JP4874580B2 - 異常原因特定方法および異常原因特定システム - Google Patents

異常原因特定方法および異常原因特定システム Download PDF

Info

Publication number
JP4874580B2
JP4874580B2 JP2005174137A JP2005174137A JP4874580B2 JP 4874580 B2 JP4874580 B2 JP 4874580B2 JP 2005174137 A JP2005174137 A JP 2005174137A JP 2005174137 A JP2005174137 A JP 2005174137A JP 4874580 B2 JP4874580 B2 JP 4874580B2
Authority
JP
Japan
Prior art keywords
manufacturing
trial
data
optimal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174137A
Other languages
English (en)
Other versions
JP2006351723A (ja
Inventor
宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005174137A priority Critical patent/JP4874580B2/ja
Priority to US11/452,305 priority patent/US7599817B2/en
Publication of JP2006351723A publication Critical patent/JP2006351723A/ja
Application granted granted Critical
Publication of JP4874580B2 publication Critical patent/JP4874580B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Description

本発明は、製品の製造過程における異常原因の特定方法と特定システムに関する。
製品、例えば、半導体装置の生産性を向上させる最大の課題の一つは、歩留りを向上させることである。歩留りを向上させるには、歩留りロスを分析し、ロスの原因となっている製造過程で用いられるプロセス、製造装置、あるいは設計条件を早期に解明し、改善することが重要である。しかし、半導体装置、特に、半導体集積回路(LSI)は数百の工程、製造装置を経て生産されるため、一旦LSIの不良品が発生すると、その不良品の異常原因を特定することは一般に非常に困難な作業である。
ウエーハプロセス終了後に行われる半導体装置の電気的特性試験であるウエーハテストの結果は、異常原因の解明に重要な手がかりを与えることがある。これは、複数の半導体装置を丸いウエーハ上に配置したまま、ウエーハプロセスとウエーハテストが行われるためである。ウエーハテストの結果をウエーハ面内位置でマッピング表示することで、ウエーハ面上の半導体装置の不良品の発生した位置が特定される。そのマッピング表示の代表的なものが、メモリ製品で取得されるフェイルビットマップ(Fail Bit Map:FBM)である。また、ロジック製品、あるいはメモリ混載ロジック製品等では、製品単位での良品(Pass)あるいは不良品(Fail)をマッピング表示した良品/不良品(Pass/Fail)マップがある。
これらのフェイルビットマップと良品/不良品マップでは、ウエーハ面内の不良分布は大きく分けて、ウエーハ面上の位置に依らず均等に分布するランダム不良分布と、どこかに偏りを生じるクラスタリング不良分布のどちらかに分類される。この内クラスタリング不良分布は、異常原因であるプロセス、製造装置等に起因している場合が多い。クラスタリング不良分布は、プロセスや製造装置に起因する異常原因の「指紋」であると考えられる。つまり、あるプロセス・製造装置に異常が発生した場合、そのプロセスや製造装置に固有のクラスタリング不良分布を有する不良品が発生する。
これらのことから、半導体装置の製造における異常原因の特定は、同じ分布を有するクラスタリング不良分布が発生した複数のウエーハあるいはこれらのウエーハで構成される複数のロットについて、製造過程のある工程で共通して処理された製造装置を特定することで行うことができる(例えば、特許文献1参照。)。
しかし、半導体装置の製造工程は何百もあり、個々の製造工程で異常原因の特定を可能にしようとすると、それらの製造工程と前後の検査工程で様々なデータを取得する必要があり、データの量が膨大になっていた。膨大なデータは異常原因を特定するために真に有意なデータを選択することを非常に困難にし、異常原因を特定できない問題があった。
特開2004−288743号公報
本発明は、膨大な数の製造工程を経て製造される製品においても、不良品の発生原因となった異常な製造工程を特定可能な異常原因特定方法と異常原因特定システムを提供する。
本願発明の一態様によれば、製造単位毎に製品の製造過程の複数の製造工程における複数種類の検査データを取得し、前記検査データを前記種類毎に標準化した特徴量を生成し、2水準直交表の2水準を前記種類の採用水準と不採用水準とし、前記2水準直交表の因子を前記種類として、前記2水準直交表の試行実験毎に前記採用水準である前記種類の前記検査データに対応する前記特徴量を選択した試行データセットを前記製造単位毎に生成し、前記試行データセットに関して、前記製造単位間の類似の度合いを表す類似度を算出し、前記製造単位の1つ毎に対して、前記類似度が閾値以上になる他の前記製造単位を抽出した試行集合を生成し、前記製造工程で用いられた複数の製造装置の差異と前記試行集合を構成する前記製造単位の因果関係の度合いを表す工程検定値を、前記試行実験毎のそれぞれの前記製造工程に対して算出し、前記試行実験毎に、前記試行集合の中から望目特性の程度が最も大きい前記工程検定値を試行実験検定値に設定し、前記試行実験検定値の望目特性の最適化のための前記種類毎の前記採用水準と前記不採用水準の要因効果図に基づいて、前記採用水準が選択された前記種類に対応する前記特徴量からなる最適データセットを前記製造単位毎に生成し、前記最適データセットに関して、前記製造単位間の類似の度合いを表す最適類似度を算出し、前記製造単位の1つ毎に対して、前記最適類似度が閾値以上になる他の前記製造単位を抽出した最適集合を生成し、前記製造工程で用いられた複数の前記製造装置の差異と前記最適集合を構成する前記製造単位の因果関係の度合いを表す最適検定値を、前記製造工程毎に算出し、前記最適集合毎に、前記最適検定値に基づいて、前記製造装置の差異と前記最適集合の前記因果関係が有意であるか判定し、前記最適集合毎に、有意であると判定された前記因果関係の対象である前記製造装置を異常原因として抽出することを特徴とする異常原因特定方法が提供される。
また、本願発明の一態様によれば、製造単位毎に製品の製造過程の複数の製造工程における複数種類の検査データを取得するデータ取得部と、前記検査データを前記種類毎に標準化した特徴量を生成する特徴量生成部と、2水準直交表の2水準を前記種類の採用水準と不採用水準とし、前記2水準直交表の因子を前記種類として、前記2水準直交表の試行実験毎に前記採用水準である前記種類の前記検査データに対応する前記特徴量を選択した試行データセットを前記製造単位毎に生成する試行データセット生成部と、前記試行データセットに関して、前記製造単位間の類似の度合いを表す試行類似度を算出する試行類似度算出部と、前記製造単位の1つ毎に対して、前記類似度が閾値以上になる他の前記製造単位を抽出した試行集合を生成する試行集合生成部と、前記製造工程で用いられた複数の製造装置の差異と前記試行集合を構成する前記製造単位の因果関係の度合いを表す工程検定値を、前記試行実験毎のそれぞれの前記製造工程に対して算出する工程検定値算出部と、前記試行実験毎に、前記試行集合の中から望目特性の程度が最も大きい前記工程検定値を最大検定値に設定する最大検定値設定部と、前記最大検定値の望目特性の最適化のための前記種類毎の前記採用水準と前記不採用水準の要因効果図に基づいて、前記採用水準が選択された前記種類に対応する前記特徴量からなる最適データセットを前記製造単位毎に生成する最適データセット生成部と、前記最適データセットに関して、前記製造単位間の類似の度合いを表す最適類似度を算出する最適類似度算出部と、前記製造単位の1つ毎に対して、前記最適類似度が閾値以上になる他の前記製造単位を抽出した最適集合を生成する最適集合生成部と、前記製造工程で用いられた複数の前記製造装置の差異と前記最適集合を構成する前記製造単位の因果関係の度合いを表す最適検定値を、前記製造工程毎に算出する最適検定値算出部と、前記最適集合毎に、前記最適検定値に基づいて、前記製造装置の差異と前記最適集合の前記因果関係が有意であるか判定する判定部と、前記最適集合毎に、有意であると判定された前記因果関係の対象である前記製造装置を異常原因として抽出する抽出部を有することを特徴とする異常原因特定システムが提供される。
本発明の一態様に係る異常原因特定方法および異常原因特定システムによれば、膨大な数の製造工程を経て製造される製品においても、不良品の発生原因となった異常な製造工程を特定可能な異常原因特定方法と異常原因特定システムを提供できる。
次に、図面を参照して、本発明の実施の形態について説明する。なお、以下では本発明の実施形態を図面に基づいて説明するが、図解のためだけであり、本発明はそれらの図面に限定されるものではない。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。
(半導体装置の製造システム)
図1に示すように、半導体装置の製造システムは、クリーンルーム10を有し、クリーンルーム10内には、製造装置11、13、インライン検査装置12とインラインクオリティコントロール(QC:Quality Control)測定装置14、さらに、製造装置11、13に接続されたイクイプメントエンジニアリングシステム(EES:Equipment Engineering System)15、16が設置されている。
