JP4883179B2 - 密閉型圧縮機 - Google Patents

密閉型圧縮機 Download PDF

Info

Publication number
JP4883179B2
JP4883179B2 JP2009522045A JP2009522045A JP4883179B2 JP 4883179 B2 JP4883179 B2 JP 4883179B2 JP 2009522045 A JP2009522045 A JP 2009522045A JP 2009522045 A JP2009522045 A JP 2009522045A JP 4883179 B2 JP4883179 B2 JP 4883179B2
Authority
JP
Japan
Prior art keywords
inlet
pipe
outlet
hermetic compressor
inlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009522045A
Other languages
English (en)
Other versions
JP2010511820A (ja
Inventor
賢治 金城
明 中野
崇秀 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009522045A priority Critical patent/JP4883179B2/ja
Publication of JP2010511820A publication Critical patent/JP2010511820A/ja
Application granted granted Critical
Publication of JP4883179B2 publication Critical patent/JP4883179B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S181/00Acoustics
    • Y10S181/403Refrigerator compresssor muffler

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

本発明は、冷蔵庫、ショーケースなどの冷蔵、冷凍装置、空気調和装置、その他の冷凍サイクル装置に用いられる密閉型圧縮機に関する。
近年、地球環境保護に対する要求はますます強まってきており、冷蔵庫やその他の冷凍サイクル装置などにおいても、特に高効率化が強く要望されている。
冷蔵、冷凍装置、空気調和装置、その他の冷凍サイクル装置などに用いられる密閉型圧縮機は、一般に、冷媒ガスの吸引中に発生する騒音を減衰する機能を有する吸入マフラーを密閉容器内に備えている。
この吸入マフラーを使用する圧縮機の効率を低下させる原因の1つは、吸い込まれる冷媒ガスの過熱である。冷媒ガスが圧縮機に入ってからシリンダに浸入するまでの間に、圧縮機の内部に存在するいくつかの熱源から伝達される熱により、冷媒ガスの温度が上昇する。冷媒ガスの温度上昇は、比体積を増加させ、その結果、冷媒ガスの質量流量が低下する。
圧縮機の冷却能力は冷媒ガスの質量流量に正比例するので、質量流量が減少すると効率は低下する。そこで、シリンダに吸い込まれる低温の冷媒ガスに伝達される熱を最小限に抑える密閉型圧縮機の吸入マフラーが特許文献1で提案されている。
以下、図面を参照しながら特許文献1に開示された従来の密閉型圧縮機を説明する。図10は、特許文献1に記載された従来の密閉型圧縮機の縦断面図である。図11は従来の密閉型圧縮機の要部断面図である。図12は従来の吸入マフラーの分解斜視図である。
図10から図12に示すように、従来の密閉型圧縮機は、密閉容器1の底部に潤滑油3を貯留するとともに冷媒ガス20が充填されている。圧縮機本体5はサスペンションスプリング7によって、密閉容器1に対して弾性的に支持されている。
圧縮機本体5は、電動要素9と、電動要素9の上方に配設される圧縮要素11とを備え、電動要素9は、ステータ13およびロータ15を有している。
圧縮要素11は、偏芯軸27と主軸35とを備えたクランクシャフト17とを備えている。また、圧縮要素11は、圧縮室19を形成するシリンダ21を一体に形成したブロック23を備えている。また、圧縮要素11は、ピストン25と、シリンダ21の端面を封止するバルブプレート31とを備えている。また、圧縮要素11は、バルブプレート31に備えられた吸入孔33(図11参照)を開閉する吸入バルブ(図示せず)を備えている。また、圧縮要素11は、偏芯軸27とピストン25とを連結する連結部29を備えている。
クランクシャフト17の主軸35は、ブロック23の軸受部37に回転自在に軸支されるとともに、ロータ15が固定されている。また、クランクシャフト17は、給油機構(図示せず)を備えている。
さらに、シリンダ21の端面に取り付けられたバルブプレート31と、バルブプレート31を蓋するシリンダヘッド39により、吸入マフラー41は挟持されて固定されている。
図11、図12に示すように、吸入マフラー41は、PBT(ポリブチレンテレフタレート)やPPS(ポリフェニレンサルファイト)などの合成樹脂で成型される。また、吸入マフラー41は、消音空間を形成するマフラー本体43と、入口管45と出口管47とを有するカバー60とを備えている。
入口管45は、マフラー本体43の内部へ開口する入口管出口部49を備えている。また、入口管45は、カバー60の外側にあって密閉容器1内の空間へ開口する入口管入口部51を備えている。
出口管47は、マフラー本体43の内部へ開口する出口管入口部53を備えている。また、出口管47は、カバー60の外側にあってシリンダヘッド39に接続される出口管出口部55を備えている。なお、図11中に記載した矢印は、吸入マフラー41内の冷媒ガス20の流れを示している。
以上のように構成された従来の密閉型圧縮機について、以下その動作を説明する。まず、密閉型圧縮機は、ステータ13に電流を流して磁界を発生させ、主軸35に固定されたロータ15を回転させることで、クランクシャフト17が回転する。この回転により、偏芯軸27に回転自在に取り付けられた連結部29を介して、ピストン25がシリンダ21内を往復運動する。
そして、このピストン25の往復運動により、冷媒ガス20の圧縮室19への吸入と圧縮および冷凍サイクル(図示せず)への吐出が繰り返される。
この際、入口管入口部51から吸入された冷媒ガス20は、入口管45を通り、入口管出口部49からマフラー本体43内部へ開放される。その後、出口管入口部53から吸入され、出口管47を通って、出口管出口部55から吸入孔33を介して圧縮室19内へ導かれる。
ここで、吸入マフラー41は、間欠的な冷媒ガス20の吸入により発生する騒音を低減する。これとともに、熱伝達の少ない樹脂で形成されることで吸入マフラー41内を通過する冷媒ガス20の加熱を防止する。さらに、入口管45とマフラー本体43との間に間隔が設けられているため、密閉容器1内に滞留する高温の冷媒ガス20からの熱伝達を防ぐ。これによって、最終的にシリンダ21に吸い込まれる冷媒ガス20の質量流量を増加させることができる。
また、クランクシャフト17の回転により生じた遠心力などを利用して、密閉容器1底部からクランクシャフト17に備えられた給油機構を通じて上方の圧縮要素11へ潤滑油3を搬送する。
搬送された潤滑油3は、まず、クランクシャフト17と軸受部37などの摺動部を潤滑にする。その後、クランクシャフト17の上端より密閉容器1内に飛散し、ピストン25、シリンダ21などを潤滑にする。これとともに、飛散した潤滑油3が密閉容器1に付着する。付着した潤滑油が、密閉容器1の内壁面を伝って底部に流れ落ちる際に、潤滑油3から密閉容器1へ熱が伝わる。密封容器1内に伝わった熱は、密閉容器1から外部へ放熱することで、密閉型圧縮機の冷却を行っている。
また、密閉容器1内に飛散した潤滑油3は冷媒ガス20とともにマフラー本体43内にも吸入される。しかし、冷媒ガス20が入口管出口部49でマフラー本体43内に開放されて、冷媒ガス20の速度が低下した際に、潤滑油3は冷媒ガス20と分離され、マフラー本体43の底部に滞留する。
しかしながら、上記従来の構成では、入口管出口部49からマフラー本体43内に開放された冷媒ガス20はマフラー本体43の底部の内壁に沿って流れる。そのため、冷媒ガス20とともに吸入されマフラー本体43の底部に滞留した潤滑油3は、マフラー本体43の底部に近接した出口管入口部53に流入しやすい。その結果、潤滑油3が圧縮室19へ大量に流入しやすくなる。
潤滑油3が圧縮室19に大量に流入すると、圧縮時の負荷が大きくなり、入力が増大したり、十分に冷媒ガス20を圧縮できない。このことにより、冷凍能力の低下を引き起こしたり、さらには、圧縮負荷などが急激に変動する。圧縮負荷などが急激に変動する結果、騒音が発生するという課題を有していた。
また、冷凍サイクルに潤滑油3が大量に吐出されることにより、熱交換器の性能を低下させるという課題も有していた。
特表2001−504189号公報
本発明は、マフラー本体の底部に滞留した潤滑油が出口管入口部に流入するのを抑えることのできるものである。その結果、潤滑油が圧縮室に流入して密閉型圧縮機の冷凍能力が低下したり、騒音を発したり、熱交換器の性能が低下することを防ぐものである。
本発明の密閉型圧縮機は、潤滑油を貯留するとともに、冷媒ガスを流入させるための吸入配管を有する密閉容器内に、電動要素と前記電動要素によって駆動される圧縮要素とを収容している。圧縮要素は、圧縮室を形成するシリンダブロックと、圧縮室の端部に配設された吸入バルブと、圧縮室内を往復運動するピストンと、圧縮室に連通した消音空間を形成する吸入マフラーとを備える。吸入マフラーは、消音空間を形成する中空体と、密閉容器内の空間と消音空間とを連通する入口管と、消音空間と吸入バルブとを連通する出口管とを有する。入口管は、密閉容器内の空間への開口部を有する入口管入口部から消音空間への開口部を有する入口管出口部に向かって下方に傾斜するように設けられる。出口管は、消音空間への開口部を有する出口管入口部と吸入バルブへの開口部を有する出口管出口部とを有する。入口管入口部と出口管入口部とは同じ高さに形成されている。
この構成によれば、出口管入口部がマフラー本体の底部から離れているので、マフラー本体の底部に滞留した潤滑油が圧縮室に流入しにくくなる。これとともに、入口管入口部に導かれた冷媒ガスの位置エネルギーを効率よく利用して、出口管入口部へ冷媒ガスを導くことができる。したがって、マフラー本体の底部に滞留した潤滑油が大量に圧縮室内に流入することを防止できる。これとともに、吸入マフラー内を通過する冷媒ガスの吸入損失を低減して、効率を向上することができる。
本発明の実施の形態1における密閉型圧縮機の側面断面図 同実施の形態の密閉型圧縮機における吸入マフラーの正面断面図 配管の曲がり角度と圧力損失の関係を示した特性図 本発明の実施の形態2における密閉型圧縮機の上面断面図 同実施の形態における密閉型圧縮機の正面断面図 同実施の形態における吸入マフラーを示す斜視図 図5Aの5B−5B線における矢視断面図 同実施の形態における吸入マフラーの圧縮要素への装着状態を示す断面図 同実施の形態における吸入配管の開口端部の構成図 同実施の形態における冷媒ガスの温度の測定結果を示した特性図 本発明の実施の形態3における密閉型圧縮機の吸入マフラーを示す斜視図 図9Aの9B−9B線における矢視断面図 従来の密閉型圧縮機の側面断面図 従来の密閉型圧縮機の要部断面図 従来の吸入マフラーの分解斜視図
以下、本発明の密閉型圧縮機の実施の形態について、図面を参照しながら説明する。なお、本発明はこの実施の形態によって限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の側面断面図である。図2は、同実施の形態の密閉型圧縮機における吸入マフラーの正面断面図である。
図1および図2において、本実施の形態における密閉型圧縮機は、密閉容器101内底部に潤滑油103を貯留する。密閉容器101内に、冷媒ガス105として、例えば地球温暖化係数の低い炭化水素系のR600aなどが封入してある。
また、密閉容器101内には、圧縮要素107と電動要素109とを備えた圧縮機本体111がサスペンションスプリング112によって、密閉容器101に対して弾性的に支持されて収納されている。
圧縮要素107は、クランクシャフト113、シリンダブロック115、ピストン117、連結部119などで構成されている。クランクシャフト113は、偏芯軸121と主軸123とを備えている。さらに、潤滑油103に浸漬される主軸123下端から偏芯軸121上端までを連通する給油機構(図示せず)を備えている。
電動要素109は、シリンダブロック115の下方にボルト(図示せず)によって固定されたステータ125と、ステータ125の内側の同軸上に配置され主軸123に焼き嵌め固定されたロータ127とで構成されている。
シリンダブロック115には、圧縮室129を形成するシリンダ131が一体に形成されている。さらに、シリンダブロック115は、主軸123を回転自在に軸支する軸受部133を備えている。
また、シリンダ131の端面には、吸入孔135と吐出孔(図示せず)とを有するバルブプレート137と、吸入孔135を開閉する吸入バルブ139と、バルブプレート137を蓋するシリンダヘッド141とが固定されている。バルブプレート137と吸入バルブ139とシリンダヘッド141とは、ともに、ヘッドボルト143によって、シリンダ131の端面を封止するように押圧固定されている。吸入マフラー145は、バルブプレート137とシリンダヘッド141とにより、挟持されて固定されている。
吸入マフラー145は、主にガラス繊維を添加したPBTなどの合成樹脂で成型される。吸入マフラー145は、図2に示すように、入口管151を一体に成型したマフラー本体149と、出口管153を一体に成型したカバー150とで構成される。すなわち、マフラー本体149とカバー150とを組み合わせて一体化することにより、内部に消音空間147を有する中空体196を形成している。
入口管151は、マフラー本体149の外壁部にあって、密閉容器101内の空間への開口部を有する入口管入口部155と、マフラー本体149内部の消音空間147への開口部を有する入口管出口部157とを備えている。入口管151は、入口管入口部155から入口管出口部157に向かって下方に傾斜するように設けられている。
また、入口管出口部157が消音空間147の底部近傍に開口して形成されている。入口管出口部157近傍のマフラー本体149の底部には、潤滑油103を消音空間147の外部へ排出する潤滑油排出孔159が形成されている。
出口管153は、消音空間147への開口部を有する出口管入口部161と、吸入バルブ139への開口部を有する出口管出口部163とを備えている。すなわち、出口管出口部163は、カバー150の外側にあってシリンダヘッド141に接続され、吸入バルブ139を介して圧縮室129と連通している。
また、出口管153は、消音空間147内において、出口管入口部161と出口管出口部163との中間部に、曲がり角度Tが鈍角になるように折り曲げて形成された曲折部165を有している。
さらに、出口管入口部161の消音空間147への高さ方向の開口位置が、入口管入口部155と略同一の高さに形成されている。また、出口管153は、出口管入口部161の上部を覆う誘導壁167を備えている。
吸入マフラー145の背面側(図2の奥側)は、ステータ125およびシリンダブロック115と隣接し、ステータ125およびシリンダブロック115に沿うような外形形状となっている。
また、吸入マフラー145の正面側(図2の手前側)は、ステータ125に電流を供給する電源端子169(図1参照)との距離を確保するように、上部より下部の方が薄い外形形状となっている。
さらに、入口管出口部157から出口管入口部161にかけて、消音空間147を形成する中空体196の下方から上方に冷媒ガス105を導くように、マフラー本体149の内壁面180が湾曲して形成されている。
ピストン117は、シリンダ131内に往復自在に挿入され、バルブプレート137とともに圧縮室129を形成している。さらに、ピストン117は、連結部119によって偏芯軸121と連結されている。
以上のように構成された密閉型圧縮機について、以下その動作、作用を説明する。密閉型圧縮機は、電源端子169を介してステータ125に電流を流して磁界を発生させ、主軸123に固定されたロータ127を回転させる。これにより、クランクシャフト113が回転し、偏芯軸121に回転自在に取り付けられた連結部119を介して、ピストン117がシリンダ131内を往復運動する。ピストン117の往復運動に伴い、冷媒ガス105は吸入マフラー145を介して圧縮室129内へ吸入され、圧縮された後、冷凍サイクル(図示せず)へ吐出される。
吸入マフラー145は、入口管151と出口管153と消音空間147とで膨張型マフラーを構成しており、間欠的な冷媒ガス105の吸入により発生する騒音を低減する。
次に、密閉型圧縮機の吸入行程について説明する。ピストン117がシリンダ131の容積が増加する方向に動作すると、圧縮室129内の冷媒ガス105が膨張する。これにより、圧縮室129内の圧力が吸入圧力を下回ると、圧縮室129内の圧力と吸入マフラー145内の圧力との差により、吸入バルブ139は開き始める。
そして、冷凍サイクルから戻った温度の低い冷媒ガス105は、入口管入口部155から吸入され入口管151を経て、消音空間147に開放される。そして、開放された冷媒ガス105は、出口管入口部161から吸入され出口管153を経て、圧縮室129内に流入する。
その後、ピストン117の動作が下死点から圧縮室129内の容積が減少する方向に転じると、圧縮室129内の圧力は上昇する。これにより、圧縮室129内の圧力と吸入マフラー145内の圧力との差によって、吸入バルブ139は閉じる。
ここで、圧縮室129内に吸入される冷媒ガス105は、消音空間147に滞留する時間が長いと電動要素109の発熱などの影響を受け温度が上昇する。しかし、本実施の形態では、入口管出口部157を消音空間147の底部近傍に形成するとともに、出口管153に出口管入口部161の上部を覆う誘導壁167を備えている。さらに、入口管出口部157から出口管入口部161にかけて、消音空間147を形成する中空体196の下方から上方に冷媒ガス105を導くようにマフラー本体149の内壁面を形成している。そのため、冷媒ガス105は、入口管出口部157からマフラー本体149の湾曲した内壁面180に沿って、消音空間147の下方から上方に導かれる。さらに、出口管入口部161近傍に至った冷媒ガス105は、誘導壁167により出口管153内に効率よく誘導される。したがって、冷媒ガス105は消音空間147を通過する時間を短くすることができる。
すなわち、冷媒ガス105の消音空間147での受熱を低減し、密度の大きい冷媒ガス105を圧縮室129内に吸入させることができる。そのため、冷媒ガス105の質量流量が増加し、体積効率を向上させることができる。
なお、本実施の形態においては出口管入口部161の上部を覆う誘導壁167を設けたが、マフラー本体149内の出口管入口部161近傍に誘導壁167を設けても同様の効果が得られる。
さらには、誘導壁167を設けず、出口管入口部161をマフラー本体149内壁面近傍の消音空間147に形成するだけでも、冷媒ガス105を入口管出口部157から出口管入口部161に導くことができる。したがって、このような構成でも、吸入損失および受熱損失を低減することができる。
また、本実施の形態では、入口管151が、入口管入口部155から入口管出口部157に向かって下方に傾斜している。さらに、出口管入口部161と入口管入口部155とが略同一の高さに形成されている。さらに、入口管出口部157から出口管入口部161にかけて、消音空間147の下方から上方に冷媒ガス105を導くようにマフラー本体149の内壁面180を形成している。すなわち、入口管入口部155における冷媒ガス105の位置エネルギーが有効に利用できる高さに出口管入口部161が配置されているので、入口管入口部155に導かれた冷媒ガス105を出口管入口部161に効率よく導くことができる。したがって、冷媒ガス105を消音空間147の上方へ導くために必要なエネルギーを低減することができるとともに、吸入損失を低減することができる。
ここで、出口管入口部161と入口管入口部155とが略同一の高さに形成されているが、具体的には、出口管入口部161と入口管入口部155との少なくとも一部が水平方向にオーバーラップしていれば上述した効果が得られる。
さらに、出口管入口部161と入口管入口部155とが水平方向にオーバーラップしていなくとも、出口管入口部161の最下端が入口管入口部155の最上部に対して、入口管151または出口管153の直径寸法以内の範囲で上方に位置していれば、同様に上述した効果が得られる。また、同様に、出口管入口部161の最上端が入口管入口部155の最下部に対して、入口管151または出口管153の直径寸法以内の範囲で下方に位置していれば、同様に上述した効果が得られる。
次に、潤滑油103の動作について説明する。密閉容器101内底部に貯留された潤滑油103は、クランクシャフト113の回転により生じる遠心力や、摺動部で生じる粘性摩擦力を利用した給油機構により、圧縮要素107の上部へ搬送される。圧縮要素107へ搬送された潤滑油103は、主軸123および偏芯軸121の摺動部を潤滑にするとともに、クランクシャフト113の上端より飛散する。
密閉容器101内の空間に飛散した潤滑油103は、ピストン117およびシリンダ131の摺動部に降りかかり摺動部を潤滑にする。さらに、摺動部などで温度が上昇した潤滑油103が密閉容器101の内面に付着し、密閉容器101を介して外部に放熱することで、密閉型圧縮機を冷却する。
さらに、密閉容器101内の空間に飛散した潤滑油103の一部は、吸入マフラー145の入口管入口部155から冷媒ガス105とともに吸入される。
そして、入口管151を経て、容積の大きな中空体196内の消音空間147に冷媒ガス105が開放され、冷媒ガス105の流速が低下した際に、潤滑油103は冷媒ガス105と分離され、重力で中空体196の底部に落下する。
落下した潤滑油103は、入口管出口部157近傍のマフラー本体149の底部に形成された潤滑油排出孔159より、すぐにその場から吸入マフラー145の外部へ排出される。したがって、吸入マフラー145内に滞留する潤滑油103を低減することができる。
また、本実施の形態では、入口管151が、入口管入口部155から入口管出口部157に向かって下方に傾斜している。さらに、出口管入口部161と入口管入口部155とが略同一の高さに形成されている。さらに、入口管出口部157から出口管入口部161にかけて、消音空間147を形成する中空体196の下方から上方に冷媒ガス105を導くようにマフラー本体149の内壁面を形成してある。このことにより、入口管151から出口管153へと冷媒ガス105が流れる間に潤滑油103の分離が促進される。これとともに、マフラー本体149の底部に潤滑油103がある程度滞留した場合においても、出口管入口部161がマフラー本体149の底部から上方の十分に離れた位置(入口管入口部155と同程度の高さ)に配置されているので、出口管153を介して圧縮室129に多量の潤滑油103が流入することを防止することができる。したがって、騒音の発生やバルブなどの破損を防止することができる。
次に、出口管153の圧力損失について説明する。図3は、配管の曲がり角度と圧力損失の関係を示した特性図である。
図3において、縦軸は配管が曲がることによる圧力損失dP(Pa)、横軸は配管の曲がり角度T(度)を示している。配管が曲がることによる圧力損失dPは、曲がり角度180度である直管のときに零になり、曲がり角度が鋭角になるほど急激に増加する。
本実施の形態のように、吸入マフラー145が電源端子169側に配置される場合、電源端子169と距離を確保する必要がある。吸入マフラー145の正面側は、上部より下部の方が薄くなる。そのため、通常、出口管153の長さを適切に確保するために、出口管153の曲がり角度Tを直角(90度)にすることが多い。
しかしながら、本実施の形態の吸入マフラー145は、出口管153が、中間部の曲折部165で曲がり角度Tが鈍角になるように形成されている。そのため、出口管153を通過する冷媒ガス105の圧力損失が低減され、体積効率を向上させることができる。
すなわち、本実施の形態では、出口管153における圧力損失を低減することと、出口管153の長さを適切に確保することを両立させるために、出口管153の中間部に鈍角の曲がり角度Tを有する曲折部165が形成されている。曲がり角度θが95度から150度の範囲内であれば良好な特性が得られる。
また、吸入マフラー145は、金属などに比べ大幅に熱伝達の少ないPBT樹脂で形成されている。そのため、冷凍サイクルから戻った温度の低い冷媒ガス105が消音空間147で加熱されることを抑制することができる。したがって、さらに性能の低下を防止することができる。
また、本実施の形態では、入口管入口部155が入口管出口部157より上方の位置にあるので、密閉容器101内の比較的上方に位置している。そのため、密閉容器101内の圧力が急激に低下して潤滑油103に溶け込んだ冷媒ガス105が発泡して液面が上昇しても、潤滑油103が吸入マフラー145内に流入しにくくなる。
以上説明したように、本実施の形態によれば、吸入マフラー145は、密閉容器101内の空間から消音空間147に向かって下方に傾斜した入口管151を有し、入口管入口部155と出口管入口部161とは略同一の高さに形成されている。これにより、出口管入口部161をマフラー本体149の底部から上方へ離すことができ、マフラー本体149の底部に滞留した潤滑油103が大量に圧縮室129に流入することを防止することができる。さらに、入口管入口部155に導かれた冷媒ガス105の位置エネルギーを効率よく利用して、出口管入口部161へ冷媒ガス105を導くことができる。したがって、吸入損失を低減することができ、効率の向上が図れるとともに、性能を安定させることができる。
また、本実施の形態によれば、出口管153は、出口管入口部161と出口管出口部163との中間部で鈍角に曲折する曲折部165を有している。そのため、出口管153内の圧力損失を低減することができるので、さらに高い効率を得ることができる。
また、本実施の形態によれば、入口管出口部157は消音空間147を形成する中空体196の底部に形成されている。これとともに、入口管出口部157から出口管入口部161にかけて、冷媒ガス105を消音空間147の下方から上方に導くように中空体196の内壁面が形成されている。そのため、入口管出口部157から開放された冷媒ガス105を効率よく出口管入口部161に導くことができる。さらに、入口管151から出口管153へと冷媒ガス105が流れる間に、潤滑油103の分離が促進されるので、圧力損失および受熱損失をより低減し、効率を高めることができる。さらに、潤滑油103が大量に圧縮室129に流入することを防止することができる。
また、本実施の形態によれば、入口管出口部157近傍に潤滑油排出孔159が形成されている。したがって、入口管出口部157から容積の大きな消音空間147に開放させて冷媒ガス105の速度を低下させることで、冷媒ガス105と潤滑油103を効果的に分離できる。さらに、潤滑油103の分離後すぐにその場から吸入マフラー145の外部に潤滑油103を排出することができる。したがって、さらに潤滑油103が大量に圧縮室129に流入することを防止することができ、性能を安定させることができる。
また、本実施の形態によれば、消音空間147の冷媒ガス105を出口管153内に誘導する誘導壁167が、出口管入口部161上部を覆うように配置されている。これにより、入口管出口部157から開放された冷媒ガス105を、誘導壁167により効率よく出口管153内に導くことができる。したがって、さらに圧力損失および受熱損失を低減し、効率を高めることができる。
また、本実施の形態によれば、出口管入口部161は、マフラー本体149の内壁面180近傍の消音空間147に開口したものである。そのため、入口管出口部157から開放された冷媒ガス105をマフラー本体149の内壁面180を利用して効率よく出口管153に導くことができる。したがって、さらに圧力損失および受熱損失を低減し、体積効率をさらに向上することができる。
(実施の形態2)
図4Aは、本発明の本実施の形態2における密閉型圧縮機の上面断面図であり、図4Bは、同正面断面図である。図5Aは、同実施の形態における吸入マフラー145の全体の形状を示す斜視図である。図5Bは、図5Aの5B−5B線における矢視断面図である。図6は、同実施の形態における吸入マフラー145の圧縮要素への装着状態を示す断面図である。図7は、同実施の形態における吸入配管の開口端部近傍の断面構成図である。図8は、同実施の形態における冷媒ガスの温度の測定結果を示した図である。
図4A、図4Bにおいて、基本構成は図1に示す実施の形態1と同じであるが、図1とは断面の方向が異なるので再度説明する。最外側の要素である密閉容器101は、冷媒ガス105をその内部に流入させるための吸入配管191と、冷媒ガス105を外部に流出させるための吐出配管192とを備えている。吸入配管191及び吐出配管192は、互いに周方向に離隔して密閉容器101の側壁を貫通する状態で装着されている。
密閉容器101の底部には潤滑油103が貯留されている。この密閉容器101の内部には、電動要素109と、この電動要素109によって駆動されて冷媒ガス105の吸入、圧縮を行う圧縮要素107とが収納されている。さらに、密閉容器101の内部には、圧縮要素107が冷媒ガス105を吸入する経路に設けられる吸入マフラー145が収納されている。
電動要素109は、4個のサスペンションスプリング112を介して、密閉容器101の底部に装着されている。圧縮要素107は、シリンダ131(図6)を含むシリンダブロック115と、シリンダ131に往復動可能に挿設されたピストン117とを備えている。また、圧縮要素107は、電動要素109によって駆動され、回転運動を往復運動に変えて、ピストン117を往復運動させる周知のクランク機構193を有している。クランク機構193は、図1に示す、連結部119や偏芯軸121などから構成される。シリンダブロック115が電動要素109の固定子125に装着されてクランク機構193を支持している。
また、圧縮要素107は、シリンダ131の開口端に配置されたバルブプレート137と、その反シリンダ131側に装着されたシリンダヘッド141とを備えている。シリンダブロック115の内部には冷媒ガス105の吐出マフラの機能を有する鋳抜き空間(図示せず)が形成されている。シリンダブロック115の出口部194と吐出配管192とは、振動を吸収するように長手方向の途中が適宜に折り曲げられた冷媒導出管195によって接続されている。
吸入マフラー145は、シリンダヘッド141の下部における電動要素109の外周部に配置されている。この吸入マフラー145は、図5A、図5Bを用いて詳細を後述するように、中空体196、入口管151及び出口管153を備えている。また、吸入マフラー145は、入口管151の入口管入口部155を含む範囲に、凹陥部からなる冷媒滞留部197が形成されている。冷媒滞留部197は、凹陥部の形状でなくても、入口管入口部155に冷媒ガス105を滞留させる壁面形状を呈していても良い。すなわち、冷媒滞留部197は、少なくとも入口管入口部155を含む範囲に冷媒ガス105を滞留させることができればよい。また、吸入マフラー145は、出口管153の出口管出口部163が、シリンダヘッド141によって保持されている。
電動要素109が圧縮要素107を駆動したとき、回転子127の回転により密閉容器101内に、矢印Xで示した方向の冷媒ガス105のガス流が誘起される。吸入マフラー145の入口管151の入口管入口部155及び冷媒滞留部197は、冷媒ガス105の流動方向で見て上流側で、かつ冷媒ガス105のガス流が最初に当たる面とは逆の面の中空体196の側壁部に配置されている。そして、吸入マフラー145の冷媒滞留部197と対向する位置に、吸入配管191が密閉容器101に装着されている。
上記のように構成された密閉型圧縮機について、その概略動作を説明した後で、吸入マフラー145の詳細な構成及び動作について説明する。電動要素109がクランク機構193を駆動すると、クランク機構193はピストン117を往復運動させ、周知の吸入行程と圧縮行程とが繰り返される。
吸入行程においては、冷媒ガス105が冷却システムから吸入配管191を通って密閉容器101内に吸い込まれる。吸い込まれた冷媒ガス105は、冷媒滞留部197に滞留してから、入口管151を通って吸入マフラー145の内部に流入する。その後、出口管153を通って吸入マフラー145から流出し、バルブプレート137の吸入孔135(図6)からシリンダの内部へ吸入される。
圧縮行程においては、シリンダ内で圧縮された冷媒ガス105が、圧縮要素107の内部に形成された鋳抜き空間で消音処理された後、冷媒導出管195及び吐出配管192を通って冷却システムに吐き出される。
なお、クランク機構193は、図1に示すクランクシャフト(図1に示す主軸123)を含んでいる。クランクシャフトの下端部にはポンプ機構(図示せず)が形成され、このポンプ機構によって潤滑油103が汲み上げられる。汲み上げられた潤滑油103は、クランク機構193自体やピストン117の摺動部に供給される。このとき、汲み上げられた潤滑油103の一部が霧状になって冷媒ガス105と混合され、その混合ガスの一部が吸入行程で吸入マフラー145の入口管151から吸い込まれる。
次に、吸入マフラー145について説明する。図5A、図5Bにおいて、PBTやPPSなどの合成樹脂材料で構成される中空体196は、マフラー本体149の開口部とカバー150の開口部とが溶接又は接着によって一体化されて内部に消音空間147を画定するように形成している。
この中空体196には、図4Bに示す電源端子169に電気部品を装着するための空間を確保するべく、平坦な一方の側壁の下部に窪み200を備えている。この窪み200を備えた側壁をAとし、この側壁Aに対向する側壁をBとし、側壁Aの左右に隣接する他の側壁をそれぞれC、Dとする。さらに、側壁Bよりも側壁A側に凹んで側壁Cと斜めに対向する側壁をEとする。
側壁Bは電動要素109の外側面に対して所定の間隔を保つように水平断面が円弧状の壁面を有している。側壁C及びDは、密閉容器101の内側面に対して略一定の間隔を保つような水平断面が円弧状の壁面を有している。
このうち、側壁Cには凹陥部からなる冷媒滞留部197が形成され、この冷媒滞留部197の奥部を入口管入口部155として入口管151が中空体196の内部に設けられている。入口管151の内管部199は、中空体196の底部まで斜め下方に延長して設けられ、その入口管出口部157が側壁Dに向けられている。
一方、カバー150は中空体196内部と外部にそれぞれ延長する出口管153を備えている。出口管153の内延部201は入口管151と略平行にして斜め下方に延長して、その出口管入口部167が側壁Dに向けられている。この場合、出口管153の出口管入口部167は中空体196の高さ方向の中間部近傍に位置している。また、出口管153の外端202は上方に突出し、その出口管出口部163は側壁Bの壁面と直交する方向に向けられている。
冷媒滞留部197は側壁Cのやや下方に形成され、その上部の一部は壁を隔てて消音空間147になっている。すなわち、冷媒滞留部197は、その上方壁部203を介して、消音空間147に隣接するように形成されている。
また、冷媒滞留部197の下方壁部204は入口管入口部155に向かって下方に傾斜している。この下方壁部204の壁面に対して、入口管入口部155の内壁面が、段差dHの高さの段差部205だけ上方に位置するように、入口管151が配置されている。
さらに、冷媒滞留部197の下方壁部204には、冷媒ガス105の吸入過程で沈着する潤滑油103の排出孔206が設けられている。さらに、上方壁部203には、消音空間147と冷媒滞留部197とを直接連通させる連通孔207が形成されている。なお、排出孔206及び連通孔207としては、直径が0.5mm以上であればよい。
図6において、シリンダブロック115のシリンダ131内にピストン117が往復動可能に挿設されている。このシリンダ131の開口端に吸入孔135を有するバルブプレート137が装着されている。また、このバルブプレート137の反シリンダ131側にシリンダヘッド141が装着されている。
シリンダヘッド141には凹部208が形成されている。この凹部208に、吸入マフラー145の出口管153の外端202を収容した状態で、バルブプレート137及びシリンダヘッド141がシリンダブロック115に一体的に組み付けられる。このとき、出口管153の出口管出口部163は吸入孔135に向けられ、冷媒ガス105が流れる流路としてつながっている。
図7において、吸入マフラー145の冷媒滞留部197と、吸入配管191の開口端部210とが相互に対向するように吸入マフラー145と吸入配管191とが配置されている。この場合、両者の対向面積を大きくするために、冷媒滞留部197の縦寸法に対して、吸入配管191の開口端部210の内径を他の部分の内径より大きく拡径されている。本実施の形態では、冷媒滞留部197の縦寸法に対して吸入配管191の開口端部210の内径がほぼ同等となるように設定しており、吸入配管191の開口端部から放出された冷媒ガスの殆どを圧力損失なく冷媒滞留部197から吸入することができる。
次に、吸入マフラー145に関連する動作を説明する。電動要素109が装着される密閉容器101の中央部を基準にして、吸入マフラー145は側壁Aを外側、側壁Bを内側にしてシリンダヘッド141に装着される。このとき、冷媒滞留部197が形成された側壁Cは密閉容器101の内壁面に近接し、かつ、冷媒滞留部197は吸入配管191の開口端部210と対向している。
電動要素109の回転子の回転により、密閉容器101内に冷媒ガス105のガス流が誘起される。このガス流の流動方向(図4Aの矢印Xの方向)で見て、入口管151の入口管入口部155及び冷媒滞留部197は中空体196の上流側に配置される。冷媒滞留部197は吸入配管191に近接して対向しているため、ガス流は最初に吸入マフラー145の側壁Eに当たることになる。
したがって、側壁Eに対して斜めに対向している側壁Cは、冷媒ガスのガス流が最初に当たる面に対して逆の面になっている。このため、密閉容器101内で加熱された冷媒ガス105が入口管151の入口管入口部155に直接当たることはない。しかも、吸入マフラー145に吸い込まれるのは吸入配管191から流入して冷媒滞留部197に滞留した冷媒ガス105である。したがって、圧縮機の内部で流動する高温の冷媒ガス105の吸入マフラー145に対する混入を最小限に抑えることができる。
また、冷媒滞留部197に滞留した冷媒ガス105が入口管151に吸い込まれるとき、冷媒滞留部197は、上方壁部203を介して、消音空間147に隣接するように形成されている。そのため、冷媒滞留部197に滞留して吸入マフラー145に吸入される冷媒ガス105は、消音空間147の冷媒ガス105によって冷やされる。
この冷媒ガス105の吸入過程で、冷媒滞留部197に滞留した冷媒ガス105の一部は、入口管入口部155の上方壁部203に形成された連通孔207を通して直接吸入マフラー145に吸入される。そのため、低温の冷媒ガス105の吸入効率をさらに高めることができる。
このようにして、冷媒ガス105が吸入マフラー145に吸い込まれるとき、冷媒滞留部197の下方壁部204に潤滑油103が沈着する。この場合、下方壁部204の壁面に対して、入口管151は、入口管入口部155の内壁面が上方に段差(dH)を持つ段差部205を形成するように入口管151が配置されている。そのため、下方壁部204に沈着した潤滑油103が吸入マフラー145に吸入されにくくなる。
もし、より多くの潤滑油103が下方壁部204に滞留する状況になると、下方壁部204に形成された排出孔206から吸入マフラー145の外部に排出される。そのため、潤滑油103は吸入マフラー145には吸入されない。
一方、吸入マフラー145の冷媒滞留部197に対向配置された吸入配管191の拡径された開口端部210は、冷媒滞留部197の近傍にあって、冷媒滞留部197に対する対向面積が増加している。そのため、吸入マフラー145の滞留空間を拡げたことになり、これによって、冷やされた冷媒ガス105が吸入マフラー145に吸入される割合が高められる。
ところで、本発明に係る吸入マフラー145は、図5Bに示したように、入口管151の入口管出口部157が中空体196の底部まで延長している。これに対して、出口管153の出口管入口部167は、中空体196の高さ方向の中間部に位置している。そのため、吸入マフラー145の底部に潤滑油103が一時的に溜まることがあっても、その量が中空体196の高さ方向の中間に達しなければ、大量の潤滑油103が冷却システムに流れ出ることはない。
図8は実験によって得られた吸入マフラー145の入口管151の入口管入口部155近傍の冷媒ガス温度を測定した結果を示した特性図である。Aは、冷媒滞留部197を備えていない場合、Bは、冷媒滞留部197を吸入マフラー145の外部に独立に設けた場合、Cは、冷媒滞留部197を吸入マフラー145に一体的に設けた場合を示している。図8からも分かるように、入口管入口部155の温度は、Aの場合は摂氏53.1度で最も高く、Bの場合は摂氏50.9度で、Aの場合と比較してわずかに低くなっているがその差は少ない。これに対して、Cの場合は摂氏45.1度まで低下しており、温度低減効果が大きいことが分かる。すなわち、本実施の形態によれば、吸入マフラー145に吸入される冷媒ガス105の温度を下げる効果が大きく、効率向上を図ることができる。
以上のように本実施の形態によれば、中空体196には、少なくとも入口管入口部155を含む範囲に凹陥部からなる冷媒滞留部197が形成されている。これにより、吸入マフラー145に吸い込まれるのは吸入配管191から流入して滞留した冷媒ガス105が殆どである。そのため、圧縮機の内部で流動する高温の冷媒ガス105の吸入マフラー145に対する混入を最小限に抑えることができる。これによって、実施の形態1に加えて高効率の密閉型圧縮機が得られる。
また、本実施の形態によれば、冷媒滞留部197は、その内側の少なくとも一部が消音空間147に隣接するように形成されている。これにより、吸入マフラー145内の低温の冷媒ガス105によって中空体196の側壁が冷やされるので、冷媒滞留部197に滞留した冷媒ガスも冷やされる。そのため、冷やされた冷媒ガス105が吸入マフラー145に吸入され、実施の形態1に加えてさらに高効率の密閉型圧縮機が得られる。
また、本実施の形態によれば、入口管151は、冷媒滞留部197の下方壁204に対して入口管入口部155の内壁面が上方に段差を持つように配置されている。このため、冷媒滞留部197の下方の壁面に滞留した潤滑油103が吸入マフラー145に吸入されにくくなる。その結果、実施の形態1に加えて、潤滑油103の圧縮による信頼性の低下や効率の低下を抑制することができる。
また、本実施の形態によれば、冷媒滞留部197の下方壁部204に、潤滑油103の排出孔206を設けてある。これにより、冷媒滞留部197の下方壁部204に滞留した潤滑油103が吸入マフラー145外に排出されて、吸入マフラー145には吸入されなくなる。したがって、実施の形態1に加えて、潤滑油103の圧縮による信頼性の低下や効率の低下を抑制することができる。
また、本実施の形態によれば、吸入配管191の開口端部210の内径を他の部分の内径より大きくしている。これにより、冷媒滞留部197の開口面積と吸入配管の開口面積とが所定の割合になるように設定している。そのため、入口管151近傍の冷媒ガス105の滞留空間が実質的に拡げられて、冷やされた冷媒ガス105が吸入マフラー145に吸入される割合が高められる。したがって、実施の形態1に加えて、さらに高い効率の密閉型圧縮機が得られる。
また、本実施の形態によれば、吸入マフラー145の消音空間147と冷媒滞留部197とを連通させる連通孔207を備えている。そのため、入口管151の構造に関わらず、低温の冷媒ガス105を効率よく吸入マフラー145に吸入することができる。したがって、実施の形態1に加えて、さらに高い効率の密閉型圧縮機が得られる。
(実施の形態3)
図9Aは、本発明の実施の形態3の密封型圧縮機における吸入マフラー145の形状を示す斜視図である。図9Bは、図9Aの9B−9B線における矢視断面図である。
図9A、図9Bにおいて、図4A〜図8と同一の符号を付したものはそれぞれ同一の要素を示している。図4A〜図8に示す実施の形態2と異なる点は、入口管151の入口管入口部155に、冷媒滞留部197内に突出する突出部250を設けた点にある。
このように構成することによって、冷媒滞留部197の下方壁部204に沈着した潤滑油103は、突出部250が障害となって入口管151内に吸入されにくくなる。結果として、潤滑油103がより一層吸入マフラー145に吸入されにくくなる。
なお、実施の形態2、3では、冷媒滞留部197の上部のみが消音空間147に接しているが、冷媒滞留部197の上部に限らず側部を消音空間147に接するようにしてもよい。すなわち、冷媒滞留部197の内側の少なくとも一部が消音空間147に隣接するように形成すれば冷媒ガス105冷却効果が得られる。
以上のように本実施の形態によれば、入口管151の入口管入口部155は、冷媒滞留部197の壁面から側方に突出する突出部250を備えている。これにより、潤滑油103がより一層吸入マフラー145に吸入されにくくなる。したがって、実施の形態1、2に加えて、さらに、潤滑油103の圧縮による信頼性の低下や効率の低下を抑制することができる。
以上のように、本発明にかかる密閉型圧縮機は、性能を安定させ、効率を向上できるので、家庭用電気冷蔵庫に限らず、エアーコンディショナー、自動販売機やその他の冷凍装置などに広く適用できる。
101 密閉容器
103 潤滑油
105 冷媒ガス
107 圧縮要素
109 電動要素
111 圧縮機本体
112 サスペンションスプリング
113 クランクシャフト
115 シリンダブロック
117 ピストン
119 連結部
121 偏芯軸
123 主軸
125 ステータ
127 ロータ
129 圧縮室
131 シリンダ
133 軸受部
135 吸入孔
137 バルブプレート
139 吸入バルブ
141 シリンダヘッド
143 ヘッドボルト
145 吸入マフラー
147 消音空間
149 マフラー本体
150 カバー
151 入口管
153 出口管
155 入口管入口部
157 入口管出口部
159 潤滑油排出孔
161 出口管入口部
163 出口管出口部
165 曲折部
167 誘導壁
169 電源端子
191 吸入配管
192 吐出配管
193 クランク機構
194 出口部
195 冷媒導出管
196 中空体
197 冷媒滞留部
199 内管部
200 窪み
201 内延部
202 外端
203 上方壁部
204 下方壁部
205 段差部
206 排出孔
207 連通孔
208 凹部
210 開口端部
250 突出部

Claims (15)

  1. 潤滑油を貯留するとともに、冷媒ガスを流入させるための吸入配管を有する密閉容器内に、電動要素と前記電動要素によって駆動される圧縮要素とを収容し、
    前記圧縮要素は、圧縮室を形成するシリンダブロックと、前記圧縮室の端部に配設された吸入バルブと、前記圧縮室内を往復運動するピストンと、前記圧縮室に連通した消音空間を形成する吸入マフラーとを備え、
    前記吸入マフラーは、前記消音空間を形成する中空体と、前記密閉容器内の空間と前記消音空間とを連通する入口管と、前記消音空間と前記吸入バルブとを連通する出口管とを有し、
    前記入口管は、前記密閉容器内の空間への開口部を有する入口管入口部から前記消音空間への開口部を有する入口管出口部に向かって下方に傾斜するように設けられ、
    前記出口管は、前記消音空間への開口部を有する出口管入口部と前記吸入バルブへの開口部を有する出口管出口部とを有し、
    前記入口管入口部と前記出口管入口部とは同じ高さに形成されている密閉型圧縮機。
  2. 前記出口管は、前記出口菅入口部と前記出口管出口部との中間部に鈍角に曲折する曲折部を有する請求項1に記載の密閉型圧縮機。
  3. 前記入口管出口部は前記消音空間の底部に形成されるとともに、前記中空体の内壁面は、前記入口管出口部から前記出口管入口部にかけて、前記冷媒ガスを前記消音空間の下方から上方に導くように形成された請求項1記載の密閉型圧縮機。
  4. 前記入口管出口部近傍に、前記潤滑油を前記消音空間の外部に排出する潤滑油排出孔を設けた請求項3に記載の密閉型圧縮機。
  5. 前記吸入マフラーは、前記出口管入口部の上部を覆い、前記消音空間の前記冷媒ガスを前記出口管内に誘導する誘導壁を有する請求項1記載の密閉型圧縮機。
  6. 前記出口管入口部は、前記中空体の内壁面近傍に開口部を有する請求項1記載の密閉型圧縮機。
  7. 前記中空体には、少なくとも前記入口管入口部を含む範囲に前記冷媒ガスを滞留させる冷媒滞留部が形成された請求項1記載の密閉型圧縮機。
  8. 前記冷媒滞留部は、前記中空体の前記入口管入口部を含む範囲に形成された凹部からなる請求項7記載の密閉型圧縮機。
  9. 前記吸入配管の開口端部と前記入口管入口部とが相互に対向するように前記吸入配管及び前記入口管が配置され、前記入口管入口部は、前記密閉容器内での前記冷媒ガスの流動方向から見て上流側で、前記冷媒ガスのガス流が最初に当たる面とは逆の面の前記中空体の側壁部に配置されたことを特徴とする請求項7記載の密閉型圧縮機。
  10. 前記吸入配管の前記冷媒滞留部と対向する開口端部が、前記吸入配管の他の部分の内径より大きい請求項9記載の密閉型圧縮機。
  11. 前記冷媒滞留部は、少なくとも一部が前記消音空間に隣接する請求項7記載の密閉型圧縮機。
  12. 前記入口管入口部は、前記冷媒滞留部の下方の壁面よりも上方に配置された請求項7記載の密閉型圧縮機。
  13. 前記入口管入口部は、前記冷媒滞留部の壁面から前記密閉容器内方向に突出する突出部を有する請求項7記載の密閉型圧縮機。
  14. 前記冷媒滞留部の下方の壁面に、前記潤滑油の排出孔を設けた請求項7記載の密閉型圧縮機。
  15. 前記中空体が、前記吸入マフラーの前記消音空間と前記冷媒滞留部とを連通させる連通孔を有する請求項7記載の密閉型圧縮機。
JP2009522045A 2007-12-06 2008-11-20 密閉型圧縮機 Active JP4883179B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009522045A JP4883179B2 (ja) 2007-12-06 2008-11-20 密閉型圧縮機

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007315627 2007-12-06
JP2007315627 2007-12-06
JP2008124322 2008-05-12
JP2008124322 2008-05-12
PCT/JP2008/003404 WO2009072244A1 (en) 2007-12-06 2008-11-20 Hermetic compressor
JP2009522045A JP4883179B2 (ja) 2007-12-06 2008-11-20 密閉型圧縮機

Publications (2)

Publication Number Publication Date
JP2010511820A JP2010511820A (ja) 2010-04-15
JP4883179B2 true JP4883179B2 (ja) 2012-02-22

Family

ID=40377674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009522045A Active JP4883179B2 (ja) 2007-12-06 2008-11-20 密閉型圧縮機

Country Status (6)

Country Link
US (1) US8235683B2 (ja)
EP (1) EP2195535B1 (ja)
JP (1) JP4883179B2 (ja)
KR (1) KR101169524B1 (ja)
CN (1) CN101889140B (ja)
WO (1) WO2009072244A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463275B2 (ja) * 2010-12-15 2014-04-09 日立アプライアンス株式会社 密閉型圧縮機及びこれを備えた冷蔵庫
AU2012216658B2 (en) 2011-09-13 2016-09-15 Black & Decker Inc Method of reducing air compressor noise
US8899378B2 (en) 2011-09-13 2014-12-02 Black & Decker Inc. Compressor intake muffler and filter
EP2613054B1 (en) 2012-01-05 2019-03-27 Emerson Climate Technologies GmbH Noise attenuating cover
WO2014122931A1 (ja) * 2013-02-07 2014-08-14 パナソニック株式会社 密閉型圧縮機および冷凍装置
BR102014029659B1 (pt) * 2014-11-27 2022-01-11 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Filtro acústico de sucção e linha de sucção incluindo filtro acústico de sucção
CN105588318B (zh) * 2015-09-16 2019-03-15 青岛海信日立空调系统有限公司 一种消音器
US11111913B2 (en) 2015-10-07 2021-09-07 Black & Decker Inc. Oil lubricated compressor
BR102016013787B1 (pt) * 2016-06-14 2022-05-17 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Filtro acústico para compressor
EP3730791B1 (en) * 2017-12-18 2022-07-27 Nitto Kohki Co., Ltd. Pump
AT17214U1 (de) * 2019-12-19 2021-09-15 Anhui meizhi compressor co ltd Hermetisch gekapselter Kältemittelverdichter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8804016A (pt) * 1988-07-29 1990-03-20 Brasil Compressores Sa Aperfeicoamento em sistema de succao para compressor hermetico de refrigeracao
BR9102288A (pt) * 1991-05-28 1993-01-05 Brasileira S A Embraco Empresa Conjunto abafador de succao para compressor hermetico
US5260524A (en) * 1992-05-14 1993-11-09 The Coca-Cola Company Muffler for air compressor and method
US5496156A (en) * 1994-09-22 1996-03-05 Tecumseh Products Company Suction muffler
BR9604126A (pt) 1996-08-21 1998-05-26 Brasil Compressores Sa Amortecedor de sucção para compressor hermético
US6220050B1 (en) * 1998-11-24 2001-04-24 Tecumseh Products Company Suction accumulator
KR100386269B1 (ko) * 2001-01-11 2003-06-02 엘지전자 주식회사 압축기용 소음기
JP4682441B2 (ja) * 2001-05-07 2011-05-11 パナソニック株式会社 密閉型電動圧縮機
JP4101505B2 (ja) * 2001-12-05 2008-06-18 松下冷機株式会社 密閉型圧縮機
DE10205487C2 (de) * 2002-02-09 2003-12-11 Danfoss Compressors Gmbh Saugschalldämpfer für eine Kältemaschine
JP4581354B2 (ja) * 2003-08-26 2010-11-17 パナソニック株式会社 密閉型圧縮機
WO2005073558A1 (de) * 2004-01-29 2005-08-11 Acc Austria Gmbh Kältemittelverdichter
JP4701789B2 (ja) * 2005-03-30 2011-06-15 パナソニック株式会社 密閉型圧縮機
JP4735084B2 (ja) * 2005-07-06 2011-07-27 パナソニック株式会社 密閉型圧縮機

Also Published As

Publication number Publication date
WO2009072244A1 (en) 2009-06-11
EP2195535A1 (en) 2010-06-16
CN101889140B (zh) 2013-03-20
EP2195535B1 (en) 2018-01-03
US8235683B2 (en) 2012-08-07
KR101169524B1 (ko) 2012-07-27
CN101889140A (zh) 2010-11-17
JP2010511820A (ja) 2010-04-15
US20100239438A1 (en) 2010-09-23
KR20100051878A (ko) 2010-05-18

Similar Documents

Publication Publication Date Title
JP4883179B2 (ja) 密閉型圧縮機
JP5338355B2 (ja) 密閉型圧縮機および冷凍装置
JP5945845B2 (ja) 密閉型圧縮機
JP4752255B2 (ja) 密閉型圧縮機
JP5560580B2 (ja) 密閉型圧縮機
JP5120186B2 (ja) 密閉型圧縮機
JP4682745B2 (ja) 密閉型圧縮機
JP5793649B2 (ja) 密閉型圧縮機
JP5353445B2 (ja) 密閉型圧縮機および冷凍冷蔵装置
JP5386906B2 (ja) 冷媒圧縮機
US20220090590A1 (en) Linear compressor
JP5463275B2 (ja) 密閉型圧縮機及びこれを備えた冷蔵庫
JP4900151B2 (ja) 冷媒圧縮機
JP2017048746A (ja) 密閉型圧縮機および冷凍装置
JP2015034477A (ja) 密閉型圧縮機及びこれを備えた冷蔵庫
JP2016023573A (ja) 密閉形圧縮機及びこれを搭載した機器
JP2013245666A (ja) 密閉型圧縮機及びこれを備えた冷蔵庫
WO2011086912A1 (ja) 圧縮機
US20080219862A1 (en) Compressor
JP2012041862A (ja) 密閉型圧縮機

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4883179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250