JP2002353506A - Semiconductor light-emitting element and manufacturing method therefor - Google Patents

Semiconductor light-emitting element and manufacturing method therefor

Info

Publication number
JP2002353506A
JP2002353506A JP2001154422A JP2001154422A JP2002353506A JP 2002353506 A JP2002353506 A JP 2002353506A JP 2001154422 A JP2001154422 A JP 2001154422A JP 2001154422 A JP2001154422 A JP 2001154422A JP 2002353506 A JP2002353506 A JP 2002353506A
Authority
JP
Japan
Prior art keywords
compound semiconductor
gallium nitride
based compound
electrode
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001154422A
Other languages
Japanese (ja)
Inventor
Toshio Hata
俊雄 幡
Mayuko Fudeta
麻祐子 筆田
Hiroaki Kimura
大覚 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001154422A priority Critical patent/JP2002353506A/en
Publication of JP2002353506A publication Critical patent/JP2002353506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element which has a low forward voltage, emits light uniformly over the entire light emission region, and has excellent reliability as a semiconductor light-emitting element, which is so structured that a translucent electrode containing Pd is formed on a light emission translucent surface and light is guided out through the translucent electrode. SOLUTION: This semiconductor light-emitting element has at least a 1st conductivity-type gallium nitride compound semiconductor layer and a 2nd conductivity-type gallium nitride compound semiconductor layer on a substrate. The element is further equipped with the translucent electrode which is formed on the surface of the 2nd conductivity-type gallium nitride compound semiconductor layer, a conductivity-type film which continuously covers a region adjacent to the circumference of the flank of the translucent electrode on the top and flank of the translucent electrode and the surface of the 2nd conductivity-type gallium nitride compound semiconductor layer, and a pad electrode which is formed on the surface of the 2nd conductivity-type gallium compound semiconductor layer on the conductivity-type film respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム系化
合物半導体発光素子及びその製造方法に関し、更に詳し
くは、青色領域から紫外光領域で発光可能な窒化ガリウ
ム系化合物半導体発光素子(レーザ及び発光ダイオード
LED)であって、特に窒化ガリウム系化合物半導体層
を発光透光面とする発光素子の電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride based compound semiconductor light emitting device and a method of manufacturing the same, and more particularly, to a gallium nitride based compound semiconductor light emitting device (laser and light emitting diode) capable of emitting light in a blue region to an ultraviolet region. LED), and more particularly to an electrode structure of a light-emitting element having a gallium nitride-based compound semiconductor layer as a light-emitting light-transmitting surface.

【0002】[0002]

【従来の技術】図9に従来の窒化ガリウム系化合物半導
体発光素子の電極構造図を示す。図9において、絶縁性
のサファイヤ基板100上に、n型コンタクト層20
0、活性層300、p型クラッド層400、p型コンタ
クト層410が順に積層され、p型コンタクト層410
表面上に第一の層500(パラジウムPd等)とその上
に第二の層600(酸化物を含む透明導電膜)が形成さ
れ、さらに第一の層500が露出されたその上にパッド
電極700が形成されており、さらにn電極800がn
型コンタクト層200に形成されている窒化ガリウム系
化合物半導体発光素子が、例えば、特開平9−1299
19号公報に開示されている。
2. Description of the Related Art FIG. 9 shows an electrode structure of a conventional gallium nitride compound semiconductor light emitting device. In FIG. 9, an n-type contact layer 20 is formed on an insulating sapphire substrate 100.
0, an active layer 300, a p-type cladding layer 400, and a p-type contact layer 410 are laminated in this order.
A first layer 500 (such as palladium Pd) and a second layer 600 (a transparent conductive film containing an oxide) are formed on the surface, and a pad electrode is further formed on the exposed first layer 500. 700 are formed, and the n-electrode 800
Gallium nitride-based compound semiconductor light emitting device formed on the mold contact layer 200 is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-1299.
No. 19 discloses this.

【0003】[0003]

【発明が解決しようとする課題】図9の電極構造は、p
型コンタクト層410上に、第一の層500(パラジウ
ムPd)と、前記第一の層と同形状の第二の層600
(酸化物を含む透明導電膜)とが形成され、パッド電極
700は前記第一の層500(パラジウムPd)が露出
されたその上に形成されている構成となっている。
The electrode structure shown in FIG.
On the mold contact layer 410, a first layer 500 (palladium Pd) and a second layer 600 having the same shape as the first layer
(A transparent conductive film containing an oxide) is formed, and the pad electrode 700 is formed on the exposed first layer 500 (palladium Pd).

【0004】ここで、前記第一の層500は透光性金属
薄膜であるが、パッド電極700を前記第一の層500
の表面上に形成している。この構成により前記窒化ガリ
ウム系化合物半導体発光素子に前記パッド電極700よ
り外部から電流を供給した場合、前記パッド電極700
の近傍が、特に他の発光領域より強く発光していること
が分かった。これはパッド電極直下においてオーミック
性接触が他の領域に比して良好であるために、外部から
供給された電流は前記第一の層500を拡がることが少
ないため、パッド電極近傍のみが発光していると考えら
れる。さらにまた、前記理由より外部から供給された電
流は前記パッド電極の構成では第二の層600(酸化物
を含む透明導電膜)にも電流が均一に流れず、このため
発光部の発光パターンは不均一になり、さらにパッド電
極近傍のみに電流が流れるために、電流が流れる面積が
小さくなり、前記半導体発光素子の順方向電圧が増大
し、前記半導体発光素子の発熱が大きくなり、このため
に半導体発光素子の信頼性を悪化させる原因となってい
る。
Here, the first layer 500 is a light-transmitting metal thin film.
Formed on the surface of With this configuration, when a current is externally supplied to the gallium nitride-based compound semiconductor light emitting device from the pad electrode 700, the pad electrode 700
It has been found that the light emission in the vicinity of is particularly stronger than the other light emitting regions. This is because the ohmic contact right under the pad electrode is better than in other regions, and the current supplied from the outside hardly spreads through the first layer 500, so that only the vicinity of the pad electrode emits light. It is thought that it is. Furthermore, for the above reason, the current supplied from the outside does not uniformly flow through the second layer 600 (the transparent conductive film containing an oxide) in the configuration of the pad electrode. Since the current becomes non-uniform, and the current flows only in the vicinity of the pad electrode, the area through which the current flows decreases, the forward voltage of the semiconductor light emitting element increases, and the heat generation of the semiconductor light emitting element increases. This is a cause of deteriorating the reliability of the semiconductor light emitting device.

【0005】[0005]

【課題を解決するための手段】本発明によれば、基板上
に少なくとも第1導電型窒化ガリウム系化合物半導体層
と、第2導電型窒化ガリウム系化合物半導体層とを備
え、更に、第2導電型窒化ガリウム系化合物半導体層の
表面上に形成された透光性電極と、この透光性電極上、
その側面、および第2導電型窒化ガリウム系化合物半導
体層の表面上で前記側面の周囲に隣接する領域を連続的
に覆う導電型の膜と、第2導電型窒化ガリウム系化合物
半導体層の表面または導電型の膜上に形成されたパッド
電極とをそれぞれ備えたことを特徴とする窒化ガリウム
系化合物半導体発光素子が提供される。
According to the present invention, at least a first conductive type gallium nitride-based compound semiconductor layer and a second conductive type gallium nitride-based compound semiconductor layer are provided on a substrate. A translucent electrode formed on the surface of the type gallium nitride-based compound semiconductor layer, and on the translucent electrode,
A conductive film that continuously covers a side surface thereof and a region adjacent to the periphery of the side surface on the surface of the second conductive type gallium nitride based compound semiconductor layer, and a surface of the second conductive type gallium nitride based compound semiconductor layer or There is provided a gallium nitride-based compound semiconductor light emitting device, comprising: a pad electrode formed on a conductive film.

【0006】すなわち、本発明は、透光性電極上、その
側面、および第2導電型窒化ガリウム系化合物半導体層
の表面上で前記側面の周囲に隣接する領域を連続的に導
電型の膜で覆い、その導電型の膜上または第2導電型窒
化ガリウム系化合物半導体層の表面上にパッド電極を設
けることによって、外部からパッド電極を介して供給さ
れる電流を分散してできるだけ均一に流れるようにし、
それによって均一な発光パターンを得ることができるよ
うにするものである。
That is, according to the present invention, a region of the light-transmitting electrode, the side surface thereof, and the region adjacent to the periphery of the side surface on the surface of the second conductivity type gallium nitride-based compound semiconductor layer are continuously formed of a conductive type film. By covering and providing a pad electrode on the conductive type film or on the surface of the second conductive type gallium nitride-based compound semiconductor layer, the current supplied from the outside via the pad electrode is dispersed so as to flow as uniformly as possible. West,
Thereby, a uniform light emitting pattern can be obtained.

【0007】[0007]

【発明の実施の形態】本発明においては、さらに、第2
導電型窒化ガリウム系化合物半導体層の表面上に形成さ
れた、少なくともPd(パラジウム)を含む透光性電極
をオーミック性電極[又はオーミック電極、半導体・金
属接触の電流−電圧特性が線形であるときの電極(金
属)]とし、導電型の膜を透明導電体膜とし、かつパッ
ド電極としてPd(パラジウム)を含まない電流阻止層
を備えた積層構造を採用することによって、透光性電極
には電流を流れやすくするのに対し、パッド電極の直下
への電流の流れを防止し、それによって電流の流れを発
光素子全体に分散させて発光素子の順方向電圧の増大を
防止すると共により均一な発光パターンを得ることがで
きる。なお、上記Pd以外にもNi(ニッケル)、Co
(コバルト)などを透光性電極に含ませることで、Pd
と同様のオーミック性を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention,
When a translucent electrode containing at least Pd (palladium) formed on the surface of the conductive type gallium nitride-based compound semiconductor layer is used as an ohmic electrode [or an ohmic electrode, and the current-voltage characteristics of the semiconductor-metal contact are linear. Electrode (metal)], a conductive film is used as a transparent conductor film, and a pad electrode has a layered structure including a current blocking layer containing no Pd (palladium). While making the current easier to flow, it prevents the current flow directly under the pad electrode, thereby dispersing the current flow throughout the light emitting device, preventing the forward voltage of the light emitting device from increasing, and making the current flow more uniform. A light emission pattern can be obtained. In addition to the above Pd, Ni (nickel), Co
(Cobalt) etc. in the translucent electrode,
The same ohmic properties as described above can be obtained.

【0008】ここで、パッド電極について、電流阻止層
を備えた積層構造とは、パッド電極の直下への電流の流
れを防止できる層を1つの層として備えた積層構造を意
味し、具体的には、パッド電極を、少なくとも2層以上
からなる積層体で構成し、第2導電型窒化ガリウム系化
合物半導体層に接触する側の層として、前記半導体層の
表面に対して非オーミック性接触の金属、例えば、Pd
(パラジウム)を含まない、Ti(チタン)、Ta(タ
ンタル)、Cr(クロム)、Mo(モリブデン)、Al
(アルミニウム)又はW(タングステン)などからなる
層を採用することが挙げられる。なお、前記半導体層に
接触しない、反対側の層としてはAu(金)からなる層
が挙げられる。
[0008] Here, the laminated structure of the pad electrode provided with a current blocking layer means a laminated structure provided as a single layer with a layer capable of preventing the flow of current immediately below the pad electrode. Comprises a pad electrode composed of a laminate composed of at least two layers, and as a layer in contact with the second-conductivity-type gallium nitride-based compound semiconductor layer, a metal having a non-ohmic contact with the surface of the semiconductor layer. , For example, Pd
(Palladium) -free, Ti (titanium), Ta (tantalum), Cr (chromium), Mo (molybdenum), Al
(Aluminum) or W (tungsten) may be used. The layer on the opposite side that does not come into contact with the semiconductor layer includes a layer made of Au (gold).

【0009】さらに、本発明によれば、パッド電極が第
2導電型窒化ガリウム系化合物半導体層の一部上に、透
光性電極が前記一部の周囲で、かつ第2導電型窒化ガリ
ウム系化合物半導体層の表面上にそれぞれ形成される、
すなわち、前記透光性電極上に前記導電型の膜としての
透明導電体膜が形成され、前記透光性電極と前記透明導
電体膜の一部が除去され、第2導電型窒化ガリウム系化
合物半導体層表面が露出され、その上に前記パッド電極
が形成されると、前記パッド電極直下においては電流が
注入されることなく前記パッド電極直下の(下方の)発
光層で発光することを防ぎ、このため、前記透光性電極
と透明導電体膜に均一に電流が拡散し、均一な発光パタ
ーンを持ち順方向電圧が小さい窒化ガリウム系化合物半
導体発光素子が得られる。
Further, according to the present invention, the pad electrode is provided on a part of the gallium nitride-based compound semiconductor layer of the second conductivity type, and the translucent electrode is provided around the part of the gallium nitride-based compound semiconductor layer. Each formed on the surface of the compound semiconductor layer,
That is, a transparent conductor film as the conductive type film is formed on the translucent electrode, a part of the translucent electrode and the transparent conductor film are removed, and a second conductive type gallium nitride-based compound is formed. When the surface of the semiconductor layer is exposed and the pad electrode is formed thereon, it is possible to prevent light from being emitted by the light-emitting layer immediately below (under) the pad electrode without current being injected immediately below the pad electrode, As a result, a current is uniformly diffused in the translucent electrode and the transparent conductor film, and a gallium nitride-based compound semiconductor light emitting device having a uniform light emitting pattern and a small forward voltage is obtained.

【0010】さらに、第2導電型窒化ガリウム系化合物
半導体層表面に前記透光性電極が形成され、前記透光性
電極の一部が除去され、その除去された領域に前記パッ
ド電極が形成され、前記透明導電体膜が前記透光性電極
と前記パッド電極を覆うように形成されると、第2導電
型窒化ガリウム系化合物半導体層表面上に前記パッド電
極が形成されているため、前記パッド電極直下において
は電流が注入されることなく前記パッド電極直下の(下
方の)発光層で発光することを防止でき、このため、前
記透光性電極と透明導電体膜に均一に電流が拡散し、均
一な発光パターンを持ち順方向電圧が小さい窒化ガリウ
ム系化合物半導体発光素子が得られる。さらに前記透明
導電体膜をパッド電極上に形成しているために、パッド
電極のはがれ防止にもなる。
Further, the light-transmitting electrode is formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer, a part of the light-transmitting electrode is removed, and the pad electrode is formed in the removed region. When the transparent conductor film is formed so as to cover the translucent electrode and the pad electrode, the pad electrode is formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer. Immediately below the electrode, it is possible to prevent light from being emitted from the light-emitting layer immediately below (below) the pad electrode without current being injected. Therefore, current is uniformly diffused into the translucent electrode and the transparent conductor film. Thus, a gallium nitride-based compound semiconductor light emitting device having a uniform light emitting pattern and a small forward voltage can be obtained. Further, since the transparent conductor film is formed on the pad electrode, the pad electrode can be prevented from peeling off.

【0011】ここで、図8は、本発明の電極断面を模式
的に示す拡大図である。図8に示すように、前記パッド
電極の最下層を構成する層の厚さは、前記透光性電極の
膜厚より厚く設定され、前記パッド電極の最上層のAu
(金)と前記透光性電極とが接触しないように設定され
ているために、Auと透光性電極の反応が防止でき、前
記パッド電極近傍の透光性電極の層厚が薄くなり高抵抗
化することがなく、均一な発光パターンが得られる。
FIG. 8 is an enlarged view schematically showing a cross section of an electrode according to the present invention. As shown in FIG. 8, the thickness of the layer constituting the lowermost layer of the pad electrode is set to be thicker than the thickness of the translucent electrode, and the uppermost layer of the pad electrode is formed of Au.
Since the setting is made so that (gold) does not contact the light-transmitting electrode, the reaction between Au and the light-transmitting electrode can be prevented, and the thickness of the light-transmitting electrode near the pad electrode becomes thinner and higher. A uniform light emitting pattern can be obtained without resistance.

【0012】さらに、第2導電型窒化ガリウム系化合物
半導体層表面に前記パッド電極が形成され、前記パッド
電極と前記透光性電極が接触しないように前記パッド電
極の周囲で、かつ第2導電型窒化ガリウム系化合物半導
体層表面上に前記透光性電極が形成され、さらに前記透
明導電体膜が前記パッド電極と前記透光性電極を覆うよ
うに形成されると、第2導電型窒化ガリウム系化合物半
導体層表面上に直接前記パッド電極が形成されているた
め、前記パッド電極直下においては電流が注入されるこ
となく前記パッド電極直下の(下方の)発光層で発光す
ることはなく、従って前記透光性電極と透明導電体膜に
均一に電流が拡散するために均一な発光パターンで順方
向電圧が小さい窒化ガリウム系化合物半導体発光素子が
得られる。さらに、前記パッド電極と前記薄膜の透光性
電極が接触することなく形成されているので、透光性電
極のオーミック性接触をとるために熱処理を行う際に、
前記パッド電極を構成している最上層のAu(金)と前
記Pdを含む透光性電極が反応し、他の透光性電極領域
より前記反応領域が高抵抗化するために電流が流れにく
くなり発光パターンがやや暗くなるような現象を防止で
き、発光パターンが均一な窒化ガリウム系化合物半導体
発光素子が得られる。
Further, the pad electrode is formed on the surface of the gallium nitride-based compound semiconductor layer of the second conductivity type, and the pad electrode and the second conductivity type are formed around the pad electrode so that the pad electrode and the translucent electrode do not come into contact with each other. When the light-transmitting electrode is formed on the surface of the gallium nitride-based compound semiconductor layer and the transparent conductor film is formed so as to cover the pad electrode and the light-transmitting electrode, the second conductive type gallium nitride-based Since the pad electrode is formed directly on the surface of the compound semiconductor layer, no current is injected immediately below the pad electrode, and no light is emitted from the light-emitting layer immediately below (below) the pad electrode. A gallium nitride-based compound semiconductor light-emitting device having a uniform light-emitting pattern and a small forward voltage can be obtained because current is uniformly diffused in the translucent electrode and the transparent conductor film. Furthermore, since the pad electrode and the light-transmitting electrode of the thin film are formed without contact, when performing a heat treatment to obtain ohmic contact of the light-transmitting electrode,
The uppermost layer Au (gold) constituting the pad electrode reacts with the translucent electrode containing Pd, and the resistance of the reaction region becomes higher than that of the other translucent electrode regions. A phenomenon in which the light emission pattern becomes slightly dark can be prevented, and a gallium nitride-based compound semiconductor light emitting device having a uniform light emission pattern can be obtained.

【0013】さらに、第2導電型窒化ガリウム系化合物
半導体層表面に前記透光性電極が形成され、前記透光性
電極上の一部領域に誘電体絶縁膜が形成され、前記透光
性電極と誘電体絶縁膜上に前記透明導電体膜が覆うよう
に形成され、さらに前記透明導電体膜上にパッド電極が
形成され、さらにパッド電極は前記誘電体絶縁膜上方に
形成されると、前記パッド電極の下方に前記誘電体絶縁
膜が形成されているために前記パッド電極直下において
は電流が注入されることなく前記パッド電極直下の(下
方の)発光層で発光することを防止できる。このため、
注入された電流は均一に前記透明導電体膜を流れ、その
後透光性電極から第2導電型窒化ガリウム系化合物半導
体層に電流が注入されるため、均一な発光パターンで順
方向電圧が小さい窒化ガリウム系化合物半導体発光素子
が得られる。
Further, the light-transmissive electrode is formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer, and a dielectric insulating film is formed in a partial region on the light-transmissive electrode. And on the dielectric insulating film, the transparent conductive film is formed so as to cover, further, a pad electrode is formed on the transparent conductive film, and further, when the pad electrode is formed above the dielectric insulating film, Since the dielectric insulating film is formed below the pad electrode, it is possible to prevent light from being emitted from the light-emitting layer immediately below (below) the pad electrode without current being injected immediately below the pad electrode. For this reason,
The injected current uniformly flows through the transparent conductor film, and then the current is injected from the translucent electrode to the second conductivity type gallium nitride based compound semiconductor layer, so that a uniform light emission pattern and a small forward voltage are obtained. A gallium compound semiconductor light emitting device is obtained.

【0014】さらに、第2導電型窒化ガリウム系化合物
半導体層表面に前記誘電体絶縁膜が形成され、前記誘電
体絶縁膜上に前記透光性電極が形成され、前記透光性電
極上に前記透明導電体膜が覆うように形成され、さらに
前記透明導電体膜上にパッド電極が形成され、さらにパ
ッド電極は前記誘電体絶縁膜上方に形成されると、前記
パッド電極の下方の前記第2導電型窒化ガリウム系化合
物半導体層表面に前記誘電体絶縁膜が形成されているた
め、前記パッド電極直下においては電流が注入されるこ
となく前記パッド電極直下の(下方の)発光層で発光す
ることを防止できる。このため、注入された電流は均一
に前記透明導電体膜を流れ、その後透光性電極から第2
導電型窒化ガリウム系化合物半導体層に電流が注入され
るため、均一な発光パターンで順方向電圧が小さい窒化
ガリウム系化合物半導体発光素子が得られる。
Further, the dielectric insulating film is formed on the surface of the second conductivity type gallium nitride based compound semiconductor layer, the light-transmitting electrode is formed on the dielectric insulating film, and the light-transmitting electrode is formed on the light-transmitting electrode. When the transparent conductor film is formed so as to cover it, a pad electrode is formed on the transparent conductor film, and the pad electrode is formed above the dielectric insulating film, the second electrode below the pad electrode is formed. Since the dielectric insulating film is formed on the surface of the conductive gallium nitride-based compound semiconductor layer, light is emitted from the light-emitting layer immediately below (below) the pad electrode without current being injected immediately below the pad electrode. Can be prevented. For this reason, the injected current uniformly flows through the transparent conductor film, and then the second current flows from the light-transmitting electrode.
Since a current is injected into the conductive gallium nitride-based compound semiconductor layer, a gallium nitride-based compound semiconductor light-emitting device having a uniform light emission pattern and a small forward voltage can be obtained.

【0015】さらに、第2導電型窒化ガリウム系化合物
半導体層表面に前記透光性電極が形成され、前記透光性
電極の一部が除去され、前記透光性電極上および前記一
部が除去された領域に前記透明導電体膜が覆うように形
成され、さらに前記透明導電体膜上にパッド電極が形成
され、さらにパッド電極は前記透光性電極の一部が除去
された上方に形成されると、前記透明導電体膜が前記第
2導電型窒化ガリウム系化合物半導体層表面に形成され
ているために、注入された電流は前記透明導電体膜が形
成された領域には流れず、前記パッド電極直下において
は電流が注入されることなく、前記パッド電極直下の
(下方の)発光層で発光することはない。このため、注
入された電流は均一に前記透明導電体膜から前記透光性
電極を流れるため、均一な発光パターンで順方向電圧が
小さい窒化ガリウム系化合物半導体発光素子が得られ
る。
Further, the light-transmissive electrode is formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer, a part of the light-transmissive electrode is removed, and a part of the light-transmissive electrode is removed. The transparent conductor film is formed so as to cover the formed region, a pad electrode is further formed on the transparent conductor film, and the pad electrode is formed above a part of the light-transmitting electrode that has been removed. Then, since the transparent conductor film is formed on the surface of the gallium nitride-based compound semiconductor layer of the second conductivity type, the injected current does not flow to the region where the transparent conductor film is formed. Immediately below the pad electrode, no current is injected, and no light is emitted from the light-emitting layer immediately below (below) the pad electrode. Therefore, the injected current uniformly flows from the transparent conductor film to the translucent electrode, so that a gallium nitride-based compound semiconductor light emitting device having a uniform light emission pattern and a small forward voltage can be obtained.

【0016】さらに、前記透明導電体膜上のパッド電極
は、積層体を成し、前記透明導電体膜と接触する接触側
が、Ti(チタン)、Ta(タンタル)、Cr(クロ
ム)、Mo(モリブデン)、Al(アルミニウム)、W
(タングステン)、非接触側層(最上層)がAu(金)
から成ると、前記透明導電体膜と接触する側に前記金属
を使用することにより、透明導電体膜とパッド電極の密
着性が向上し、前記パッド電極の剥がれが低減し、この
ため前記窒化ガリウム系化合物半導体発光素子の製造歩
留まりが向上できる。
Further, the pad electrode on the transparent conductor film forms a laminate, and the contact side that contacts the transparent conductor film is Ti (titanium), Ta (tantalum), Cr (chromium), Mo ( Molybdenum), Al (aluminum), W
(Tungsten), non-contact side layer (top layer) is Au (gold)
By using the metal on the side that comes into contact with the transparent conductive film, the adhesion between the transparent conductive film and the pad electrode is improved, the peeling of the pad electrode is reduced, and thus the gallium nitride The production yield of the compound semiconductor light emitting device can be improved.

【0017】ここで、導電型の膜としての透明導電体膜
を前記Pdを含む透光性電極としての保護膜として用い
るのが好ましい。透明導電体膜の材料としては、In2
3,SnO2,ZnO,Cd2SnO4,CdSnO3
うち少なくともひとつを用いる。In23の場合はドー
パントとしてSn,W,Mo,Zr,Ti,Sb,F等
のうちひとつを用いる。SnO2の場合はドーパントと
してSb,P,Te,W,Cl,F等のうちひとつを用
いる。Cd2SnO4の場合はドーパントとしてTaを用
いる。ZnOの場合はドーパントとしてAl,In,
B,F等のうちひとつを用いる。透明導電体膜の形成に
は、蒸着法、スパツタ法、CVD法等、通常この分野で
透明導電体膜の形成法として知られた方法を用いること
ができる。
Here, it is preferable to use a transparent conductor film as a conductive type film as a protective film as a translucent electrode containing Pd. As a material of the transparent conductor film, In 2
At least one of O 3 , SnO 2 , ZnO, Cd 2 SnO 4 and CdSnO 3 is used. In the case of In 2 O 3 , one of Sn, W, Mo, Zr, Ti, Sb, F and the like is used as a dopant. In the case of SnO 2 , one of Sb, P, Te, W, Cl, F and the like is used as a dopant. In the case of Cd 2 SnO 4 , Ta is used as a dopant. In the case of ZnO, Al, In,
One of B, F, etc. is used. For the formation of the transparent conductor film, a method generally known as a method for forming a transparent conductor film in this field, such as an evaporation method, a sputter method, and a CVD method, can be used.

【0018】本発明は、別の観点によれば、基板上に、
少なくとも第1導電型窒化ガリウム系化合物半導体層と
第2導電型窒化ガリウム系化合物半導体層とを積層する
工程と、第2導電型窒化ガリウム系化合物半導体層の表
面上に少なくともパラジウムを含む透光性電極を形成す
る工程と、前記透光性電極上、その側壁および前記透光
性電極の周囲に隣接する第2導電型窒化ガリウム系化合
物半導体層の表面の一部を連続的に覆うように、導電型
の膜を形成する工程と、第2導電型窒化ガリウム系化合
物半導体層の上方にある、前記透光性電極と導電型の膜
の積層部分の一部、または導電型の膜を形成する前に透
光性電極の一部を除去する工程と、前記積層部分の一部
または透光性電極の一部の除去により露出した、第2導
電型窒化ガリウム系化合物半導体層の表面上にパッド電
極を形成する工程とからなる窒化ガリウム系化合物半導
体発光素子の製造方法を提供できる。
According to another aspect of the present invention, there is provided a method comprising:
Laminating at least a first conductivity type gallium nitride-based compound semiconductor layer and a second conductivity type gallium nitride-based compound semiconductor layer; Forming an electrode, and so as to continuously cover a part of the surface of the second conductivity type gallium nitride-based compound semiconductor layer adjacent to the light-transmitting electrode, the side wall thereof and the periphery of the light-transmitting electrode, Forming a conductive type film and forming a part of a laminated portion of the light-transmitting electrode and the conductive type film or a conductive type film above the second conductive type gallium nitride-based compound semiconductor layer. A step of previously removing a part of the light-transmitting electrode and a pad on the surface of the second conductivity type gallium nitride-based compound semiconductor layer exposed by removing a part of the laminated portion or a part of the light-transmitting electrode. Step of forming electrodes Method for producing a gallium nitride-based compound semiconductor light-emitting device comprising a can provide.

【0019】基板としては、通常発光素子の基板として
使用されるものであれば特に限定されるものではない。
例えば、シリコン、ゲルマニウム等の半導体基板、Si
Ge、SiC、GaAs、GaP等の化合物半導体基
板、ガラス、サファイヤ、石英、樹脂等の絶縁性基板の
いずれの基板を使用することもできるが、なかでも絶縁
性基板が好ましい。
The substrate is not particularly limited as long as it is generally used as a substrate for a light emitting device.
For example, semiconductor substrates such as silicon and germanium, Si
Any substrate such as a compound semiconductor substrate such as Ge, SiC, GaAs, and GaP, and an insulating substrate such as glass, sapphire, quartz, and resin can be used. Among them, an insulating substrate is preferable.

【0020】半導体層、つまり第1導電型窒化ガリウム
系化合物半導体層と、第2導電型窒化ガリウム系化合物
半導体層とは、公知の方法、例えば有機金属気相成長
(MOCVD)法、分子線結晶成長(MBE)法、CV
D法、等により形成することができる。また、pn接合
を構成するためのp型およびn型の不純物は、半導体層
の形成と同時にドーピングしてもよいし、半導体層形成
後、イオン注入や熱拡散法によりドーピングしてもよ
い。
The semiconductor layers, that is, the first conductivity type gallium nitride-based compound semiconductor layer and the second conductivity type gallium nitride-based compound semiconductor layer are formed by a known method, for example, a metal organic chemical vapor deposition (MOCVD) method, a molecular beam crystal. Growth (MBE) method, CV
It can be formed by Method D or the like. The p-type and n-type impurities for forming the pn junction may be doped simultaneously with the formation of the semiconductor layer, or may be doped by ion implantation or thermal diffusion after the formation of the semiconductor layer.

【0021】また、本発明の透光性電極は、主として半
導体層に直接接続して形成され、電流注入領域を構成す
る。また、透光性電極は、電流注入領域に効率よく電流
を注入することができ、かつ半導体層からの発光を効率
よく取り出す(例えば透光率30〜100%程度)こと
ができる電極であり得る。なお、電流注入領域上から電
流阻止層上にわたって形成されていてもよい。透光性電
極の材料は、上記透光率を有する材料であれば特に限定
されるものではなく、例えば、ニッケル、アルミニウ
ム、金、銅、銀、チタン、タンタル、鉛、パラジウム、
白金、Co等の金属、SnO2、ZnO、ITO等の透
明導電材料等を挙げることができる。これら材料は、単
層膜又は積層膜のいずれで形成されていてもよい。その
膜厚は、上記材料を使用した場合に適当な透光性を有す
るように適宜調整することができ、例えば、透光性電極
の膜厚としては、20nm程度以下であることが好まし
い。
Further, the translucent electrode of the present invention is formed mainly directly connected to the semiconductor layer, and constitutes a current injection region. Further, the light-transmitting electrode can be an electrode that can efficiently inject current into the current injection region and can efficiently extract light emitted from the semiconductor layer (for example, a light transmittance of about 30 to 100%). . In addition, it may be formed from over the current injection region to over the current blocking layer. The material of the light-transmitting electrode is not particularly limited as long as the material has the above-described light transmittance. For example, nickel, aluminum, gold, copper, silver, titanium, tantalum, lead, palladium,
Examples thereof include metals such as platinum and Co, and transparent conductive materials such as SnO2, ZnO, and ITO. These materials may be formed as either a single-layer film or a laminated film. The film thickness can be appropriately adjusted so as to have an appropriate light-transmitting property when the above-mentioned material is used. For example, the film thickness of the light-transmitting electrode is preferably about 20 nm or less.

【0022】以下、本発明を、図に示す具体的な実施の
形態に基づいて詳細に説明する。なお、本明細書におい
て、窒化ガリウム系半導体とは、例えば、InxAly
1- x-yN(0≦x,0≦y,x+y≦1)も含むもの
とする。また、本明細書では、半導体発光素子は、発光
ダイオードや半導体レーザを含む。
Hereinafter, the present invention will be described with reference to specific embodiments shown in the drawings.
This will be described in detail based on the form. In this specification,
The gallium nitride-based semiconductor is, for example, InxAlyG
a1- xyIncluding N (0 ≦ x, 0 ≦ y, x + y ≦ 1)
And In this specification, a semiconductor light-emitting element emits light.
Including diodes and semiconductor lasers.

【0023】(本発明の実施の形態1)図1は、本発明
の一実施の形態1として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図1におい
て、1はサファイア基板、2は第1導電型としてのn型
窒化ガリウム系化合物半導体層、3は窒化ガリウム系化
合物半導体発光層、4は第2導電型としてのp型窒化ガ
リウム系化合物半導体層、5は透光性電極、6は導電型
の膜としての透明導電体膜、7(71を含む)はP側パ
ッド電極、8はAuワイヤー接続部、9はn型用電極で
ある。
(Embodiment 1) FIG. 1 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device manufactured as Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a sapphire substrate, 2 denotes an n-type gallium nitride-based compound semiconductor layer as a first conductivity type, 3 denotes a gallium nitride-based compound semiconductor light emitting layer, and 4 denotes a p-type gallium nitride-based compound as a second conductivity type. The semiconductor layer, 5 is a translucent electrode, 6 is a transparent conductor film as a conductive type film, 7 (including 71) is a P-side pad electrode, 8 is an Au wire connection, and 9 is an n-type electrode. .

【0024】本発明の実施の形態1の電極作製工程を詳
細に説明する。 (1)サファイヤ基板1上に、n型窒化ガリウム系化合
物半導体層2、窒化ガリウム系化合物半導体発光層3、
p型窒化ガリウム系化合物半導体層4を順次積層する。
p型窒化ガリウム系化合物半導体層4上に透光性電極
5、透明導電体膜6を形成する。ここで、透光性電極5
はPdを3nm厚形成し、発光領域を形成するためにレ
ジストを塗布し、通常のフォトエッチング工程を用い、
透光性電極5を硝酸と塩酸の混合液にてエッチングす
る。その透光性電極5を覆うように形成される透明導電
体膜6はIn23にドーパントとしてSnを用い、その
厚さは400nm厚形成する。次に、透明導電体膜6に
よる保護領域を形成するためにレジストを塗布し、通常
のフォトエッチング工程を用い、透明導電体膜6を前記
エッチング液(塩化鉄系の溶液)にて除去する。ここ
で、透明導電体膜6の形成領域は、前記透光性電極5の
表面上のみならず側面、さらには、透光性電極5が形成
されていないp型窒化ガリウム系化合物半導体層4表面
上をも覆うように連続的に形成されている。さらに、開
口部領域51を形成するためレジストを塗布し、通常の
フォトエッチング工程を用い、透明導電体膜6の一部を
塩化鉄系の溶液にてエッチングし、次に透光性電極5を
硝酸と塩酸の混合液にてエッチングし、p型窒化ガリウ
ム系化合物半導体層4の表面を直径にして80μm露出
させた開口部51を形成する。前記露出領域にパッド電
極7及び71として、Ti(チタン)71は前記Pd膜
厚より厚く形成するため、その厚さは15nm形成し、
次に、Au(金)7の厚さは500nm形成する。
The electrode forming process according to the first embodiment of the present invention will be described in detail. (1) On a sapphire substrate 1, an n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light-emitting layer 3,
The p-type gallium nitride-based compound semiconductor layers 4 are sequentially stacked.
A translucent electrode 5 and a transparent conductor film 6 are formed on the p-type gallium nitride based compound semiconductor layer 4. Here, the translucent electrode 5
Formed a 3 nm-thick Pd, applied a resist to form a light emitting region, and used a normal photo-etching process.
The translucent electrode 5 is etched with a mixed solution of nitric acid and hydrochloric acid. The transparent conductor film 6 formed so as to cover the translucent electrode 5 uses Sn as a dopant in In 2 O 3 and has a thickness of 400 nm. Next, a resist is applied in order to form a protection region by the transparent conductor film 6, and the transparent conductor film 6 is removed by an ordinary photo-etching process using the etching solution (iron chloride-based solution). Here, the formation region of the transparent conductor film 6 is formed not only on the surface of the light-transmitting electrode 5 but also on the side surface, and further, on the surface of the p-type gallium nitride-based compound semiconductor layer 4 on which the light-transmitting electrode 5 is not formed. It is formed continuously so as to cover the top. Further, a resist is applied to form the opening region 51, and a part of the transparent conductor film 6 is etched with an iron chloride-based solution using a normal photoetching process. Etching is performed with a mixture of nitric acid and hydrochloric acid to form an opening 51 exposing the surface of the p-type gallium nitride-based compound semiconductor layer 4 to a diameter of 80 μm. Since the Ti (titanium) 71 is formed to be thicker than the Pd film thickness as the pad electrodes 7 and 71 in the exposed regions, the thickness is formed to be 15 nm.
Next, Au (gold) 7 is formed to a thickness of 500 nm.

【0025】(2)次に、レジストをドライエッチング
用のマスクとして用い、ドライエッチング法によりn型
窒化ガリウム系化合物半導体層2表面が露出するまでエ
ッチングを行う。
(2) Next, using the resist as a mask for dry etching, etching is performed by a dry etching method until the surface of the n-type gallium nitride-based compound semiconductor layer 2 is exposed.

【0026】(3)次に、n型窒化ガリウム系化合物半
導体層2の表面にn型用電極9を形成する。該n型用電
極9は、Al(厚さは150nm)及びTi(厚さは1
5nm)の積層構造を用いる。次に、パッド電極と外部
との電気的接触を持たせるために、P側用パッド電極7
およびn型用電極9の上にAuワイヤー8を接続する。
(3) Next, an n-type electrode 9 is formed on the surface of the n-type gallium nitride compound semiconductor layer 2. The n-type electrode 9 is made of Al (having a thickness of 150 nm) and Ti (having a thickness of 1).
5 nm). Next, in order to provide electrical contact between the pad electrode and the outside, the pad electrode 7 for P side is used.
Then, the Au wire 8 is connected on the n-type electrode 9.

【0027】ここで、前記開口部51にp型窒化ガリウ
ム系化合物半導体層4と非オーミック性接触でありパッ
ド電極の一部であるTi71を形成することにより、前
記Ti71の領域には電流が流れにくく、注入された電
流は前記透明導電体膜6を均一に流れ、その下層の透光
性電極にも均一に流れ、P側用パッド電極7の直下には
電流が流れなくなるため、P側用パッド電極7直下のみ
で発光することがない。従って発光領域において均一な
発光パターンが得られる。さらにまたP側用パッド電極
7直下に電流が集中することがないために本発光素子の
順方向電圧が増大することを防止できる。
Here, by forming Ti71 which is a non-ohmic contact with the p-type gallium nitride based compound semiconductor layer 4 and is a part of the pad electrode in the opening 51, a current flows in the region of the Ti71. The injected current flows uniformly through the transparent conductor film 6 and also flows uniformly through the light-transmitting electrode underneath, and no current flows immediately below the P-side pad electrode 7. No light is emitted only directly under the pad electrode 7. Therefore, a uniform light emitting pattern can be obtained in the light emitting region. Further, since the current does not concentrate directly below the P-side pad electrode 7, it is possible to prevent the forward voltage of the present light emitting element from increasing.

【0028】(本発明の実施の形態2)図2は、本発明
の一実施の形態2として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図2におい
て、1はサファイア基板、2はn型窒化ガリウム系化合
物半導体層、3は窒化ガリウム系化合物半導体発光層、
4はp型窒化ガリウム系化合物半導体層、5は透光性電
極、7(71を含む)はP側パッド電極、6は透明導電
体膜、8はAuワイヤーの接続部、9はn型用電極であ
る。
(Embodiment 2) FIG. 2 is a schematic sectional view of an electrode of a gallium nitride based compound semiconductor light emitting device manufactured as Embodiment 2 of the present invention. In FIG. 2, 1 is a sapphire substrate, 2 is an n-type gallium nitride compound semiconductor layer, 3 is a gallium nitride compound semiconductor light emitting layer,
4 is a p-type gallium nitride-based compound semiconductor layer, 5 is a translucent electrode, 7 (including 71) is a P-side pad electrode, 6 is a transparent conductor film, 8 is a connection portion of an Au wire, and 9 is an n-type. Electrodes.

【0029】本発明の電極作製工程を詳細に説明する。 (1)サファイヤ基板1上に、n型窒化ガリウム系化合
物半導体層2、窒化ガリウム系化合物半導体発光層3、
p型窒化ガリウム系化合物半導体層4を順次積層する。
p型窒化ガリウム系化合物半導体層4上に透光性電極5
を形成する。透光性電極5はPdを2nm厚形成する。
発光領域を形成するためにレジストを塗布し、通常のフ
ォトエッチング工程を用い、透光性電極5を前記エッチ
ング液にてエッチングする。次に、透光性電極5を前記
エッチング液(硝酸と塩酸の混合液)を用いてエッチン
グし、p型窒化ガリウム系化合物半導体層4の表面を直
径にして80μm露出させて開口部51を形成する。
The electrode manufacturing process of the present invention will be described in detail. (1) On an sapphire substrate 1, an n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light-emitting layer 3,
The p-type gallium nitride-based compound semiconductor layers 4 are sequentially stacked.
Transparent electrode 5 on p-type gallium nitride based compound semiconductor layer 4
To form The translucent electrode 5 is formed of Pd with a thickness of 2 nm.
A resist is applied to form a light-emitting region, and the light-transmitting electrode 5 is etched with the etching solution using a normal photoetching process. Next, the translucent electrode 5 is etched using the above-mentioned etching solution (mixed solution of nitric acid and hydrochloric acid) to expose the surface of the p-type gallium nitride-based compound semiconductor layer 4 to a diameter of 80 μm to form an opening 51. I do.

【0030】次に、前記露出領域にP側パッド電極7及
び71として、Hf(ハフニウム)71は前記Pd膜厚
より厚く形成するため、その厚さは15nm形成し、次
に、Au(金)7を厚さ500nm形成する。その直径
は100μmとした。
Next, as the P-side pad electrodes 7 and 71 in the exposed region, the Hf (hafnium) 71 is formed to be thicker than the Pd film thickness, so that the thickness is formed to 15 nm, and then Au (gold) is formed. 7 is formed to a thickness of 500 nm. Its diameter was 100 μm.

【0031】次に、前記P側パッド電極7及び71と透
光性電極5を覆うように形成する透明導電体膜6はIn
23にドーパントとしてSnを用い、その厚さは300
nm厚形成する。次に、透明導電体膜6による保護領域
を形成するためにレジストを塗布し、通常のフォトエッ
チング工程を用い、透明導電体膜6を前記エッチング液
にて除去する。ここで、透明導電体膜6の形成領域は、
前記透光性電極5の表面上のみならず側面さらには、透
光性電極5が形成されていないp型窒化ガリウム系化合
物半導体層4表面上も覆うように連続的に形成されてい
る。
Next, the transparent conductor film 6 formed so as to cover the P-side pad electrodes 7 and 71 and the translucent electrode 5 is made of In.
Sn is used as a dopant for 2 O 3 , and its thickness is 300
It is formed to a thickness of nm. Next, a resist is applied in order to form a protection region by the transparent conductor film 6, and the transparent conductor film 6 is removed by the above-mentioned etching solution using a normal photo-etching process. Here, the formation region of the transparent conductor film 6 is:
It is formed continuously so as to cover not only the surface of the light-transmitting electrode 5 but also the side surface and the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed.

【0032】(2)次に、レジストをドライエッチング
用のマスクとして用い、ドライエッチング法によりn型
窒化ガリウム系化合物半導体層2表面が露出するまでエ
ッチングを行う。
(2) Next, using the resist as a mask for dry etching, etching is performed by a dry etching method until the surface of the n-type gallium nitride-based compound semiconductor layer 2 is exposed.

【0033】(3)次に、n型窒化ガリウム系化合物半
導体層2の表面にn型用電極9を形成する。該n型用電
極9は、Al(厚さは200nm)及びHf(厚さは5
nm)の積層構造を用いる。
(3) Next, an n-type electrode 9 is formed on the surface of the n-type gallium nitride compound semiconductor layer 2. The n-type electrode 9 is made of Al (having a thickness of 200 nm) and Hf (having a thickness of 5 nm).
nm).

【0034】次に、パッド電極と外部との電気的接触を
持たせるために、P側用パッド電極7およびN型用電極
9の上にAuワイヤー8を接続する。ここで、前記開口
部51にp型窒化ガリウム系化合物半導体層4と非オー
ミック性接触でありパッド電極の一部であるHf71を
形成することにより、前記Hf71の領域には電流が流
れにくく、このためにP側用パッド電極7の直下には電
流が流れなくなり、注入された電流は透明導電体膜と透
光性電極に均一に流れるため、P側用パッド電極7直下
のみで発光することがなくなり、透光性電極で形成され
た発光領域において均一な発光パターンが得られる。さ
らにまたP側用パッド電極7直下に電流が集中すること
がないために本発光素子の順方向電圧が増大することが
ないことを特徴としている。さらに、P側用パッド電極
7上に透明導電体膜6を形成して押さえの作用によりワ
イヤーボンド中にP側用パッド電極7の剥がれがなくな
り製造歩留りが向上する。
Next, an Au wire 8 is connected to the pad electrode 7 for the P side and the electrode 9 for the N-type in order to provide electrical contact between the pad electrode and the outside. Here, by forming Hf71 which is a non-ohmic contact with the p-type gallium nitride based compound semiconductor layer 4 and is a part of the pad electrode in the opening 51, current hardly flows in the Hf71 region. Therefore, no current flows immediately below the P-side pad electrode 7, and the injected current flows uniformly through the transparent conductive film and the translucent electrode. As a result, a uniform light emitting pattern can be obtained in the light emitting region formed by the translucent electrode. Furthermore, since the current does not concentrate directly below the P-side pad electrode 7, the forward voltage of the present light emitting element does not increase. Further, the transparent conductor film 6 is formed on the P-side pad electrode 7, and the pressing action prevents the P-side pad electrode 7 from peeling off during wire bonding, thereby improving the production yield.

【0035】(本発明の実施の形態3)図3は、本発明
の一実施の形態3として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図3におい
て、1はサファイア基板、2はn型窒化ガリウム系化合
物半導体層、3は窒化ガリウム系化合物半導体発光層、
4はp型窒化ガリウム系化合物半導体層、5は透光性電
極、7(71を含む)はP側パッド電極、6は透明導電
体膜、8はAuワイヤーの接続部、9はn型用電極であ
る。
(Embodiment 3) FIG. 3 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light-emitting device manufactured as Embodiment 3 of the present invention. 3, 1 is a sapphire substrate, 2 is an n-type gallium nitride compound semiconductor layer, 3 is a gallium nitride compound semiconductor light emitting layer,
4 is a p-type gallium nitride-based compound semiconductor layer, 5 is a translucent electrode, 7 (including 71) is a P-side pad electrode, 6 is a transparent conductor film, 8 is a connection portion of an Au wire, and 9 is an n-type. Electrodes.

【0036】本発明の電極作製工程を詳細に説明する。 (1)サファイヤ基板1上に、n型窒化ガリウム系化合
物半導体層2、窒化ガリウム系化合物半導体発光層3、
p型窒化ガリウム系化合物半導体層4を順次積層する。
p型窒化ガリウム系化合物半導体層4上に透光性電極5
を形成する。透光性電極5はPdを2nm厚形成する。
次に、P型窒化カリウム系化合物半導体層4上に通常の
フォトエッチング工程にて、発光領域と開口部領域51
を形成する。透光性電極5を前記エッチング液にてエッ
チングし、p型窒化ガリウム系化合物半導体層4の表面
に発光領域、開口部領域51とし直径にして100μm
露出させる。露出させた領域内に直径にして80μmの
P側パッド電極7(71を含む)を形成する。
The electrode manufacturing process of the present invention will be described in detail. (1) On an sapphire substrate 1, an n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light-emitting layer 3,
The p-type gallium nitride-based compound semiconductor layers 4 are sequentially stacked.
Transparent electrode 5 on p-type gallium nitride based compound semiconductor layer 4
To form The translucent electrode 5 is formed of Pd with a thickness of 2 nm.
Next, the light emitting region and the opening region 51 are formed on the P-type potassium nitride-based compound semiconductor layer 4 by a normal photo etching process.
To form The translucent electrode 5 is etched with the etching solution to form a light emitting region and an opening region 51 on the surface of the p-type gallium nitride based compound semiconductor layer 4 to have a diameter of 100 μm.
Expose. A P-side pad electrode 7 (including 71) having a diameter of 80 μm is formed in the exposed region.

【0037】ここで、前記透光性電極5とP側パッド電
極は接触しないことを特徴としている。P側パッド電極
はTi(チタン)71厚さは30nm形成、その上にA
u(金)7厚さは400nm厚形成する。そのP側パッ
ド電極と透光性電極5及びp型窒化ガリウム系化合物半
導体層4の表面を覆うように形成される透明導電体膜6
はIn23にドーパントとしてSn層を形成し、その厚
さは300nm厚形成する。
Here, the translucent electrode 5 and the P-side pad electrode are not in contact with each other. The P-side pad electrode is formed of Ti (titanium) 71 with a thickness of 30 nm, and A
u (gold) 7 is 400 nm thick. A transparent conductor film 6 formed to cover the surface of the P-side pad electrode, the translucent electrode 5 and the p-type gallium nitride-based compound semiconductor layer 4
Forms a Sn layer as a dopant in In 2 O 3 and has a thickness of 300 nm.

【0038】次に、透明導電体膜6による保護領域を形
成するためにレジストを塗布し、通常のフォトエッチン
グ工程を用い、透明導電体膜6を前記エッチング液にて
除去する。ここで、透明導電体膜6の形成領域は、前記
透光性電極5の表面上のみならず側面さらには、透光性
電極5が形成されていないp型窒化ガリウム系化合物半
導体層4表面上も覆うように連続的に形成されている。
Next, a resist is applied to form a protected area by the transparent conductive film 6, and the transparent conductive film 6 is removed by the above-mentioned etching solution using a usual photo-etching process. Here, the formation region of the transparent conductor film 6 is formed not only on the surface of the light-transmitting electrode 5 but also on the side surface and on the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed. Is formed continuously so as to cover the entire surface.

【0039】(2)次に、レジストをドライエッチング
用のマスクとして用い、ドライエッチング法によりn型
窒化ガリウム系化合物半導体層2表面が露出するまでエ
ッチングを行う。
(2) Next, using the resist as a mask for dry etching, etching is performed by dry etching until the surface of the n-type gallium nitride-based compound semiconductor layer 2 is exposed.

【0040】(3)次に、n型窒化ガリウム系化合物半
導体層2の表面にn型用電極9を形成する。該n型用電
極9は、Al(厚さは150nm)及びTi(厚さは1
5nm)の積層構造を用いる。次に、パッド電極と外部
との電気的接触を持たせるために、P側用パッド電極7
およびN型用電極9の上にAuワイヤー8を接続する。
(3) Next, an n-type electrode 9 is formed on the surface of the n-type gallium nitride-based compound semiconductor layer 2. The n-type electrode 9 is made of Al (having a thickness of 150 nm) and Ti (having a thickness of 1).
5 nm). Next, in order to provide electrical contact between the pad electrode and the outside, the pad electrode 7 for P side is used.
The Au wire 8 is connected on the N-type electrode 9.

【0041】ここで、P側パッド電極7のAuと透光性
電極5のPdを接触させていない構成とすることにより
前記Auと接触している領域のPdの厚さが薄くなるこ
とがなくなり、P側パッド電極7の近傍において高抵抗
な領域がなくなり均一に透光性電極5に電流が注入され
る。このために透光性電極5で形成されている発光領域
において発光パターンが均一になる。Auと接触すると
Pdの厚さが薄くなる原因はよくわからないが、Auに
Pdが引き込まれるような反応が生じていると考えられ
る。
Here, since the Au of the P-side pad electrode 7 and the Pd of the translucent electrode 5 are not in contact with each other, the thickness of Pd in the region in contact with Au does not become thin. In the vicinity of the P-side pad electrode 7, there is no high-resistance region, and current is uniformly injected into the translucent electrode 5. For this reason, the light emitting pattern becomes uniform in the light emitting region formed by the translucent electrode 5. Although the cause of the decrease in the thickness of Pd when it comes into contact with Au is not clearly understood, it is considered that a reaction occurs in which Pd is drawn into Au.

【0042】従って、P側パッド電極7のAuと透光性
電極5のPdが接触しない構成とし、P側パッド電極7
のAuと透光性電極5のPdは透明導電体膜6により接
続されていることを特徴としている。さらに、前記開口
部51に非オーミック性接触でありパッド電極の一部で
あるTi71を形成することにより、前記Ti71の領
域には電流が流れにくく、このためにP側用パッド電極
7の直下には電流が流れなくなり、注入された電流は透
明導電体膜と透光性電極を均一に流れ、P側用パッド電
極7直下のみで発光することがないため、透光性電極5
で形成された発光領域において均一な発光パターンが得
られ、さらにP側用パッド電極7直下に電流が集中する
ことがないために本発光素子の順方向電圧が増大するこ
とを防止できる。
Therefore, the Au of the P-side pad electrode 7 and the Pd of the translucent electrode 5 do not come into contact with each other.
Au is connected to Pd of the translucent electrode 5 by a transparent conductive film 6. Further, by forming Ti71, which is a non-ohmic contact and is a part of the pad electrode, in the opening 51, current does not easily flow in the region of the Ti71, and therefore, immediately below the P-side pad electrode 7, , No current flows, and the injected current flows uniformly through the transparent conductor film and the translucent electrode, and does not emit light only under the P-side pad electrode 7.
A uniform light emitting pattern can be obtained in the light emitting region formed by the above, and since the current does not concentrate directly under the P-side pad electrode 7, it is possible to prevent the forward voltage of the present light emitting element from increasing.

【0043】(本発明の実施の形態4)図4は、本発明
の一実施の形態4として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図4におい
て、60は導電性GaN基板、2はn型窒化ガリウム系
化合物半導体層、3は窒化ガリウム系化合物半導体発光
層、4はp型窒化ガリウム系化合物半導体層、5は透光
性電極、7(71を含む)はP側パッド電極、6は透明
導電体膜、8はAuワイヤーの接続部、9はn型用電極
である。
(Embodiment 4 of the Present Invention) FIG. 4 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device manufactured as Embodiment 4 of the present invention. In FIG. 4, reference numeral 60 denotes a conductive GaN substrate, 2 denotes an n-type gallium nitride-based compound semiconductor layer, 3 denotes a gallium nitride-based compound semiconductor light-emitting layer, 4 denotes a p-type gallium nitride-based compound semiconductor layer, 5 denotes a translucent electrode, Reference numeral 7 (including 71) denotes a P-side pad electrode, 6 denotes a transparent conductor film, 8 denotes a connection portion of an Au wire, and 9 denotes an n-type electrode.

【0044】本発明の実施の形態4の電極作製工程を詳
細に説明する。 (1)導電性GaN基板60上に、n型窒化ガリウム系
化合物半導体層2、窒化ガリウム系化合物半導体発光層
3、p型窒化ガリウム系化合物半導体層4を順次積層す
る。p型窒化ガリウム系化合物半導体層4上に透光性電
極5を形成する。透光性電極5はPdを3.5nm厚形
成する。次に、発光領域と開口部51を形成するため
に、通常のフォトエッチング工程を用いて、前記透光性
電極5をエッチングする。透光性電極5を前記エッチン
グ液を用いてエッチングし、発光領域を形成し、さら
に、p型窒化ガリウム系化合物半導体層4の表面を直径
にして80μm露出させる。次に、前記露出領域に直径
にして100μmのP側パッド電極7及び71を、Ti
71厚さは前記Pd膜厚より厚く形成するため、その厚
さは30nm形成し、次に、Au7を厚さ500nm形
成する。次に、前記P側パッド電極7及び71と透光性
電極5を覆うように透明導電体膜を形成する。その透明
導電体膜6はIn23にドーパントとしてSnを用い、
その厚さは300nm厚形成する。
The electrode manufacturing process according to the fourth embodiment of the present invention will be described in detail. (1) An n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light-emitting layer 3, and a p-type gallium nitride-based compound semiconductor layer 4 are sequentially stacked on a conductive GaN substrate 60. The translucent electrode 5 is formed on the p-type gallium nitride-based compound semiconductor layer 4. The translucent electrode 5 is formed of Pd with a thickness of 3.5 nm. Next, in order to form the light emitting region and the opening 51, the light transmitting electrode 5 is etched using a normal photo etching process. The translucent electrode 5 is etched using the etching solution to form a light emitting region, and the surface of the p-type gallium nitride based compound semiconductor layer 4 is exposed to a diameter of 80 μm. Next, the P-side pad electrodes 7 and 71 having a diameter of 100 μm were
Since the thickness 71 is formed to be thicker than the Pd film thickness, the thickness is formed to 30 nm, and then Au7 is formed to a thickness of 500 nm. Next, a transparent conductor film is formed so as to cover the P-side pad electrodes 7 and 71 and the translucent electrode 5. The transparent conductor film 6 uses Sn as a dopant for In 2 O 3 ,
The thickness is formed to be 300 nm.

【0045】次に、透明導電体膜6による保護領域を形
成するためにレジストを塗布し、通常のフォトエッチン
グ工程を用い、透明導電体膜6を前記エッチング液にて
除去する。ここで、透明導電体膜6の形成領域は、前記
透光性電極5の表面上のみならず側面、さらには、透光
性電極5が形成されていないp型窒化ガリウム系化合物
半導体層4表面上も覆うように連続的に形成されてい
る。
Next, a resist is applied to form a protection region by the transparent conductive film 6, and the transparent conductive film 6 is removed with the above-mentioned etching solution by using a usual photo-etching process. Here, the formation region of the transparent conductor film 6 is not only on the surface of the light-transmitting electrode 5 but also on the side surface, and further, on the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed. It is formed continuously so as to cover the top.

【0046】(2)次に、導電性GaN基板60の裏面
にn型用電極9を形成する。該n型用電極9は、Al
(厚さは500nm)及びHf(厚さは5nm)の積層
構造を用いる。次に、パッド電極7と外部との電気的接
触を持たせるために、P側用パッド電極7の上にAuワ
イヤー8を接続する。ここで、本実施の形態1で記載し
た特徴に加えて、導電性基板を用いることにより上下に
電極が形成でき、より製造方法が簡略化される。
(2) Next, an n-type electrode 9 is formed on the back surface of the conductive GaN substrate 60. The n-type electrode 9 is made of Al
(Thickness: 500 nm) and Hf (thickness: 5 nm) are used. Next, an Au wire 8 is connected on the P-side pad electrode 7 in order to make the pad electrode 7 electrically contact with the outside. Here, in addition to the features described in Embodiment 1, electrodes can be formed above and below by using a conductive substrate, and the manufacturing method is further simplified.

【0047】(本発明の実施の形態5)図5は、本発明
の一実施の形態5として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図5におい
て、1はサファイヤ基板、2はn型窒化ガリウム系化合
物半導体層、3は窒化ガリウム系化合物半導体発光層、
4はp型窒化ガリウム系化合物半導体層、5は透光性電
極、73は誘電体絶縁膜、6は透明導電体膜、7(72
を含む)はP側パッド電極、8はAuワイヤーの接続
部、9はn型用電極である。
(Fifth Embodiment of the Present Invention) FIG. 5 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device manufactured as a fifth embodiment of the present invention. In FIG. 5, 1 is a sapphire substrate, 2 is an n-type gallium nitride-based compound semiconductor layer, 3 is a gallium nitride-based compound semiconductor light-emitting layer,
4 is a p-type gallium nitride-based compound semiconductor layer, 5 is a translucent electrode, 73 is a dielectric insulating film, 6 is a transparent conductor film, and 7 (72
) Is a P-side pad electrode, 8 is a connection portion of an Au wire, and 9 is an n-type electrode.

【0048】(1)サファイヤ基板1上に、n型窒化ガ
リウム系化合物半導体層2、窒化ガリウム系化合物半導
体発光層3、p型窒化ガリウム系化合物半導体層4を順
次積層する。p型窒化ガリウム系化合物半導体層4上に
透光性電極5を形成する。透光性電極5はPdを3nm
厚形成する。次に、発光領域を形成するために、通常の
フォトエッチング工程を用いて、前記エッチング液にて
透光性電極5をエッチングする。その上に誘電体絶縁膜
SiO273を厚さ100nm形成する。次に、前記透
光性電極5と誘電体絶縁膜73を覆うように透明導電体
膜6を形成する。前記透明導電体膜6はIn23にドー
パントとしてSnを用い、その厚さは300nm厚形成
する。
(1) An n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light emitting layer 3, and a p-type gallium nitride-based compound semiconductor layer 4 are sequentially laminated on a sapphire substrate 1. The translucent electrode 5 is formed on the p-type gallium nitride-based compound semiconductor layer 4. The translucent electrode 5 has Pd of 3 nm.
It is formed thick. Next, in order to form a light emitting region, the light transmitting electrode 5 is etched with the etching solution using a normal photo etching process. A dielectric insulating film SiO 2 73 is formed thereon to a thickness of 100 nm. Next, a transparent conductor film 6 is formed so as to cover the translucent electrode 5 and the dielectric insulating film 73. The transparent conductor film 6 uses Sn as a dopant for In 2 O 3 and has a thickness of 300 nm.

【0049】次に、透明導電体膜6表面上にP側パッド
電極7及び72として、Mo(モリブデン)72厚さは
20nm形成し、次に、Au(金)7を厚さは500n
m形成する。前記誘電体絶縁膜73、P側パッド電極7
及び72の直径は各々100μmとした。次に、透明導
電膜6による保護領域を形成するためにレジストを塗布
し、通常のフォトエッチング工程を用い、透明導電体膜
6を前記エッチング液にて除去する。ここで、透明導電
体膜6の形成領域は、前記透光性電極5の表面上のみな
らず側面、さらには、透光性電極5が形成されていない
p型窒化ガリウム系化合物半導体層4表面上も覆うよう
に連続的に形成されている。
Next, Mo (molybdenum) 72 is formed to a thickness of 20 nm on the surface of the transparent conductive film 6 as P-side pad electrodes 7 and 72, and then Au (gold) 7 is formed to a thickness of 500 n.
m is formed. The dielectric insulating film 73, the P-side pad electrode 7
And 72 each had a diameter of 100 μm. Next, a resist is applied in order to form a protection region by the transparent conductive film 6, and the transparent conductive film 6 is removed by the above-mentioned etching solution using a normal photo-etching process. Here, the formation region of the transparent conductor film 6 is not only on the surface of the light-transmitting electrode 5 but also on the side surface, and further, on the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed. It is formed continuously so as to cover the top.

【0050】(2)次に、レジストをドライエッチング
用のマスクとして用い、ドライエッチング法によりn型
窒化ガリウム系化合物半導体層2表面が露出するまでエ
ッチングを行う。
(2) Next, using the resist as a mask for dry etching, etching is performed by a dry etching method until the surface of the n-type gallium nitride-based compound semiconductor layer 2 is exposed.

【0051】(3)次に、n型窒化ガリウム系化合物半
導体層2の表面にn型用電極9を形成する。該n型用電
極9は、Al(厚さは150nm)及びHf(厚さは3
nm)の積層構造を用いる。次に、パッド電極と外部と
の電気的接触を持たせるために、P側用パッド電極7お
よびN型用電極9の上にAuワイヤー8を接続する。
(3) Next, an n-type electrode 9 is formed on the surface of the n-type gallium nitride compound semiconductor layer 2. The n-type electrode 9 is made of Al (having a thickness of 150 nm) and Hf (having a thickness of 3 nm).
nm). Next, an Au wire 8 is connected on the P-side pad electrode 7 and the N-type electrode 9 in order to provide electrical contact between the pad electrode and the outside.

【0052】ここで、P側パッド電極7の直下に誘電体
絶縁膜73を形成しているためにP側パッド電極7の下
方は発光せず、透明導電体膜6を介して電流が均一に注
入され、透光性電極5にも電流が均一に注入されるた
め、発光領域は均一に発光する。さらにP側パッド電極
7と透明導電体膜6の密着性を向上させるために72に
Moを形成し密着性を向上させることによりP側パッド
電極の剥がれがなくなり、その製造歩留りが向上すると
いう特徴がある。
Here, since the dielectric insulating film 73 is formed immediately below the P-side pad electrode 7, no light is emitted below the P-side pad electrode 7, and the current is made uniform via the transparent conductor film 6. Since the current is injected into the translucent electrode 5 uniformly, the light emitting region emits light uniformly. Further, Mo is formed on 72 to improve the adhesion between the P-side pad electrode 7 and the transparent conductor film 6 and the adhesion is improved, whereby the P-side pad electrode is not peeled off, and the manufacturing yield is improved. There is.

【0053】(本発明の実施の形態6)図6は、本発明
の一実施の形態6として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図6におい
て、1はサファイヤ基板、2はn型窒化ガリウム系化合
物半導体層、3は窒化ガリウム系化合物半導体発光層、
4はp型窒化ガリウム系化合物半導体層、73は誘電体
絶縁膜、5は透光性電極、6は透明導電体膜、7(72
を含む)はP側パッド電極、8はAuワイヤーの接続
部、9はn型用電極である。
(Embodiment 6) FIG. 6 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device manufactured as Embodiment 6 of the present invention. In FIG. 6, 1 is a sapphire substrate, 2 is an n-type gallium nitride-based compound semiconductor layer, 3 is a gallium nitride-based compound semiconductor light-emitting layer,
4 is a p-type gallium nitride compound semiconductor layer, 73 is a dielectric insulating film, 5 is a translucent electrode, 6 is a transparent conductor film, and 7 (72
) Is a P-side pad electrode, 8 is a connection portion of an Au wire, and 9 is an n-type electrode.

【0054】(1)サファイヤ基板1上に、n型窒化ガ
リウム系化合物半導体層2、窒化ガリウム系化合物半導
体発光層3、p型窒化ガリウム系化合物半導体層4を順
次積層する。p型窒化ガリウム系化合物半導体層4上に
誘電体絶縁膜73を厚さ100nm形成し、次に通常の
フォトエッチング工程を用いて、フッ酸をエッチング液
にて、直径にして100μm残るように形成する。次
に、p型窒化ガリウム系化合物半導体層4と誘電体絶縁
膜73上に透光性電極5としてPdを4nm厚形成す
る。発光領域を形成するために、通常のフォトエッチン
グ工程を用いて、前記透光性電極5を前記エッチング液
にてエッチングする。次に、前記透光性電極5を覆うよ
うに透明導電体膜6を形成する。前記透明導電体膜6は
In23にドーパントとしてSnを用い、その厚さは2
00nm厚形成する。次に、透明導電体膜6による保護
領域を形成するためにレジストを塗布し、通常のフォト
エッチング工程を用い、透明導電体膜6を前記エッチン
グ液にて除去する。
(1) An n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light emitting layer 3, and a p-type gallium nitride-based compound semiconductor layer 4 are sequentially laminated on a sapphire substrate 1. A dielectric insulating film 73 is formed to a thickness of 100 nm on the p-type gallium nitride-based compound semiconductor layer 4, and then formed using a normal photo-etching process using hydrofluoric acid with an etchant so that the diameter remains at 100 μm. I do. Next, on the p-type gallium nitride-based compound semiconductor layer 4 and the dielectric insulating film 73, a 4 nm-thick Pd is formed as the translucent electrode 5. In order to form a light emitting region, the light transmitting electrode 5 is etched with the etching solution using a normal photo etching process. Next, a transparent conductor film 6 is formed so as to cover the translucent electrode 5. The transparent conductor film 6 uses Sn as a dopant for In 2 O 3 and has a thickness of 2 nm.
It is formed to a thickness of 00 nm. Next, a resist is applied in order to form a protection region by the transparent conductor film 6, and the transparent conductor film 6 is removed by the above-mentioned etching solution using a normal photo-etching process.

【0055】次に、誘電体絶縁膜73上に配置するよう
に透明導電体膜6表面上にP側パッド電極7及び72と
して、Ta(タンタル)72厚さは30nm形成し、A
u(金)7を厚さは500nm形成する。前記誘電体絶
縁膜73上のP側パッド電極7及び72の直径は各々8
0μmとした。ここで、透明導電体膜6の形成領域は、
前記透光性電極5の表面上のみならず側面、さらには、
透光性電極5が形成されていないp型窒化ガリウム系化
合物半導体層4表面上も覆うように連続的に形成されて
いる。
Next, Ta (tantalum) 72 is formed to a thickness of 30 nm on the surface of the transparent conductor film 6 as P-side pad electrodes 7 and 72 so as to be disposed on the dielectric insulating film 73.
u (gold) 7 is formed to a thickness of 500 nm. Each of the P-side pad electrodes 7 and 72 on the dielectric insulating film 73 has a diameter of 8
It was set to 0 μm. Here, the formation region of the transparent conductor film 6 is:
Not only on the surface of the translucent electrode 5, but also on the side,
It is formed continuously so as to cover the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed.

【0056】(2)次に、レジストをドライエッチング
用のマスクとして用い、ドライエッチング法によりn型
窒化ガリウム系化合物半導体層2表面が露出するまでエ
ッチングを行う。
(2) Next, using the resist as a mask for dry etching, etching is performed by a dry etching method until the surface of the n-type gallium nitride-based compound semiconductor layer 2 is exposed.

【0057】(3)次に、n型窒化ガリウム系化合物半
導体層2の表面にn型用電極9を形成する。該n型用電
極9は、Al(厚さは150nm)及びHf(厚さは5
nm)の積層構造を用いる。次に、パッド電極と外部と
の電気的接触を持たせるために、P側用パッド電極7お
よびN型用電極9の上にAuワイヤー8を接続する。こ
こで、P側パッド電極7の直下で、透光性電極5の真下
に誘電体絶縁膜73を形成しているためにP側パッド電
極7の下方は発光せず、注入された電流は透明導電体膜
6を介して均一に透光性電極5に流れ、透光性電極5と
p型窒化ガリウム系化合物半導体層4が接触して形成さ
れた発光領域で均一に発光する。さらにP側パッド電極
7と透明導電体膜6の密着性を向上させるために72に
Taを形成することによりP側パッド電極の剥がれがな
くなり、その製造歩留りが向上するという特徴がある。
(3) Next, an n-type electrode 9 is formed on the surface of the n-type gallium nitride-based compound semiconductor layer 2. The n-type electrode 9 is made of Al (having a thickness of 150 nm) and Hf (having a thickness of 5 nm).
nm). Next, an Au wire 8 is connected on the P-side pad electrode 7 and the N-type electrode 9 in order to provide electrical contact between the pad electrode and the outside. Here, since the dielectric insulating film 73 is formed immediately below the P-side pad electrode 7 and directly below the translucent electrode 5, no light is emitted below the P-side pad electrode 7, and the injected current is transparent. The light uniformly flows into the translucent electrode 5 via the conductor film 6, and uniformly emits light in a light emitting region formed by contact of the translucent electrode 5 and the p-type gallium nitride-based compound semiconductor layer 4. Further, by forming Ta on 72 in order to improve the adhesion between the P-side pad electrode 7 and the transparent conductor film 6, there is a feature that the P-side pad electrode is not peeled off and the production yield is improved.

【0058】(本発明の実施の形態7)図7は、本発明
の一実施の形態7として作製された窒化ガリウム系化合
物半導体発光素子の電極断面模式図である。図7におい
て、60は導電性Si基板、2はn型窒化ガリウム系化
合物半導体層、3は窒化ガリウム系化合物半導体発光
層、4はp型窒化ガリウム系化合物半導体層、5は透光
性電極、6は透明導電体膜、7(72を含む)はP側パ
ッド電極、8はAuワイヤーの接続部、9はn型用電極
である。
(Embodiment 7 of the Present Invention) FIG. 7 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device manufactured as Embodiment 7 of the present invention. 7, reference numeral 60 denotes a conductive Si substrate, 2 denotes an n-type gallium nitride-based compound semiconductor layer, 3 denotes a gallium nitride-based compound semiconductor light-emitting layer, 4 denotes a p-type gallium nitride-based compound semiconductor layer, 5 denotes a translucent electrode, Reference numeral 6 denotes a transparent conductor film, 7 (including 72) denotes a P-side pad electrode, 8 denotes a connection portion of an Au wire, and 9 denotes an n-type electrode.

【0059】(1)Si基板60上に、n型窒化ガリウ
ム系化合物半導体層2、窒化ガリウム系化合物半導体発
光層3、p型窒化ガリウム系化合物半導体層4を順次積
層する。次に、p型窒化ガリウム系化合物半導体層4上
に透光性電極5としてPdを3nm厚形成する。発光領
域と開口部51を形成するために、通常のフォトエッチ
ング工程を用いて、前記エッチング液を用いてエッチン
グし、発光領域を形成し、次に前記透光性電極5の中心
付近に直径80μmの開口部51を形成する。前記透光
性電極5と開口部51を覆うように透明導電体膜6を形
成する。この透明導電体膜6はIn23にドーパントと
してSnを用い、その厚さは150nm厚形成する。
(1) An n-type gallium nitride-based compound semiconductor layer 2, a gallium nitride-based compound semiconductor light-emitting layer 3, and a p-type gallium nitride-based compound semiconductor layer 4 are sequentially stacked on a Si substrate 60. Next, Pd is formed to a thickness of 3 nm on the p-type gallium nitride-based compound semiconductor layer 4 as the translucent electrode 5. In order to form the light-emitting region and the opening 51, the light-emitting region is formed by etching using the above-described etching solution by using a normal photo-etching process, and then the light-transmitting electrode 5 has a diameter of 80 μm near the center thereof. Opening 51 is formed. A transparent conductor film 6 is formed so as to cover the translucent electrode 5 and the opening 51. The transparent conductor film 6 is formed of In 2 O 3 using Sn as a dopant, and has a thickness of 150 nm.

【0060】次に、透明導電体膜6により保護領域を形
成するためにレジストを塗布し、通常のフォトエッチン
グ工程を用い、透明導電体膜6を前記エッチング液にて
除去する。次に、前記開口部51上に配置するように透
明導電体膜6表面上にP側パッド電極7及び72とし
て、W(タングステン)72厚さは20nm形成し、A
u7を厚さは500nm形成する。前記開口部51上の
P側パッド電極7及び72の直径は各々80μmとし
た。ここで、透明導電体膜6の形成領域は、前記透光性
電極5の表面上のみならず側面、さらには、透光性電極
5が形成されていないp型窒化ガリウム系化合物半導体
層4表面上も覆うように連続的に形成されている。
Next, a resist is applied to form a protection region with the transparent conductor film 6, and the transparent conductor film 6 is removed by the above-mentioned etching solution using a usual photo-etching process. Next, W (tungsten) 72 is formed to a thickness of 20 nm as P-side pad electrodes 7 and 72 on the surface of the transparent conductor film 6 so as to be disposed on the opening 51, and
u7 is formed to a thickness of 500 nm. The diameter of each of the P-side pad electrodes 7 and 72 on the opening 51 was 80 μm. Here, the formation region of the transparent conductor film 6 is not only on the surface of the light-transmitting electrode 5 but also on the side surface, and further, on the surface of the p-type gallium nitride-based compound semiconductor layer 4 where the light-transmitting electrode 5 is not formed. It is formed continuously so as to cover the top.

【0061】(2)次に、Si基板60の裏面にn型用
電極9を形成する。前記n型用電極9は、Al(厚さ1
50nm)を用いる。次に、パッド電極7と外部との電
気的接触を持たせるために、P側用パッド電極7上にA
uワイヤー8を接続する。
(2) Next, an n-type electrode 9 is formed on the back surface of the Si substrate 60. The n-type electrode 9 is made of Al (thickness 1).
50 nm). Next, in order to provide electrical contact between the pad electrode 7 and the outside, A
u-wire 8 is connected.

【0062】このように、前記開口部51に、すなわち
p型窒化ガリウム系化合物半導体層4表面上に非オーミ
ック性の透明導電体膜6を形成することにより、P側用
パッド電極7の直下には電流が流れなくなり、P側用パ
ッド電極7直下では発光することがないため、発光領域
において均一な発光パターンが得られる。実施の形態5
または6の誘電体絶縁膜を電流阻止層として用いる変わ
りに、透明導電体膜6を電流阻止層として用いることが
できるため、容易に電流阻止型構造の半導体発光素子が
可能となり、さらにその製造方法がより簡便であるとい
う特徴を有している。
As described above, by forming the non-ohmic transparent conductor film 6 in the opening 51, that is, on the surface of the p-type gallium nitride-based compound semiconductor layer 4, the non-ohmic transparent conductor film 6 is formed immediately below the P-side pad electrode 7. No current flows, and no light is emitted immediately below the P-side pad electrode 7, so that a uniform light emitting pattern can be obtained in the light emitting region. Embodiment 5
Alternatively, instead of using the dielectric insulating film of 6 as a current blocking layer, the transparent conductive film 6 can be used as a current blocking layer, so that a semiconductor light emitting device having a current blocking type structure can be easily realized, and furthermore its manufacturing method. Has the feature that it is simpler.

【0063】ここで、上記実施の形態1、2、3、4、
5、6、7においては、前記n型用電極9は、前記発光
領域を中心とした周囲にわたりn型窒化ガリウム系化合
物半導体層2に形成されていてもよい。さらに、上記実
施の形態1から7において、通常のスパッタリング法を
用いてIn23膜、Au、Ti、Ta、Moを形成し、
電子ビーム蒸着法を用いてPd、Al、Hf、Wを各々
形成した。以上、窒化ガリウム系化合物半導体発光素子
構造はホモ構造の発光素子について説明したが、窒化ガ
リウム系化合物半導体発光素子であれば、ダブルヘテロ
構造、シングルヘテロ構造、量子井戸構造等あらゆる構
造に適用できることは言うまでもない。
Here, Embodiments 1, 2, 3, 4,
In 5, 6, and 7, the n-type electrode 9 may be formed on the n-type gallium nitride-based compound semiconductor layer 2 around the light emitting region. Further, in the first to seventh embodiments, an In 2 O 3 film, Au, Ti, Ta, and Mo are formed using a normal sputtering method.
Pd, Al, Hf, and W were each formed using an electron beam evaporation method. As described above, the gallium nitride-based compound semiconductor light-emitting device structure has been described as a light-emitting device having a homostructure. However, a gallium nitride-based compound semiconductor light-emitting device can be applied to any structure such as a double hetero structure, a single hetero structure, and a quantum well structure. Needless to say.

【0064】[0064]

【発明の効果】本発明によれば、透光性電極上、その側
面およびその透光性電極に近接した第2導電型窒化ガリ
ウム系化合物半導体層表面の一部を連続的に導電型の膜
で覆い、その導電型の膜上にパッド電極を設けることに
よって、外部からパッド電極を介して供給される電流を
分散してできるだけ均一に流れるようにし、それによっ
て均一な、発光パターンを得ることができる。
According to the present invention, the conductive type film is continuously formed on the light-transmitting electrode, the side surface thereof, and a part of the surface of the second conductive type gallium nitride-based compound semiconductor layer adjacent to the light-transmitting electrode. By providing a pad electrode on the conductive type film, current supplied from the outside via the pad electrode is dispersed so that it flows as uniformly as possible, thereby obtaining a uniform light emitting pattern. it can.

【0065】さらに本発明によれば、発光面に設けられ
たパッド電極直下を電流が流れにくい電流阻止構成とす
ることにより、パッド電極直下のみが強く発光すること
がなくなり、発光面全面でより均一な発光パターンが得
られ、さらにパッド電極直下のみに電流が流れることが
ないため発光素子の順方向電圧の増大をもたらすことを
防止できる、このため、信頼性に優れた窒化ガリウム系
化合物半導体発光素子を実現できる。
Further, according to the present invention, by providing a current blocking structure in which current does not easily flow directly under the pad electrode provided on the light emitting surface, only the light directly under the pad electrode does not emit light intensely, and the entire light emitting surface can be made more uniform. Gallium nitride-based compound semiconductor light-emitting device with excellent reliability because a light-emitting pattern can be obtained and current does not flow only directly under the pad electrode, thereby preventing an increase in forward voltage of the light-emitting device. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態1としての電極断面模式図である。
FIG. 1 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device according to a first embodiment of the present invention.

【図2】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態2としての電極断面模式図である。
FIG. 2 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device according to a second embodiment of the present invention.

【図3】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態3としての電極断面模式図である。
FIG. 3 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device according to a third embodiment of the present invention.

【図4】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態4としての電極断面模式図である。
FIG. 4 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device according to a fourth embodiment of the present invention.

【図5】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態5としての電極断面模式図である
FIG. 5 is a schematic sectional view of an electrode as Embodiment 5 of the gallium nitride-based compound semiconductor light emitting device of the present invention.

【図6】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態6としての電極断面模式図である。
FIG. 6 is a schematic sectional view of an electrode as Embodiment 6 of the gallium nitride based compound semiconductor light emitting device of the present invention.

【図7】本発明の窒化ガリウム系化合物半導体発光素子
の実施の形態7としての電極断面模式図である。
FIG. 7 is a schematic sectional view of an electrode of a gallium nitride-based compound semiconductor light emitting device according to a seventh embodiment of the present invention.

【図8】本発明の窒化ガリウム系化合物半導体発光素子
電極断面を模式的に示す拡大図である。
FIG. 8 is an enlarged view schematically showing a cross section of an electrode of the gallium nitride based compound semiconductor light emitting device of the present invention.

【図9】従来の窒化ガリウム系化合物半導体発光素子の
電極構造の断面模式図である。
FIG. 9 is a schematic sectional view of an electrode structure of a conventional gallium nitride based compound semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1、100…サファイヤ基板 60… n型GaN基板またはSi基板 2、200…n型窒化ガリウム系化合物半導体層 3、300…窒化ガリウム系化合物半導体発光層 4、400…p型窒化ガリウム系化合物半導体層 410…p型窒化ガリウム系化合物半導体コンタクト層 5、500…透光性電極 51…透光性電極の開口部 6、600…透明導電体膜 7、700…p側パッド電極 73…誘電体絶縁膜 8…Auワイヤーの接続部 9…n側パッド電極 1, 100: sapphire substrate 60: n-type GaN substrate or Si substrate 2, 200: n-type gallium nitride-based compound semiconductor layer 3, 300: gallium nitride-based compound semiconductor light emitting layer 4, 400: p-type gallium nitride-based compound semiconductor layer 410: p-type gallium nitride compound semiconductor contact layer 5, 500: translucent electrode 51: opening of translucent electrode 6, 600: transparent conductor film 7, 700: p-side pad electrode 73: dielectric insulating film 8 Au wire connection 9 n-side pad electrode

フロントページの続き (72)発明者 木村 大覚 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5F041 AA05 AA43 CA40 CA83 CA88 CA93 CB03 5F073 AA61 CA01 CB03 CB22 DA23Continued on the front page (72) Inventor Daikaku Kimura 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka F-term (reference) 5F041 AA05 AA43 CA40 CA83 CA88 CA93 CB03 5F073 AA61 CA01 CB03 CB22 DA23

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板上に少なくとも第1導電型窒化ガリ
ウム系化合物半導体層と、第2導電型窒化ガリウム系化
合物半導体層とを備え、更に、 第2導電型窒化ガリウム系化合物半導体層の表面上に形
成された透光性電極と、 この透光性電極上、その側面、および第2導電型窒化ガ
リウム系化合物半導体層の表面上で前記側面の周囲に隣
接する領域を連続的に覆う導電型の膜と、 第2導電型窒化ガリウム系化合物半導体層の表面または
導電型の膜上に形成されたパッド電極とをそれぞれ備え
たことを特徴とする窒化ガリウム系化合物半導体発光素
子。
A first conductive type gallium nitride-based compound semiconductor layer and a second conductive type gallium nitride-based compound semiconductor layer; and a second conductive type gallium nitride-based compound semiconductor layer on a surface of the substrate. A light-transmitting electrode formed on the light-transmitting electrode, a conductive type that continuously covers a region adjacent to the periphery of the side on the surface of the light-transmitting electrode, the side surface thereof, and the surface of the second conductive type gallium nitride-based compound semiconductor layer. And a pad electrode formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer or on the conductivity type film.
【請求項2】 透光性電極が少なくともPdを含むオー
ミック性電極であり、導電型の膜が透明導電体膜からな
り、パッド電極が第2導電型窒化ガリウム系化合物半導
体層の表面上に形成され、かつPdを含まない電流阻止
層を備えたことを特徴とする請求項1に記載の窒化ガリ
ウム系化合物半導体発光素子。
2. The light-transmitting electrode is an ohmic electrode containing at least Pd, the conductive film is a transparent conductor film, and the pad electrode is formed on the surface of the second conductive gallium nitride-based compound semiconductor layer. The gallium nitride-based compound semiconductor light emitting device according to claim 1, further comprising a current blocking layer formed and containing no Pd.
【請求項3】 パッド電極が第2導電型窒化ガリウム系
化合物半導体層上の一部に形成され、透光性電極が第2
導電型窒化ガリウム系化合物半導体層の表面上で、かつ
前記一部の周囲に隣接して形成されたことを特徴とする
請求項1に記載の窒化ガリウム系化合物半導体発光素
子。
3. A pad electrode is formed on a part of the gallium nitride-based compound semiconductor layer of the second conductivity type, and a light-transmitting electrode is formed on the second gallium nitride-based compound semiconductor layer.
2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light-emitting device is formed on the surface of the conductive gallium nitride-based compound semiconductor layer and adjacent to the periphery of the part.
【請求項4】 導電型の膜が、更にパッド電極を覆うこ
とを特徴とする請求項3に記載の窒化ガリウム系化合物
半導体発光素子。
4. The gallium nitride based compound semiconductor light emitting device according to claim 3, wherein the conductive type film further covers the pad electrode.
【請求項5】 パッド電極が第2導電型窒化ガリウム系
化合物半導体層の表面上に形成され、透光性電極が第2
導電型窒化ガリウム系化合物半導体層の表面上で、かつ
パッド電極と接触しないように前記パッド電極の周囲に
形成され、さらに導電型の膜がパッド電極と透光性電極
を覆うように形成されたことを特徴とする請求項1に記
載の窒化ガリウム系化合物半導体発光素子。
5. A pad electrode is formed on the surface of the second conductivity type gallium nitride-based compound semiconductor layer, and the light-transmitting electrode is formed on the second conductive type gallium nitride-based compound semiconductor layer.
A conductive type film was formed on the surface of the conductive type gallium nitride-based compound semiconductor layer and around the pad electrode so as not to contact the pad electrode, and a conductive type film was formed to cover the pad electrode and the translucent electrode. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein:
【請求項6】 透光性電極上の一部と導電型の膜との間
に形成された誘電体絶縁膜をさらに備え、パッド電極が
導電型の膜上で、かつ前記誘電体絶縁膜の上方に形成さ
れたことを特徴とする請求項1に記載の窒化ガリウム系
化合物半導体発光素子。
6. A dielectric insulating film formed between a portion on the light-transmitting electrode and a conductive type film, wherein the pad electrode is on the conductive type film, and The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the light emitting device is formed above.
【請求項7】 第2導電型窒化ガリウム系化合物半導体
層の表面上の一部と透光性電極との間に形成された誘電
体絶縁膜をさらに備え、パッド電極が導電型の膜上で、
かつ前記誘電体絶縁膜の上方に形成されたことを特徴と
する請求項1に記載の窒化ガリウム系化合物半導体発光
素子。
7. A dielectric insulating film formed between a portion on the surface of the second conductivity type gallium nitride based compound semiconductor layer and the light transmitting electrode, wherein the pad electrode is formed on the conductive type film. ,
The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light emitting device is formed above the dielectric insulating film.
【請求項8】 透光性電極が第2導電型窒化ガリウム系
化合物半導体層上の一部表面を除く周囲の表面に形成さ
れ、導電型の膜が前記一部表面およびこの一部表面に隣
接する透光性電極の側面を連続的に含んで覆い、さらに
パッド電極が導電型の膜上で、かつ前記一部表面の上方
に形成されたことを特徴とする請求項1に記載の窒化ガ
リウム系化合物半導体発光素子。
8. A light-transmitting electrode is formed on a peripheral surface of the second conductive type gallium nitride-based compound semiconductor layer except for a partial surface, and a conductive type film is adjacent to the partial surface and the partial surface. 2. The gallium nitride according to claim 1, wherein the side surface of the transparent electrode is continuously covered, and the pad electrode is formed on the conductive film and above the partial surface. Based compound semiconductor light emitting device.
【請求項9】 パッド電極が、導電型の膜上に形成さ
れ、かつこの導電型の膜と接触する接触側が、Ti(チ
タン)、Ta(タンタル)、Cr(クロム)、Mo(モ
リブデン)、Al(アルミニウム)又はW(タングステ
ン)の層で、非接触側がAu(金)の層の少なくとも2
種以上の層を備えた積層体からなることを特徴とする請
求項6〜8のいずれか1つに記載の窒化ガリウム系化合
物半導体発光素子。
9. A pad electrode is formed on a conductive type film, and the contact side that contacts the conductive type film is Ti (titanium), Ta (tantalum), Cr (chromium), Mo (molybdenum), Al (aluminum) or W (tungsten) layer, non-contact side is at least two layers of Au (gold) layer
The gallium nitride-based compound semiconductor light emitting device according to any one of claims 6 to 8, wherein the gallium nitride-based compound semiconductor light emitting device is formed of a laminate having at least three or more kinds of layers.
【請求項10】 基板上に、少なくとも第1導電型窒化
ガリウム系化合物半導体層と第2導電型窒化ガリウム系
化合物半導体層とを積層する工程と、 第2導電型窒化ガリウム系化合物半導体層の表面上に透
光性電極を形成する工程と、 前記透光性電極上、その側面、および前記透光性電極の
周囲に隣接する第2導電型窒化ガリウム系化合物半導体
層の表面の一部を連続的に覆う導電型の膜を形成する工
程と、 第2導電型窒化ガリウム系化合物半導体層の上方にあ
る、前記透光性電極と導電型の膜の積層部分の一部、ま
たは導電型の膜を形成する前に透光性電極の一部を除去
する工程と、 前記積層部分の一部または透光性電極の一部の除去によ
り露出した、第2導電型窒化ガリウム系化合物半導体層
の表面上にパッド電極を形成する工程とからなる窒化ガ
リウム系化合物半導体発光素子の製造方法。
10. A step of laminating at least a first conductivity type gallium nitride based compound semiconductor layer and a second conductivity type gallium nitride based compound semiconductor layer on a substrate, and a surface of the second conductivity type gallium nitride based compound semiconductor layer. Forming a light-transmissive electrode on the light-transmitting electrode, and forming a continuous part of the surface of the second conductivity type gallium nitride-based compound semiconductor layer on the light-transmitting electrode, the side surface thereof, and the periphery of the light-transmitting electrode Forming a conductive type film that covers the first conductive type gallium nitride-based compound semiconductor layer, a part of a laminated portion of the light-transmitting electrode and the conductive type film, or a conductive type film Removing a part of the light-transmitting electrode before forming the surface; and a surface of the second conductivity type gallium nitride-based compound semiconductor layer exposed by removing a part of the laminated portion or a part of the light-transmitting electrode. The process of forming pad electrodes on Method for producing a gallium nitride-based compound semiconductor light emitting device comprising.
JP2001154422A 2001-05-23 2001-05-23 Semiconductor light-emitting element and manufacturing method therefor Pending JP2002353506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154422A JP2002353506A (en) 2001-05-23 2001-05-23 Semiconductor light-emitting element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154422A JP2002353506A (en) 2001-05-23 2001-05-23 Semiconductor light-emitting element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002353506A true JP2002353506A (en) 2002-12-06

Family

ID=18998765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154422A Pending JP2002353506A (en) 2001-05-23 2001-05-23 Semiconductor light-emitting element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002353506A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327980A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Semiconductor light emitting diode and method for manufacturing the same
JP2005123501A (en) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2007103712A (en) * 2005-10-05 2007-04-19 Arima Optoelectronics Corp High brightness garium nitride light emitting diode
JP2008135554A (en) * 2006-11-28 2008-06-12 Nichia Chem Ind Ltd Semiconductor light-emitting element, light-emitting device, and manufacturing method for semiconductor light-emitting element
WO2008102787A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Chemical Corporation Gan led element and light emitting device
JP2008226866A (en) * 2007-02-13 2008-09-25 Mitsubishi Chemicals Corp Gallium nitride based light-emitting diode element and light-emitting device
JP2008244425A (en) * 2007-02-21 2008-10-09 Mitsubishi Chemicals Corp GaN BASED LED ELEMENT AND LIGHT EMITTING DEVICE
JP2009522803A (en) * 2006-01-09 2009-06-11 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
JP2010504640A (en) * 2006-09-25 2010-02-12 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with electrode extension for current spreading
WO2010024375A1 (en) 2008-08-29 2010-03-04 日亜化学工業株式会社 Semiconductor light emitting element and semiconductor light emitting device
CN101807655A (en) * 2009-02-17 2010-08-18 Lg伊诺特有限公司 Method of manufacturing semiconductor light emitting device
US7952116B2 (en) 2005-11-16 2011-05-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
US8021902B2 (en) 2009-02-27 2011-09-20 Tsinghua University Method for fabricating light emitting diode
CN102315348A (en) * 2010-07-05 2012-01-11 Lg伊诺特有限公司 Luminescent device and manufacturing approach thereof
CN102339921A (en) * 2010-07-20 2012-02-01 夏普株式会社 Semiconductor light-emitting device and method of producing the same
US8115212B2 (en) 2004-07-29 2012-02-14 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
JP2013150018A (en) * 2008-09-09 2013-08-01 Bridgelux Inc Light-emitting device with improved electrode structure
JP2014131074A (en) * 2006-05-19 2014-07-10 Bridgelux Inc Low optical loss electrode structure for led
US10263158B2 (en) 2015-12-25 2019-04-16 Nichia Corporation Light emitting element

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327980A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Semiconductor light emitting diode and method for manufacturing the same
JP2005123501A (en) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd Semiconductor light emitting element
US8115212B2 (en) 2004-07-29 2012-02-14 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
JP2007103712A (en) * 2005-10-05 2007-04-19 Arima Optoelectronics Corp High brightness garium nitride light emitting diode
US7952116B2 (en) 2005-11-16 2011-05-31 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
JP4861437B2 (en) * 2006-01-09 2012-01-25 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
JP2009522803A (en) * 2006-01-09 2009-06-11 ソウル オプト デバイス カンパニー リミテッド Light emitting diode having ITO layer and method for manufacturing the same
US7998761B2 (en) 2006-01-09 2011-08-16 Seoul Opto Device Co., Ltd. Light emitting diode with ITO layer and method for fabricating the same
JP2014131074A (en) * 2006-05-19 2014-07-10 Bridgelux Inc Low optical loss electrode structure for led
JP2010504640A (en) * 2006-09-25 2010-02-12 ソウル オプト デバイス カンパニー リミテッド Light emitting diode with electrode extension for current spreading
JP2008135554A (en) * 2006-11-28 2008-06-12 Nichia Chem Ind Ltd Semiconductor light-emitting element, light-emitting device, and manufacturing method for semiconductor light-emitting element
USRE49298E1 (en) 2007-02-01 2022-11-15 Nichia Corporation Semiconductor light emitting element
USRE49406E1 (en) 2007-02-01 2023-01-31 Nichia Corporation Semiconductor light emitting element
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
JP2008226866A (en) * 2007-02-13 2008-09-25 Mitsubishi Chemicals Corp Gallium nitride based light-emitting diode element and light-emitting device
JP2008244425A (en) * 2007-02-21 2008-10-09 Mitsubishi Chemicals Corp GaN BASED LED ELEMENT AND LIGHT EMITTING DEVICE
WO2008102787A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Chemical Corporation Gan led element and light emitting device
US20120171796A1 (en) * 2007-02-21 2012-07-05 Shin Hiraoka Gan led element and light emitting device having a structure to reduce light absorption by a pad electrode included therein
US8158994B2 (en) 2007-02-21 2012-04-17 Mitsubishi Chemical Corporation GaN LED element and light emitting device having a structure to reduce light absorption by a pad electrode included therein
US8461617B2 (en) 2008-08-29 2013-06-11 Nichia Corporation Semiconductor light emitting element and semiconductor light emitting device
KR101199218B1 (en) * 2008-08-29 2012-11-07 니치아 카가쿠 고교 가부시키가이샤 Semiconductor light emitting element and semiconductor light emitting device
JP5177227B2 (en) * 2008-08-29 2013-04-03 日亜化学工業株式会社 Semiconductor light emitting device and semiconductor light emitting device
WO2010024375A1 (en) 2008-08-29 2010-03-04 日亜化学工業株式会社 Semiconductor light emitting element and semiconductor light emitting device
JP2013150018A (en) * 2008-09-09 2013-08-01 Bridgelux Inc Light-emitting device with improved electrode structure
US9324915B2 (en) 2008-09-09 2016-04-26 Kabushiki Kaisha Toshiba Light-emitting device with improved electrode structures
US8785963B2 (en) 2009-02-17 2014-07-22 Lg Innotek Co., Ltd. Method of manufacturing semiconductor light emitting device
CN101807655A (en) * 2009-02-17 2010-08-18 Lg伊诺特有限公司 Method of manufacturing semiconductor light emitting device
US8021902B2 (en) 2009-02-27 2011-09-20 Tsinghua University Method for fabricating light emitting diode
CN102315348A (en) * 2010-07-05 2012-01-11 Lg伊诺特有限公司 Luminescent device and manufacturing approach thereof
JP2012028381A (en) * 2010-07-20 2012-02-09 Sharp Corp Semiconductor light emitting device and method of manufacturing the same
CN102339921A (en) * 2010-07-20 2012-02-01 夏普株式会社 Semiconductor light-emitting device and method of producing the same
US10263158B2 (en) 2015-12-25 2019-04-16 Nichia Corporation Light emitting element

Similar Documents

Publication Publication Date Title
US6316792B1 (en) Compound semiconductor light emitter and a method for manufacturing the same
JP2002353506A (en) Semiconductor light-emitting element and manufacturing method therefor
JP4183299B2 (en) Gallium nitride compound semiconductor light emitting device
JP3940438B2 (en) Semiconductor light emitting device
TWI274429B (en) Semiconductor light-emitting device and manufacturing method thereof
JP3009095B2 (en) Nitride semiconductor light emitting device
TWI305425B (en)
JP4493153B2 (en) Nitride-based semiconductor light emitting device
US7202510B2 (en) Semiconductor luminescent device and manufacturing method thereof
JP2005277372A (en) Semiconductor light emitting device and its manufacturing method
JP2007049159A (en) Nitride-based light-emitting device and method of fabricating same
JP3207773B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
KR20060059783A (en) Gan compound semiconductor light emitting element and method of manufacturing the same
JP4164689B2 (en) Semiconductor light emitting device
US10741721B2 (en) Light-emitting device and manufacturing method thereof
TWI230472B (en) Semiconductor light emitting device and the manufacturing method thereof
JPH10341039A (en) Semiconductor light emitting element and fabrication thereof
JP4386185B2 (en) Nitride semiconductor device
KR20080005314A (en) Radiation emitting semi-conductor element
KR20120030430A (en) Light emitting semiconductor device and method for manufacturing
US20040000672A1 (en) High-power light-emitting diode structures
JP2002016286A (en) Semiconductor light-emitting element
JP2941743B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
JP2004221112A (en) Oxide semiconductor light emitting element