JP4872948B2 - 3次元形状測定装置および3次元形状測定方法 - Google Patents

3次元形状測定装置および3次元形状測定方法 Download PDF

Info

Publication number
JP4872948B2
JP4872948B2 JP2008046549A JP2008046549A JP4872948B2 JP 4872948 B2 JP4872948 B2 JP 4872948B2 JP 2008046549 A JP2008046549 A JP 2008046549A JP 2008046549 A JP2008046549 A JP 2008046549A JP 4872948 B2 JP4872948 B2 JP 4872948B2
Authority
JP
Japan
Prior art keywords
intensity
laser light
light
reflected light
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008046549A
Other languages
English (en)
Other versions
JP2009204425A (ja
Inventor
利久 高井
敏美 鈴木
雅仁 宮崎
浩之 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pulstec Industrial Co Ltd
Original Assignee
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pulstec Industrial Co Ltd filed Critical Pulstec Industrial Co Ltd
Priority to JP2008046549A priority Critical patent/JP4872948B2/ja
Publication of JP2009204425A publication Critical patent/JP2009204425A/ja
Application granted granted Critical
Publication of JP4872948B2 publication Critical patent/JP4872948B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は測定対象物にレーザー光を照射してその反射光を受光することにより測定対象物の3次元形状を測定する3次元形状測定装置および3次元形状測定方法に関する。
従来から、レーザー光を測定対象物に照射することにより測定対象物の3次元形状を測定することが行われている。この3次元形状測定は3次元形状測定装置によって次のような手順で行われる。まず3次元形状測定装置は、測定対象物にレーザー光を照射すると共にレーザー光の照射方向を変化させるかまたはレーザー光源を移動させることによりレーザー光を走査してレーザー光の照射スポットの形成位置を変化させ、形成位置が変化されたそれぞれの照射スポットにおける反射光を受光する。そして、三角測量の原理によりレーザー光源からそれぞれの照射スポットが形成された測定対象物の部位(照射ポイント)までの距離を検出することで測定対象物の3次元形状を測定する。
また、測定の結果得られた3次元形状データに色彩や陰影を付して3次元画像を生成する3次元形状測定装置も開発されている。例えば、特許文献1には、反射光の受光量を利用して色を表示するものが、特許文献2には、反射光の受光幅を利用して陰影を表示するものが、さらに特許文献3には、3次元形状測定とは別に色画像データを取得し、3次元形状に色画像を合成するものが、それぞれ記載されている。
特開2003−35524号公報 特開2002−92632号公報 特開平11−281335号公報
特許文献3に記載の発明のように、色画像データを取得して3次元形状に色画像を合成する手段は、精度よく3次元画像に色彩を付与することができるが、色画像データはカメラ撮影により得られるため、3次元形状測定の測定領域を広くすることが困難であるという問題がある。
これに対し、反射光の受光量や反射光の受光幅を利用して色彩や陰影を表示する手段は、レーザー光走査によりレーザー光の照射位置を広い範囲で変化させることができるので3次元形状測定の測定領域を広くすることができる。しかし、この手段は、色情報取得の際に反射光の受光量や反射光の受光幅を利用しているので、照射するレーザー光の強度を常に一定の強度にして測定対象物の色情報を反射光に反映させなければならない。照射強度を一定にすると、測定対象物表面の照射箇所のうち反射率が小さい箇所では反射光の強度不足となり、受光強度分布のピーク位置を精度よく得ることができない。また、反射率が大きい箇所では反射光の強度が過剰となるため受光強度分布のピーク位置付近一帯が最高の強度になってしまってピーク位置を精度よく得ることができない。測定対象物の3次元形状(座標)は上記ピーク位置に基づいて求められるので、照射レーザー光の強度を一定にして測定する手段では反射光の強弱によって精度のよい3次元形状測定を行うのが困難になるという問題がある。
本発明は上記問題点に鑑みてなされたもので、その目的は、レーザー光走査により広範に3次元形状測定を行うことができる3次元形状測定において、3次元形状に色彩や陰影を付しても精度が良好な3次元形状測定を行うことができる3次元形状測定装置および3次元形状測定方法を提供することにある。
上記目的を達成するため、本発明の特徴は、測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射手段と、レーザー光の照射方向または前記レーザー光源の位置を変化させることにより、前記照射スポットを移動させるレーザー光照射位置変更手段と、前記照射スポットにおける散乱光の一部である反射光を受光し、前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離に応じた信号を出力する受光器と、前記レーザー光照射位置変更手段により変化するレーザー光の照射方向または前記レーザー光源の位置と前記受光器が出力する信号とに基づいて、前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成手段とを備えた3次元形状測定装置において、前記受光器に入射する反射光の強度を検出する反射光強度検出手段と、前記反射光強度検出手段により検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御する出射レーザー光強度制御手段と、前記受光器が出力する信号に基づいて前記距離を計算する距離計算手段と、前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記距離計算手段により計算された前記距離と、予め求められている複数の前記距離と前記強度比との関係とに基づいて、前記距離が予め設定された基準距離である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算手段と、前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成手段とを備えた3次元形状測定装置とすることにある。
上記発明によれば、測定対象物表面の色彩や陰影を表す明度は出射レーザー光強度制御手段により制御されたレーザー光の強度に基づいて計算される。ここで、出射レーザー光強度制御手段は、反射光強度検出手段により検出された反射光の強度が所定の設定強度になるようにレーザー光源からの出射レーザー光の強度を制御している。このため反射光強度が上記設定強度よりも弱い場合は出射レーザー光強度が強くされ、上記設定強度よりも強い場合は出射レーザー光強度が弱くされる。つまり、反射光強度と制御された出射レーザー光強度とは相関しており、反射光の強度は出射レーザー光の強度に反映される。このように反射光強度を反映した出射レーザー光強度を利用することにより明度を計算することができる。また、本発明によれば、反射光強度の強弱に応じて適宜出射レーザー光の強度を制御することにより反射光強度が所定の設定強度に維持される。よって、反射光の強弱により3次元形状測定の精度が悪くなる箇所を極めて少なくすることができ、照射ポイントの反射率の高低に関わらず3次元形状データを精度良く生成することができる。さらに、本発明によれば、レーザー光の照射方向あるいはレーザー光源の位置を変化させてレーザー光を測定対象物上で走査する方式により測定対象物の3次元形状測定および明度を計算するので、広い領域で測定対象物の3次元形状測定および明度計算を行うことができる。
上記明度計算手段は、出射レーザー光強度制御手段により制御されたレーザー光の強度に加え、さらに反射光強度検出手段により検出された反射光の強度にも基づいて明度を計算する。それは次の理由による。照射ポイントの反射率が低い場合には出射レーザー光の強度は高くされるが、反射率が低くなっていくと、ある反射率で出射レーザー光強度は上限に達する。そして、これ以下の反射率では出射レーザー光強度が上限値で一定となるため、出射レーザー光強度のみに基づいて明度計算を行っていると計算精度が劣る。これに対して本発明では出射レーザー光強度に加えて反射光強度にも基づいて明度を計算する。出射レーザー光強度が上限値に達する反射率以下の反射率の領域においては上記のように出射レーザー光強度は上限値で一定となるが、反射光強度はこの反射率領域においても反射率に応じて変化する。このため、この反射率領域における明度計算において反射光強度を加味することで明度がより正確に計算される。この場合、出射レーザー光の強度をIとし、反射光強度をRとすると、これらの強度比(R/I)に基づいて明度を計算するとよい。