製造装置11、13は、半導体装置を製造するために、様々な動作条件でロットを構成する半導体ウエーハの処理を行っており、この処理に伴い装置状態が刻々と変化している。装置状態は、例えば、チャンバー内圧力や、ガス流量、温度、あるいは露光装置の露光量等様々な物理量で表せる。時刻毎のこれらの物理量のデータは、EESデータと呼ばれ、製造装置11、13の傍らにこれらの装置状態をモニタするEESユニット15、16を取り付けることで取得することができる。半導体装置の製造システムでは、このEESユニット15、16により取得されたEESデータはEESデータサーバ21に送られ、EESデータベース22に格納される。また、主要な製造工程の前後では、検査工程が設けられ、製造途中の半導体ウエーハ上の異物、および回路パターンの異常がインライン検査装置12により検査されている。この検査結果であるディフェクトデータはディフェクトデータサーバ23を通じてディフェクトデータベース24に格納される。また、同様に主要な製造工程の前後において、測定工程が設けられ、製造工程の処理で付加される薄膜の膜厚や加工された形状の寸法等が測定される。これらの膜厚や寸法はQCデータと呼ばれ、QCデータサーバ25を介してQCデータベース26に格納される。また、製品となる半導体装置とは別に、電気的特性評価用のテストエレメントグループ(TEG:Test Element Group)が専用のロットやウエーハ、あるいは半導体装置の製品回路パターンの一部として作製され、ウエーハプロセス終了後にウエーハのままTEGの電気的特性が特性テスタ19により測定される。測定結果は特性データサーバ29を介して、特性データベース30に保存される。さらにウエーハプロセスを終了した半導体装置は、意図した動作を行うかテストされる。このテストはウエーハ上に配置されたままで実施されるので、ウエーハテストと呼ばれる。動作不良が認められた場合、不良の種類と、不良動作をした半導体装置に相当するチップのウエーハ面内の位置がウエーハテストデータとしてウエーハテストデータサーバ27に取得される。ウエーハテストデータはウエーハテストデータサーバ27を介してウエーハテストデータベース28に保存される。
また、クリーンルーム10内に流れているロットは、生産管理サーバ17上で全てのロットにロット番号が付加され、各ロット毎に製造工程、検査工程と測定工程の処理順を規定した製造フロー、製造スケジュール、製造工程毎の製造条件が管理されて、ロットデータベース18に記憶されている。
各ロットが処理された製造装置11、13の識別番号、処理日時(すなわちロットの製造装置履歴)、および各ロットのEESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータはロット番号と対応付けてデータベース22、24、26、28、30上で記憶される。このように、半導体装置の製造システムにおいては、EESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータが取得され、製造装置履歴と共にロット単位に管理されている。
(異常原因特定システム1)
半導体装置の製造システムは、異常原因特定システム1を有している。異常原因特定システム1は、中央演算装置CPUを有する。すなわち、異常原因特定システム1は、コンピュータであってもよく、コンピュータにプログラムに書かれた手順を実行させることにより、異常原因特定システム1を実現させてもよい。また、異常原因特定システム1は、ロット波形データベース5、直交表データベース6、最適波形データベース7、不良原因データベース8を有している。CPUは、波形化ユニット2、波形最適化ユニット3と装置差異分析ユニット9を有している。
図2に示すように、波形化ユニット2は、データ取得部31と特徴量生成部32を有している。
波形最適化ユニット3は、試行データセット生成部33、試行類似度算出部36、試行集合生成部37、工程検定値算出部38、最適検定値設定部39、最適データセット生成部97を有する。試行データセット生成部33は、直交表サイズ選択部34と割り付け部35を有する。最適データセット生成部97は、要因効果図作成部98と有意データ選択部99を有する。
装置差異分析ユニット9は、最適類似度算出部91、最適集合生成部92、最適検定値算出部93、判定部94、抽出部95と出力部96を有している。
(半導体装置の製造方法)
図3に示すように、半導体装置の製造方法では、まず、ステップSt1で、生産管理サーバ17が、半導体装置の製造単位であるロット毎に、製造フローを生成し、ロットデータベース18に記憶させる。製造フローには半導体装置を製造するための複数の製造工程の順番と、製造工程毎の製造条件が設定されている。
ステップSt2で、生産管理サーバ17が、ロット毎に、検査項目を設定し、ロットデータベース18に記憶させる。検査項目として、検査工程、測定工程やテスト工程を実施する前後の製造フローの製造工程と検査工程、測定工程やテスト工程の検査条件等が設定されている。
ステップSt3で、生産管理サーバ17が、半導体装置のロット毎に作製開始指示の有無の判定を行う。作製開始指示がなければ半導体装置の製造方法を終了する。作製開始指示があれば、ステップSt4に進む。
ステップSt4で、製造フローにしたがって、ロット毎に、クリーンルーム10内の製造装置11、13を用いて半導体装置を作製する。
ステップSt5で、製造フローにしたがって、ロット毎に、クリーンルーム10内のインライン検査装置12、インラインQC測定装置14とEESユニット15、16、クリーンルーム10外の特性テスタ19とウエーハテスタ20を用いてEESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータを取得する。EESデータ、QCデータ、特性データ、ウエーハテストデータは、サーバ21、23、25、27、29を介して、データベース22、24、26、28、30に記憶される。
ステップSt6で、異常原因特定システム1が、EESデータ、QCデータ、特性データ、ウエーハテストデータを用いて異常原因特定方法を実施し、異常原因である製造装置の識別符号とこの製造装置を用いた製造工程の識別符号を出力する。
ステップSt7で、異常原因特定システム1が、異常原因である製造装置と製造工程の識別符号の有無に基づいて、異常原因の有無を判定する。異常原因がなければステップSt3に戻る。異常原因があればステップSt8に進む。
ステップSt8で、異常原因特定システム1が、異常原因の製造装置で処理されたロットの集合毎に、異常原因となった製造装置が用いられた製造工程に関係するEESデータ、QCデータ、特性データ、ウエーハテストデータを異常データとして抽出する。
ステップSt8で、異常原因となった製造装置11、13が、オペレータ等により異常データが修正されるように調整される。調整後ステップSt9に進む。
(異常原因特定方法)
図4に示すように、異常原因特定方法は、まず、ステップSt11で、データ取得部31が、製造単位であるロットの識別番号を、ロットデータベース18から取得する。
ステップSt12で、データ取得部31が、取得した識別番号に対応するロット毎に製品の製造過程の複数の製造工程における複数種類の検査データすなわちEESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータを、データベース22、24、26、28、30から取得する。
ステップSt13で、特徴量生成部32が、検査データを検査データの種類毎に標準化した特徴量を生成することにより、種類毎の検査データを共通波形化する。
半導体装置の製造における異常は、EESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータにおいて様々な形で現れる。例えば、ウエーハテストデータにおいてロット内の不良チップが増大し、歩留まりの低下として現れる。また製造工程途中の検査によるディフェクトデータとQCデータにおいて、異物の増加や、加工形状の仕様範囲からの逸脱として現れることもある。これらの異常原因を早期に特定するために、取得されたEESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータの解析が以後のステップで行われる。解析では、装置差異分析を用いるが、EESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータはそれぞれ独自の形式で取得されており、異種データを組み合わせた解析を行うことができない。そこで、ロット単位で各データを共通の形式の特徴量による数値群で表現した。各データに対し共通形式への変換アルゴリズムを定義した。
例えば、ウエーハテストデータに対しては、図7と図8に示すようなウエーハ面上の領域を定義し、各領域における存在割合を算出し、この存在割合をロット単位に積算および平均化した値を特徴量に用いた。図8の不良品の分布のクラスタリングした分布が類似するか否かの類似性を定量的に表すため、不良のクラスタリングした分布を多数の数値群である特徴量で表す。
まず、ウエーハを複数の領域区分に分ける。図7に示すように、ウエーハの半径をrとした時、ウエーハの中心から半径方向1/2rの距離に設けられた境界線47と、半径方向3/4rの距離に設けられた境界線48と、ウェーハエッジに接するようにウエーハの最外周に配置されたチップとそれ以外のウエーハの内側に配置されたチップを分ける境界線49を設けた。これらの3本の境界線47乃至49により、ウエーハ表示領域41を4つのリング状の領域43乃至46に分けた。
次に、ウエーハを中心の中心角の角度方向に45度毎に区分する8本の境界線61乃至68を設けた。これらの8本の境界線61乃至68により、ウエーハ表示領域41を8つの扇状の領域51乃至58に分けた。
半径方向の領域43乃至46と角度方向の領域51乃至58を組み合わせて、全部で104個の領域区分を定義した。例えば、領域区分Aは、半径方向1/2rから3/4rの領域区分44と角度方向315度から360度の領域区分58の論理積として定義される。領域区分Bは、半径方向はウェーハエッジ領域区分46、角度方向は0度から180度の領域区分51乃至54の論理積として定義される。他の領域区分も同様に半径方向と角度方向の各領域区分の論理積として定義できる。
次に、図8に示すように、不良ビットの不良表示領域71乃至80と領域区分の位置を比較し、104個それぞれの各領域区分iにおける不良ビットの存在割合fiを求める。不良ビットの存在割合fiは、領域区分iに属する全ビット数をnri、領域区分iで発生した不良ビットの合計数をnfiとした時に、式1で計算する。

