiconductor light emitting device according to the present embodiment, a semiconductor light emitting device having high bondability and high efficiency can be manufactured with high productivity.

なお、上記のステップS110〜ステップS140の順序は、技術的に可能な限り入れ替えが可能である。また、ステップS110〜ステップS140のいずれか2つは、技術的に可能な限り同時に実施しても良い。例えば、ステップS130とステップS140との順序は入れ替えても良い。また、ステップS120とステップS130とは同時に実施することもできる。例えば、高反射導電膜をマスクを用いて成膜する場合は、高反射導電膜の形成(ステップS120)と、高反射導電膜の加工(ステップS130)と、が同時に実施される。   In addition, the order of said step S110-step S140 is interchangeable as much as technically possible. Further, any two of steps S110 to S140 may be performed at the same time as technically possible. For example, the order of step S130 and step S140 may be switched. Moreover, step S120 and step S130 can also be implemented simultaneously. For example, when a highly reflective conductive film is formed using a mask, the formation of the highly reflective conductive film (Step S120) and the processing of the highly reflective conductive film (Step S130) are performed simultaneously.

実施形態に係る窒化物半導体の製造方法は、青緑色〜緑色〜赤色のLEDの他、青緑色〜緑色〜赤色のレーザダイオード(LD:Laser Diode)などに応用できる。   The nitride semiconductor manufacturing method according to the embodiment can be applied to blue-green to green to red LEDs, blue-green to green to red laser diodes (LD), and the like.

実施形態によれば、高いボンディング性と高い効率とを有する半導体発光素子及びその製造方法が提供できる。   According to the embodiment, it is possible to provide a semiconductor light emitting device having high bondability and high efficiency and a method for manufacturing the same.

なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電型などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。 In this specification, “nitride semiconductor” means B x In y Al z Ga 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) Semiconductors having all compositions in which the composition ratios x, y, and z are changed within the respective ranges are included. Furthermore, in the above chemical formula, those further containing a group V element other than N (nitrogen), those further containing various elements added for controlling various physical properties such as conductivity type, and unintentionally Those further including various elements included are also included in the “nitride semiconductor”.

なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。   In the present specification, “vertical” and “parallel” include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. It ’s fine.

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれる基板、バッファ層、半導体層、発光層、障壁層、井戸層、積層構造体、導電層、電極及び絶縁膜などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。例えば、上記実施形態の中で説明した組成や膜厚なども一例であり、種々の選択が可能である。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, a person skilled in the art has a specific configuration of each element such as a substrate, a buffer layer, a semiconductor layer, a light emitting layer, a barrier layer, a well layer, a stacked structure, a conductive layer, an electrode, and an insulating film included in the semiconductor light emitting element. Is appropriately included in the scope of the present invention as long as the present invention can be carried out in the same manner and the same effects can be obtained by appropriately selecting from the known ranges. For example, the composition and film thickness described in the above embodiment are examples, and various selections are possible.

また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。   Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.

その他、本発明の実施の形態として上述した半導体発光素子及びその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子及びその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。   In addition, all semiconductor light-emitting devices and methods for manufacturing the same that can be implemented by those skilled in the art based on the semiconductor light-emitting devices and methods for manufacturing the same described above as embodiments of the present invention are also included in the gist of the present invention. As long as it is included, it belongs to the scope of the present invention.

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。   In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

5…基板、 6…バッファ層、 10…第1半導体層、 10a…第2主面、 10s…積層構造体、 20…第2半導体層、 21…第1p形半導体層、 22…第2p形半導体層、 30…発光層、 31…障壁層、 32…活性層、 40…第1電極、 40p…n側延在部、 41…第1n側導電膜、 42…第2n側導電膜、 43…第3n側導電膜、 50…第2電極、 51…第1導電層、 51a…第1主面、 52…第2導電層、 53…第3導電層、 53a、53b、53c、53d、53e…第1〜第5部分、 53p…延在部、 53q…近接部分、 60…絶縁膜、 110、111、112、113、114、115、120…半導体発光素子、 L3…長さ、 w2、w3…幅   DESCRIPTION OF SYMBOLS 5 ... Board | substrate, 6 ... Buffer layer, 10 ... 1st semiconductor layer, 10a ... 2nd main surface, 10s ... Multilayer structure, 20 ... 2nd semiconductor layer, 21 ... 1st p-type semiconductor layer, 22 ... 2nd p-type semiconductor 30 ... Light-emitting layer, 31 ... Barrier layer, 32 ... Active layer, 40 ... First electrode, 40p ... N-side extension, 41 ... First n-side conductive film, 42 ... Second n-side conductive film, 43 ... First 3n side conductive film, 50 ... second electrode, 51 ... first conductive layer, 51a ... first main surface, 52 ... second conductive layer, 53 ... third conductive layer, 53a, 53b, 53c, 53d, 53e ... first 1st-5th part, 53p ... Extension part, 53q ... Proximity part, 60 ... Insulating film, 110, 111, 112, 113, 114, 115, 120 ... Semiconductor light emitting element, L3 ... Length, w2, w3 ... Width

Claims (5)

窒化物半導体を含む第1導電形の第1半導体層と、窒化物半導体を含む第2導電形の第2半導体層と、前記第1半導体層と前記第2半導体層との間に設けられ、窒化物半導体層を含む発光層と、を含む積層構造体であって、前記積層構造体の前記第2半導体層の側の第2主面において前記第1半導体層の一部が露出している前記積層構造体と、前記第2主面の側において前記第1半導体層に接する第1電極と、前記第2主面の側において前記第2半導体層に接し、第1導電層、第2導電層及び反射性の第3導電層を含む第2電極と、を有する半導体発光素子の製造方法であって、
前記第2半導体層の上に、前記発光層から放出される発光に対して透過性を有し、100ナノメートル以上250ナノメートル以下で、一様な厚さを有し、電流を広げる第1導電層を形成し、
前記第1導電層の一部と、前記第1半導体層の前記露出された前記一部と、の上に、前記発光に対する前記第2導電層の反射率よりも高い反射率を有する高反射導電膜を形成し、前記高反射導電膜を加工して、前記第1電極の少なくとも一部と、前記第1導電層の前記第2半導体層とは反対の側の第1主面に沿って延在し、延在方向に対して垂直で前記第1主面に対して平行な方向に沿った幅が1マイクロメートル以上50マイクロメートル以下の延在部を有し、アルミニウム、銀及びロジウムの少なくともいずれかを含む前記第3導電層と、を形成し、
前記第1導電層の一部の上に、前記第3導電層の前記延在部の少なくとも一部を露出させ、前記第1導電層に対する密着力が前記第3導電層の前記第1導電層に対する密着力よりも大きく、前記第1主面に対して平行な方向に沿った幅が30マイクロメートル以上80マイクロメートル以下の前記第2導電層を形成することを特徴とする半導体発光素子の製造方法。
A first semiconductor layer of a first conductivity type including a nitride semiconductor; a second semiconductor layer of a second conductivity type including a nitride semiconductor; and provided between the first semiconductor layer and the second semiconductor layer; And a light emitting layer including a nitride semiconductor layer, wherein a part of the first semiconductor layer is exposed on a second main surface of the stacked structure on the second semiconductor layer side. The stacked structure, the first electrode in contact with the first semiconductor layer on the second main surface side, and the second semiconductor layer in contact with the second semiconductor layer on the second main surface side, the first conductive layer and the second conductive layer And a second electrode including a reflective third conductive layer, and a method for manufacturing a semiconductor light emitting device,
On the second semiconductor layer has a transparency to light emission emitted from the light emitting layer, at 100 nm or more 250 nm or less, have a uniform thickness, the Ru spread current 1 conductive layer is formed,
A highly reflective conductive material having a reflectivity higher than the reflectivity of the second conductive layer for the light emission on a portion of the first conductive layer and the exposed portion of the first semiconductor layer. Forming a film, processing the highly reflective conductive film, and extending along at least a part of the first electrode and the first main surface of the first conductive layer opposite to the second semiconductor layer; And having an extending portion having a width in a direction perpendicular to the extending direction and parallel to the first main surface that is not less than 1 micrometer and not more than 50 micrometers, and includes at least aluminum, silver, and rhodium Forming the third conductive layer including any one of the following:
At least a part of the extension part of the third conductive layer is exposed on a part of the first conductive layer, and an adhesion force to the first conductive layer is the first conductive layer of the third conductive layer. The second conductive layer having a width greater than 30 μm and not more than 80 μm in a direction parallel to the first main surface is formed, wherein the second conductive layer is larger than the adhesion force to the first main surface. Method.
前記延在部は、前記第1電極との距離が、前記第2導電層と前記第1電極との距離よりも短い部分を有することを特徴とする請求項1記載の半導体発光素子の製造方法。   2. The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the extending portion has a portion whose distance from the first electrode is shorter than a distance between the second conductive layer and the first electrode. . 前記延在部の、延在方向に対して垂直で前記第1主面に対して平行な方向に沿った幅は、前記第2導電層の前記第1主面に対して平行な方向に沿った幅よりも狭いことを特徴とする請求項1または2に記載の半導体発光素子の製造方法。   The width of the extending portion along the direction perpendicular to the extending direction and parallel to the first main surface is along the direction parallel to the first main surface of the second conductive layer. 3. The method for manufacturing a semiconductor light emitting element according to claim 1, wherein the semiconductor light emitting element is narrower than the width. 前記第2導電層は、前記第1導電層に接し、ニッケル、チタン及びバナジウムの少なくともいずれかを含む層を含むことを特徴とする請求項1〜3のいずれか1つに記載の半導体発光素子の製造方法。   4. The semiconductor light emitting element according to claim 1, wherein the second conductive layer includes a layer in contact with the first conductive layer and including at least one of nickel, titanium, and vanadium. Manufacturing method. 前記第1導電層は、In、Sn、Zn及びTiよりなる群から選ばれた少なくとも1つの元素を含む酸化物を含むことを特徴とする請求項1〜4のいずれか1つに記載の半導体発光素子の製造方法。   5. The semiconductor according to claim 1, wherein the first conductive layer includes an oxide containing at least one element selected from the group consisting of In, Sn, Zn, and Ti. Manufacturing method of light emitting element.
JP2012085945A 2012-04-04 2012-04-04 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP5826693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085945A JP5826693B2 (en) 2012-04-04 2012-04-04 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085945A JP5826693B2 (en) 2012-04-04 2012-04-04 Manufacturing method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010178405A Division JP5095785B2 (en) 2010-08-09 2010-08-09 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012129574A JP2012129574A (en) 2012-07-05
JP5826693B2 true JP5826693B2 (en) 2015-12-02