また、上記明度計算手段は、さらに上記受光器が出力する信号に基づいて、より詳しくはこの信号から計算されるレーザー光源から照射ポイントまでの距離にも基づいて明度を計算する。それは次の理由による。照射ポイントが受光器に近ければ近いほど受光器が受光可能な散乱角度範囲が大きくなる。このため反射率が同一であっても照射ポイントと受光器との間の距離の違いにより受光器に入射する反射光強度は異なる。したがって、出射レーザー光強度と反射光強度とに基づいて明度を計算する場合、反射光強度を反映した出射レーザー光強度が上記距離の違いによって異なることにより、同一反射率を有する部位であっても異なる明度になる。これに対して本発明によれば、受光器が出力する信号にも基づいて明度を計算するようにしている。受光器が出力する信号はレーザー光源から照射ポイントまでの距離が計算される信号であり、この距離は照射ポイントと受光器との間の距離に関係している。よって、この受光器が出力する信号にも基づいて明度を計算することで、距離の違いによって反射率が同じでも明度が異なって計算されるといった不具合を防止でき、より精度の高い明度計算を行うことができる。この場合、本発明では、上記強度比(R/I)を受光器が出力する信号に基づいて補正した補正強度比(R/I)’を求め、この補正強度比(R/I)’により明度を計算する。より詳細には、本発明の明度計算手段は、前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記距離計算手段により計算された前記距離と、予め求められている複数の前記距離と前記強度比との関係とに基づいて、前記距離が予め設定された基準距離である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する。
また、3次元形状測定装置は、受光器が出力する信号から受光器が受光した反射光の受光幅を検出する反射光受光幅検出手段を備え、明度計算手段は、さらに上記反射光受光幅検出手段により検出された反射光の受光幅にも基づいて前記明度を計算するものであるとよい。それは次の理由による。出射レーザー光の照射方向と照射ポイントの照射面の法線とのなす角度(照射角度)が異なる2つの部位においては、両部位における反射率が同じであっても散乱方向が異なるために受光器が受ける反射光の受光強度が異なる。具体的には照射角度が直角である部位が最も反射光強度が強く、照射角度が直角からずれるにつれて反射光強度が弱くなっていく。このため出射レーザー光強度と反射光強度とに基づいて明度を計算する場合であっても、照射角度の違いによって出射レーザー光強度が異なり、これにより同じ反射率を持つ部位であっても異なる明度とされてしまう。これに対して本発明によれば、受光幅検出手段が検出する反射光の受光幅にも基づいて明度を計算している。受光幅は照射角度によって変化するので、この受光幅にも基づいて明度を計算することにより、照射角度の違いによって反射率が同じでも明度が異なって計算されるといった不具合を防止でき、より精度の高い明度計算を行うことができる。この場合、上記強度比(R/I)を受光幅に基づいて補正した補正強度比(R/I)’’を求め、この補正強度比(R/I)’’により明度を計算する。より詳細には、本発明の明度計算手段は、前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記距離計算手段により計算された前記距離と、前記反射光受光幅計算手段により計算された前記受光幅と、複数の前記距離ごとに予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記距離が前記距離計算手段により計算された前記距離に相当する距離であって且つ前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する。
また、3次元形状測定装置は、反射光強度検出手段により検出された反射光の強度を所定の設定値と比較した結果に基づき、3次元形状データの作成の有無を判定する判定手段をさらに備えるものであるのがよい。これによれば、上記所定の設定値を閾値として反射光をこの閾値と比較し、比較結果に基づき3次元形状データの作成有無を判定することで、効率的に3次元形状データを生成することができる。この場合、上記判定手段は、反射光強度が上記所定の設定値以上であるときに3次元形状データの作成を行い、反射光強度が上記所定の設定値未満であるとき、すなわち反射光強度がほとんど0である極端に低い反射率領域を照射しているような場合に3次元形状データの作成を行わないようにするとよい。
また、本発明の他の特徴は、測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射ステップと、レーザー光の照射方向または前記レーザー光源の位置を変化させることによって前記照射スポットを移動する照射スポット移動ステップと、前記照射スポットにおける散乱光の一部である反射光を受光する受光ステップと、前記受光ステップにて受光した反射光の強度を検出する反射光強度検出ステップと、前記反射光強度検出ステップにより検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御するレーザー光強度制御ステップと、前記受光ステップにて受光した反射光に基づいて前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離を取得する距離取得ステップと、レーザー光の照射方向または前記レーザー光源の位置、および前記距離取得ステップにより取得した距離に基づいて前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成ステップと、前記レーザー光強度制御ステップにより制御されたレーザー光の強度と前記反射光強度検出ステップにより検出された反射光の強度との強度比を、前記距離取得ステップにより取得された前記距離と、予め求められている複数の前記距離と前記強度比との関係とに基づいて、前記距離が予め設定された基準距離である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算ステップと、前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成ステップとを含むことを特徴とする3次元形状測定方法とすることにある。この場合、前記受光ステップにより受光した反射光の受光幅を検出する反射光受光幅検出ステップをさらに含み、上記明度計算ステップは、前記レーザー光強度制御ステップにより制御されたレーザー光の強度と前記反射光強度検出ステップにより検出された反射光の強度との強度比を、前記距離取得ステップにより取得された前記距離と、前記反射光受光幅検出ステップにより検出された前記受光幅と、複数の前記距離ごとに予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記距離が前記距離取得ステップにより取得された前記距離に相当する距離であって且つ前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算するようにするとよい。このような3次元形状測定方法の発明によれば、上記した3次元形状測定装置の発明において奏し得る作用効果を奏する。
以下、本発明の実施形態について説明する。図1は本実施形態に係る3次元形状測定装置の全体構成を示す図である。この3次元形状測定装置は、レーザー光を測定対象物に照射するとともにレーザー光を走査し、照射スポットの反射光を受光し、受光した光に基づいて測定対象物の形状に色彩や陰影を付して画像データを生成するものである。3次元形状測定装置1は、3次元センサ10と、データ処理装置20と、コントローラ30と、入力装置32と、表示装置34を備える。
3次元センサ10とデータ処理装置20にはコントローラ30からの信号線が接続されている。作業者は入力装置32から測定開始や3次元画像の表示方向等の指令をコントローラ30に入力する。すると、コントローラ30は信号線を通じて3次元センサ10やデータ処理装置20を制御するための信号を出力する。また、データ処理装置20により生成された3次元形状の画像データは表示装置34に入力され、この表示装置34により3次元画像データが表示される。
3次元センサ10は、レーザー光を直交する2方向に走査して測定対象物OBに照射するとともに、測定対象物OBからの反射光を受光して、測定対象物OBの3次元画像データを作成するために必要な信号をデータ処理装置20に出力するものである。この3次元センサ10は、レーザー光源102、コリメーティングレンズ104、走査用光学系106、集光レンズ108、ラインセンサ110およびフォトセンサ112を備える。レーザー光源102は半導体レーザーなどで構成されており、後述するレーザー駆動回路126から所定の電圧および電流が供給されることによりレーザー光をコリメーティングレンズ104に向けて出射する。コリメーティングレンズ104は測定対象物OBの表面に小さな照射スポットを形成するために、レーザー光源102から出射されたレーザー光を平行光にする。
コリメーティングレンズ104を通過したレーザー光は走査用光学系106に入射する。走査用光学系106は、ガルバノミラーまたはポリゴンミラーとこれを駆動させるモータ等で構成されており、モータが駆動することで入射したレーザー光の測定対象物OBへの照射方向を2方向に変化させ、照射スポットを移動させる。例えば、走査用光学系106に入射してくるレーザー光の入射方向をXYZ直交座標形におけるZ方向とすると、走査用光学系106は、入射したレーザー光をモータにより駆動しているガルバノミラーまたはポリゴンミラーにて反射させ、出射方向がX方向に往復するとともにY方向に順次移動していくようにレーザー光を走査する。このようにして走査用光学系106から出射するレーザー光の照射方向を変化させることで、測定対象物OBの全体にレーザー光が照射される。
集光レンズ108は、走査用光学系106に走査されて測定対象物OBに照射されたレーザー光の照射スポットにおける散乱光の一部である反射光を集光し、受光器であるラインセンサ110上に結像させる。ラインセンサ110は集光レンズ108を介して照射スポットにおける反射光を受光するものであり、CCDなどの複数の受光素子を一列に配置して長尺状に構成されている。このラインセンサ110は、図1に示されるように受光する反射光の光軸に対して傾斜して設置され、複数の受光素子のうちで反射光を受光した受光素子の位置に基づいて、レーザー光源102から走査用光学系106を介した測定対象物OB上の照射ポイントまでの光路距離を検出するセンサである。フォトセンサ112は、長尺の直方体状に形成した基板上に、長尺状の方形に形成されてフォトダイオード、フォトトランジスタ、フォト抵抗などからなる光学センサ素子を固着させたものである。固着させた光学センサ素子は、ラインセンサ110の受光面からの反射光が垂直に近い状態で入射するように配置されており、反射光を受けたラインセンサ110の受光素子表面上での反射光(2次反射光)を受光する。このように2次反射光がフォトセンサ112に受光されることで、ラインセンサ110に入射する反射光の強度がフォトセンサ112により検出される。
また、3次元センサ10は、増幅回路120、補正信号発生回路122、レーザー光量補正回路124、レーザー駆動回路126、走査用光学系駆動回路128といった各種回路を備えている。増幅回路120は、フォトセンサ112が出力する2次反射光の強度(光量)に相当する大きさの信号を入力し、これを設定された増幅率で増幅して反射光強度に相当する強度の信号として出力する。補正信号発生回路122は、コントローラ30から入力した基準反射光強度に相当する信号の強度を記憶しており、コントローラ30からレーザー照射開始指令が入力されたときに作動開始して、記憶している信号強度と増幅回路120から入力する信号強度との差に相当する強度の信号を出力する。例えば、基準反射光強度に相当する信号強度をA、増幅回路120から入力する信号強度をBとすると、補正信号発生回路122はA−Bに相当する強度の信号を出力する。
レーザー光量補正回路124は、コントローラ30からレーザー照射開始指令が入力されたときに作動開始し、初期には記憶しているレーザー光強度(デフォルト値)に相当する信号を出力するが、それ以後は、補正信号発生回路122から入力する信号に基づいて現在出力している信号を補正し、補正後の出射レーザー光強度に相当する強度の信号を出力する。例えば、直前に出力した信号強度をC、補正信号発生回路122から入力する信号を上記A−Bとすると、レーザー光量補正回路124はC+K・(A−B)に相当する強度の信号を出力する。ここで、Kは反射光強度に相当する信号強度を出射レーザー光強度に相当する信号強度に変換するための係数であり、予め記憶されている。
レーザー駆動回路126は、コントローラ30からレーザー照射開始指令が入力されたときに作動開始し、レーザー光量補正回路124から入力される信号に基づいて定まる強度のレーザー光がレーザー光源102から出射されるように、所望の電圧および電流をレーザー光源102に供給する。レーザー駆動回路126、レーザー光源102およびコリメーティングレンズ104が、本発明のレーザー光照射手段に相当する。
走査用光学系駆動回路128は、コントローラ30から作動開始指令が入力されたときに作動開始して、走査用光学系106のモータを初期位置まで回転駆動させる。初期位置までモータを回転駆動すると、初期位置を表す信号をコントローラ30に出力し、その後モータを設定された速度で定められた方向に回転駆動する。これによりレーザー光源102から出射したレーザー光が測定対象物OBの全体を走査する。また走査用光学系駆動回路128は、モータの回転駆動時にモータ内に配置されたエンコーダが出力するパルス信号を入力してパルス数をカウントし、カウント値からモータの回転位置を検出し、検出結果からモータの回転位置が最終位置に達したと判定すると終了を表す信号をコントローラ30に出力して作動を終了する。走査用光学系駆動回路128および走査用光学系106が、本発明のレーザー光照射位置変更手段に相当する。
データ処理装置20は3次元センサ10からの信号を入力するとともに入力した信号をデジタルデータに変換してデータ処理し、3次元形状の画像データを生成するものである。このデータ処理装置20は、センサ信号取出し回路202、データ演算回路204、角度計算回路206、A/D変換器208、A/D変換器210、3次元画像生成装置212を備える。
センサ信号取出し回路202は、コントローラ30から作動開始指令が入力すると作動開始して、設定された時間間隔でラインセンサ110の各受光素子(画素またはピクセル)が出力する信号を入力し、入力した各受光素子からの信号を増幅し、増幅した信号をデジタルデータ(ラインセンサデータD)にしてデータ演算回路204へ出力する。角度計算回路206は、コントローラ30から作動開始指令を入力すると作動開始して、走査用光学系106のモータのエンコーダが出力するパルス信号を入力してパルス数をカウントし、このパルス数から、図2に示されるように基準線(Z軸)に対する出射レーザー光のX方向への傾き角度θxとY方向への傾き角度θyを計算し、角度θx、θyのデジタルデータをデータ演算回路204へ出力する。これらの角度θxおよびθyにより、測定対象物OBに対する出射レーザー光の照射方向が定められる。
A/D変換器208は、コントローラ30から作動開始指令が入力すると作動開始して、レーザー光量補正回路124が出力するレーザー光強度に相当する強度の信号を入力し、入力した信号の強度をデジタルデータ(出射レーザー光強度データI)にしてデータ演算回路204に出力する。A/D変換器210はコントローラ30から作動開始指令が入力すると作動開始して、増幅回路120が出力する反射光強度に相当する強度の信号を入力し、入力した信号の強度をデジタルデータ(反射光強度データR)にしてデータ演算回路204に出力する。
データ演算回路204は、コントローラ30からデータ取り込み開始指令が入力すると作動開始して、センサ信号取出し回路202、角度計算回路206、A/D変換器208およびA/D変換器210が出力するデジタルデータを一定時間間隔で取り込む。そして、取り込んだデータに基づいて、測定対象物OB上におけるレーザー光の照射ポイントの座標(x,y,z)と明度Mを計算し、3次元画像生成装置212に出力する。データ演算回路204が上記計算のために行うプログラム処理は後述する。
3次元画像生成装置212は、データ演算回路204から入力した座標データおよび明度データをメモリに記憶し、コントローラ30からデータ処理開始指令が入力すると、メモリに記憶したデータに基づいて色彩や陰影のついた3次元画像データを作成し、メモリに記憶するとともに表示装置34に出力してデータ処理を終了する。また、入力装置32から作業者が3次元画像表示の指示を入力すると、記憶してある3次元画像データを表示装置34に出力する。
このように構成された3次元形状測定装置1において、作業者が入力装置32から測定開始の指示を入力すると、コントローラ30は図3のフローチャートにより表されるプログラムをスタートさせる。以下、このフローチャートに従って測定対象物OBの3次元画像測定手順を説明する。
このプログラムはまずステップS100(以下、S100と略述する。他のステップも同様に略述する)にて開始され、次のS102にてセンサ信号取出し回路202、角度計算回路206、A/D変換器208、A/D変換器210および走査用光学系駆動回路128を作動させる。なお、この時点ではデータ演算回路204が作動していないので、センサ信号取出し回路202、角度計算回路206、A/D変換器208およびA/D変換器210はデータを出力するのみである。走査用光学系駆動回路128は、走査用光学系106のモータを初期位置まで回転駆動する。これによりレーザー光源102からレーザー光が出射された場合のレーザー光の出射方向の初期設定がなされる。
次いで、コントローラ30はS104に進み、走査用光学系106のモータが初期位置に達したか、すなわち走査用光学系駆動回路128から初期位置を表す信号が入力されているかを判定する。初期位置に達していない場合はS104を繰り返し、達した場合はS106に進む。S106では、コントローラ30はレーザー照射開始指令を各回路に出力する。これによりレーザー駆動回路126、レーザー光量補正回路124、補正信号発生回路122が作動して、レーザー光がレーザー光源102から出射される(レーザー光照射ステップ)。
レーザー光源102から出射したレーザー光はコリメーティングレンズ104および走査用光学系106を経由して測定対象物OBに照射される。測定対象物OB上に形成される照射スポットは走査用光学系106によるレーザー光の走査により適宜移動していき、測定対象物OBの全体にレーザー光が照射される(照射スポット移動ステップ)。また、照射スポットにおけるレーザー光の反射光は走査用光学系106および集光レンズ108を経由してラインセンサ110に受光される(受光ステップ)。ラインセンサ110に受光された反射光のラインセンサ110の表面での反射光(2次反射光)はフォトセンサ112に受光される。フォトセンサ112は受光した反射光の強度に相当する信号を出力する(反射光強度検出ステップ)。増幅回路120はフォトセンサ112が出力した信号を増幅するとともにその強度に相当する信号を補正信号発生回路122に出力する。補正信号発生回路122は入力した信号と基準反射光強度に相当する信号の差に相当する強度の信号をレーザー光量補正回路124に出力する。レーザー光量補正回路124は入力した信号強度に基づいて、フォトセンサ112に受光される反射光の強度が基準反射光強度となるような強度のレーザー光がレーザー光源102から出射されるように、出射レーザー光強度に相当する信号を補正して出力する。レーザー駆動回路126はレーザー光量補正回路124から入力した信号に基づいて電圧および電流をレーザー光源102に供給する。このようにして、レーザー光源102が出射するレーザー光の強度は、補正信号発生回路122およびレーザー光量補正回路124の作動により、フォトセンサ112にて受光する2次反射光の強度が設定された基準反射光強度になるように制御される(レーザー光強度制御ステップ)。
コントローラ30はS106にてレーザー照射の開始指令を各回路に出力した後は、S108に進んでデータ演算回路204を作動させる。これによりデータ演算回路204はセンサ取出し回路202、角度計算回路206、A/D変換器208およびA/D変換器210からそれぞれラインセンサデータD、角度データθxおよびθy、出射レーザー光強度データI、反射光強度データRを取り込むと共に、取り込んだデータを処理して測定対象物OB上におけるレーザー光の照射スポットが形成された部位(照射ポイント)の座標(x,y,z)と明度Mを計算し、3次元画像生成装置212に出力する。この計算および出力は、取り込んだデータの処理がすべて完了するまで行われる。3次元画像生成装置212は入力したデータをメモリに記憶する。
次いでコントローラ30はS110に進み、レーザー光が測定対象物OBの全体に亘る走査を終了して走査用光学系106のモータの回転位置が終了位置となり、走査用光学系駆動回路128から終了を表す信号が出力されているかを判定する。出力されていない場合は出力されるまで待つ。出力されていると判定した場合には、次のS112に進んでレーザー照射を停止し(すなわちレーザー駆動回路126、レーザー光量補正回路124、補正信号発生回路122に作動停止指令を出力して作動を停止させ)、S114にてデータ演算回路204にデータ取り込み終了信号を出力してデータの取り込みを停止させ、S116にてセンサ信号取出し回路202、角度計算回路206、A/D変換器208およびA/D変換器210に作動停止指令を出力して作動を停止させる。そして、S118に進んで3次元画像生成装置212にデータ処理開始を指令した後、S120にてこのプログラムを終了する。3次元画像生成装置212は記憶したデータに基づいて3次元画像データを作成する(3次元画像生成ステップ)。このとき3次元画像生成装置212は、照射ポイントの座標データから測定対象物OBの形状を生成し、明度からその位置における色彩や陰影を生成する。そして、得られた3次元画像を表示装置34に出力してデータ処理を終了する。以上の処理によって自動的に測定対象物OBの3次元形状測定が行われ、表示装置34に色彩や陰影付きの3次元画像が表示される。
上記処理中、S108にてデータ演算回路204が実行するデータ取り込みおよびデータ処理を以下に説明する。データ演算回路204は、コントローラ30からデータ取り込み開始指令が入力すると、図4のフローチャートに示されるプログラムおよび図5のフローチャートに示されるプログラムを同時に実行する。
図4のプログラムは一定時間間隔でデジタルデータを入力し、メモリに記憶させていくためのプログラムである。このプログラムは図4のS200にて開始され、次のS202にて、データ演算回路204はカウンタnを0に設定する。次にS204にて時間計測を開始し、S206にて時間計測開始から時間Δtが経過したかを判定する。時間Δtが経過していないと判定した場合はS214に進み、コントローラ30からデータ取り込み終了信号が入力されているか判定する。プログラムを開始した直後は、このデータ取り込み終了信号は入力されていないので判定結果はNoとなり、S206に戻る。すなわちレーザー光の走査が終了するまでデータ取り込み終了信号は入力されないので、データ演算回路204はS206にて計測開始から時間Δtが経過するまで待つ。
S206にて時間Δtが経過したと判定した場合には、データ演算回路204はS208に進み、このS208にて以下のデータを取り込む。
・センサ信号取出し回路202が出力するラインセンサデータD(n,p) (ここで、pはラインセンサ110における受光素子(画素)の位置を表す)
・角度計算回路206が出力する角度データθx(n),θy(n)
・A/D変換器208が出力する出射レーザー光強度データI(n)
・A/D変換器210が出力する反射光強度データR(n)
S208にて上記データを取り込んだ後は、データ演算回路204はS210に進み、計測時間をリセットする。次いで、S212に進んでカウンタnをインクリメントし、S206に戻る。そして、再び時間Δtの経過を待ってから上記のデータを取り込む。S206〜S212を繰り返すことによりデータ演算回路204のメモリには時間Δtごとに入力される上記データが次々に記憶されていく。そして、コントローラ30からデータ取り込み終了信号が入力されると、S214の判定がYesとなり、S216に進んでこのプログラムの実行を終了する。
図5のプログラムは、データ演算回路204のメモリに記憶された上記のデジタルデータをカウンタnの値が小さい方から順に取り出して、測定対象物OB上でのレーザー照射ポイントの座標(x,y,z)と明度Mを計算し、3次元画像生成装置212に出力するためのプログラムである。このプログラムは図5のS300にて開始され、次のS302にてデータ演算回路204はカウンタnを0に設定し、S304にてn番目のデータ(D(n,p)、θx(n)、θy(n)、I(n)、R(n))が現在メモリ内に記憶されているか判定する。n番目のデータがメモリ内に記憶されていない場合はS318に進み、S318にてコントローラ30からデータ取り込み終了信号が入力されているか判定する。プログラムを開始した直後は、データ取り込み終了信号は入力されていないので判定結果はNoとなり、S304に戻る。すなわちレーザー光の走査が終了するまでデータ取り込み終了信号は入力されないので、データ演算回路204はS304にてn番目のデータがメモリに記憶されていないときは記憶されるまで待つ。
S304にてn番目のデータがメモリに記憶されていると判定した場合はS306に進む。S306にてデータ演算回路204は、反射光強度データR(n)が最小強度Rminよりも小さいかを判定する。この最小強度Rminは、ラインセンサ110にて受光した反射光の強度がラインセンサデータDに基づいて反射光の受光位置を特定することができる下限の強度であるときに、そのラインセンサ110の表面にて反射した2次反射光をフォトセンサ112が受光したときの受光強度の値である。すなわち最小強度Rminは、データ演算回路204がラインセンサ110にて反射光を受光した受光素子の位置を正確に特定し、特定した位置に基づいて測定対象物OBまでの光路距離を正確に得ることを保証するための、フォトセンサ112における最小の受光強度の値である。
ここで、レーザー光源102から出射されるレーザー光の強度は、補正信号発生回路122およびレーザー光量補正回路124によって、フォトセンサ112が受光する2次反射光の強度が一定になるように制御されている。したがって、例えば測定対象物OBの反射率の低い部位にレーザー光が照射されているときは、それを補正信号発生回路122が検知するとともにレーザー光量補正回路124により出射レーザー光強度が強くなるように補正される。反対に、反射率の高い部位にレーザー光が照射されているときは、出射レーザー光強度が弱くなるように補正される。このようにして出射レーザー光強度が補正されるために、フォトセンサ112にて受光する2次反射光の強度は測定対象物OBの反射率の高低にかかわらず上記Rminよりも大きい一定値となるはずである。それにもかかわらずR(n)がRminよりも小さくなる場合とは、例えば穴部のように反射率がほとんど0であり、その位置における反射光がほとんど得られない極端に低い反射率領域をレーザー光が照射している場合である。このように、反射率がほとんど0である極端に低い反射率領域にレーザー光が照射されたときには、出射レーザー光強度は上限値に達してしまい、その上限値のレーザー光強度で照射した場合でも反射光強度はほとんど0である。このような場合にR(n)がRminよりも小さくなる。
S306にてR(n)がRminよりも小さい(S306:Yes)と判定した場合は反射光がほとんど得られていないので、後述するラインセンサデータD(n)から距離データL(n)を計算することは不可能である。したがって、この場合は距離データL(n)の計算は行わずにS316に進む。S316ではカウンタnをインクリメントする。そして、S304に戻る。なお、S306が本発明の判定手段である。
一方、S306にてR(n)がRmin以上(S306:No)と判定した場合は、反射光強度がこれ以降の計算が可能であることを保証する強度である場合である。この場合はS308に進み、データ演算回路204はラインセンサデータD(n,p)から距離データL(n)を計算する(距離取得ステップ)。図6にラインセンサデータD(n,p)をグラフに表した場合の一例を示す。図において横軸がラインセンサ110における各受光素子pの位置、縦軸が各受光素子が受光した光の強度である。このグラフはラインセンサ110における受光強度分布を表す。図に示されるようにラインセンサ110における受光強度分布はピークを持つ波形となる。ピーク部の横軸方向位置は、レーザー光源102から照射ポイントまでの光路距離(距離L(n))に対応するので、これに基づいて距離データL(n)が算出される。距離を算出する詳細は公知であるので省略する。
次に、データ演算回路204はS310に進み、上記のように計算した距離データL(n)と、メモリに記憶されている角度データθx(n),θy(n)とから照射ポイントの3次元座標(xn,yn,zn)を計算する(3次元形状データ生成ステップ)。この計算は、極座標(球座標)を直交座標に変換する処理であり、詳細は公知であるので省略する。なお、S308およびS310は、レーザー光の照射方向(角度データθx(n)、θy(n))とラインセンサ110が出力するラインセンサデータD(n)から求められる距離データL(n)に基づいて、照射ポイントの座標値(xn,yn,zn)である3次元形状データを生成する3次元形状データ生成手段に相当する。
次いで、データ演算回路204はS312に進み、明度データM(n)を計算する(明度計算ステップ)。ここで、上述のように反射率が低い(明度が小さい)部分に出射レーザー光が照射された場合には反射光の強度は弱いので、補正信号発生回路122およびレーザー光量補正回路124は反射光の強度が強くなるように(反射光強度が基準反射光強度となるように)出射レーザー光の強度を強くする。このため出射レーザー光強度データI(n)も大きくなる。一方、反射率が高い(明度が大きい)部分に出射レーザー光が照射された場合は反射光の強度が強いので、補正信号発生回路122およびレーザー光量補正回路124は反射光の強度が弱くなるように(基準反射光強度となるように)出射レーザー光の強度を弱くする。このため出射レーザー光強度データI(n)も小さくなる。このように、明度の大小と出射レーザー光強度の強弱は反比例の関係となる。よって、明度データM(n)は出射レーザー光強度データI(n)に基づいて求めることができる。S312が本発明の明度計算手段に相当する。
ところで、補正信号発生回路122およびレーザー光量補正回路124は、フォトセンサ112が受光する反射光の強度が基準反射光強度で一定になるように出射レーザー光の強度を制御しているために、反射光強度データR(n)は通常は一定の値(基準反射光強度)となる。しかし、反射率が距離データL(n)の計算が可能である反射光強度が得られる下限の反射率よりも大きい反射率ではあるが(すなわちR(n)がRmin以上ではあるが)、かろうじて3次元形状データを測定できる程度の低い反射率である領域(以下、極低反射率領域という)をレーザー光が照射した場合には、反射光強度データR(n)が変化する(反射光強度データR(n)が基準反射光強度未満となる)場合もある。具体的には、極低反射率領域における反射光強度は非常に弱いので、基準反射光強度が得られるように出射レーザー光強度を制御しても出射レーザー光強度が上限値に達してしまう場合があり、この場合は出射レーザー光強度が上限値で一定になるため反射光強度は反射率の変化に従って基準反射光強度未満で変化することになる。この場合に反射光強度データR(n)の値がRmin以上であるが基準反射光強度未満となる。
この場合に明度データM(n)を出射レーザー光強度データI(n)に基づいて算出しても、出射レーザー光強度は上限値で一定になっているため、明度データM(n)も一定になってしまう。しかし、出射レーザー光強度データI(n)は上限値で一定となるが反射光強度データR(n)は変化する。具体的には反射光強度が弱いほど明度が小さくなる。よって、極低反射率領域において出射レーザー光強度が上限値に達してしまう場合は、明度データM(n)は反射光強度データR(I)に基づいて求めることができる。
したがって、極低反射率領域を含めた3次元形状測定可能な全ての反射率領域における明度計算を行う場合には、明度データM(n)を出射レーザー光強度データI(n)と反射光強度データR(n)に基づいて、特にI(n)とR(n)との強度比(R(n)/I(n))に基づいて求めることにより、精度の良い明度データM(n)を得ることができる。すなわち出射レーザー光強度が上限値に達しない反射率領域の3次元形状を測定する際には、R(n)が一定であるから明度データM(n)はI(n)に基づいて(特にI(n)の逆数に基づいて)求められ、出射レーザー光強度が上限値に達してしまう極低反射率領域の3次元形状を測定する際には、I(n)が一定であるから明度データM(n)はR(n)に基づいて求められる。
上記に基づき、S312では、データ演算回路204はまず強度比(R(n)/I(n))を求め、次いで求めた強度比(R(n)/I(n))に基づいて明度Mデータ(n)を求める。なお、明度データM(n)は、コンピュータの画像の明度に使用される0〜255階調に区分された明度(輝度)とすれば、後のデータ処理に便宜である。また、データ演算回路204のメモリには強度比(R(n)/I(n))を明度データM(n)に変換するための関係式が記憶されており、この関係式を用いて明度データM(n)が算出される。この関係式は例えば以下のように決めることができる。まず、予め反射率が非常に高い物体にレーザー光を照射したときの出射レーザー光強度データIとそのときの反射光強度データR(基準反射光強度となる)との強度比R/Iの値を求めておき、その値を所定の高い明度(例えば200)に対応させる。次いで、対応させた明度(例えば200)を上記強度比R/Iの値で除算した値を比例定数a(例えば200/(R/I))とする。明度データM(n)は、M(n)=a・(R(n)/I(n))として求めることができる。
S312にて明度データM(n)を計算した後は、データ演算回路204はS314に進み、照射ポイントの座標(xn,yn,zn)とその座標における明度Mデータ(n)を3次元画像生成装置212に出力し、次いでS316にてnをインクリメントし、その後S304に戻る。そして、次のデータについて上記した処理を行う。全てのnについて座標(xn,yn,zn)と明度データM(n)を出力し、S318の判定にてコントローラ30からデータ取り込み終了信号が入力されているとS320に進んでこのプログラムを終了する。
以上のように、本実施形態によれば、測定対象物表面の色彩や陰影を表す明度データM(n)は出射レーザー光強度データI(n)に基づいて計算される。この出射レーザー光の強度は、補正信号発生回路122およびレーザー光量補正回路124によりフォトセンサ112にて受光する反射光強度が基準反射光強度となるように制御される。反射光強度が一定とされるので、反射率の高低により3次元形状測定の精度が悪くなる部分を極めて少なくすることができ、精度の良い3次元形状測定を行うことができる。さらに、レーザー光の照射方向を走査用光学系106で走査する方式にて測定対象物の3次元形状測定および明度計算を行うので、広い領域で測定対象物OBの3次元形状測定および明度計算を行うことができる。
また、上記明度データM(n)は、出射レーザー光強度データI(n)に加え、さらに反射光強度データR(n)にも基づいて計算される。このため上記のように出射レーザー光強度が上限に達しない反射率領域の3次元形状を測定する際および出射レーザー光強度が上限に達する極低反射率領域の3次元形状を測定する際のいずれにおいても精度の良い明度計算を行うことができる。この場合、明度データM(n)を強度比(R(n)/I(n))に基づいて計算する。特に強度比(R(n)/I(n))に補正係数aを乗じて計算することにより、精度のより良い明度データM(n)を得ることができる。
記実施形態においては、出射レーザー光強度データI(n)に対する反射光強度データR(n)の強度比(R(n)/I(n))から明度データM(n)を計算している。明度データM(n)の計算にR(n)を利用しているのは、上記極低反射率領域の3次元形状測定の際に精度のよい明度測定を行うためである。しかし、測定対象物OBの反射率が決まっているなどして出射レーザー光の強度が上限に達することがないものであれば、明度データM(n)の計算にR(n)を用いる必要はない。したがって、この場合には、データ演算回路204が取り込むデータから反射光強度データR(n)を除外し、出射レーザー光強度データI(n)の逆数から明度データM(n)を計算するようにしてもよい。この場合の明度データM(n)を計算するための関係式は、M(n)=a・(1/I(n))であり、比例定数aは上記実施形態と同様にして求めればよい。この例によれば、反射光強度をA/D変換するA/D変換器210が不要となるので、装置のコストを低減することができる。
記実施形態においては、出射レーザー光強度データI(n)に対する反射光強度データR(n)の強度比(R(n)/I(n))から明度データM(n)を計算している。しかし、明度は、照射ポイントと3次元センサ10(ラインセンサ110)との間の距離にも依存する。このためレーザー光の照射方向(Z方向)に奥行きがあり、Z方向に長い測定領域を持つ測定対象物を測定する場合は、レーザー光の照射ポイントの反射率が同じであってもその照射ポイントが3次元センサ10の近くにある場合と遠くにある場合とで強度比(R(n)/I(n))の値が変化する。具体的には、照射ポイントがラインセンサ110から遠く離れている場合には、ラインセンサ110にて受光される反射光の散乱角度が小さくなるために受光強度も小さくなり、その結果、基準反射光強度を得るために出射レーザー光強度が大きくなる。一方、照射ポイントがラインセンサ110に近い場合には、ラインセンサ110にて受光される反射光の散乱角度は相対的に大きくなるので受光強度も大きくなり、その結果、基準反射光強度を得るために出射レーザー光強度が小さくなる。このように照射ポイントとラインセンサ110との間の距離の遠近により出射レーザー光強度が変化するために強度比(R(n)/I(n))も変化するのである。したがって、明度計算の際に上記距離を考慮せずに3次元形状を測定した場合、同じ反射率を持つ複数の部位が3次元センサ10との間の距離の違いによりそれぞれ異なった明度で表示されることになり、測定対象物表面の模様を精度よく表示する3次元形状測定を行う場合には明度の表示精度が劣る。このような場合は、強度比(R(n)/I(n))の値を距離データL(n)により補正することにより明度の表示精度を維持することができる。補正はデータ演算回路204にて次のように行われる。
まず事前準備として、図7に示されるように、一様な反射率を持つ平板状物体PLに対して3次元センサ10からレーザー光を走査せずに垂直に照射し、そのときの出射レーザー光強度データIと反射光強度データRとの強度比(R/I)とZ方向(レーザー光の照射方向)における距離データLを取得する。この強度比(R/I)および距離データLを、Z方向に距離を変えた複数の距離においてそれぞれ取得する。例えば図7に示されるように距離L1,L2,L3,L4においてそれぞれ(R1/I1),(R2/I2),(R3/I3),(R4/I4)を取得する。
その後、距離データLが中間付近であるもの(例えば距離L2)を基準距離Lsとし、基準距離Lsのときに得られた強度比(例えばR2/I2)を基準強度比(R/I)sとする。さらに各距離と基準距離との距離比(L/Ls)と、各強度比と基準強度比との比((R/I)/(R/I)s)を求める。そして、距離比(L/Ls)と比((R/I)/(R/I)s)を関係づける関係式((R/I)/(R/I)s)=F(L/Ls)を作成し、基準距離Lsとともにメモリに記憶しておく。あるいは、距離比(L/Ls)を比((R/I)/(R/I)s)に変換できるように両者の関係を表すテーブルをメモリに記憶しておいてもよい。これで距離データL(n)による補正の事前準備ができる。
そして、実際の測定の際のデータ処理において、データ演算回路204は計算した距離データL(n)から距離比(L(n)/Ls)を計算し、記憶している関係式((R/I)/(R/I)s)=F(L/Ls)に距離比(L(n)/Ls)の値を代入する。あるいは記憶している距離比(L/Ls)と比((R/I)/(R/I)s)との相関テーブルに基づいて、比((R/I)/(R/I)s)に相当する値を求める。そして、入力したR(n)とI(n)から計算される強度比(R(n)/I(n))の値を上記求められた((R/I)/(R/I)s)の値で除算する。除算して求めた値が、距離データL(n)を基準距離Lsに置き換えた場合における強度比(R(n)/I(n))に相当する補正強度比(R(n)/I(n))’である。この補正強度比(R(n)/I(n))’の値を用いて明度データM(n)を求めることにより、距離L(n)により補正された正確な明度データM(n)を算出することができる。図8に、上記補正のためにデータ演算回路204が行うサブプログラムのフローチャートを示す。このフローチャートに示されるS400〜S408の処理は図5に示されるフローチャートにおけるS312内において行われ、明度データ計算の際に図8のフローチャートに従って算出した補正強度比(R(n)/I(n))’に基づいて明度データM(n)を計算する。なお、図8のフローチャートにおいては、求めた距離比L(n)/LsをA、求めた比((R/I)/(R/I)s)をBと表示している。
なお、上記補正はレーザー光照射部位の反射率が低い場合であっても高い場合であっても関係式((R/I)/(R/I)s)=F(L/Ls)が一定であると仮定して明度を補正するものである。しかし、測定装置によっては反射率が変化すると上記関係式も変化することがある。この場合には、一組の関係式((R/I)/(R/I)s)=F(L/Ls)・・・関係式1、および、(R/I)=F’(L)・・・関係式2)を反射率ごとに分けてメモリに記憶しておくとよい。そして、距離データL(n)をそれぞれの反射率における関係式2に代入し、求められた値(R/I)が比(R(n)/I(n))に最も近い組の関係式1を使用して補正するとよい。
このように、変形例2によれば、距離データL(n)により明度が補正される。換言すれば、明度は、出射レーザー光強度データI(n)および反射光強度データR(n)に加え、ラインセンサ110が出力する信号に基づいて求められる距離データL(n)にも基づいて計算される。したがって、照射ポイントとラインセンサ110との間の距離の違いによって同一反射率を有する部位であっても異なる明度となるような不具合が防止される。よって、レーザー光の照射方向(Z方向)に奥行きを持つ測定対象物について3次元形状測定を行う場合でも、3次元画像に測定対象物の表面の反射率に基づいた色彩や陰影を付与することができる。
記実施形態においては、出射レーザー光強度データI(n)に対する反射光強度データR(n)の強度比(R(n)/I(n))から明度データM(n)を計算している。しかし、明度は、照射ポイントにおける出射レーザー光の光軸と照射面の法線とのなす角である照射角度にも依存する。このため測定領域内において照射角度が大きく変わる場合は、レーザー光の照射ポイントの反射率が同じであってもその照射角度の違いによって強度比(R(n)/I(n))の値が変化する。具体的には、照射角度が直角であるときには反射光の強度が強いために受光強度も強くなり、その結果、基準反射光強度を得るために出射レーザー光強度が小さくなる。一方、照射角度が直角から離れる角度になるほど反射光の強度が弱くなり、その結果、基準反射光を得るために出射レーザー光強度が大きくなる。このようにして照射角度の違いにより出射レーザー光強度が変化するために強度比(R(n)/I(n))も変化するのである。したがって、明度計算の際に照射角度を考慮せずに3次元形状を測定した場合、同じ明度を持つ複数の部位がその照射角度の違いによりそれぞれ異なった明度で表示されることになり、測定対象物表面の模様を精度よく表示する3次元形状測定を行う場合には明度の表示精度が劣る。このような場合は、ラインセンサデータD(n,p)から距離データL(n)と共に受光幅W(n)を求め、強度比(R(n)/I(n))の値を距離データL(n)と反射光の受光幅W(n)により補正することにより明度の表示精度を維持することができる。補正はデータ演算回路204にて次のように行われる。
まず事前準備として、図9に示されるように、一様な反射率を持つ平板状物体PLに対して3次元センサ10からレーザー光を走査せずに照射する。そして、その照射点を通る鉛直軸を中心として平板状物体PLを回転させて、複数の照射角度φにてレーザー光の照射を行い、それぞれの照射角度φについて強度比(R/I)と距離データLと受光幅データWを取得する。ここで、受光幅データWは、図6に示されるようにラインセンサデータDから得られる受光強度分布を表す波形の半値幅とすることができる。また、平板状物体PLは照射点を含む鉛直軸線回りを回転することにより照射角を変えているので、レーザー光源と照射ポイントとの間の距離は一定に保たれる。これにより所定の距離Lにおける複数の照射角度φについての強度比(R/I)および受光幅データWが得られる。このようなデータ取得を上記レーザー光源と平板状物体PLとの間の距離が異なった複数の距離L(例えば距離L1,L2,L3)について行う。そして、距離Lごとに、照射角度φが直角であるときの強度比(R/I)を基準強度比(R/I)s、受光幅Wを基準受光幅Wsと定め、各強度比(R/I)と基準強度比(R/I)sとの比((R/I)/(R/I)s))および各受光幅Wと基準受光幅Wsとの幅比(W/Ws)を求める。
次に、幅比(W/Ws)と比((R/I)/(R/I)s)を関係づける関係式((R/I)/(R/I)s)=F(W/Ws)を作成し、基準の受光幅Wsとともにメモリに記憶しておく。あるいは、幅比(W/Ws)を比((R/I)/(R/I)s)に変換できるように両者の関係を表すテーブルを記憶しておいてもよい。この関係式やテーブルを距離Lごとに作成し、メモリに記憶しておく。したがって、メモリには距離Lm(例えば距離Lm=L1,L2,L3)ごとに、基準受光幅Wsm、関係式((R/I)/(R/I)s)m=Fm(W/Wsm)が記憶されていることになる。これで距離データL(n)と受光幅W(n)による補正の準備ができる。
実際の測定の際のデータ処理において、データ演算回路204はメモリに記憶した距離Lmのうちから計算した距離データL(n)に最も近い距離Lmを特定し、特定した距離Lmについての関係式((R/I)/(R/I)s)m=Fm(W/Ws)および基準受光幅Wsmを選択する。次に、受光幅データW(n)を計算し、さらに選択した基準受光幅Wsmを用いて幅比(W(n)/Wsm)を計算し、選択した関係式に幅比(W(n)/Wsm)を代入して比((R/I)/(R/I)s)mの値を求める。そして、入力したR(n)とI(n)から計算される強度比(R(n)/I(n))の値を上記求められた比((R/I)/(R/I)s)mの値で除算する。除算して求めた値が、照射角度を直角とした場合における強度比(R(n)/I(n))に相当する補正強度比(R(n)/I(n))’’である。この補正強度比(R(n)/I(n))’’を用いて明度データM(n)を求めることにより、受光幅W(n)により補正された正確な明度データM(n)を算出することができる。図10に、上記補正のためにデータ演算回路204が行うサブプログラムのフローチャートを示す。図10のフローチャートに示されたS500〜S514の処理は図5に示されるフローチャートのS312にて行われ、明度データ計算の際に図10の処理に従い算出した補正強度比(R(n)/I(n))’’に基づいて明度データを計算する。なお、図10のフローチャートにおいては、幅比W(n)/WsmをA、比((R/I)/(R/I)s)mをBと表示している。
なお、上記補正はレーザー光照射部位の反射率が低い場合であっても高い場合であっても関係式((R/I)/(R/I)s)m=Fm(W/Wsm)が一定であると仮定して明度を補正するものである。しかし、測定装置によっては反射率が変化すると上記関係式も変化することがある。この場合には、一組の関係式((R/I)/(R/I)s)m=Fm(W/Ws)・・・関係式1、および、(R/I)m=Fm’(W)・・・関係式2)を反射率ごとに分けて複数の距離Lmごとにメモリに記憶しておくとよい。そして、距離データL(n)に最も近い距離Lmについての一組の関係式の群を選択し、その群の中から、比(R(n)/I(n))と、計算により得られたW(n)を関係式2に代入して求めた値(R/I)mとが最も近い一組の関係式をさらに選択する。こうして選択された一組の関係式中の関係式1を使用して補正するとよい。
この変形例によれば、データ演算回路204はラインセンサ110が出力する信号から反射光の受光幅Wを検出する反射光受光幅検出手段(図10のS506)を備えており、この反射光受光幅検出手段により検出された反射光の受光幅Wにより明度が補正される。換言すれば、明度は、出射レーザー光強度データI(n)および反射光強度データR(n)に加え、受光幅W(n)にも基づいて計算される。したがって、レーザー光の照射角度が大きく変わる測定対象物について3次元形状測定を行う場合でも、3次元画像に測定対象物の表面の反射率に基づいた色彩や陰影を付与することができる。
なお、本発明は上記実施形態および変形例に限定されるべきものではなく、さらに様々な変形が可能である。例えば、上記実施形態の3次元センサ10は、レーザー光の照射方向を走査用光学系106によりX方向、Y方向の直交する2方向に変えるようにしたが、照射方向はX方向(Y方向)のみ変えるようにし、3次元センサ10をY方向(X方向)に移動して3次元形状測定するものでもよい。また照射方向は変化させず、3次元センサ10をX,Y方向に移動させて3次元形状測定するものでもよい。3次元センサ10がこのような構成でも上記実施形態と同様の作用効果を奏し得る。
また、上記実施形態の3次元センサ10はラインセンサ110で反射した2次反射光をフォトセンサ112で受光するようにしたが、ラインセンサ110の手前にビームスプリッタを設け、ラインセンサ110に入射する反射光の一部を分岐させてフォトセンサ112で受光するようにしてもよい。3次元センサ10がこのような構成であっても上記実施形態と同様の作用効果を奏し得る。
また、上記実施形態の3次元センサ10は反射光をラインセンサ110で受光するようにしたが、ラインセンサ110の代わりにエリアセンサとして、反射光を走査用光学系106を介することなく受光するようにしてもよい。3次元センサ10がこのような構成であっても上記実施形態と同様の作用効果を奏し得る。また、上記実施形態ではデータの取り込みを所定時間間隔Δtで行うようにしたが、レーザー光の照射方向が所定量変わるごとに、すなわち走査用光学系106にあるモータが所定の角度だけ回転するごとにデータの取り込みを行うようにしてもよい。データの取り込みがこのような構成でも上記実施形態と同様の作用効果を奏し得る。このように本発明は、その目的および趣旨を逸脱しない限りにおいて、様々な変形が可能である。
本実施形態に係る3次元形状測定装置の全体構成図である。 角度θxおよび角度θyの説明図である。 3次元形状測定においてコントローラが実行するプログラムのフローチャートである。 データ入力およびメモリへの記憶のためにデータ演算回路が実行するプログラムのフローチャートである。 照射ポイントの座標および明度を計算して3次元画像生成装置に出力するためにデータ演算回路が実行するプログラムである。 ラインセンサによって得られるラインセンサデータをグラフに表した強度分布波形である。 離比と強度比との関係を求めるための実験構成を示す図である。 距離による補正を行うためにデータ演算回路が実行するサブプログラムのフローチャートである。 光幅比と強度比との関係を求めるための実験構成を示す図である。 距離および受光幅による補正を行うためにデータ演算回路が実行するサブプログラムのフローチャートである。
符号の説明
1…3次元形状測定装置、10…3次元センサ、20…データ処理装置、30…コントローラ、102…レーザー光源(レーザー光照射手段)、104…コリメーティングレンズ(レーザー光照射手段)、106…走査用光学系(レーザー照射位置変更手段)、108…集光レンズ、110…ラインセンサ(受光器)、112…フォトセンサ(反射光強度検出手段)、120…増幅回路、122…補正信号発生回路(出射レーザー光強度制御手段)、124…レーザー光量補正回路(出射レーザー光強度制御手段)、126…レーザー駆動回路(レーザー光照射手段)、128…走査用光学系駆動回路(レーザー照射位置変更手段)、202…信号取出し回路、204…データ演算回路、206…角度計算回路、212…3次元画像生成装置(3次元画像生成手段)、S306…判定手段、S308,S310…3次元形状データ生成手段、S312…明度計算手段、S506…受光幅計算手段

Claims (6)

  1. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射手段と、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることにより、前記照射スポットを移動させるレーザー光照射位置変更手段と、
    前記照射スポットにおける散乱光の一部である反射光を受光し、前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離に応じた信号を出力する受光器と、
    前記レーザー光照射位置変更手段により変化するレーザー光の照射方向または前記レーザー光源の位置と前記受光器が出力する信号とに基づいて、前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成手段とを備えた3次元形状測定装置において、
    前記受光器に入射する反射光の強度を検出する反射光強度検出手段と、
    前記反射光強度検出手段により検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御する出射レーザー光強度制御手段と、
    前記受光器が出力する信号に基づいて前記距離を計算する距離計算手段と
    前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記距離計算手段により計算された前記距離と、予め求められている複数の前記距離と前記強度比との関係とに基づいて、前記距離が予め設定された基準距離である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算手段と、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成手段とを備えることを特徴とする3次元形状測定装置。
  2. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射手段と、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることにより、前記照射スポットを移動させるレーザー光照射位置変更手段と、
    前記照射スポットにおける散乱光の一部である反射光を受光し、前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離に応じた信号を出力する受光器と、
    前記レーザー光照射位置変更手段により変化するレーザー光の照射方向または前記レーザー光源の位置と前記受光器が出力する信号とに基づいて、前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成手段とを備えた3次元形状測定装置において、
    前記受光器に入射する反射光の強度を検出する反射光強度検出手段と、
    前記反射光強度検出手段により検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御する出射レーザー光強度制御手段と、
    前記受光器が出力する信号に基づいて前記距離を計算する距離計算手段と
    前記受光器が受光した反射光の受光幅を検出する反射光受光幅検出手段と、
    前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記距離計算手段により計算された前記距離と、前記反射光受光幅検出手段により検出された前記受光幅と、複数の前記距離ごとに予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記距離が前記距離計算手段により計算された前記距離に相当する距離であって且つ前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算手段と、
    と、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成手段とを備えることを特徴とする3次元形状測定装置。
  3. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射手段と、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることにより、前記照射スポットを移動させるレーザー光照射位置変更手段と、
    前記照射スポットにおける散乱光の一部である反射光を受光し、前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離に応じた信号を出力する受光器と、
    前記レーザー光照射位置変更手段により変化するレーザー光の照射方向または前記レーザー光源の位置と前記受光器が出力する信号とに基づいて、前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成手段とを備えた3次元形状測定装置において、
    前記受光器に入射する反射光の強度を検出する反射光強度検出手段と、
    前記反射光強度検出手段により検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御する出射レーザー光強度制御手段と、
    前記受光器が受光した反射光の受光幅を検出する反射光受光幅検出手段と、
    前記出射レーザー光強度制御手段により制御されたレーザー光の強度と前記反射光強度検出手段により検出された反射光の強度との強度比を、前記反射光受光幅検出手段により検出された前記受光幅と、予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算手段と、
    と、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成手段とを備えることを特徴とする3次元形状測定装置。
  4. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射ステップと、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることによって前記照射スポットを移動する照射スポット移動ステップと、
    前記照射スポットにおける散乱光の一部である反射光を受光する受光ステップと、
    前記受光ステップにて受光した反射光の強度を検出する反射光強度検出ステップと、
    前記反射光強度検出ステップにより検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御するレーザー光強度制御ステップと、
    前記受光ステップにて受光した反射光に基づいて前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離を取得する距離取得ステップと、
    レーザー光の照射方向または前記レーザー光源の位置、および前記距離取得ステップにより取得した距離に基づいて前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成ステップと、
    前記レーザー光強度制御ステップにより制御されたレーザー光の強度と前記反射光強度検出ステップにより検出された反射光の強度との強度比を、前記距離取得ステップにより取得された前記距離と、予め求められている複数の前記距離と前記強度比との関係とに基づいて、前記距離が予め設定された基準距離である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算ステップと、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成ステップとを含むことを特徴とする3次元形状測定方法。
  5. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射ステップと、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることによって前記照射スポットを移動する照射スポット移動ステップと、
    前記照射スポットにおける散乱光の一部である反射光を受光する受光ステップと、
    前記受光ステップにて受光した反射光の強度を検出する反射光強度検出ステップと、
    前記反射光強度検出ステップにより検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御するレーザー光強度制御ステップと、
    前記受光ステップにて受光した反射光に基づいて前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離を取得する距離取得ステップと、
    レーザー光の照射方向または前記レーザー光源の位置、および前記距離取得ステップにより取得した距離に基づいて前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成ステップと、
    前記受光ステップにより受光した反射光の受光幅を検出する反射光受光幅検出ステップと、
    前記レーザー光強度制御ステップにより制御されたレーザー光の強度と前記反射光強度検出ステップにより検出された反射光の強度との強度比を、前記距離取得ステップにより取得された前記距離と、前記反射光受光幅検出ステップにより検出された前記受光幅と、複数の前記距離ごとに予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記距離が前記距離取得ステップにより取得された前記距離に相当する距離であって且つ前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算ステップと、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成ステップとを含むことを特徴とする3次元形状測定方法。
  6. 測定対象物に向けてレーザー光源からレーザー光を出射して前記測定対象物の表面に照射スポットを形成するレーザー光照射ステップと、
    レーザー光の照射方向または前記レーザー光源の位置を変化させることによって前記照射スポットを移動する照射スポット移動ステップと、
    前記照射スポットにおける散乱光の一部である反射光を受光する受光ステップと、
    前記受光ステップにて受光した反射光の強度を検出する反射光強度検出ステップと、
    前記反射光強度検出ステップにより検出された反射光の強度が設定された強度になるように前記レーザー光源が出射するレーザー光の強度を制御するレーザー光強度制御ステップと、
    前記受光ステップにて受光した反射光に基づいて前記レーザー光源から前記照射スポットの形成部位である照射ポイントまでの距離を取得する距離取得ステップと、
    レーザー光の照射方向または前記レーザー光源の位置、および前記距離取得ステップにより取得した距離に基づいて前記照射ポイントの座標値である3次元形状データを生成する3次元形状データ生成ステップと、
    前記受光ステップにより受光した反射光の受光幅を検出する反射光受光幅検出ステップと、
    前記レーザー光強度制御ステップにより制御されたレーザー光の強度と前記反射光強度検出ステップにより検出された反射光の強度との強度比を、前記反射光受光幅検出ステップにより検出された前記受光幅と、予め求められている複数の前記受光幅と前記強度比との関係とに基づいて、前記受光幅が予め設定された基準受光幅である場合に得られるべき強度比に補正し、補正した強度比に基づいて前記照射ポイントの明度を計算する明度計算ステップと、
    前記3次元形状データおよび前記明度に基づいて前記測定対象物の3次元画像を生成する3次元画像生成ステップとを含むことを特徴とする3次元形状測定方法。
JP2008046549A 2008-02-27 2008-02-27 3次元形状測定装置および3次元形状測定方法 Active JP4872948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046549A JP4872948B2 (ja) 2008-02-27 2008-02-27 3次元形状測定装置および3次元形状測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046549A JP4872948B2 (ja) 2008-02-27 2008-02-27 3次元形状測定装置および3次元形状測定方法

Publications (2)

Publication Number Publication Date
JP2009204425A JP2009204425A (ja) 2009-09-10
JP4872948B2 true JP4872948B2 (ja) 2012-02-08

Family

ID=41146861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046549A Active JP4872948B2 (ja) 2008-02-27 2008-02-27 3次元形状測定装置および3次元形状測定方法

Country Status (1)

Country Link
JP (1) JP4872948B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607462A (zh) * 2012-03-26 2012-07-25 武汉迅能光电科技有限公司 一种三维激光扫描信号同步及修正方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915461B2 (ja) * 2010-04-02 2012-04-11 パルステック工業株式会社 3次元形状測定装置
JP2012078098A (ja) * 2010-09-30 2012-04-19 Pulstec Industrial Co Ltd 3次元形状測定装置
JP6119232B2 (ja) * 2012-12-19 2017-04-26 株式会社ソシオネクスト 距離測定装置、距離測定方法
JP2014169947A (ja) 2013-03-05 2014-09-18 Hitachi Ltd 形状検査方法およびその装置
JP6233953B2 (ja) * 2013-06-28 2017-11-22 三菱重工業株式会社 検査装置、検査方法及びプログラム
KR102284673B1 (ko) * 2014-01-29 2021-08-02 엘지이노텍 주식회사 센서 모듈 및 이를 포함하는 3차원 영상
JP6693880B2 (ja) 2014-01-29 2020-05-13 エルジー イノテック カンパニー リミテッド 深さ情報抽出装置および方法
JP6335809B2 (ja) * 2015-02-05 2018-05-30 三菱重工業株式会社 縞パタン画像取得装置、縞パタン画像取得方法、三次元位置特定装置、三次元位置特定方法、およびプログラム
CN104613896B (zh) * 2015-02-10 2017-06-20 北京矿冶研究总院 一种三维激光扫描空间分辨率增强的方法
JP2020066193A (ja) * 2018-10-26 2020-04-30 カンタツ株式会社 3次元造形装置、3次元造形装置の制御方法および3次元造形装置の制御プログラム
WO2020202496A1 (ja) * 2019-04-03 2020-10-08 日本電気株式会社 表面異常検知装置、及びシステム
JP7300971B2 (ja) * 2019-11-25 2023-06-30 株式会社ミツトヨ 光学式測定装置および光源制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733170B2 (ja) * 1992-09-24 1998-03-30 株式会社クボタ 三次元形状計測装置
JP3554264B2 (ja) * 2000-09-20 2004-08-18 パルステック工業株式会社 3次元画像生成装置及び同方法
JP3554268B2 (ja) * 2000-10-31 2004-08-18 パルステック工業株式会社 光ビーム照射測定装置
JP2003035524A (ja) * 2001-07-23 2003-02-07 Olympus Optical Co Ltd 3次元測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607462A (zh) * 2012-03-26 2012-07-25 武汉迅能光电科技有限公司 一种三维激光扫描信号同步及修正方法
CN102607462B (zh) * 2012-03-26 2014-02-12 武汉迅能光电科技有限公司 一种三维激光扫描信号同步及修正方法

Also Published As

Publication number Publication date
JP2009204425A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4872948B2 (ja) 3次元形状測定装置および3次元形状測定方法
JP4238891B2 (ja) 三次元形状測定システム、三次元形状測定方法
US7751065B2 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program
US20020060783A1 (en) Distance measuring apparatus and method employing two image taking devices having different measurement accuracy
US6721679B2 (en) Distance measuring apparatus and distance measuring method
JP4171728B2 (ja) 3次元形状測定装置
TWI420081B (zh) 測距系統及測距方法
EP2463618A1 (en) Surface profile inspection device
JP5081559B2 (ja) 測定装置
US11054249B2 (en) Profile measuring apparatus
EP2615414B1 (en) Displacement sensor
JP7240139B2 (ja) 変位測定装置
JP6565128B2 (ja) レーザ光強度制御装置及びレーザ光強度制御方法
US6614537B1 (en) Measuring apparatus and measuring method
JP4973836B2 (ja) 計測領域の自動設定手段を備えた変位センサ
JP6820516B2 (ja) 表面形状測定方法
EP4036596A1 (en) High resolution lidar scanning
JP4773802B2 (ja) 変位センサ
JP2022031956A (ja) 走査範囲決定方法
JP2020125981A (ja) 測定装置及び測定装置の制御方法
JP2009186216A (ja) 3次元形状測定装置
JP2008180646A (ja) 形状測定装置および形状測定方法
JP6423032B2 (ja) 3次元測量装置
JP3928350B2 (ja) 変位センサにおけるデータ出力方法およびその方法を用いた変位センサ
JPH08327338A (ja) 3次元形状測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250