fi= nfi / nri (1)

ここで、iは各領域区分に付けた番号である。
例えば、不良ビット71は、領域区分44と領域区分54の論理積の領域区分1に配置され、領域区分1に属する全ビット数が10ビットの場合、不良ビットの存在割合fは1/10より0.1である。不良ビット72は、領域区分43と領域区分51の論理積の領域区分2に配置され、領域区分2に属する全ビット数が10ビットの場合、不良ビットの存在割合fは1/10より0.1である。不良ビット73は、領域区分43と領域区分56の論理積の領域区分3に配置され、領域区分3に属する全ビット数が10ビットの場合、不良ビットの存在割合fは1/10より0.1である。不良ビット74乃至78は、領域区分46と領域区分58の論理積の領域区分4に配置され、領域区分4に属する全ビット数が10ビットの場合、不良ビットの存在割合fは5/10より0.5である。不良ビット79、80は、領域区分46と領域区分57の論理積の領域区分5に配置され、領域区分5に属する全ビット数が10ビットの場合、不良ビットの存在割合fは2/10より0.2である。不良ビット74乃至80は、領域区分46と領域区分57、58の論理積の領域区分6に配置され、領域区分6に属する全ビット数が20ビットの場合、不良ビットの存在割合fは7/20より0.35である。不良ビット74乃至78は、領域区分46と領域区分51、58の論理積の領域区分7に配置され、領域区分7に属する全ビット数が20ビットの場合、不良ビットの存在割合fは5/20より0.25である。
このような不良ビットの存在割合fを用いて、ロット毎の特徴量を算出する。特徴量は、存在割合fをロット単位に積算および平均化して算出した。具体的には、図9に示すように、ウエーハテストデータについては、ロット#1672では、領域区分1で特徴量は0.467であり、この0.467の特徴量に波形番号1を割り付けている。また、領域区分2で特徴量は0.762であり、この0.762の特徴量に波形番号2を割り付けている。以下同様に、領域区分3から104までのそれぞれの特徴量を算出し、このそれぞれの特徴量に波形番号3から104を割り付けている。
不良ビットを探すウエーハテストは、様々な種類の電気的特性について行われる。例えば、各ビットがメモリとして動作するか否かを判定するファンクションテストや、メモリとして動作はしていても、動作時間や電流値が製品規格を満たしているかを判定するマージンテストがある。式1の不良の領域区分毎の存在割合fは各ウエーハテスト毎に、そして、各ロットの各ウエーハ毎に計算した。特徴量は、領域区分毎に、存在割合fをロット単位に積算および平均化して算出し、それぞれの特徴量に波形番号を割り付けた。
ディフェクトデータ、特性データおよびQCデータに対しては、図7の領域区分毎の測定値のロット平均値を特徴量に用いた。それぞれの特徴量に波形番号を割り付けた。
EESデータに対しては、製造装置11、13での各ロットの処理期間中の装置状態の時系列変化を用いた。具体的には、図10に示すように、EESデータとして、ロット#1672について、1秒間隔に製造装置11のチャンバー内圧力が取得されている場合に、図11に示すように、1秒間隔の各時刻毎のチャンバー内圧力を特徴量として算出する。そして、それぞれの特徴量に波形番号を割り付けた。
これらの一連の波形番号を有する特徴量を、波形番号に対する特徴量のグラフに折れ線グラフとして記載すると、図12に示すように、ウエーハテストデータ、製造工程Aディフェクトデータ、製造工程Bディフェクトデータ、・・・トランジスタ閾値電圧データ毎に波形状のデータとなる。これらの波形状のデータをそれぞれウエーハテスト波形データ、製造工程Aディフェクト波形データ、製造工程Bディフェクト波形データ、・・・トランジスタ閾値電圧波形データと呼ぶ。これらの波形データはロット番号と対応付けてロット波形データベース5に記憶して格納される。
ここで、各EESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータに基づいた波形データの特徴量は単位と桁数が異なるため、各EESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータに基づいた波形データの間でそのまま比較することは困難である。そこで、各波形データについて、平均μ、標準偏差σを算出し、式2により特徴量xを一般化特徴量x’に標準化したものを波形データとした。
Figure 0004874580
標準化の方法は、各波形が同じオーダーで扱えれば、他の方法でもよい。例えば各波形の変動域を求め、それらを特定の範囲に収まるよう変換してもよい。
図4のステップSt14で、図2の波形化ユニット2が全てのロットの全てのEESデータ、ディフェクトデータ、QCデータ、特性データ、ウエーハテストデータを共通波形化した波形データを生成したか否か判定する。全ての波形データが生成されていなければステップSt13に戻り、全ての波形データが生成されていればステップSt15に進む。
ステップSt15で、波形最適化ユニット3が波形最適化を実施する。波形最適化は、図5の波形最適化のフローチャートにしたがう。
ステップSt13の共通波形化によって、フェイルビットマップと良品/不良品マップにおけるウエーハ面内の不良分布の類似性の定量化が可能になる。ロット間の類似性の定量化は、波形データの類似性の定量化であると捉えることができる。すなわち、類似する形状の波形データを有するロットは、類似するクラスタリング不良分布で分布する不良品を有していると考えられる。波形データ間の類似性の定量化は可能だからである。しかし、波形データが類似するか否かの判定にロットが有する全ての波形データが必要なわけではない。そこで、波形最適化では、ウエーハ面内の不良分布の類似性の判定に必要な波形データのみを採用する。
波形最適化は2水準直交表を用いて行った。2水準直交表の2水準を取得された波形データの種類を採用する採用水準と採用しない不採用水準とした。
図5のステップSt21で、図2の直交表サイズ選択部34が、直交表が記憶された直交表データベース6に基づいて、取得された波形データの種類の数に応じて2水準直交表のサイズを決定した。例えば、実施例1では10種類の波形データが取得されている場合を想定し、図13に示すL12直交表を用いた。このL12直交表では、水準1を採用水準とし、水準2を不採用水準とする。12回の試行により、10種類の波形データの採用不採用の選択を行うことができる。
L12直交表の横方向は因子番号1乃至11である。図14に示すように、割り付け部35が波形データの種類を示す波形データ名を因子番号1乃至10に割り付ける。なお、実施例1では因子11番には波形データは割り付けない。
ステップSt22で、試行データセット生成部33が、試行番号に1を設定する。以下、ステップSt28まで、試行番号毎に、全ての試行番号に関して実施される。
ステップSt23で、試行データセット生成部33が、2水準直交表の試行実験毎に、採用水準1である因子番号に対応する波形データ名を選択した試行データセットをロット毎に生成する。例えば、試行番号2の試行実験においては、図13の直交表で水準「1」と表示されている因子番号1から5の波形データを採用し、水準「2」と表示されている因子番号6から10の波形データを採用していない試行データセットを生成する。
ステップSt24で、試行類似度算出部36が、試行データセットに関して、製造単位のロット間の類似の度合いを表す試行類似度を算出する。試行類似度としては、試行データセットの波形データの特徴量あるいは一般化特徴量に関する全ての対象ロット間の相関係数を用いることができる。試行データセットの一般化特徴量をロット間でプロットした散布図から、ウエーハ間の相関関係が視覚的にもわかるが、相関係数を求めることにより試行類似度を定量化することができる。
試行集合生成部37が、ロットの1つ毎に対して、類似度例えば相関係数が閾値以上になる他のロット名を抽出した試行類似ロット集合を生成する。例えば、実施例1では、閾値を0.8に設定した。相関係数が閾値0.8以上であれば、その相関係数を有する2つのロットは、不良の分布が互いに類似していると判断する。そして、図15に示すように、試行実験毎に、互いのロットが類似している関係を有する試行類似ロット集合S11乃至S13、S21、S22、S31乃至S34、・・・S121乃至S123を生成する。
図15に示すように、試行実験毎に、試行類似ロット集合は複数個存在することがあり、試行類似ロット集合の要素となっているロット数の多い順に番号を付けている。例えば、第n回目の試行実験による波形データ選択で形成された試行類似ロット集合では、第m番目に要素が多い試行類似ロット集合をSnmと表現している。例えば、図13の直交表の試行番号2の試行実験においては、因子番号1から5までの波形データを用いて試行データセットを形成し、その試行データセットにおいて互いに類似するロットにより試行類似ロット集合を形成する。試行データセットの特定位置にピークを5個有する波形を持つロット数が最も多く、ピークを7個有する波形を持つロット数が次に多かったとすると、ピークを5個有する波形のロットの試行類似ロット集合がS21となり、ピークを7個有する波形のロットの試行類似ロット集合がS22となる。以下同様である。
図15に示すように、各試行実験において試行類似ロット集合は複数個存在することがあるので、試行実験毎に試行類似ロット集合を構成要素とする類似波形ロット群を形成する。例えば、試行実験1の類似波形ロット群の構成要素は、試行類似ロット集合S11乃至S13である。また、ある1週間にクリーンルーム10で製造されたロットを対象ロットと設定し、対象ロットに関して図15に示す各試行実験における類似ロット集合を求めた。
次に、図5のステップSt25で、波形最適化ユニット3が、得られた試行類似ロット集合Snmに対し、装置差異分析を実行する。装置差異分析は、試行類似ロット集合Snmを構成するロットの製造に用いられた図1の製造装置11、13の偏りを統計検定することにより行われる。
より詳細には、まず、工程検定値算出部38が、製造工程で用いられた複数の製造装置の差異と試行類似ロット集合を構成するロットの偏りを、試行実験毎のそれぞれの製造工程に対して算出する。この偏りは、製造工程で用いられた複数の製造装置の差異と試行類似ロット集合を構成するロットの因果関係の度合いを表すと考えられる。すなわち、工程検定値算出部38では、試行類似ロット集合を構成するそれぞれのロットを製造した製造装置の、製造工程で用いられた複数の製造装置に対する偏りを統計検定する。
具体的には、図6に示すような、製造フローで半導体装置が製造されているとする。この製造フローは、製造工程F1、検査工程F2、製造工程F3、検査工程F4、・・・製造工程Fn、検査工程Fn+1、・・・特性テスト、ウエーハテストの順番に実施される製造フローである。この製造フローで半導体装置のロット#1乃至#6の6ロットが製造されたとする。製造工程F1では、製造装置11a乃至11cの3台の製造装置が用いられた。製造装置11aでは、ロット#1と#4が処理された。製造装置11bでは、ロット#2と#5が処理された。製造装置11cでは、ロット#3と#6が処理された。製造工程F3では、製造装置13a乃至13cの3台の製造装置が用いられた。製造装置13aでは、ロット#1が処理された。製造装置13bでは、ロット#2と#4が処理された。製造装置13cでは、ロット#3、#5と#6が処理された。製造工程Fnでは、2台の製造装置が用いられた。一方の製造装置では、ロット#1、#3と#5が処理された。他方の製造装置では、ロット#2、#4と#6が処理された。ここで、試行類似ロット集合の構成要素がロット#1と#4であるとすると、処理したロット#1と#4の組み合わせが一致している製造装置11aの因果関係の度合いは、他の製造装置に比べて大きくなるように設定されることになる。このことにより、製造装置11aで異常が発生したことがわかることになる。
以下に、装置差異分析の計算方法を述べる。製造工程qにおいて、N台の製造装置が使われているとき、それらの装置を製造装置M1、M2、・・・、MNと表記する。各製造装置M1、 M2、・・・、MNの全処理ロット数を、A1, A2, ・・・,ANとする。全対象ロット数Aは、式3で表される。

A=A1+A2+・・・+AN ・・・(式3)

また各製造装置M1、M2、・・・、MNの不良ロット処理数を、F1、F2、・・・、FNとする。試行類似ロット集合Snmの要素数Fは、式4で表される。

F=F1+F2+・・・+FN ・・・(式4)

各製造装置M1、M2、・・・、MNの不良ロット処理数の期待値E1、E2、・・・、ENは、式5で表される。

Ei=F・Ai/A (i=1、2、・・・、N) ・・・(式5)

さらに、各製造装置M1、M2、・・・、MNのχ2値を、式6で求める。

χ2 i=(Fi-Ei)^2/Ei (i=1、2、・・・、N) ・・・(式6)

そして、製造工程qにおけるχ乗値χ を、式7で求める。

χ =χ +・・・+χ N ・・・(式7)

最後に、自由度Nのχ分布関数をf(χ, N)とすると、製造工程qのχ検定値Pqは、式8で求める。

Pq=f(χ , N-1) ・・・(式8)

製造工程qのχ検定値Pqが0.05以下なら、製造工程qにおいて、95%の信頼度で有意差があると判定される。すなわち、製造工程qのχ検定値Pqは、望小特性であると考えられる。製造フローの全製造工程qのχ検定値Pqの中で、最小値を取るχ検定値Pqを試行類似ロット集合Snmの装置差異分析検定値Pnmとした。装置差異分析検定値Pnmは、試行類似ロット集合Snmを構成するロットを製造した製造装置で異常の発生している度合いである異常度を表していると考えられる。図15に示すように、試行類似ロット集合Snmごとに、異常度Pnmが1つずつ求まる。そして、試行実験nにおいて最小の異常度Pnmを、その試行実験nにおける最小異常度Pnとした。最小異常度Pnの値を図15の右欄に記載した。最小異常度Pnは、試行実験ごとにおける最小のχ検定値Pqである。
なお、異常度が製造工程qのχ検定値Pqのように望小特性であれば最小値を用いるのであるが、異常度が望大特性であれば、最小値に換えて最大値を用いることになる。統一的に考えると所望の特性すなわち望目特性の程度が最も大きくなるように、異常度Pnmと最小異常度Pnを設定することになる。そこで最小異常度Pnの統一的な名称を最大異常度Pnとする。最適検定値設定部39は、試行実験毎に、試行集合の中から望目特性の程度が最も大きい異常度を最大異常度Pnに設定する。
ステップSt26で、最適検定値設定部39は、図15に示すように、最大異常度Pnの値を試行番号nに関係付けて記憶する。
ステップSt27で、波形最適化ユニット3が、試行番号nに1を加算する。ステップSt28で、波形最適化ユニット3が、全ての試行実験を行ったか判定する。全ての試行実験を行っていなければステップSt23に戻る。全ての試行実験を行っていればステップSt28に進む。
ステップSt29で、図16に示すように、最大異常度Pnの望目特性の最適化のための波形データの種類毎の採用水準と不採用水準の要因効果図を作成する。近年、複数の要因から成る系を最適化する手法としてタグチメソッドが知られるようになった。この手法では、要因の条件等の水準を直交表に従って変化させた試行実験を行うことで、少ない実験回数で最適条件を見出すことができる。このタグチメソッドを実施例1の2水準直交表を用い、要因を複数種類の波形データとし、要因の水準1を波形データ採用、水準2を非採用とする波形データセットの最適化に適用した。実施例1の最大異常度の検定値Pnは小さいほど有意であるので、望小特性による最適化をタグチメソッドで行った。以下タグチメソッドの計算方法を示す。
試行実験毎に最大異常度の検定値P1、P2、・・、Pn、・・、P12を用いて、ここでi(i=1、2、・・・、12)番目の試行実験に対するSN比Kiを、タグチメソッドの計算公式に従って、式9で求める。

Ki=−10log(Pi 2) (i=1、2、・・・、12) ・・・(式9)

次に因子の水準の平均値を求める。例えば、波形データj(j=1、2、・・・、11)が割り当てられている因子jの水準k(k=1、2)の平均値Xjkは、直交表で因子jの水準がkになっている試行実験におけるSN比の平均を求めればよい。例えば、波形データ1が割り当てられている因子1の水準1の平均X11は、試行1から6までの6この試行実験で水準が水準1であるので式10で求められる。

X11=(K1+K2+K3+K4+K5+K6)/6 ・・・(式10)

そして、図16に示すように、因子j毎に、因子jの水準1と2の平均値Xj1とXj2を結ぶグラフを作成する。図16のグラフは要因効果図と呼ばれ、縦軸の平均値Xj1とXj2はSN比と呼ばれる。水準1が該当する波形データj(j=1、2、・・・、10)を採用する水準であるので、採用する水準1の平均値Xj1が採用しない水準2の平均値Xj2より大きいのであれば、すなわち、グラフが右下がりであれば、その波形データjを採用したほうが採用しないよりSN比が高くなる。SN比が高ければ高いほど、装置差異分析の検定値がより有意な値をとることを示す。なお、実施例1で、因子番号11には波形データを割り当てていないが、因子番号11の水準1と2でSN比に差が生じている。この差は実施例1の波形最適化における誤差と考えられる。従って、装置差異分析に用いると有効な波形データを選択するためには、波形データを割り当てていない因子11の水準1と2でSN比に差より大きい水準1と2のSN比の差を有し、水準1のSN比が水準2のSN比より大きい、右下がりの因子に割り当てられている採用水準を選択し、この採用水準に対応する波形データを選択すればよい。
図17に示すように、図5のステップSt30で、有意データ選択部99が、要因効果図に基づいて、選択された採用水準に対応する有意な波形データの最適波形データ名を抽出する。図16の要因効果図からウエーハテスト、装置A圧力とトランジスタ閾値電圧を採用し、最終的には、図17のウエーハテスト、工程Cディフェクトデータ、装置A圧力、装置Bガス流量とトランジスタ閾値電圧を採用した。そして、要因効果図より選択し採用した波形データの種類を図1の最適波形データベース7に記憶した。
図18に示すように、最適データセット生成部97が、最適波形データ名に対応する波形データで構成される最適データセットをロット毎に生成する。以上で、図5の波形最適化のフロー、そして、図4のステップSt15の波形最適化が終了する。
ステップSt16で、装置差異分析ユニット9が、ロット毎の最適データセットを用いて、
最適類似波形ロット群を形成する。
より詳細には、まず、最適類似度算出部91が、最適データセットに関して、ロット間の類似の度合いを表す最適類似度を算出する。最適類似度の算出方法は、図5のステップSt24の試行類似度の算出方法と同じである。
次に、最適集合生成部92が、試行集合生成部37と同様に、ロットの1つ毎に対して、最適類似度が閾値以上になる他のロット名を抽出した最適類似ロット集合を生成する。そして、最適類似ロット集合を要素とする最適類似波形ロット群を生成する。
ステップSt17で、最適検定値算出部93が、最適類似波形ロット群の各最適類似ロット集合に対し、装置差異分析を実施した。装置差異分析の方法は、図5のステップSt25の試行類似ロット集合に対する装置差異分析と同様である。すなわち、最適検定値算出部93が、製造工程で用いられた複数の製造装置の差異と、最適類似ロット集合を構成するロットの因果関係の度合いを表す最適検定値を、製造工程毎に算出する。具体的には、最適検定値算出部93では、最適類似ロット集合を構成するそれぞれのロットを製造した製造装置の、製造工程で用いられた複数の製造装置に対する偏りを統計検定する。
ステップSt18で、判定部94が、最適類似ロット集合毎に、最適検定値に基づいて、製造装置の差異と最適類似ロット集合の因果関係が有意であるか判定する。具体的には、所定の閾値を満足する最適検定値をともなう製造装置と最適類似ロット集合を因果関係が有意と判定し、閾値を満足しない最適検定値をともなう製造装置と最適類似ロット集合を因果関係が有意でないと判定する。この判定により、図19に示すように、有意である最適類似ロット集合S01とS02が求められた。抽出部95は、最適類似ロット集合毎に、有意であると判定された因果関係の対象である製造装置を異常原因として抽出する。
ステップSt19で、出力部96が、異常原因を出力する。また、図19に示すように、最適類似ロット集合S01とS02のロット毎に各波形データを平均化した。そして、ウエーハテストデータ、工程CディフェクトデータのQCデータ、トランジスタ閾値電圧に対してはロットを構成するウエーハ内の面内傾向として表示した。製造装置11のチャンバー圧力と製造装置13のガス流量のEESデータに関しても、装置状態の時系列変動の平均を図示した。図19より、ウエーハテストデータでは、最適類似ロット集合S01とS02共にウエーハ右側外周に不良が多い傾向が共通している。しかし、最適類似ロット集合S01では製造工程Cでウエーハ右側に異常が多く、トランジスタの閾値電圧分布もウエーハ右側で異常がみられた。同時に抽出された工程CディフェクトデータのEESデータより、最適類似ロット集合S01の異常原因が製造装置11aの圧力異常であることが判明した。一方、最適類似ロット集合S02では、製造装置13bのガス流量変動が異常原因であることがわかった。従来手法では、例えばウエーハテストデータだけで類似ロットを形成し、装置差異分析を掛けていた。しかし、最適類似ロット集合S01とS02のように、同じウエーハ右側外周部での不良でも、実施例1のように異常原因がことなる両者を混在させた装置差異分析では、これらの異常原因を分離できず特定できなかった。実施例1では、ロットに関する複数種類の波形データを統一的に扱うことで、類似ロット集合の形成を正確にし、不良原因を特定することができた。以上で異常原因特定方法が終了する。異常原因特定方法は、手順としてコンピュータが実行可能な異常原因特定プログラムにより表現することができる。この異常原因特定プログラムをコンピュータに実行させることにより、異常原因特定方法を実施することができる。
以上説明したように、実施例1では、ロットに係る各種データを共通形式の波形データに変換し、波形データの比較により類似する波形データに対応するロットからなる類似ロット集合を形成し、類似ロット集合を構成する複数のロット間で装置差異分析を実施する。各種波形データの採用可否は2水準直交表を用い、装置差異分析の検定値の望小あるいは望大特性の最適化により装置差異分析等に一部の波形データを採用しないことで、計算量を低減し、異常原因を正確かつ効率的に特定することができる。
実施例1では2水準直交表による波形データの採用不採用の選択を、全種類の波形データを対象に行ったが、実施例2のように特定の波形データを常に選択するように事前に選択してもよい。例えば、ウエーハテストにおいてウエーハ中央に不良チップが多発するクラスタリング不良があり、かつ、同じウエーハ中央傾向のクラスタリング不良の原因が複数存在する場合を考える。
まず、実施例1では、ウエーハテストの波形データだけでウエーハ中央不良ロット群Scを形成する。しかしウエーハ中央不良ロット群Scで装置差異分析を行ってもその不良原因は特定できない。
そこで、実施例2では、直交表による波形データ選択においては、ウエーハテストデータはどの試行においても常に採用することにする。さらに、採用された波形データから最適類似ロット群Scoを形成する際は、ウエーハ中央不良ロット群Scからロットを収集する。そして、装置差異分析では全対象ウエーハと最適類似ロット群Scoに対し検定を行う。こうすることで、ウエーハテストデータでは区別の付かないウエーハ中央不良ロット群Scを区別する波形データが抽出され、区別されたウエーハ中央不良ロット群Scに対し装置差異分析を行うことで、各々の異常原因を特定することができる。
実施例3では、半導体装置の製造工程中に取得される波形データ群のみを用いて、製造工程の異常を早急に検知し、検知した製造工程を制御する方法を述べたものである。半導体製造工程中で取得されるデータはインラインデータと呼ばれ、欠陥(ディファクト)データ、EESデータ、QCデータ等が該当する。インラインデータに限定して、実施例1の半導体装置の製造方法を適用した。その結果、図20(a)の製造工程Cの欠陥マップデータの波形データと、図20(b)の製造工程Cの製造装置のチャンバー圧力データの波形データを結合した最適波形データセットによる最適類似ロット集合において、製造工程Cの特定の号機の製造装置で強い異常度が検知された。最適類似ロット集合を構成するロット内のウエーハの製造工程Cの欠陥マップデータを確認した所、図21に示すようにウエーハ外周部にダスト81が多く発生していることがわかった。そして、このダスト81の発生は、製造工程Cの製造装置の特定の号機のチャンバー圧力の異常変動によって引き起こされていたことが判明した。そこで、この圧力変動が生じないよう、製造工程Cの製造装置の特定の号機の制御プログラムを変更した所、製造工程Cでのウエーハ外周ダストは発生しなくなった。
このように、インラインのデータに限定して異常原因を早急に見出して、異常原因である製造装置によるプロセスを調整し制御することで、半導体装置の不良発生を最小限に抑えることが出来る。
実施例4では、実施例1の異常原因特定方法を半導体装置の製造方法の特定の製造工程に限定して行う場合について説明する。製造工程Dのリソグラフィー装置の各ユニット、現像液塗布ユニット、ベーキングユニット、ステッパーユニットと現像ユニットを合わせて250種類のEESデータが取得されている。このリソグラフィー装置のEESデータに限定して実施例1の半導体装置の製造方法を適用した。その結果、図22(a)のフォーカス追従性データの波形データと図22(b)の同期精度データの波形データが特定の波形をしているロットからなる最適類似ロット集合が生成された。生成された最適類似ロット集合を構成するロット群とそれ以外のロット群で、レジスト寸法の有意差検定を行ったところ、最適類似ロット集合のロット群でレジスト寸法が有意に細くなっていることが判明した。このレジスト寸法の寸法値は寸法変動の許容値の下限近くであった。このため、このフォーカス追従性データの波形データと同期精度データの波形データが特定の波形に波形変動しないように、リソグラフィー装置の制御部を調整し改善した。この改善の結果、フォーカス追従性と同期精度に起因するレジスト寸法の寸法変動は生じなくなった。
このように、リソグラフィー装置のような個々の製造装置においても、単体のリソグラフィー装置に関するインラインのデータに限定して異常原因を早急に見出して、リソグラフィー装置内の異常原因に関わるプロセスを調整し制御することで、半導体装置の不良発生を最小限に抑えることが出来る。
実施例1乃至4は、本発明を実施するにあたっての具体化の例を示したものに過ぎず、実施例1乃至4によって本発明の技術的範囲が限定的に解釈されてはならないものである。例えば、実施例1乃至4では、ロットを製造単位として処理を行ったが、ウエーハ単位、あるいはチップ単位のデータを用いてもよいのである。本発明は、その技術的思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。すなわち、本発明の特許請求の範囲を逸脱しない範囲で、変更・改良や一部転用などが可能であり、これらすべて本発明の請求範囲内に包含されるものである。
本発明の一実施形態に係る異常原因特定システムを有する半導体装置の製造システムの構成図である。 本発明の一実施形態に係る異常原因特定システムの構成図である。 本発明の一実施形態に係る異常原因特定方法を含む半導体装置の製造方法のフローチャートである。 本発明の一実施形態に係る異常原因特定方法のフローチャートである。 本発明の一実施形態に係る異常原因特定方法を構成する波形最適化のフローチャートである。 半導体装置の製造フローである。 半導体装置のロットを構成するウエーハ上の領域区分を説明するための図である。 一般化特徴量を説明するための領域区分上のフェイルビットマップである。 ウェーハテストデータから生成された一般化特徴量の表である。 一般化特徴量を説明するための製造装置の圧力の時間依存性を表すグラフである。 製造装置の圧力データから生成された一般化特徴量の表である。 一般化特徴量の波形図である。 2水準直交表である。 一般化特徴量の波形データの種類を因子に割り付けた割り付け表である。 試行実験の番号毎の類似ロット集合の一覧表である。 一般化特徴量の波形データの種類を因子とする要因効果図である。 最適の一般化特徴量の波形データの種類の表である。 最適の一般化特徴量の波形データの種類からなる波形図である。 最適類似ロット集合の一覧表である。 本発明の一実施形態の最適類似ロット集合の一般化特徴量の波形データである欠陥マップ(a)とチャンバー圧力(b)の波形図である。 最適類似ロット集合を構成するロット内のウエーハのフェイルビットマップである。 本発明の一実施形態の最適類似ロット集合の一般化特徴量の波形データであるフォーカス追従性(a)と同期精度(b)の波形図である。
符号の説明
1 異常原因特定システム
2 波形化ユニット
3 波形最適化ユニット
5 ロット波形データベース
6 直交表データベース
7 最適波形データベース
8 不良原因データベース
9 装置差異分析ユニット
31 データ取得部
32 特徴量生成部
33 試行データセット生成部
34 直交表サイズ選択部
35 割り付け部
36 試行類似度算出部
37 試行集合生成部
38 工程検定値算出部
39 最適検定値設定部
41 ウエーハ表示領域
43 半径方向1/2r以内領域
44 半径方向1/2rから3/4r領域
45 半径方向3/4rから外でエッジ領域を除いた領域
46 半径方向エッジ領域
47 半径方向1/2rの境界線
48 半径方向3/4rの境界線
49 半径方向エッジ領域の境界線
51 角度方向0度から45度領域
52 角度方向45度から90度領域
53 角度方向90度から135度領域
54 角度方向135度から180度領域
55 角度方向180度から225度領域
56 角度方向225度から270度領域
57 角度方向270度から315度領域
58 角度方向315度から0度領域
61 角度方向0度境界線
62 角度方向45度境界線
63 角度方向90度境界線
64 角度方向135度境界線
65 角度方向180度境界線
66 角度方向225度境界線
67 角度方向270度境界線
68 角度方向315度境界線
71乃至81 不良表示領域
91 最適類似度算出部
92 最適集合生成部
93 最適検定値算出部
94 判定部
95 抽出部
96 出力部
97 最適データセット生成部
98 要因効果図生成部
99 有意データ選択部