Family

ID=46646200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085945A Expired - Fee Related JP5826693B2 (en) 2012-04-04 2012-04-04 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5826693B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899825B2 (en) * 2006-11-28 2012-03-21 日亜化学工業株式会社 Semiconductor light emitting device, light emitting device
JP5130730B2 (en) * 2007-02-01 2013-01-30 日亜化学工業株式会社 Semiconductor light emitting device
JP2009177008A (en) * 2008-01-25 2009-08-06 Toshiba Discrete Technology Kk Light emitting device, method of manufacturing the same, and light emitting apparatus
JPWO2009102032A1 (en) * 2008-02-15 2011-06-16 三菱化学株式会社 GaN-based LED element and manufacturing method thereof
TWI493748B (en) * 2008-08-29 2015-07-21 Nichia Corp Semiconductor light emitting elements and semiconductor light emitting devices

Also Published As

Publication number Publication date
JP2012129574A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5095785B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5191837B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JP5334601B2 (en) Semiconductor light emitting diode element and semiconductor light emitting device
KR100631967B1 (en) Nitride semiconductor light emitting device for flip chip
JP5258853B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20150263223A1 (en) Semiconductor light emitting element
JP5377725B1 (en) Semiconductor light emitting device
JP5606465B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2008227109A (en) GaN-BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2007103690A (en) Semiconductor light emitting device and its fabrication process
JP2007103689A (en) Semiconductor light emitting device
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP6924836B2 (en) Optoelectronic semiconductor chip
JP5514283B2 (en) Semiconductor light emitting device and semiconductor light emitting device
WO2014192226A1 (en) Light-emitting element
JP5581427B2 (en) Semiconductor light emitting diode element and semiconductor light emitting device
JP5646545B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2004221112A (en) Oxide semiconductor light emitting element
JP5826693B2 (en) Manufacturing method of semiconductor light emitting device
JP5865870B2 (en) Semiconductor light emitting device
JP2012227289A (en) Semiconductor light-emitting device
JP5468158B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2007157778A (en) Semiconductor light emitting device
JP5951732B2 (en) Semiconductor light emitting device
JP5372220B2 (en) Semiconductor light emitting device and semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150601

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R151 Written notification of patent or utility model registration

Ref document number: 5826693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees