JP2007103712A - High brightness garium nitride light emitting diode - Google Patents

High brightness garium nitride light emitting diode Download PDF

Info

Publication number
JP2007103712A
JP2007103712A JP2005292356A JP2005292356A JP2007103712A JP 2007103712 A JP2007103712 A JP 2007103712A JP 2005292356 A JP2005292356 A JP 2005292356A JP 2005292356 A JP2005292356 A JP 2005292356A JP 2007103712 A JP2007103712 A JP 2007103712A
Authority
JP
Japan
Prior art keywords
layer
gan
emitting diode
light emitting
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292356A
Other languages
Japanese (ja)
Inventor
文傑 ▲黄▼
Bunketsu Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arima Optoelectronics Corp
Original Assignee
Arima Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arima Optoelectronics Corp filed Critical Arima Optoelectronics Corp
Priority to JP2005292356A priority Critical patent/JP2007103712A/en
Publication of JP2007103712A publication Critical patent/JP2007103712A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high brightness GaN light emitting diode which raises the brightness-conductivity characteristic. <P>SOLUTION: The diode comprises a light-permeable insulation substrate 116, a first lower GaN binding layer 15 of a first conductivity type formed on the insulation substrate 116, an InGaN light emitting layer 13 formed on the binding layer 15, a second upper GaN binding layer 12 of a second conductivity type formed on the light emitting layer 13, a GaN contact layer 17A of a gallium-rich phase formed on the second upper binding layer 12, an AlGaInSnO photoconductive layer 11B formed on the contact layer 17A, a first electrode 14 formed in the exposed section of the first lower binding layer 15, and a second electrode 10 formed on the photoconductive layer 11B. The contact layer 17A forms a stable contact surface with the photoconductive layer 11B, and the contact surface reduces the ohmic contact electric resistance and raises the light emitting efficiency and the reliability. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、GaN系発光ダイオ−ドに関し、詳しく言えば、周知技術のNi/Au層の代わりに新しいAlGaInSnO透明導電酸化層を採用することで、輝度と導電率の特性を高めるGaN系発光ダイオ−ドに関するものである。   The present invention relates to a GaN-based light-emitting diode, and more particularly, a GaN-based light-emitting diode that enhances luminance and conductivity characteristics by employing a new AlGaInSnO transparent conductive oxide layer instead of the well-known Ni / Au layer. -Related to

すべてのIII−V族材料の中で直接バンドギャップエネルギ−が比較的高いのは、III−V族酸化物材料であるが、p型GaN半導体化合物のキャリア濃度は熱処理された後、1×1018cm-3以下になり、かつもっとも好ましい電気抵抗係数は1Ωcm前後である。導電性があまり好ましくないため、電極から流れた電流をチップ全体に効率的に分布させることは不可能であり、電流が滞ってしまう現象が生じる。したがって、発光効率に影響してしまう。 The relatively high direct band gap energy among all the III-V materials is the III-V oxide material, but the carrier concentration of the p-type GaN semiconductor compound is 1 × 10 after the heat treatment. It is 18 cm −3 or less, and the most preferable electric resistance coefficient is around 1 Ωcm. Since the conductivity is not so preferable, it is impossible to efficiently distribute the current flowing from the electrode over the entire chip, and a phenomenon occurs in which the current stagnates. Therefore, the luminous efficiency is affected.

1993年の年末に日本の日亜化学工業株式会社は、初めてGaNを主な材料とするp電極として金属薄膜を使用し、発光ダイオ−ドを製造することに成功したことを正式に発表した。そののち、日亜化学工業株式会社はよりいっそう好ましいAuとNiから組成された金属薄膜を発表した。そのうちNiは直接p型半導体層に形成され、そののち、AuはNi層の上に形成され、熱処理を受けた後、III−V族p型GaN系半導体化合物の光伝導層とオ−ム接触層としてNi/Au合金複合層の構造を形成可能である。   At the end of 1993, Nichia Corporation in Japan officially announced that it had succeeded in producing a light-emitting diode by using a metal thin film for the first time as a p-electrode mainly composed of GaN. After that, Nichia Corporation announced a more preferred metal thin film composed of Au and Ni. Of these, Ni is formed directly on the p-type semiconductor layer, after which Au is formed on the Ni layer, and after heat treatment, is in ohmic contact with the photoconductive layer of the III-V group p-type GaN-based semiconductor compound. A Ni / Au alloy composite layer structure can be formed as the layer.

周知の技術で図1に示すのは、日亜化学工業株式会社の特許文献1により掲示された構造である。GaN発光ダイオ−ドは、サファイア基体(Sapphire substrate)116、n型Gan束縛層15、n型Ti/Al電極14、InGaN発光層13、p型GaN束縛層12、Ni/Au薄膜11Aから構成される光伝導層及びp型Ni/Au電極10を備える。   A well-known technique shown in FIG. 1 is a structure posted by Patent Document 1 of Nichia Corporation. The GaN light emitting diode is composed of a sapphire substrate 116, an n-type Gan constrained layer 15, an n-type Ti / Al electrode 14, an InGaN light-emitting layer 13, a p-type GaN constrained layer 12, and a Ni / Au thin film 11A. And a p-type Ni / Au electrode 10.

Ni/Au薄膜11Aは、厚さが僅か数百Angstroms(Å)で、かつ電流分布層として電流をチップ全体に効率的に分散させる。また、Ni/Au薄膜11Aの透過率は、約20%から40%である。したがって、大部分の発光層から放射された光は、電流分布層に吸収されるのに伴い、発光効率が低下してしまう。   The Ni / Au thin film 11A has a thickness of only a few hundred Angstroms (Å), and efficiently distributes current throughout the chip as a current distribution layer. The transmittance of the Ni / Au thin film 11A is about 20% to 40%. Therefore, the light emitted from most of the light emitting layer is reduced in light emission efficiency as it is absorbed by the current distribution layer.

また、周知の技術の前記Ni/Au薄膜の代わりに光伝導層として使用されたIndium Tin Oxide(ITO)は、図2に示すように、サファイア基体116、n型Gan束縛層15、n型AlGaN束縛層15A、n型電極14、InGaN発光層13、p型GaN束縛層12、高キャリア濃度のp型接触層117、ITO光伝導層11C及びp型電極10を備える。   Further, Indium Tin Oxide (ITO) used as a photoconductive layer instead of the Ni / Au thin film of the well-known technique is a sapphire substrate 116, an n-type Gan constraining layer 15, an n-type AlGaN as shown in FIG. A constraining layer 15A, an n-type electrode 14, an InGaN light emitting layer 13, a p-type GaN constraining layer 12, a high carrier concentration p-type contact layer 117, an ITO photoconductive layer 11C, and a p-type electrode 10 are provided.

また、このタイプのような特許技術については、晶元光電社(Epistar Co)のInGaN発光ダイオ−ドの構造を参照すればわかる。GaNのキャリア濃度は、通常、1×1018cm-3以下であるため、金属またはITOとの間に良好に接触することは不可能である。したがって、晶元光電社は、GaNのキャリア濃度を5×1018cm-3以上で、厚さを500Å以下に制御した。また、使用方法は、GaN接触層117は亜鉛拡散(Zn diffusion)、マグネシウム拡散(Mg diffusion)、亜鉛イオン注入(Zn ion implantation)、マグネシウムイオン注入などの方法により表面に極めて薄くキャリア濃度が極めて高い接触層117を形成し、かつスパッタリング(sputtering)または電子銃蒸発(E−gun evaporation)によりその上にITO光伝導層11Cを形成することで、発光効率を増進可能であるということである。晶元光電社は、この方法により全体の透過率を50%から70%以上に維持することができるようになった。しかし、ITO膜層に注入したキャリアはスズ(Tin dopant)及びドナ−(donors)酸化イオンからのであるため、湿気はITO膜層に容易に散布し、ITOとGaN接触層の中間表面を破壊し、オ−ム接触電気抵抗を増大させる。したがって、高湿度の情況の下でLEDの安定性と信頼性を低下させてしまう。
上述したことをまとめてみると、GaN系発光装置に適用された先行技術の中では、良好な効率と信頼性がそろっている光導層層はまだ掲示されていない。
Further, patent technology such as this type can be understood by referring to the structure of an InGaN light emitting diode manufactured by Epistar Co. Since the carrier concentration of GaN is usually 1 × 10 18 cm −3 or less, it is impossible to make good contact with metal or ITO. Therefore, Akimoto Kogyo Co., Ltd. controlled the carrier concentration of GaN to 5 × 10 18 cm −3 or more and the thickness to 500 mm or less. In addition, the GaN contact layer 117 is extremely thin on the surface and has a very high carrier concentration by methods such as zinc diffusion (Zn diffusion), magnesium diffusion (Mg diffusion), zinc ion implantation (Zn ion implantation), and magnesium ion implantation. The formation of the contact layer 117 and the formation of the ITO photoconductive layer 11C thereon by sputtering or electron gun evaporation can increase the luminous efficiency. Akimoto Photoelectric Co., Ltd. has been able to maintain the overall transmittance from 50% to 70% or more by this method. However, since the carrier injected into the ITO film layer is from tin oxide and donor oxide ions, moisture is easily scattered on the ITO film layer, destroying the intermediate surface of the ITO and GaN contact layer. , Increase ohmic contact electrical resistance. Therefore, the stability and reliability of the LED are lowered under high humidity conditions.
To summarize the above, in the prior art applied to the GaN-based light emitting device, no optical layer having good efficiency and reliability has been posted yet.

アメリカ合衆国特許第6,093,965号United States Patent No. 6,093,965

本発明の主な目的は、非結晶性(Amorphous)または微結晶性(Nanocrystalline)を呈し、かつ良好な導電性を有し、導電効果が前に挙げたITO膜層よりも十倍も高い薄膜である新しいAl23−Ga23−In23−SnO2系統透明導電酸化層(TCO)を含む高効率のGaN系発光装置の生産方法を提供することである。 The main object of the present invention is a thin film which is amorphous or nanocrystalline, has good conductivity and is ten times higher than the ITO film layer mentioned above. A new Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system transparent conductive oxide layer (TCO) production method for a highly efficient GaN-based light emitting device is provided.

本発明のもう一つの目的は、III−V族GaN系半導体発光装置と新しいAl23−Ga23−In23−SnO2透明導電酸化層の間の接触電気抵抗を減少させるように富ガリウム相(Gallium rich phase)のGaN系接触層を提供することである。この接触層は、n型、p型または何も添加されていないものなどのいずれか一つである。 Another object of the present invention is to reduce the contact electrical resistance between the III-V group GaN based semiconductor light emitting device and the new Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 transparent conductive oxide layer. Thus, it is to provide a GaN-based contact layer in a gallium rich phase. This contact layer is any one of n-type, p-type, or one to which nothing is added.

本発明のまたもう一つの目的は、AlGaInN、InGaN、InNなどのいずれか一つのグル−プで成る材料から構成され、かつ束縛層と接触層の間に形成され、材料のバンドギャップエネルギ−(Band−gap energy)がGaN束縛層より低いように限定され、かつ束縛層と接触層の間の電気高峰効果(Electrical spiking effect)を低減させる中間層(Intermediate layer)を提供することである。   Another object of the present invention is made of a material composed of any one group such as AlGaInN, InGaN, InN, and the like, and is formed between the constraining layer and the contact layer. The band-gap energy is limited to be lower than that of the GaN constraining layer, and an intermediate layer is provided that reduces the electrical spiking effect between the constraining layer and the contact layer.

上述の目的を達成するために、本発明によるGaN発光体ダイオ−ドは、透光絶縁基体と、第一下束縛層として透光絶縁基体の上に形成される第一導電型GaNと、第一下束縛層の上に形成されるInGaN発光層と、第二上束縛層として発光層の上に形成される第二導電型GaNと、第二上束縛層の上に形成され、厚さが5Angstroms(Å)から1000Angstroms(Å)の間である富ガリウム相(Gallium rich phase)のGaN系接触層と、光伝導層(Light transmitting layer)として接触層の上に形成され、厚さが5Angstroms(Å)以上であるAlGaInSnO系統透明導電酸化層(TCO)と、第一導電型GaNの露出区域の上に形成される第一電極と、光伝導層の上に形成される第二電極とを備える。   In order to achieve the above object, a GaN light emitter diode according to the present invention includes a translucent insulating substrate, a first conductivity type GaN formed on the translucent insulating substrate as a first lower constraining layer, An InGaN light emitting layer formed on the lower constraining layer, a second conductivity type GaN formed on the light emitting layer as the second upper constraining layer, and formed on the second upper constraining layer and having a thickness of A GaN-based contact layer of a gallium-rich phase (Gallium rich phase) between 5 Angstroms (で) and 1000 Angstroms (Å), and a light transmitting layer formed on the contact layer, with a thickness of 5 Angstroms ( I) The AlGaInSnO system transparent conductive oxide layer (TCO) which is the above, a first electrode formed on the exposed area of the first conductivity type GaN, and a second electrode formed on the photoconductive layer. .

上述の構成により、透光絶縁基体を導電型基体に取り替え、かつ導電型基体の底縁に第一電極を形成することが可能である。
上述の構成により、AlGaInSnO光伝導層の上に透明導電酸化窓口層を形成することが可能である。
With the above-described configuration, it is possible to replace the translucent insulating base with a conductive base and to form the first electrode on the bottom edge of the conductive base.
With the above-described configuration, it is possible to form a transparent conductive oxidation window layer on the AlGaInSnO photoconductive layer.

上述の技術手段により、本発明による高輝度のGaN系発光ダイオ−ドを生産し、かつAl23−Ga23−In23−SnO2系統光伝導層とp型GaN束縛層にオ−ム接触を生じさせ、かつ光伝導層に形成された窓口層によりいっそう発光及び電流分散効果を増進させることが可能である。
また、富ガリウム相の接触層は、Al23−Ga23−In23−SnO2系統光伝導層との間に安定した接触面(Interface)を形成可能であり、接触面はオ−ム接触電気抵抗を低減させ、発光効率を増進し、信頼性を高めることが可能である。
According to the above technical means, a high-brightness GaN-based light emitting diode according to the present invention is produced, and the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer and p-type GaN constrained layer are produced. It is possible to produce an ohmic contact with the photoconductive layer and to further enhance the light emission and current dispersion effects by the contact layer formed in the photoconductive layer.
Further, the contact layer of the gallium-rich phase can form a stable contact surface (Interface) with the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer. Can reduce ohmic contact electrical resistance, increase luminous efficiency, and increase reliability.

まず厚さが同じであるITO、Ga1.6In6.4Sn216、Ga2.8In5.2Sn216及びAl0.1Ga2.7In5.2Sn216透明導電酸化層のサンプルを用意する。Al23−Ga23−In23−SnO2系統サンプルの色は、薄青緑色(微量のアルミニウム質含有)から薄緑色(多量のガリウム質含有)、緑色(少量のガリウム質)までを含む。複結晶のITO透明導電膜の色は、任意の一つのAl23−Ga23−In23−SnO2系統サンプルの色よりも深い緑色である。 First, samples of ITO, Ga 1.6 In 6.4 Sn 2 O 16 , Ga 2.8 In 5.2 Sn 2 O 16 and Al 0.1 Ga 2.7 In 5.2 Sn 2 O 16 transparent conductive oxide layers having the same thickness are prepared. The color of the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system sample varies from light blue green (containing a small amount of aluminum) to light green (containing a large amount of gallium), green (small amount of gallium) ). The color of the double-crystal ITO transparent conductive film is green that is deeper than the color of any one Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 family sample.

図9に示すように、波長λが400nm以上である場合、AlxGa3-x-yIn5+ySn2-z16-2z化合物の透過率は、ややITO透明導電膜より優れている。また、AlxGa3-x-yIn5+ySn2-z16-2z化合物が紫外線区域に据えられる場合、吸収性は比較的低い。本実施例は、AlxGa3-x-yIn5+ySn2-z16-2z化合物中のガリウムの含有量を増やすか、アルミニウムの含有量を微量で増やすことで、青−緑区域において比較的高い透過率を得ることが可能である。 As shown in FIG. 9, when the wavelength λ is 400 nm or more, the transmittance of the Al x Ga 3 -xy In 5 + y Sn 2 -z O 16-2z compound is slightly superior to the ITO transparent conductive film. Further, if the Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z compound is seated in the ultraviolet region, the absorbent is relatively low. In this example, by increasing the content of gallium in the Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z compound or increasing the aluminum content in a minute amount, It is possible to obtain a relatively high transmittance.

透明導電酸化層の透過特性は、下波長範囲のバンドギャップエネルギ−によって決まる。その関係式は、下記の通りである。
λbg=hc/Eg
上波長は、帯電粒子の密度によって決まる。その関係式は、下記の通りである。
λp=2π[mc2/4π(N/V)e21/2
The transmission characteristics of the transparent conductive oxide layer are determined by the band gap energy in the lower wavelength range. The relational expression is as follows.
λ bg = hc / E g
The upper wavelength is determined by the density of the charged particles. The relational expression is as follows.
λ p = 2π [mc 2 / 4π (N / V) e 2 ] 1/2

また、透明導電酸化層の透過特性は、材質の欠陥密度と位相関係によって決まる。本実施例のAlxGa3-x-yIn5+ySn2-z16-2z化合物中のアルミニウムの含有量をx>1になるまで増やす場合、AlxGa3-x-yIn5+ySn2-z16-2z化合物の透光性は大幅に低減してしまう。 Further, the transmission characteristics of the transparent conductive oxide layer are determined by the defect density and phase relationship of the material. When the aluminum content in the Al x Ga 3 -xy In 5 + y Sn 2 -z O 16-2z compound of this example is increased until x> 1, Al x Ga 3 -xy In 5 + y Sn The translucency of the 2-z O 16-2z compound is greatly reduced.

本実施例の結果から、AlxGa3-x-yIn5+ySn2-z16-2z化合物がx>1である場合、薄膜電気抵抗は増加し、帯電粒子の含有量は低減することがわかる。また、AlxGa3-x-yIn5+ySn2-z16-2z化合物中のアルミニウム質の含有量が高すぎる場合、欠陥密度は増加する。また、AlxGa3-x-yIn5+ySn2-z16-2z化合物中のアルミニウム質の密度を増やしてx>1を超える時、単斜晶β−Gallia位相構造は破壊されてしまう。Al23−Ga23−In23−SnO2系統の比較的好ましい実施例は、下記の関係式で表示される。
AlxGa3-x-yIn5+ySn2-z16-2z
但し、0≦x<2、0<y<3、0≦z<2
From the results of this example, when the Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z compound is x> 1, the thin film electrical resistance increases and the charged particle content decreases. I understand. In addition, when the content of aluminum in the Al x Ga 3 -xy In 5 + y Sn 2 -z O 16-2z compound is too high, the defect density increases. In addition, when the density of aluminum in the Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z compound is increased and x> 1 is exceeded, the monoclinic β-Gallia phase structure is destroyed. . A relatively preferable embodiment of the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system is represented by the following relational expression.
Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z
However, 0 ≦ x <2, 0 <y <3, 0 ≦ z <2

また、本実施例のAlxGa3-x-yIn5+ySn2-z16-2zは、正方形の構造位相を有する。そのうち亜鉛(Sn)はITO透明導電膜内の交替性のある添加材料でなく、構造ユニットとして結合されるため、新しいAl23−Ga23−In23−SnO2系統はITO透明導電膜よりも安定性と信頼性が比較的好ましい。 Moreover, Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z of this embodiment has a square structure phase. Of these, zinc (Sn) is not an alternating additive material in the ITO transparent conductive film, but is bonded as a structural unit, so the new Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system is ITO. Stability and reliability are relatively preferred over transparent conductive films.

また、本実施例のAl23−Ga23−In23−SnO2系統の光伝導層は、p型GaN系の束縛層に相互連接するように限定され、かつ200℃またはそれ以上の温度下でアニ−リングを受ける。これにより、衝撃式の遮断が生じ、かつAl23−Ga23−In23−SnO2系統とp型GaN系の束縛層の間に不良な電気抵抗性の接触が生じる。図10に示すのは、本実施例のp型GaN系の束縛層に接触しているAl23−Ga23−In23−SnO2系統光伝導層の電流と電圧の特徴を示すグラフを示す図である。
また、本実施例は、Al23−Ga23−In23−SnO2系統光伝導層の導電率を考量した結果、厚さを5Å以上に限定する。
Also, the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 photoconductive layer of this example is limited to be interconnected to the p-type GaN-based constraining layer, and is 200 ° C. or It undergoes annealing at higher temperatures. This causes an impact-type interruption and a poor electrical resistance contact between the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 and p-type GaN constraining layers. FIG. 10 shows the current and voltage characteristics of the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer in contact with the p-type GaN-based constraining layer of this example. It is a figure which shows the graph which shows.
Moreover, as a result of considering the electrical conductivity of the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer, this example limits the thickness to 5 mm or more.

本実施例は、Al23−Ga23−In23−SnO2系統とp型GaN系の束縛層の間に富ガリウム相のGaN系接触層を配置し、200℃またはそれ以上の温度下でアニ−リングを実施するために、富ガリウム相のGaN系接触層のガリウムを部分的にAlxGa3-x-yIn5+ySn2-z16-2zの光伝導層内に拡散させ、比較的好ましいガリウムの含有量の高いAlxGa3-x-yIn5+ySn2-z16-2z界面を形成し、かつGaN系接触層とともに良好な電気抵抗性の接触を形成する。また、GaN系接触層の厚さは5Åから1000Åである。図11に示すのは、Al23−Ga23−In23−SnO2系統とp型GaN系の束縛層の間に配置された富ガリウム相のGaN系接触層の電流と電圧の特徴を示すグラフを示す図である。 In this example, a gallium-rich GaN-based contact layer is disposed between an Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system and a p-type GaN-based constrained layer at 200 ° C. Ani under temperatures above - to implement the ring, gallium GaN-based contact layer of rich gallium phase partially Al x Ga 3-xy in 5 + y Sn photoconductive layer of 2-z O 16-2z Al x Ga 3 -xy In 5 + y Sn 2 -z O 16 -2z interface with a relatively high gallium content diffused into the surface and good electrical resistance contact with the GaN-based contact layer Form. The thickness of the GaN-based contact layer is 5 to 1000 mm. FIG. 11 shows the current in a GaN-based contact layer of a gallium-rich phase disposed between an Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system and a p-type GaN-based constrained layer. It is a figure which shows the graph which shows the characteristic of a voltage.

富ガリウム相のGaN系接触層はp型GaN系の束縛層と比べて構造が高度で不規則であり、かつ電流がp型GaN系の束縛層とGaN系接触層を透過し、また、電流ピ−クが束縛層と接触層の間に現れる時、InN系中間層の厚さは5Åから500Åである。
図7に示すのは、p型束縛層12とGaN系接触層17Aの間に配置されたInN系中間層17Bである。InN系中間層17BはAlGaInN、AlInN、InGaNまたはInNなどのいずれか一つのグル−プで成る材料から構成され、かつp型、n型または何も添加されていないものなどのいずれか一つである。
The gallium-rich GaN-based contact layer is more advanced and irregular in structure than the p-type GaN-based constrained layer, and the current passes through the p-type GaN-based constrained layer and the GaN-based contact layer. When the peak appears between the constraining layer and the contact layer, the thickness of the InN-based intermediate layer is 5 to 500 mm.
FIG. 7 shows an InN-based intermediate layer 17B disposed between the p-type constraining layer 12 and the GaN-based contact layer 17A. The InN-based intermediate layer 17B is made of a material composed of any one group such as AlGaInN, AlInN, InGaN, or InN, and is any one of p-type, n-type, or nothing added. is there.

図12に示すのは、p型GaN系束縛層12とGaN系接触層17Aの間に配置されたInN系中間層17Bの材料の低バンドギャップエネルギ−の電流と電圧の特徴を示すグラフを示す図である。この時、電気高峰効果を低減させる機能が生じ、電流がp型GaN系の束縛層とGaN系接触層を透過する。   FIG. 12 shows a graph showing the current and voltage characteristics of the low band gap energy of the material of the InN-based intermediate layer 17B disposed between the p-type GaN-based constraining layer 12 and the GaN-based contact layer 17A. FIG. At this time, the function of reducing the electrical high peak effect occurs, and the current passes through the p-type GaN-based constraining layer and the GaN-based contact layer.

図3に示すのは、本実施例の透光絶縁基体116、例えば、Al23、LiGaO2、LiAlO2及びMgAl24基体上のAl23−Ga23−In23−SnO2系統の光伝導層11Bと富ガリウム相のGaN系接触層17Aにより設けられた発光装置の断面図である。 Shown in FIG. 3 is a translucent insulating substrate 116 of this example, for example, Al 2 O 3 —Ga 2 O 3 —In 2 O on Al 2 O 3 , LiGaO 2 , LiAlO 2 and MgAl 2 O 4 substrates. FIG. 6 is a cross-sectional view of a light emitting device provided with a 3- SnO 2 system photoconductive layer 11B and a gallium-rich GaN-based contact layer 17A.

その構造は、第一下束縛層15として透光絶縁基体116に配置されるn型GaNと、第一下束縛層15の上に配置されるInGaN発光層13と、第二上束縛層12としてInGaN発光層13の上に配置されるp型GaNと、第二上束縛層12の上に形成される富ガリウム相のGaN系接触層17Aと、第一下束縛層15の一部分の露出区域に形成されるn型電極14と、Al23−Ga23−In23−SnO2系統の光伝導層11Bの頂端に形成されるp型電極10とを備える。 The structure is such that the n-type GaN disposed on the translucent insulating substrate 116 as the first lower constraining layer 15, the InGaN light emitting layer 13 disposed on the first lower constraining layer 15, and the second upper constraining layer 12. The p-type GaN disposed on the InGaN light emitting layer 13, the gallium-rich phase GaN-based contact layer 17 A formed on the second upper constraining layer 12, and a part of the exposed region of the first lower constraining layer 15. The n-type electrode 14 to be formed and the p-type electrode 10 formed at the top end of the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer 11B are provided.

図4に示すのは、本実施例の第一導電型透光導電基体216、例えば、SiC、GaN、AlN基体上のAl23−Ga23−In23−SnO2系統の光伝導層11Bと富ガリウム相のGaN系接触層17Aにより設けられた発光装置の断面図である。この実施例と図3に示す実施例との違いは、透光導電基体216下方に配置されるn型電極14にある。 FIG. 4 shows an Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system on the first conductive type translucent conductive substrate 216 of this example, for example, SiC, GaN, AlN substrate. It is sectional drawing of the light-emitting device provided with the photoconductive layer 11B and the GaN-type contact layer 17A of the gallium rich phase. The difference between this embodiment and the embodiment shown in FIG. 3 resides in the n-type electrode 14 disposed below the translucent conductive substrate 216.

図5に示すのは、本実施例の珪素質またはZnSe基体316上のAl23−Ga23−In23−SnO2系統の光伝導層11Bと富ガリウム相のGaN系接触層17Aにより設けられた発光装置の断面図である。
図6に示すのは、本実施例の光吸収導電基体416、例えば、GaAs、GaP基体上のAl23−Ga23−In23−SnO2系統の光伝導層11Bと富ガリウム相のGaN系接触層17Aにより設けられた発光装置の断面図である。
FIG. 5 shows a photoconductive layer 11B of Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system on a silicon or ZnSe substrate 316 of this example and a GaN-based contact in a gallium-rich phase. It is sectional drawing of the light-emitting device provided by the layer 17A.
FIG. 6 shows a light-absorbing conductive substrate 416 of this embodiment, for example, an Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 system photoconductive layer 11B on a GaAs or GaP substrate. It is sectional drawing of the light-emitting device provided with the GaN-type contact layer 17A of the gallium phase.

図7に示すのは、本実施例のAl23−Ga23−In23−SnO2系統の光伝導層11B、富ガリウム相のGaN系接触層17A及びInN系中間層17Bにより設けられた発光装置の断面図である。
図8に示すのは、本実施例のAl23−Ga23−In23−SnO2系統の光伝導層11B、富ガリウム相のGaN系接触層17A及び、SnO2、In23、ITO、Cd2SnO4、ZnO、CuAlO2、CuCaO2、SrCuO2、NiOまたはAgCoO2などから構成される透明導電酸化窓口層11Dにより設けられた発光装置の断面図である。この時、光伝導電極に接触し、効率と電流拡散を改善することが可能である。また、透明導電酸化物の光効率と電流拡散を考量した結果、厚さは5Å以上が必要となる。
FIG. 7 shows the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 photoconductive layer 11B, gallium-rich GaN-based contact layer 17A, and InN-based intermediate layer 17B of the present embodiment. It is sectional drawing of the light-emitting device provided by.
FIG. 8 shows the Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 photoconductive layer 11B, gallium-rich GaN-based contact layer 17A, SnO 2 , In 2 O 3, ITO, Cd 2 SnO 4, ZnO, is a cross-sectional view of a light emitting device provided by CuAlO 2, CuCaO 2, SrCuO 2 , NiO or transparent conductive oxide window layer 11D and the like AgCoO 2. At this time, it is possible to improve efficiency and current diffusion by contacting the photoconductive electrode. Further, as a result of considering light efficiency and current diffusion of the transparent conductive oxide, the thickness needs to be 5 mm or more.

上述をまとめてみると、本発明により掲示される技術手段は、新規性、進歩性、産業に適用可能な点などがそろうという特許出願請求の条件を満たすと考えられる。
また、上述の図面と説明は本発明の比較的好ましい一例に過ぎないため、この技術を熟知している人が本発明の精神範疇に基づいて修飾または同等の変化をすることは、本発明の請求範囲に属するべきである。
Summarizing the above, it is considered that the technical means posted by the present invention satisfy the requirements of the patent application claim that the novelty, the inventive step, the point applicable to the industry, etc. are all the same.
In addition, since the above-described drawings and description are only a relatively preferable example of the present invention, it is understood that a person who is familiar with this technology makes modifications or equivalent changes based on the spirit category of the present invention. Should belong to the claims.

周知の発光装置の断面図である。It is sectional drawing of a known light-emitting device. 周知の発光装置の断面図である。It is sectional drawing of a known light-emitting device. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの発光装置を示す断面図である。1 is a cross-sectional view showing a light-emitting device of a high-intensity GaN-based light-emitting diode according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの透過係数を比較するグラフを示すである。3 is a graph comparing transmission coefficients of high-luminance GaN-based light emitting diodes according to an embodiment of the present invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドの光伝導層の電流と電圧の特徴を示すグラフを示す図である。It is a figure which shows the graph which shows the characteristic of the electric current and voltage of the photoconductive layer of the high-intensity GaN-type light emitting diode by one Example of this invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドのGaN系接触層の電流と電圧の特徴を示すグラフを示す図である。It is a figure which shows the graph which shows the characteristic of the electric current and voltage of the GaN-type contact layer of the high-intensity GaN-type light emitting diode by one Example of this invention. 本発明の一実施例による高輝度のGaN系発光ダイオ−ドのInN系中間層の材料の低バンドギャップエネルギ−の電流と電圧の特徴を示すグラフを示す図である。It is a figure which shows the graph which shows the characteristic of the electric current and voltage of the low band gap energy of the material of the InN type | system | group intermediate layer of the high-intensity GaN-type light emitting diode by one Example of this invention.

符号の説明Explanation of symbols

10 p型電極、12 第二上束縛層、13 発光層、14 n型電極、11B Al23−Ga23−In23−SnO2系統の光伝導層、11D 透明導電酸化窓口層、15 第一下束縛層、17A 富ガリウム相のGaN系接触層、116 透光絶縁基体、216 透光導電基体、316 珪素質またはZnSe基体、416 光吸収導電基体 10 p-type electrode, 12 second upper bound layer, 13 light emitting layer, 14 n-type electrode, 11B Al 2 O 3 —Ga 2 O 3 —In 2 O 3 —SnO 2 photoconductive layer, 11D transparent conductive oxidation window 15, first lower bound layer, 17A gallium-rich GaN-based contact layer, 116 translucent insulating substrate, 216 translucent conductive substrate, 316 silicon or ZnSe substrate, 416 light absorbing conductive substrate

Claims (18)

透光絶縁基体と、
第一下束縛層として透光絶縁基体の上に形成される第一導電型GaNと、
第一下束縛層の上に形成されるInGaN発光層と、
第二上束縛層として発光層の上に形成される第二導電型GaNと、
第二上束縛層の上に形成され、厚さが5Åから1000Åの間である富ガリウム相(Gallium rich phase)のGaN系接触層と、
光伝導層(Light transmitting layer)として接触層の上に形成され、厚さが5Å以上であるAlGaInSnO系統の透明導電酸化層(TCO)と、
第一導電型GaNの露出区域の上に形成される第一電極と、
光伝導層の上に形成される第二電極と、
を備えることを特徴とする高輝度のGaN系発光ダイオード。
A translucent insulating substrate;
A first conductivity type GaN formed on the translucent insulating substrate as a first lower binding layer;
An InGaN light emitting layer formed on the first lower constraining layer;
A second conductivity type GaN formed on the light emitting layer as a second upper bound layer;
A gallium rich phase GaN-based contact layer formed on the second top constraining layer and having a thickness of between 5 and 1000 mm;
A transparent conductive oxide layer (TCO) of an AlGaInSnO system formed on the contact layer as a light transmitting layer and having a thickness of 5 mm or more;
A first electrode formed on the exposed area of the first conductivity type GaN;
A second electrode formed on the photoconductive layer;
A high-brightness GaN-based light-emitting diode comprising:
透明導電酸化層(TCO)の組成は、AlxGa3-x-yIn5+ySn2-z16-2z(但し、0<x<2、0<y<3、0<z<2)であることを特徴とする請求項1に記載の高輝度のGaN系発光ダイオード。 The composition of the transparent conductive oxide layer (TCO) is, Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z ( where, 0 <x <2,0 <y <3,0 <z <2) The high-brightness GaN-based light-emitting diode according to claim 1, wherein 透光絶縁基体は、Al23、LiGaO2、LiAlO2及びMgAl24などのいずれか一つのグループで成る材料から構成されることを特徴とする請求項1に記載の高輝度のGaN系発光ダイオード。 2. The high-luminance GaN according to claim 1, wherein the translucent insulating substrate is made of a material composed of any one group of Al 2 O 3 , LiGaO 2 , LiAlO 2, and MgAl 2 O 4. Light emitting diode. GaN系接触層は、AlGaN、GaN、InGaNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項1に記載の高輝度のGaN系発光ダイオード。   2. The high-brightness GaN-based light emitting diode according to claim 1, wherein the GaN-based contact layer is made of a material composed of any one group of AlGaN, GaN, InGaN and the like. 第一導電型基体と、
第一下束縛層として第一導電型基体の上に形成される第一導電型GaNと、
第一下束縛層の上に形成されるInGaN発光層と、
第二上束縛層として発光層の上に形成される第二導電型GaNと、
第二上束縛層の上に形成され、厚さが5Åから1000Åの間である富ガリウム相(Gallium rich phase)のGaN系接触層と、
光伝導層(Light transmitting layer)として接触層の上に形成され、厚さが5Å以上であるAlGaInSnO系統の透明導電酸化層(TCO)と、
第一導電型基体の底面に形成される第一電極と、
光伝導層の上に形成される第二電極と、
を備えることを特徴とする高輝度のGaN系発光ダイオード。
A first conductivity type substrate;
A first conductivity type GaN formed on the first conductivity type substrate as a first lower binding layer;
An InGaN light emitting layer formed on the first lower constraining layer;
A second conductivity type GaN formed on the light emitting layer as a second upper bound layer;
A gallium rich phase GaN-based contact layer formed on the second top constraining layer and having a thickness of between 5 and 1000 mm;
A transparent conductive oxide layer (TCO) of an AlGaInSnO system formed on the contact layer as a light transmitting layer and having a thickness of 5 mm or more;
A first electrode formed on the bottom surface of the first conductivity type substrate;
A second electrode formed on the photoconductive layer;
A high-brightness GaN-based light-emitting diode comprising:
透明導電酸化層(TCO)の組成は、AlxGa3-x-yIn5+ySn2-z16-2z(但し、0<x<2、0<y<3、0<z<2)であることを特徴とする請求項5に記載の高輝度のGaN系発光ダイオード。 The composition of the transparent conductive oxide layer (TCO) is, Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z ( where, 0 <x <2,0 <y <3,0 <z <2) The high-brightness GaN-based light-emitting diode according to claim 5, wherein 第一導電型基体は、SiC、Si、ZnSe、GaAs、GaP、GaN、AlNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項5に記載の高輝度のGaN系発光ダイオード。   6. The high-brightness GaN-based substrate according to claim 5, wherein the first conductivity type substrate is made of a material composed of any one group of SiC, Si, ZnSe, GaAs, GaP, GaN, AlN, and the like. Light emitting diode. GaN系接触層は、AlGaN、GaN、InGaNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項5に記載の高輝度のGaN系発光ダイオード。   6. The high-brightness GaN-based light emitting diode according to claim 5, wherein the GaN-based contact layer is made of a material composed of any one group of AlGaN, GaN, InGaN and the like. 透光絶縁基体と、
第一下束縛層として透光絶縁基体の上に形成される第一導電型GaNと、
第一下束縛層の上に形成されるInGaN発光層と、
第二上束縛層として発光層の上に形成される第二導電型GaNと、
第二上束縛層の上に形成され、材料のバンドギャップエネルギー(Band-gap energy)が第二導電型GaNより低いように限定され、厚さが5Åから500Åの間であるAlGnInN系中間層(Intermediate layer)と、
中間層の上に形成され、厚さが5Åから1000Åの間である富ガリウム相(Gallium rich phase)のGaN系接触層と、
光伝導層(Light transmitting layer)として接触層の上に形成され、厚さが5Å以上であるAlGaInSnO系統の透明導電酸化層(TCO)と、
第一導電型GaNの露出区域の上に形成される第一電極と、
光伝導層の上に形成される第二電極と、
を備えることを特徴とする高輝度のGaN系発光ダイオード。
A translucent insulating substrate;
A first conductivity type GaN formed on the translucent insulating substrate as a first lower binding layer;
An InGaN light emitting layer formed on the first lower constraining layer;
A second conductivity type GaN formed on the light emitting layer as a second upper bound layer;
An AlGnInN-based intermediate layer formed on the second upper constraining layer, which is limited so that the band-gap energy of the material is lower than that of the second conductivity type GaN and has a thickness of 5 to 500 mm. Intermediate layer)
A gallium rich phase GaN-based contact layer formed on the intermediate layer and having a thickness of between 5 and 1000 mm;
A transparent conductive oxide layer (TCO) of an AlGaInSnO system formed on the contact layer as a light transmitting layer and having a thickness of 5 mm or more;
A first electrode formed on the exposed area of the first conductivity type GaN;
A second electrode formed on the photoconductive layer;
A high-brightness GaN-based light-emitting diode comprising:
透明導電酸化層(TCO)の組成は、AlxGa3-x-yIn5+ySn2-z16-2z(但し、0<x<2、0<y<3、0<z<2)であることを特徴とする請求項9に記載の高輝度のGaN系発光ダイオード。 The composition of the transparent conductive oxide layer (TCO) is, Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z ( where, 0 <x <2,0 <y <3,0 <z <2) The high-brightness GaN-based light-emitting diode according to claim 9, wherein 透光絶縁基体は、Al23、LiGaO2、LiAlO2及びMgAl24などのいずれか一つのグループで成る材料から構成されることを特徴とする請求項9に記載の高輝度のGaN系発光ダイオード。 10. The high-brightness GaN according to claim 9, wherein the translucent insulating substrate is made of a material composed of any one group such as Al 2 O 3 , LiGaO 2 , LiAlO 2 and MgAl 2 O 4. Light emitting diode. GaN系接触層は、AlGaN、GaN、InGaNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項9に記載の高輝度のGaN系発光ダイオード。   10. The high-brightness GaN-based light emitting diode according to claim 9, wherein the GaN-based contact layer is made of a material composed of any one group of AlGaN, GaN, InGaN and the like. 中間層は、AlGaInN、InGaN、InNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項9に記載の高輝度のGaN系発光ダイオード。   The high-brightness GaN-based light-emitting diode according to claim 9, wherein the intermediate layer is made of a material composed of any one group of AlGaInN, InGaN, InN, and the like. 透光絶縁基体と、
第一下束縛層として透光絶縁基体の上に形成される第一導電型GaNと、
第一下束縛層の上に形成されるInGaN発光層と、
第二上束縛層として発光層の上に形成される第二導電型GaNと、
第二上束縛層の上に形成され、厚さが5Åから1000Åの間である富ガリウム相(Gallium rich phase)のGaN系接触層と、
光伝導層(Light transmitting layer)として接触層の上に形成され、厚さが5Å以上であるAlGaInSnO系統の透明導電酸化層(TCO)と、
光導電層の上に形成される透明導電窓酸化窓口層と、
第一導電型GaNの露出区域の上に形成される第一電極と、
透明導電酸化窓口層の上に形成される第二電極と、
を備えることを特徴とする高輝度のGaN系発光ダイオード。
A translucent insulating substrate;
A first conductivity type GaN formed on the translucent insulating substrate as a first lower binding layer;
An InGaN light emitting layer formed on the first lower constraining layer;
A second conductivity type GaN formed on the light emitting layer as a second upper bound layer;
A gallium rich phase GaN-based contact layer formed on the second top constraining layer and having a thickness of between 5 and 1000 mm;
A transparent conductive oxide layer (TCO) of an AlGaInSnO system formed on the contact layer as a light transmitting layer and having a thickness of 5 mm or more;
A transparent conductive window oxidation window layer formed on the photoconductive layer;
A first electrode formed on the exposed area of the first conductivity type GaN;
A second electrode formed on the transparent conductive oxidation window layer;
A high-brightness GaN-based light-emitting diode comprising:
透明導電酸化層(TCO)の組成は、AlxGa3-x-yIn5+ySn2-z16-2z(但し、0<x<2、0<y<3、0<z<2)であることを特徴とする請求項14に記載の高輝度のGaN系発光ダイオード。 The composition of the transparent conductive oxide layer (TCO) is, Al x Ga 3-xy In 5 + y Sn 2-z O 16-2z ( where, 0 <x <2,0 <y <3,0 <z <2) The high-brightness GaN-based light-emitting diode according to claim 14, wherein 透光絶縁基体は、Al23、LiGaO2、LiAlO2及びMgAl24などのいずれか一つのグループで成る材料から構成されることを特徴とする請求項14に記載の高輝度のGaN系発光ダイオード。 15. The high-brightness GaN according to claim 14, wherein the translucent insulating substrate is made of a material composed of any one group such as Al 2 O 3 , LiGaO 2 , LiAlO 2, and MgAl 2 O 4. Light emitting diode. GaN系接触層は、AlGaN、GaN、InGaNなどのいずれか一つのグループで成る材料から構成されることを特徴とする請求項14に記載の高輝度のGaN系発光ダイオード。   15. The high-brightness GaN-based light emitting diode according to claim 14, wherein the GaN-based contact layer is made of a material composed of any one group of AlGaN, GaN, InGaN and the like. 透明導電酸化窓口層は、SnO2、In23、ITO、Cd2SnO4、ZnO、CuAlO2、CuCaO2、SrCuO2、NiO及びAgCoO2などのいずれか一つのグループで成る材料から構成されることを特徴とする請求項14に記載の高輝度のGaN系発光ダイオード。 Transparent conductive oxide window layer is composed of SnO 2, In 2 O 3, ITO, Cd 2 SnO 4, ZnO, consisting of CuAlO 2, CuCaO 2, SrCuO 2 , any one of a group, such as NiO and AgCoO 2 material The high-brightness GaN-based light-emitting diode according to claim 14.
JP2005292356A 2005-10-05 2005-10-05 High brightness garium nitride light emitting diode Pending JP2007103712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292356A JP2007103712A (en) 2005-10-05 2005-10-05 High brightness garium nitride light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292356A JP2007103712A (en) 2005-10-05 2005-10-05 High brightness garium nitride light emitting diode

Publications (1)

Publication Number Publication Date
JP2007103712A true JP2007103712A (en) 2007-04-19

Family

ID=38030348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292356A Pending JP2007103712A (en) 2005-10-05 2005-10-05 High brightness garium nitride light emitting diode

Country Status (1)

Country Link
JP (1) JP2007103712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816354B2 (en) 2012-06-21 2014-08-26 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device and production method therefor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451409A (en) * 1990-06-19 1992-02-19 Sumitomo Metal Mining Co Ltd Ito sintered body
JPH06120690A (en) * 1992-09-30 1994-04-28 Asahi Glass Co Ltd Electromagnetic shielding body
JPH10154831A (en) * 1996-09-26 1998-06-09 Toshiba Corp Semiconductor light emitting element and manufacture thereof
JPH10294532A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride-based semiconductor light emitting element and its manufacture
JPH11145511A (en) * 1997-11-05 1999-05-28 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element
JP2001250972A (en) * 2000-03-08 2001-09-14 Fuji Xerox Co Ltd Semiconductor element
JP2002118273A (en) * 2000-10-05 2002-04-19 Kanegafuchi Chem Ind Co Ltd Integrated hybrid thin film photoelectric conversion device
JP2002353506A (en) * 2001-05-23 2002-12-06 Sharp Corp Semiconductor light-emitting element and manufacturing method therefor
JP2003133246A (en) * 1996-01-19 2003-05-09 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light emitting element and its manufacturing method
JP2004059964A (en) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Transparent conductive film and method for manufacturing the same
JP2004146539A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2004146483A (en) * 2002-10-23 2004-05-20 Fujikura Ltd Manufacturing method of gallium nitride-based solid solution thin film
JP2004221368A (en) * 2003-01-16 2004-08-05 Sanyo Electric Co Ltd Photovoltaic device
JP2005123501A (en) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2005260244A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Top emit type nitride-based light emitting element and its manufacturing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451409A (en) * 1990-06-19 1992-02-19 Sumitomo Metal Mining Co Ltd Ito sintered body
JPH06120690A (en) * 1992-09-30 1994-04-28 Asahi Glass Co Ltd Electromagnetic shielding body
JP2003133246A (en) * 1996-01-19 2003-05-09 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light emitting element and its manufacturing method
JPH10154831A (en) * 1996-09-26 1998-06-09 Toshiba Corp Semiconductor light emitting element and manufacture thereof
JPH10294532A (en) * 1997-02-21 1998-11-04 Toshiba Corp Nitride-based semiconductor light emitting element and its manufacture
JPH11145511A (en) * 1997-11-05 1999-05-28 Matsushita Electric Ind Co Ltd Gallium nitride compound semiconductor light-emitting element
JP2001250972A (en) * 2000-03-08 2001-09-14 Fuji Xerox Co Ltd Semiconductor element
JP2002118273A (en) * 2000-10-05 2002-04-19 Kanegafuchi Chem Ind Co Ltd Integrated hybrid thin film photoelectric conversion device
JP2002353506A (en) * 2001-05-23 2002-12-06 Sharp Corp Semiconductor light-emitting element and manufacturing method therefor
JP2004059964A (en) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Transparent conductive film and method for manufacturing the same
JP2004146539A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2004146483A (en) * 2002-10-23 2004-05-20 Fujikura Ltd Manufacturing method of gallium nitride-based solid solution thin film
JP2004221368A (en) * 2003-01-16 2004-08-05 Sanyo Electric Co Ltd Photovoltaic device
JP2005123501A (en) * 2003-10-20 2005-05-12 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2005260244A (en) * 2004-03-10 2005-09-22 Samsung Electronics Co Ltd Top emit type nitride-based light emitting element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816354B2 (en) 2012-06-21 2014-08-26 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device and production method therefor

Similar Documents

Publication Publication Date Title
TWI285440B (en) High brightness gallium nitride-based light emitting diode with transparent conducting oxide spreading layer
US6078064A (en) Indium gallium nitride light emitting diode
JP5887069B2 (en) LED with current confinement structure and rough surface treatment
US20040094772A1 (en) Gallium nitride based compound semiconductor light-emitting device and manufacturing method therefor
US20050173724A1 (en) Group III-nitride based LED having a transparent current spreading layer
TW201421734A (en) Nitride semiconductor structure and semiconductor light-emitting element
CN103811609A (en) Oxide semiconductor light-emitting diode epitaxial wafer, device and manufacturing method thereof
KR20090115906A (en) Methods of surface texture for group 3-nitride semiconductor light emitting diode
US20080283858A1 (en) Light-emitting diode and method for manufacturing same
WO2017101522A1 (en) Light emitting diode and method for manufacturing same
KR20110044020A (en) Light emitting device and method for fabricating the same
US20060234411A1 (en) Method of manufacturing nitride semiconductor light emitting diode
WO2018054187A1 (en) Light-emitting diode and manufacturing method therefor
TWI475717B (en) A semiconductor element that emits radiation
KR101132885B1 (en) Nitride light emitting diode and fabricating method thereof
JP2007103712A (en) High brightness garium nitride light emitting diode
CN103050595A (en) Nitride light emitting diode
KR101449032B1 (en) flip-chip structured group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
KR100836132B1 (en) Nitride semiconductor light emitting diode
CN111640829A (en) Light-emitting diode with composite electron blocking layer and preparation method thereof
TW201006003A (en) A LED that can increase light extraction yield
TWI455355B (en) Light emitting diode structure
KR101428069B1 (en) flip-chip structured group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
KR101267437B1 (en) Light emitting diodes and method for fabricating the same
KR20130009274A (en) Light emitting diodes using a transparent electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101202