Claims (5)

  1. 製造単位毎に製品の製造過程の複数の製造工程における複数種類の検査データを取得し、
    前記検査データを前記種類毎に標準化した特徴量を生成し、
    2水準直交表の2水準を前記種類の採用水準と不採用水準とし、前記2水準直交表の因子を前記種類として、前記2水準直交表の試行実験毎に前記採用水準である前記種類の前記検査データに対応する前記特徴量を選択した試行データセットを前記製造単位毎に生成し、
    前記試行データセットに関して、前記製造単位間の類似の度合いを表す類似度を算出し、
    前記製造単位の1つ毎に対して、前記類似度が閾値以上になる他の前記製造単位を抽出した試行集合を生成し、
    前記製造工程で用いられた複数の製造装置の差異と前記試行集合を構成する前記製造単位の因果関係の度合いを表す工程検定値を、前記試行実験毎のそれぞれの前記製造工程に対して算出し、
    前記試行実験毎に、前記試行集合の中から望目特性の程度が最も大きい前記工程検定値を試行実験検定値に設定し、
    前記試行実験検定値の望目特性の最適化のための前記種類毎の前記採用水準と前記不採用水準の要因効果図に基づいて、前記採用水準が選択された前記種類に対応する前記特徴量からなる最適データセットを前記製造単位毎に生成し、
    前記最適データセットに関して、前記製造単位間の類似の度合いを表す最適類似度を算出し、
    前記製造単位の1つ毎に対して、前記最適類似度が閾値以上になる他の前記製造単位を抽出した最適集合を生成し、
    前記製造工程で用いられた複数の前記製造装置の差異と前記最適集合を構成する前記製造単位の因果関係の度合いを表す最適検定値を、前記製造工程毎に算出し、
    前記最適集合毎に、前記最適検定値に基づいて、前記製造装置の差異と前記最適集合の前記因果関係が有意であるか判定し、
    前記最適集合毎に、有意であると判定された前記因果関係の対象である前記製造装置を異常原因として抽出することを特徴とする異常原因特定方法。
  2. 前記工程検定値の算出では、前記試行集合を構成するそれぞれの前記製造単位を製造した前記製造装置の、前記製造工程で用いられた複数の前記製造装置に対する偏りを統計検定し、
    前記最適検定値の算出では、前記最適集合を構成するそれぞれの前記製造単位を製造した前記製造装置の、前記製造工程で用いられた複数の前記製造装置に対する偏りを統計検定することを特徴とする請求項1に記載の異常原因特定方法。
  3. 製造単位毎に製品の製造過程の複数の製造工程における複数種類の検査データを取得するデータ取得部と、
    前記検査データを前記種類毎に標準化した特徴量を生成する特徴量生成部と、
    2水準直交表の2水準を前記種類の採用水準と不採用水準とし、前記2水準直交表の因子を前記種類として、前記2水準直交表の試行実験毎に前記採用水準である前記種類の前記検査データに対応する前記特徴量を選択した試行データセットを前記製造単位毎に生成する試行データセット生成部と、
    前記試行データセットに関して、前記製造単位間の類似の度合いを表す試行類似度を算出する試行類似度算出部と、
    前記製造単位の1つ毎に対して、前記類似度が閾値以上になる他の前記製造単位を抽出した試行集合を生成する試行集合生成部と、
    前記製造工程で用いられた複数の製造装置の差異と前記試行集合を構成する前記製造単位の因果関係の度合いを表す工程検定値を、前記試行実験毎のそれぞれの前記製造工程に対して算出する工程検定値算出部と、
    前記試行実験毎に、前記試行集合の中から望目特性の程度が最も大きい前記工程検定値を最大検定値に設定する最大検定値設定部と、
    前記最大検定値の望目特性の最適化のための前記種類毎の前記採用水準と前記不採用水準の要因効果図に基づいて、前記採用水準が選択された前記種類に対応する前記特徴量からなる最適データセットを前記製造単位毎に生成する最適データセット生成部と、
    前記最適データセットに関して、前記製造単位間の類似の度合いを表す最適類似度を算出する最適類似度算出部と、
    前記製造単位の1つ毎に対して、前記最適類似度が閾値以上になる他の前記製造単位を抽出した最適集合を生成する最適集合生成部と、
    前記製造工程で用いられた複数の前記製造装置の差異と前記最適集合を構成する前記製造単位の因果関係の度合いを表す最適検定値を、前記製造工程毎に算出する最適検定値算出部と、
    前記最適集合毎に、前記最適検定値に基づいて、前記製造装置の差異と前記最適集合の前記因果関係が有意であるか判定する判定部と、
    前記最適集合毎に、有意であると判定された前記因果関係の対象である前記製造装置を異常原因として抽出する抽出部を有することを特徴とする異常原因特定システム。
  4. 前記工程検定値算出部では、前記試行集合を構成するそれぞれの前記製造単位を製造した前記製造装置の、前記製造工程で用いられた複数の前記製造装置に対する偏りを統計検定し、
    前記最適検定値算出部では、前記最適集合を構成するそれぞれの前記製造単位を製造した前記製造装置の、前記製造工程で用いられた複数の前記製造装置に対する偏りを統計検定することを特徴とする請求項3に記載の異常原因特定システム。
  5. 前記製品として半導体装置を製造し、
    前記請求項1に記載の異常原因特定方法を実施し、
    前記最適集合毎に、前記異常原因となった前記製造装置が用いられた前記製造工程に関係する前記検査データを異常データとして抽出し、
    前記異常データが修正されるように、前記異常原因として抽出された前記製造装置を調整することを特徴とする半導体装置の製造方法。
JP2005174137A 2005-06-14 2005-06-14 異常原因特定方法および異常原因特定システム Expired - Fee Related JP4874580B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005174137A JP4874580B2 (ja) 2005-06-14 2005-06-14 異常原因特定方法および異常原因特定システム
US11/452,305 US7599817B2 (en) 2005-06-14 2006-06-14 Abnormality cause specifying method, abnormality cause specifying system, and semiconductor device fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174137A JP4874580B2 (ja) 2005-06-14 2005-06-14 異常原因特定方法および異常原因特定システム

Publications (2)

Publication Number Publication Date
JP2006351723A JP2006351723A (ja) 2006-12-28
JP4874580B2 true JP4874580B2 (ja) 2012-02-15

Family

ID=37524559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174137A Expired - Fee Related JP4874580B2 (ja) 2005-06-14 2005-06-14 異常原因特定方法および異常原因特定システム

Country Status (2)

Country Link
US (1) US7599817B2 (ja)
JP (1) JP4874580B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694618B2 (ja) * 2006-04-27 2011-06-08 シャープ株式会社 欠陥分布分類方法およびシステム、原因設備特定方法およびシステム、コンピュータプログラム、並びに記録媒体
KR100893157B1 (ko) * 2007-04-27 2009-04-16 삼성전자주식회사 반도체 디바이스의 불량 분석 방법 및 불량 분석 시스템
JP4997069B2 (ja) * 2007-10-30 2012-08-08 株式会社東芝 不良検出方法及び不良検出装置
JP4799574B2 (ja) * 2008-02-29 2011-10-26 株式会社東芝 線状パターンの検知方法および装置
JP2010133929A (ja) * 2008-10-28 2010-06-17 Toshiba Corp 欠陥解析装置,および欠陥解析方法
JP5311493B2 (ja) * 2009-11-26 2013-10-09 三菱電機株式会社 データ解析装置、それを用いた製造装置、データ解析方法、そのコンピュータ・プログラムおよびそのプログラムを記録した記録媒体
JP2012018052A (ja) * 2010-07-07 2012-01-26 Toshiba Corp 半導体装置の不良解析システム及び方法
JP2012199338A (ja) * 2011-03-18 2012-10-18 Fujitsu Ltd 故障診断支援方法、プログラム及び装置
TW201239659A (en) * 2011-03-24 2012-10-01 Hon Hai Prec Ind Co Ltd System and method for experimental design method of non-linear target
JP2013089804A (ja) * 2011-10-19 2013-05-13 Renesas Electronics Corp 半導体装置のスクリーニング装置、半導体装置のスクリーニング方法及びプログラム
US9915940B2 (en) * 2011-10-31 2018-03-13 Applied Materials, Llc Bi-directional association and graphical acquisition of time-based equipment sensor data and material-based metrology statistical process control data
JP5426637B2 (ja) * 2011-11-09 2014-02-26 株式会社アドバンテスト 半導体装置の製造方法及び半導体製造装置
CN102569118B (zh) * 2011-11-28 2014-06-04 上海华力微电子有限公司 一种半导体制程中的偏移管理的良率提升系统
US10514685B2 (en) * 2014-06-13 2019-12-24 KLA—Tencor Corp. Automatic recipe stability monitoring and reporting
JP6316703B2 (ja) * 2014-08-19 2018-04-25 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP6453805B2 (ja) * 2016-04-25 2019-01-16 ファナック株式会社 製品の異常に関連する変数の判定値を設定する生産システム
US10283320B2 (en) * 2016-11-11 2019-05-07 Applied Materials, Inc. Processing chamber hardware fault detection using spectral radio frequency analysis
TWI734957B (zh) 2019-01-31 2021-08-01 泰商泰達電子股份有限公司 測試計畫的設計及測試方法
CN111505403B (zh) * 2019-01-31 2022-06-28 泰达电子股份有限公司 测试计画的设计及测试方法
CN110032495B (zh) * 2019-03-28 2023-08-25 创新先进技术有限公司 数据异常检测方法和装置
US11900026B1 (en) * 2019-04-24 2024-02-13 X Development Llc Learned fabrication constraints for optimizing physical devices
CN111223080B (zh) * 2020-01-02 2023-07-07 长江存储科技有限责任公司 一种晶元的检测方法和装置、电子设备、存储介质
US11404331B2 (en) * 2020-06-29 2022-08-02 Vanguard International Semiconductor Corporation System and method for determining cause of abnormality in semiconductor manufacturing processes
CN116774990B (zh) * 2023-08-25 2023-11-28 合肥晶合集成电路股份有限公司 一种半导体机台的产品程式管理系统及管理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170611B2 (ja) 2001-03-29 2008-10-22 株式会社東芝 半導体集積回路の不良検出方法及び不良検出装置
US20040049722A1 (en) 2002-09-09 2004-03-11 Kabushiki Kaisha Toshiba Failure analysis system, failure analysis method, a computer program product and a manufacturing method for a semiconductor device
JP2004118693A (ja) * 2002-09-27 2004-04-15 Toshiba Corp プラントの制御系異常診断システム及び異常診断方法
JP2004145390A (ja) * 2002-10-21 2004-05-20 Mitsubishi Electric Corp 工程修正システム
JP3834008B2 (ja) 2003-03-19 2006-10-18 株式会社東芝 不良解析装置、不良解析方法および不良解析プログラム
JP3913715B2 (ja) 2003-06-18 2007-05-09 株式会社東芝 不良検出方法
JP3742087B2 (ja) 2003-11-07 2006-02-01 株式会社東芝 不良検出システム、不良検出方法及び不良検出プログラム
JP4250552B2 (ja) 2004-03-03 2009-04-08 株式会社東芝 製造装置管理システム、製造装置管理方法及びプログラム
JP4413673B2 (ja) * 2004-03-29 2010-02-10 株式会社東芝 不良原因装置特定システム及び不良原因装置特定方法
US7031860B2 (en) * 2004-09-22 2006-04-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system of semiconductor fabrication fault analysis

Also Published As

Publication number Publication date
US7599817B2 (en) 2009-10-06
JP2006351723A (ja) 2006-12-28
US20060281199A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4874580B2 (ja) 異常原因特定方法および異常原因特定システム
US7529631B2 (en) Defect detection system, defect detection method, and defect detection program
KR102546453B1 (ko) 인라인 부품 평균 테스팅 및 잠재 신뢰성 결함 검출을 위한 방법들 및 시스템들
US10734293B2 (en) Process control techniques for semiconductor manufacturing processes
JP5460662B2 (ja) 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法
US8417477B2 (en) Methods and apparatus for local outlier detection
US8170707B2 (en) Failure detecting method, failure detecting apparatus, and semiconductor device manufacturing method
JP4786505B2 (ja) 不良検出方法
KR102003961B1 (ko) 수율 손실의 근원 파악 시스템 및 방법
KR102142167B1 (ko) 계측 타겟 특성화
US11803127B2 (en) Method for determining root cause affecting yield in a semiconductor manufacturing process
US20190026419A1 (en) Method and system for quickly diagnosing, classifying, and sampling in-line defects based on caa pre-diagnosis database
US9142014B2 (en) System and method for identifying systematic defects in wafer inspection using hierarchical grouping and filtering
JP7354421B2 (ja) エラー要因の推定装置及び推定方法
JP2011187836A (ja) 半導体製造装置の管理方法及び管理システム
JP2011054804A (ja) 半導体製造装置の管理方法およびシステム
JP2004186374A (ja) 製造データ解析方法及びそれをコンピュータに実行させるプログラム
US6968280B2 (en) Method for analyzing wafer test parameters
Farayola et al. Cross-correlation approach to detecting issue test sites in massive parallel testing
Kovacs et al. Improved pareto chart analysis for yield detractors’ identification
Kim et al. A sensor data mining process for identifying root causes associated with low yield in semiconductor manufacturing
TW202209119A (zh) 基於晶圓分格圖的根本原因分析
WO2023146760A1 (en) System for automatic diagnostics and monitoring of semiconductor defect die screening performance through correlation of defect and electrical test data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees