JP4861931B2 - Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete - Google Patents

Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete Download PDF

Info

Publication number
JP4861931B2
JP4861931B2 JP2007218300A JP2007218300A JP4861931B2 JP 4861931 B2 JP4861931 B2 JP 4861931B2 JP 2007218300 A JP2007218300 A JP 2007218300A JP 2007218300 A JP2007218300 A JP 2007218300A JP 4861931 B2 JP4861931 B2 JP 4861931B2
Authority
JP
Japan
Prior art keywords
less
concrete
aggregate
strength
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007218300A
Other languages
Japanese (ja)
Other versions
JP2009051682A (en
Inventor
貴夫 小出
康範 鈴木
誠一 長岡
浩司 河上
拓 松田
好克 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2007218300A priority Critical patent/JP4861931B2/en
Publication of JP2009051682A publication Critical patent/JP2009051682A/en
Application granted granted Critical
Publication of JP4861931B2 publication Critical patent/JP4861931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、超高強度高流動コンクリート及び超高強度高流動フレッシュコンクリートに関し、更に詳しくは、従来のコンクリートと比べて高い強度発現性及び高い流動性を兼ね備え、特に、水結合材比を15.0%以下とした場合においても200N/mm以上の圧縮強度を得ることが可能な高強度高流動コンクリート及び超高強度高流動フレッシュコンクリートに関するものである。 The present invention relates to ultra-high-strength high-fluidity concrete and ultra-high-strength high-fluidity fresh concrete. More specifically, the present invention has high strength development and high fluidity compared to conventional concrete, and in particular, has a water binder ratio of 15. The present invention relates to a high-strength high-fluidity concrete and an ultra-high-strength high-fluidity fresh concrete capable of obtaining a compressive strength of 200 N / mm 2 or more even when 0% or less.

一般に、コンクリート構造体における圧縮強度は、それに含まれる粗骨材や細骨材の品質に大きく左右される。通常、粗骨材としては天然産の川砂利、山砂利(陸砂利)、砕石等が、細骨材としては、天然産の川砂、山砂(陸砂)、海砂、砕砂等が使用されているが、産地、母岩種、ロット等により品質が大きくばらつくという問題が避けられない。特に、圧縮強度が200N/mmを超えるような極めて強度の高い領域では、コンクリート供試体やコンクリート構造物等のコンクリート中に品質の悪い骨材が混入すると、外部から応力が加わった場合に品質の悪い骨材を含む部分に応力が集中し、本来発揮(期待)されるはずの強度より低い強度で破壊してしまう、つまり、品質の悪い骨材が構造上の欠陥となってしまうこととなる。 In general, the compressive strength of a concrete structure depends greatly on the quality of the coarse aggregate and fine aggregate contained therein. Usually, natural river gravel, mountain gravel (land gravel), crushed stone, etc. are used as coarse aggregates, and natural river sand, mountain sand (land sand), sea sand, crushed sand, etc. are used as fine aggregates. However, there is an unavoidable problem that the quality varies greatly depending on the production area, host rock type, and lot. In particular, in extremely high strength areas where the compressive strength exceeds 200 N / mm 2 , if poor quality aggregates are mixed into concrete such as concrete specimens or concrete structures, the quality is increased when external stress is applied. Stress concentrates on parts containing poor aggregates and breaks at a lower strength than is expected (expected), meaning that poor quality aggregates become structural defects. Become.

また同様に、骨材の密度、粒子の形状、最大粒径、粒度分布、吸水率等の物性により、コンクリートやフレッシュコンクリートの流動性も大きく左右される。特に、天然産の骨材を使用した場合、コンクリートやフレッシュコンクリートの流動性は用いられた骨材の品質に大きく左右される。
そこで、圧壊強度(硬度)や耐摩耗性が高くかつ品質の安定している骨材として、高炉スラグ骨材、フェロクロムスラグ骨材、フェロニッケルスラグ骨材、銅スラグ骨材、電気炉酸化スラグ骨材等のスラグ骨材を用いた様々な技術が提案されている。
Similarly, the fluidity of concrete and fresh concrete is greatly influenced by physical properties such as aggregate density, particle shape, maximum particle size, particle size distribution, and water absorption. In particular, when natural aggregates are used, the fluidity of concrete and fresh concrete depends greatly on the quality of the aggregate used.
Therefore, blast furnace slag aggregate, ferrochrome slag aggregate, ferronickel slag aggregate, copper slag aggregate, electric furnace oxidation slag bone as aggregates with high crushing strength (hardness) and wear resistance and stable quality Various techniques using slag aggregate such as wood have been proposed.

例えば、水硬性物質(セメント)、シリカダスト(シリカヒューム)やシリカ質ダスト等の超微粉、高性能減水剤、粒径5mm程度以下に粉砕したフェロクロムスラグ粉砕品及び水を主成分とした超高強度セメント組成物(特許文献1)、セメント及び水等と混練することによりコンクリートあるいはモルタルの構成材料として用いられる細骨材の一部または全部をスラグ球あるいはスラグ亜球により構成した細骨材(特許文献2)、直径5mm以下に風砕して球状化したフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを、砂と混合してコンクリート用骨材とするフェロアロイスラグの利用方法(特許文献3)、風砕製法によるフェロニッケルスラグを粒径2.5mm以下、かつ、その細骨材中の混入率を30%以上に調合した高流動コンクリート用細骨材(特許文献4)、天然鉱物質微粉末または人工鉱物質微粉末からなる鉱物質微粉末、及び、粒径0.3〜5mmのフェロニッケルスラグ細骨材等の微粒分の欠如した細骨材を用いた流動性と強度発現に優れたモルタル及びコンクリート組成物(特許文献5)、セメント、粒状セメントクリンカー、減水剤、比重が2.7以上の骨材、超微粉等から構成される高強度モルタル組成物(特許文献6)等が提案されている。   For example, ultra-fine powder such as hydraulic substance (cement), silica dust (silica fume) and siliceous dust, high-performance water reducing agent, ferrochrome slag pulverized product pulverized to a particle size of about 5 mm or less, and ultra-high Strong aggregate composition (Patent Document 1), fine aggregate composed of slag spheres or slag subspheres, part or all of fine aggregates used as a constituent material of concrete or mortar by kneading with cement and water ( Patent Document 2), a ferroalloy slag made of ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which is crushed into a diameter of 5 mm or less and mixed with sand to form a concrete aggregate. Method of use (Patent Document 3), Ferronickel slag produced by air-crushing method with a particle size of 2.5 mm And a fine aggregate for high fluidity concrete (patent document 4) prepared by mixing the mixture ratio in the fine aggregate to 30% or more, a fine mineral powder consisting of a fine natural powder or a fine artificial mineral powder, And a mortar and concrete composition excellent in fluidity and strength expression using a fine aggregate lacking fine particles such as ferronickel slag fine aggregate having a particle size of 0.3 to 5 mm (Patent Document 5), cement, A high-strength mortar composition (Patent Document 6) composed of granular cement clinker, water reducing agent, aggregate having a specific gravity of 2.7 or more, ultrafine powder, and the like has been proposed.

これらの技術によれば、強度や流動性に優れたモルタルあるいはコンクリートが得られ、また、これまで用途が限られていたフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを細骨材として有効利用することができるという効果がある。
特許第2653402号公報 特開平5−32439号公報 特開平5−262542号公報 特開平8−325047号公報 特開平9−52744号公報 特開2005−119885号公報
According to these technologies, mortar or concrete excellent in strength and fluidity can be obtained, and ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which has been limited in use until now, can be obtained. There is an effect that it can be effectively used as a fine aggregate.
Japanese Patent No. 2653402 Japanese Patent Laid-Open No. 5-32439 Japanese Patent Laid-Open No. 5-262542 JP-A-8-325047 Japanese Patent Laid-Open No. 9-52744 JP 2005-119885 A

ところで、従来の公知技術においては、いずれの細骨材も、その最大粒径が2.5〜5mmであったり、あるいは特殊な球状化処理を施しているために、これらの細骨材を用いたセメント組成物を水結合材比15.0%以下の超高強度領域にて養生・硬化させて得られたコンクリートは、圧縮強度が頭打ちとなり、200N/mmを超える圧縮強度を得るには不十分であるという問題点があった。 By the way, in the conventional well-known technique, since all the fine aggregates have a maximum particle size of 2.5 to 5 mm or have been subjected to a special spheroidizing treatment, these fine aggregates are used. To obtain a compressive strength exceeding 200 N / mm 2 , the concrete obtained by curing and hardening the cement composition in a super high strength region with a water binder ratio of 15.0% or less reaches its peak. There was a problem that it was insufficient.

本発明は、上記の課題を解決するためになされたものであって、従来のコンクリートやフレッシュコンクリートと比べて高い強度発現性及び高い流動性を兼ね備え、しかも、水結合材比が15.0%以下の超高強度領域においても200N/mmを超える圧縮強度を得ることが可能な超高強度高流動コンクリート及び超高強度高流動フレッシュコンクリートを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and has high strength development and high fluidity compared to conventional concrete and fresh concrete, and further has a water binder ratio of 15.0%. An object is to provide an ultra-high-strength high-fluidity concrete and an ultra-high-strength high-fluidity fresh concrete capable of obtaining a compressive strength exceeding 200 N / mm 2 even in the following ultra-high-strength region.

本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、粗骨材及び細骨材の品種、粒径、密度、吸水率を制御することにより、従来品と比べて圧縮強度及び流動性が高いコンクリートを得ることが可能であり、さらに、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有したものとすれば、コンクリートに圧縮強度が200N/mm以上の極めて高い強度発現性及び良好な流動性を付与することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have controlled compressive strength compared to conventional products by controlling the varieties, particle size, density, and water absorption rate of coarse and fine aggregates. and it is possible to obtain a high fluidity concrete, further cement 10 wt% or more and 30% by weight a specific surface area by the BET method of 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder A coarse binder with an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of If it contains artificial high density fine aggregate with 1.2 mm or less, absolute dry density of 2.90 g / cm 3 or more and water absorption of 0.90% or less, and a chemical admixture, the compressive strength of the concrete Extremely high strength of 200 N / mm 2 or more The present inventors have found that it is possible to impart degree of expressibility and good fluidity, and have completed the present invention.

すなわち、本発明の超高強度高流動コンクリートは、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなることを特徴とする。 In other words, ultra high strength and high fluidity concrete of the present invention, substituted or 10 wt% of the cement and of 30% by weight or less specific surface area by BET method at 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder A hydraulic binder, a coarse aggregate having an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of 1.2 mm In the following, it is characterized by containing an artificial high-density fine aggregate having an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90% or less, and a chemical admixture.

前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることが好ましい。
前記粗骨材は、天然粗骨材及び/または人造粗骨材からなり、前記天然粗骨材は、硬質砂岩砕石、安山岩砕石、玄武岩砕石、石英片岩砕石の群から選択された1種または2種以上からなり、前記人造粗骨材は、人造コランダム及び/または焼結ボーキサイトからなることが好ましい。
水結合材比が15.0%以下、かつ、前記人造高密度細骨材の単位容積量が100L/m以上かつ200L/m以下にて混練、養生され、前記養生を20℃にて91日間、50℃以上かつ80℃以下にて7日間、のいずれかにて行った場合の圧縮強度は、200N/mm以上であることが好ましい。
The artificial high-density fine aggregate is preferably one or more selected from the group of ferronickel slag fine aggregate, copper slag fine aggregate, and electric furnace oxidized slag fine aggregate.
The coarse aggregate is composed of natural coarse aggregate and / or artificial coarse aggregate, and the natural coarse aggregate is one or two selected from the group of hard sandstone crushed stone, andesite crushed stone, basalt crushed stone, quartz schist crushed stone Preferably, the artificial coarse aggregate is made of artificial corundum and / or sintered bauxite.
The water binder ratio is 15.0% or less, and the unit volume of the artificial high-density fine aggregate is 100 L / m 3 or more and 200 L / m 3 or less, and the curing is performed at 20 ° C. The compressive strength is preferably 200 N / mm 2 or more when performed for 91 days at 50 ° C. or more and 80 ° C. or less for 7 days.

本発明の超高強度高流動フレッシュコンクリートは、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤と、水とを含有し、前記シリカ質微粉末は、固形分率50重量%以上のスラリーとして添加されていることを特徴とする。 High-strength and high fluidity of fresh concrete of the present invention, more than 10% by weight of cement and 30% by weight or less specific surface area by the BET method was replaced by 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder Hydraulic binder, coarse aggregate having an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of 1.2 mm or less And containing an artificial high-density fine aggregate having an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90% or less, a chemical admixture, and water. It is added as a slurry having a rate of 50% by weight or more.

本発明の超高強度高流動コンクリートによれば、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有したので、従来のコンクリートと比べて強度発現性及び流動性に優れたものとすることができる。
また、水結合材比が15.0%以下の超高強度領域においては、200N/mmを超える圧縮強度を得ることができ、従来のコンクリートと比べて圧縮強度に優れたものすることができる。
According to ultra high strength and high fluidity concrete of the present invention, substituted or 10 wt% of the cement and of 30% by weight or less specific surface area by BET method at 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder A hydraulic binder, a coarse aggregate having an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of 1.2 mm Hereinafter, since it contains an artificial high-density fine aggregate having an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90% or less, and a chemical admixture, strength development and It can be excellent in fluidity.
Moreover, in the ultra high strength region where the water binder ratio is 15.0% or less, a compressive strength exceeding 200 N / mm 2 can be obtained, and the compressive strength can be superior to that of conventional concrete. .

本発明の超高強度高流動フレッシュコンクリートによれば、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤と、水とを含有し、前記シリカ質微粉末を、固形分率50重量%以上のスラリーとして添加したので、従来のコンクリートと比べて強度発現性及び流動性に優れ、水結合材比が15.0%以下の超高強度領域においても200N/mmを超える圧縮強度を有するコンクリートを得ることができる。 According to the ultra-high strength and high flow fresh concrete of the present invention, 10% by weight or more and 30% by weight or less of cement is a siliceous fine powder having a specific surface area by the BET method of 1 m 2 / g to 20 m 2 / g. A substituted hydraulic binder, a coarse aggregate having an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of 1. 2 mm or less, an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90% or less, an artificial high-density fine aggregate, a chemical admixture, and water, the siliceous fine powder, Since it was added as a slurry having a solid content of 50% by weight or more, it was excellent in strength development and fluidity compared to conventional concrete, and 200 N / mm 2 even in an ultrahigh strength region where the water binder ratio was 15.0% or less. Have compressive strength exceeding You can get concrete.

本発明の超高強度高流動コンクリート及び超高強度高流動フレッシュコンクリートの最良の形態について、図面に基づき説明する。
なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode of the ultra-high-strength high-fluidity concrete and ultra-high-strength high-fluidity fresh concrete of the present invention will be described with reference to the drawings.
The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.

本実施形態の超高強度高流動コンクリートは、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなるコンクリートである。 Ultra high strength and high fluidity concrete of this embodiment, more than 10% by weight of cement and 30% by weight or less specific surface area by the BET method was replaced by 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder Hydraulic binder, coarse aggregate having an average particle size of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle size of 1.2 mm or less A concrete comprising an artificial high-density fine aggregate having an absolute dry density of 2.90 g / cm 3 or more and a water absorption of 0.90% or less, and a chemical admixture.

ここで、本実施形態の超高強度高流動コンクリートについて、詳細に説明する。
この超高強度高流動コンクリートに用いられるセメントとしては、普通、中庸熱、低熱、早強、超早強、耐硫酸塩等の各種ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント等の混合セメント、アルミナセメント、ジェットセメント等の超速硬セメント、アーウィン系セメント等が挙げられる。
そして、これら種々のセメントから、超高強度高流動コンクリートに要求される仕様や価格を考慮した上で、1種を選択し、または2種以上を選択・混合して使用することができる。
Here, the ultra high strength and high fluidity concrete of the present embodiment will be described in detail.
The cement used in this ultra high strength high fluidity concrete is usually mixed heat, such as moderate heat, low heat, early strength, super early strength, various portland cements such as sulfate resistance, blast furnace cement, fly ash cement, silica cement, etc. , Ultrafast cement such as alumina cement and jet cement, Irwin cement and the like.
From these various cements, one type can be selected or two or more types can be selected and mixed in consideration of specifications and prices required for ultra-high strength and high fluidity concrete.

本実施形態の超高強度高流動コンクリートを得るためには、ビーライト(CS=2CaO・SiO:珪酸二カルシウム)を多く含有する低熱ポルトランドセメント(日本工業規格ではビーライトの含有量は40%以上)や中庸熱ポルトランドセメントが特に好ましい。 In order to obtain the ultra-high-strength and high-fluidity concrete of this embodiment, low-heat Portland cement containing a large amount of belite (C 2 S = 2CaO · SiO 2 : dicalcium silicate) (in Japanese Industrial Standard, the content of belite is 40% or more) and moderately hot Portland cement are particularly preferred.

シリカ質微粉末は、上記のセメント全体量のうち10重量%以上かつ30重量%以下のセメントを置換するためのもので、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末、例えば、電融ジルコニアを製造する際に副生成物として生成されるジルコニア起源シリカ質微粉末、ケイ素またはフェロシリコンを製造する際に副生成物として生成されるシリカフューム、シリカガラスを製造する際に副生成物として生成されるシリカ質微粉末、ケイ素または二酸化ケイ素から合成される非晶質シリカ質微粉末、粒径10μm以下に分級または微粉砕されポゾラン活性を高めたフライアッシュ等が挙げられる。 The siliceous fine powder is for replacing 10% by weight or more and 30% by weight or less of the total amount of the above cement, and has a specific surface area of 1 m 2 / g or more and 20 m 2 / g or less by the BET method. Silica fine powder, for example, zirconia-derived siliceous fine powder produced as a by-product when producing electrofused zirconia, silica fume produced as a by-product when producing silicon or ferrosilicon, silica glass Siliceous fine powder produced as a by-product during production, amorphous siliceous fine powder synthesized from silicon or silicon dioxide, fly ash classified or finely pulverized to a particle size of 10 μm or less to enhance pozzolanic activity, etc. Is mentioned.

これら種々のシリカ質微粉末から、超高強度高流動コンクリートに要求される仕様や価格を考慮した上で、1種を選択し、または2種以上を選択・混合して使用することができる。
特に、本実施形態の超高強度高流動コンクリートに好適なシリカ質微粉末としては、SiO含有量が85%以上かつBET法による比表面積が1m/g以上かつ20m/g以下のジルコニア起源シリカ質微粉末、シリコン起源シリカフュームが特に挙げられる。
From these various siliceous fine powders, one type can be selected or two or more types can be selected and mixed in consideration of specifications and prices required for ultra-high strength and high fluidity concrete.
In particular, as a siliceous fine powder suitable for the ultra-high-strength high-fluidity concrete of the present embodiment, zirconia having a SiO 2 content of 85% or more and a specific surface area by the BET method of 1 m 2 / g or more and 20 m 2 / g or less. Particular mention may be made of origin siliceous fine powder, silicon origin silica fume.

このシリカ質微粉末のセメントに対する置換率は、セメント全体量のうち10重量%以上かつ30重量%以下が好ましく、10重量%以上かつ20重量%以下がより好ましい。
シリカ質微粉末のセメントに対する置換率が上記の範囲を外れた場合、コンクリートの圧縮強度が低下して200N/mm以上に保持することが困難になるからであり、また、場合によってはフレッシュコンクリートを作製する際に練混ぜが困難になり、実用性が大幅に低下してしまうからである。
The substitution rate of the siliceous fine powder with respect to the cement is preferably 10% by weight or more and 30% by weight or less, and more preferably 10% by weight or more and 20% by weight or less in the total amount of the cement.
This is because if the substitution rate of the siliceous fine powder with respect to the cement is out of the above range, the compressive strength of the concrete is lowered and it becomes difficult to maintain it at 200 N / mm 2 or more. This is because kneading becomes difficult when producing the material, and the practicality is greatly reduced.

なお、本実施形態で使用するシリカ質微粉末は、著しく嵩高であり、運搬や貯蔵、安定供給などの取り扱いが難しいため、実際のコンクリート工場でコンクリートを製造する場合は、シリカ質微粉末に水を加えて固形分率50%以上のスラリーとして添加することが好ましい。   The siliceous fine powder used in the present embodiment is extremely bulky and difficult to handle such as transportation, storage, and stable supply. Therefore, when concrete is produced in an actual concrete factory, water is added to the siliceous fine powder. Is preferably added as a slurry having a solid content of 50% or more.

水硬性結合材は、上記のセメント及びシリカ質微粉末を合わせたものであり、本実施形態の超高強度高流動コンクリートに占める水硬性結合材の単位容積は、300L/m以上かつ400L/m以下が好ましく、より好ましくは325L/m以上かつ375L/m以下である。
水硬性結合材の単位容積量が上記の範囲を外れた場合、コンクリートの圧縮強度が低下して200N/mm以上に保持することが困難になるからであり、また、場合によってはフレッシュコンクリートを作製する際に練混ぜが困難になり、実用性が大幅に低下してしまうからである。
The hydraulic binder is a combination of the above cement and siliceous fine powder, and the unit volume of the hydraulic binder in the ultra-high-strength high-fluidity concrete of this embodiment is 300 L / m 3 or more and 400 L / m 3 or less is preferable, and more preferably 325 L / m 3 or more and 375 L / m 3 or less.
This is because when the unit volume of the hydraulic binder is out of the above range, the compressive strength of the concrete is lowered and it becomes difficult to keep it at 200 N / mm 2 or more. This is because kneading becomes difficult at the time of production, and the practicality is greatly reduced.

粗骨材は、コンクリートに圧縮強度200N/mmを超える極めて高い強度発現性及び良好な流動性を付加するためのもので、硬度が高く耐摩耗性に優れ、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上、かつ吸水率が1.20%以下、好ましくは1.00%以下のものが好適に用いられる。 Coarse aggregate is for adding extremely high strength development and good fluidity exceeding 200 N / mm 2 in compressive strength to concrete, has high hardness and excellent wear resistance, and has an average particle size of 10 mm or more and 20 mm. Hereinafter, those having an absolutely dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, preferably 1.00% or less are suitably used.

この粗骨材としては、日本工業規格JIS A 5005「道路用砕石」の5号または6号、あるいは日本工業規格JIS A 5055「コンクリート用砕石」の砕石2015や砕石2005に適合する粗骨材が好適に用いられ、例えば、平均粒径の範囲が10mm以上かつ20mm以下で硬質砂岩砕石、安山岩砕石、玄武岩砕石、石英片岩砕石などの天然粗骨材あるいは人造コランダムや焼結ボーキサイトなどの人造粗骨材から任意に選択される1種または2種以上を混合して用いることができる。
ここで、粗骨材の平均粒径、絶乾密度あるいは吸水率が上記の範囲を外れると、コンクリートの圧縮強度または流動性が大きく低下してしまうので好ましくない。
As this coarse aggregate, Japanese Industrial Standard JIS A 5005 “Crushed stone for road” No. 5 or 6 or Japanese Industrial Standard JIS A 5055 “Crushed stone for concrete” crushed stone 2015 or crushed stone 2005 can be used. For example, natural coarse aggregates such as hard sandstone crushed stones, andesite crushed stones, basalt crushed stones, quartz schist crushed stones, and artificial coarse bones such as artificial corundum and sintered bauxite with an average particle size range of 10 mm to 20 mm. One or two or more kinds arbitrarily selected from the materials can be mixed and used.
Here, if the average particle size, absolute dry density, or water absorption rate of the coarse aggregate is out of the above range, the compressive strength or fluidity of the concrete is greatly reduced, which is not preferable.

本実施形態のコンクリートに占める粗骨材の単位容積は250L/m以上かつ350L/m以下が好ましく、より好ましくは300L/m以上かつ330L/m以下である。
ここで、粗骨材の単位容積が250L/m未満では、コンクリートの超高強度高流動性が十分に発揮されず、また、350L/mを超えると、コンクリートの圧縮強度及び流動性の低下が大きく、また、フレッシュコンクリートを作製する際に練混ぜが困難になり、実用性が大幅に低下してしまうからである。
Unit volume of coarse aggregate occupying the concrete of this embodiment is preferably 250L / m 3 or more and 350L / m 3 or less, and more preferably 300L / m 3 or more and 330L / m 3 or less.
Here, when the unit volume of the coarse aggregate is less than 250 L / m 3 , the ultrahigh strength and high fluidity of the concrete is not sufficiently exhibited, and when it exceeds 350 L / m 3 , the compressive strength and fluidity of the concrete are not improved. This is because the decrease is large, and kneading becomes difficult when producing fresh concrete, and the practicality is greatly reduced.

人造高密度細骨材は、超高強度発現性及び高流動性を付与するための細骨材であり、硬度が高く耐摩耗性に優れ、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上、かつ吸水率が0.90%以下、好ましくは0.70%以下の人造高密度細骨材が好適に用いられる。
ここで、この人造高密度細骨材の最大粒径、絶乾密度及び吸水率のうちいずれか1つが上記の範囲を外れると、この人造高密度細骨材を含むセメント組成物をセメント硬化体とした場合に圧縮強度または流動性が大きく低下してしまうので好ましくない。
Artificial high-density fine aggregate is a fine aggregate for imparting ultra-high strength and high fluidity, has high hardness and excellent wear resistance, has a maximum particle size of 1.2 mm or less, and an absolutely dry density. An artificial high-density fine aggregate having 2.90 g / cm 3 or more and a water absorption rate of 0.90% or less, preferably 0.70% or less is suitably used.
Here, if any one of the maximum particle size, the absolute dry density, and the water absorption rate of the artificial high-density fine aggregate is out of the above range, the cement composition containing the artificial high-density fine aggregate is made into a hardened cement body. In this case, the compressive strength or fluidity is greatly reduced, which is not preferable.

この人造高密度細骨材の超高強度高流動コンクリートにおける単位容積は100L/m以上かつ200L/m以下が好ましく、より好ましくは130L/m以上かつ170L/m以下である。
ここで、この人造高密度細骨材の単位容積が100L/m未満では、コンクリートの超高強度及び高流動性が十分に発揮されず、また、200L/mを超えると、コンクリートの圧縮強度及び流動性の低下が大きく、また、フレッシュコンクリートを作製する際に練混ぜが困難になり、実用性が大幅に低下してしまうからである。
この超高強度高流動コンクリートの細骨材率(s/a)は、このコンクリートに要求される圧縮強度及び流動性を考慮し、27%以上かつ35%以下が好ましく、30%以上かつ33%以下がより好ましい。
Unit volume for ultra-high strength, high fluidity concrete of the artificial dense fine aggregate is preferably 100L / m 3 or more and 200L / m 3 or less, and more preferably not more than 130L / m 3 or more and 170L / m 3.
Here, if the unit volume of the artificial high-density fine aggregate is less than 100 L / m 3 , the ultrahigh strength and high fluidity of the concrete cannot be sufficiently exhibited, and if it exceeds 200 L / m 3 , the compression of the concrete This is because the strength and fluidity are greatly reduced, and it becomes difficult to knead when producing fresh concrete, resulting in a significant decrease in practicality.
The fine aggregate ratio (s / a) of the ultra-high strength and high fluidity concrete is preferably 27% or more and 35% or less, preferably 30% or more and 33% in consideration of the compressive strength and fluidity required for the concrete. The following is more preferable.

この人造高密度細骨材としては、例えば、フェロニッケルスラグ細骨材(日本工業規格JIS A 5011−2のFNS1.2適合品)、銅スラグ細骨材(日本工業規格JIS A 5011−3のCUS1.2適合品)、電気炉酸化スラグ細骨材(日本工業規格JIS A 5011−4のEFS1.2のNまたはH適合品)の群から選択される1種または2種以上を混合して使用することができる。   As this artificial high-density fine aggregate, for example, ferronickel slag fine aggregate (Japanese Industrial Standard JIS A 501-2-2 FNS1.2 compliant product), copper slag fine aggregate (Japanese Industrial Standard JIS A 5011-3 CUS1.2 compliant product), electric furnace oxidation slag fine aggregate (Japan Industrial Standard JIS A 5011-4 EFS1.2 N or H compliant product) Can be used.

化学混和剤としては、減水率の高い一般的なポリカルボン酸系高性能AE減水剤等が好適に用いられ、必要に応じてポリオキシアルキレンアルキルエーテル系等の消泡剤を併用することが好ましい。
このポリカルボン酸系高性能AE減水剤の添加量は、超高強度高流動コンクリートの目標とする流動性に合わせて適宜調整するが、一般的な添加量としては、セメント及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.5重量%以上かつ4.0重量%以下の範囲で添加することが好ましい。
As the chemical admixture, a general polycarboxylic acid-based high performance AE water reducing agent having a high water reduction rate is preferably used, and it is preferable to use a defoaming agent such as a polyoxyalkylene alkyl ether if necessary. .
The addition amount of this polycarboxylic acid-based high-performance AE water reducing agent is appropriately adjusted according to the target fluidity of ultra-high-strength high-fluidity concrete, but the general addition amount is from cement and siliceous fine powder. It is preferable to add in the range of 0.5 wt% or more and 4.0 wt% or less with respect to the total amount of the hydraulic binder.

また、消泡剤の添加量は、超高強度高流動コンクリートの目標とする空気量に合わせて適宜調整するが、一般的な添加量としては、セメント及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.01重量%以上かつ0.1重量%以下の範囲で添加することが好ましい。
また、この化学混和剤としては、粉体状、液体状のいずれをも使用することができる。特に、粉体状のものは、予めセメント等とプレミックスして使用することができるので好ましい。
In addition, the amount of antifoaming agent is appropriately adjusted according to the target air amount of ultra-high strength and high fluidity concrete, but the general amount of addition is a hydraulic binder composed of cement and siliceous fine powder. It is preferable to add in the range of 0.01% by weight or more and 0.1% by weight or less with respect to the total amount.
Moreover, as this chemical admixture, either powder form or liquid form can be used. In particular, a powdery material is preferable because it can be premixed with cement or the like.

なお、本実施形態の超高強度高流動コンクリートに種々の性能を付加するために、膨張材、収縮低減剤、合成樹脂粉末、合成樹脂繊維、金属繊維、炭素繊維、ガラス繊維、ポリマー、モノマー、オリゴマー、石灰石微粉末、流動化剤、凝結促進剤、凝結遅延剤の群から選択される1種または2種以上を添加しても良い。   In addition, in order to add various performances to the ultra-high-strength high-fluidity concrete of the present embodiment, an expansion material, shrinkage reducing agent, synthetic resin powder, synthetic resin fiber, metal fiber, carbon fiber, glass fiber, polymer, monomer, You may add 1 type, or 2 or more types selected from the group of an oligomer, a limestone fine powder, a fluidizing agent, a setting accelerator, and a setting retarder.

本実施形態の超高強度高流動コンクリートは、上記の水硬性結合材、粗骨材、人造高密度細骨材、化学混和剤を含むコンクリート用組成物を水結合材比15.0%以下にて水と混練し養生してなるコンクリートであり、この超高強度高流動コンクリートの圧縮強度は、20℃±1℃にて91日間、50℃以上かつ80℃以下にて7日間、のいずれかの条件にて養生した場合に200N/mm以上となる。 The ultra-high-strength, high-fluidity concrete of the present embodiment is a concrete composition containing the hydraulic binder, coarse aggregate, artificial high-density fine aggregate, and chemical admixture, with a water binder ratio of 15.0% or less. This is a concrete that is kneaded with water and cured, and the compressive strength of this ultra-high-strength, high-fluidity concrete is either 91 ° C. at 20 ° C. ± 1 ° C. or 7 days at 50 ° C. or more and 80 ° C. or less When it is cured under the above conditions, it is 200 N / mm 2 or more.

本実施形態の超高強度高流動フレッシュコンクリート(いわゆる、生コンクリート)は、上記の水硬性結合材、粗骨材、人造高密度細骨材、化学混和剤及び水、すなわち、セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤と、水とを含有したもので、このシリカ質微粉末は、固形分率50重量%以上のスラリーとして添加されている。 The ultra-high-strength, high-fluidity fresh concrete of this embodiment (so-called ready-mixed concrete) is the above-mentioned hydraulic binder, coarse aggregate, artificial high-density fine aggregate, chemical admixture and water, that is, 10% by weight of cement. or more and a hydraulic binder 30 wt% or less specific surface area by the BET method was replaced by 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder, the average particle diameter of 10mm or more and 20mm or less, absolute Coarse aggregate having a dry density of 2.60 g / cm 3 or more and a water absorption rate of 1.20% or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more and a water absorption rate of 0 .90% or less artificial high-density fine aggregate, chemical admixture and water, and this siliceous fine powder is added as a slurry having a solid content of 50% by weight or more.

ここで、シリカ質微粉末を、固形分率50重量%以上のスラリーとして添加した理由は、シリカ質微粉末自体が著しく嵩高であり、運搬や貯蔵、安定供給などの取り扱いが難しいからである。
この超高強度高流動フレッシュコンクリートにおいては、上記のセメント及びシリカ質微粉末からなる水硬性結合材と練混ぜ水(化学混和剤は水とみなす)の重量比、すなわち、水結合材比は、15.0%以下が好ましい。その理由は、水結合材比が15.0%を超えると、コンクリートの圧縮強度が200N/mmを下回ってしまうからである。
Here, the reason why the siliceous fine powder is added as a slurry having a solid content of 50% by weight or more is that the siliceous fine powder itself is extremely bulky, and handling such as transportation, storage, and stable supply is difficult.
In this ultra high strength high flow fresh concrete, the weight ratio of the hydraulic binder composed of the cement and the siliceous fine powder and the mixed water (the chemical admixture is regarded as water), that is, the water binder ratio is 15.0% or less is preferable. The reason is that if the water binder ratio exceeds 15.0%, the compressive strength of the concrete will be less than 200 N / mm 2 .

以下、実施例、参考例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example , a reference example, and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

実施例、参考例及び比較例に用いるセメント、シリカ質微粉末、粗骨材、人造高密度細骨材、化学混和剤、消泡剤及び水として、下記のものを用いた。
「セメント」
低熱ポルトランドセメント(C2S含有量56%、絶乾密度3.24g/cm、ブレーン比表面積3300cm/g、住友大阪セメント(株)製)(以下LCと略記)「シリカ質微粉末」
ジルコニア起源シリカ質微粉末:SF−SILICAFUME(SiO含有量94.7%、絶乾密度2.26g/cm、BET比表面積9.1m/g、巴工業(株)社製)(以下、ZSFと略記)
The followings were used as cement, siliceous fine powder, coarse aggregate, artificial high-density fine aggregate, chemical admixture, antifoaming agent and water used in Examples , Reference Examples and Comparative Examples.
"cement"
Low heat Portland cement (C2S content 56%, absolute dry density 3.24 g / cm 3 , Blaine specific surface area 3300 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) (hereinafter abbreviated as LC) “silica fine powder”
Zirconia-derived siliceous fine powder: SF-SILICAFUME (SiO 2 content 94.7%, absolute dry density 2.26 g / cm 3 , BET specific surface area 9.1 m 2 / g, manufactured by Sakai Kogyo Co., Ltd.) , Abbreviated as ZSF)

「粗骨材A」
茨城産硬質砂岩砕石5号(日本工業規格JIS A 5001「道路用砕石」5号適合品、最大粒径20mm以下、絶乾密度2.65g/cm、吸水率0.6%、実績率60.1%、以下KS20と略記)
「粗骨材B」
茨城産硬質砂岩砕石6号(日本工業規格JIS A 5001「道路用砕石」6号適合品、最大粒径13mm以下、絶乾密度2.63g/cm、吸水率0.8%、実績率62.5%、以下KS13と略記)
"Coarse aggregate A"
Hard sandstone crushed stone from Ibaraki No. 5 (Japanese Industrial Standard JIS A 5001 “Crushed stone for road” No. 5 conforming product, maximum particle size 20 mm or less, absolute dry density 2.65 g / cm 3 , water absorption 0.6%, actual rate 60 .1%, hereinafter abbreviated as KS20)
"Coarse aggregate B"
Hard sandstone crushed stone from Ibaraki No. 6 (Japanese Industrial Standard JIS A 5001 “Crushed stone for road” No. 6 compliant product, maximum particle size 13 mm or less, absolute dry density 2.63 g / cm 3 , water absorption rate 0.8%, performance rate 62 .5%, hereinafter abbreviated as KS13)

「粗骨材C」
茨城産硬質砂岩砕石7号(日本工業規格JIS A 5001「道路用砕石」7号適合品、最大粒径5mm以下、絶乾密度2.62g/cm、吸水率1.5%、実績率58.8%、以下KS5と略記)
「粗骨材D」
山形産安山岩砕石2005(日本工業規格JIS A 5055「コンクリート用砕石」砕石2005適合品、最大粒径20mm以下、絶乾密度2.66g/cm、吸水率1.3%、実績率60.8%、以下AS20と略記)
"Coarse aggregate C"
Hard sandstone crushed stone from Ibaraki No. 7 (Japanese Industrial Standard JIS A 5001 “Crushed stone for road” No. 7 compliant product, maximum particle size 5 mm or less, absolute dry density 2.62 g / cm 3 , water absorption rate 1.5%, performance rate 58 .8%, hereinafter abbreviated as KS5)
"Coarse aggregate D"
Yamagata andesite crushed stone 2005 (Japanese Industrial Standard JIS A 5055 "crushed stone for concrete" crushed stone 2005 compliant product, maximum particle size 20mm or less, absolute dry density 2.66g / cm 3 , water absorption 1.3%, actual rate 60.8 %, Hereinafter abbreviated as AS20)

「細骨材A」
1.2mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS1.2適合品、最大粒径1.2mm以下、絶乾密度3.01g/cm、吸水率0.7%、FM:2.21)(以下、FNS1.2と略記)
「細骨材B」
5mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS5適合品、最大粒径5mm以下、絶乾密度2.97g/cm、吸水率0.9%、FM:2.47)(以下、FNS5と略記)
「細骨材C」
1.2mm銅スラグ細骨材(JIS A 5011−3のCUS1.2適合品、最大粒径1.2mm以下、絶乾密度3.35g/cm、吸水率0.9%、FM:2.24)(以下、CUS1.2と略記)
「細骨材D」
5mm銅スラグ細骨材(JIS A 5011−3のCUS5適合品、最大粒径5mm以下、絶乾密度3.30g/cm、吸水率1.2%、FM:2.64)(以下、CUS5と略記)
“Fine Aggregate A”
1.2 mm ferronickel slag fine aggregate (JIS A 5011-2 FNS 1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.01 g / cm 3 , water absorption 0.7%, FM: 2 .21) (hereinafter abbreviated as FNS1.2)
"Fine Aggregate B"
5 mm ferronickel slag fine aggregate (JIS A 501-2 FNS5 compliant product, maximum particle size 5 mm or less, absolute dry density 2.97 g / cm 3 , water absorption 0.9%, FM: 2.47) (hereinafter, (Abbreviated as FNS5)
"Fine Aggregate C"
1.2 mm copper slag fine aggregate (JIS A 5011-3 CUS1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.35 g / cm 3 , water absorption 0.9%, FM: 2. 24) (hereinafter abbreviated as CUS1.2)
"Fine Aggregate D"
5 mm copper slag fine aggregate (JIS A 5011-3 CUS5 compliant product, maximum particle size 5 mm or less, absolute dry density 3.30 g / cm 3 , water absorption 1.2%, FM: 2.64) (hereinafter, CUS5 Abbreviated)

「細骨材E」
1.2mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS1.2N適合品、最大粒径1.2mm以下、絶乾密度3.52g/cm、吸水率1.0%、FM:2.89)(以下、EFS1.2と略記)
「細骨材F」
5mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS5N適合品、最大粒径5mm以下、絶乾密度3.49g/cm、吸水率1.7%、FM:3.10)(以下、EFS5と略記)
「細骨材G」
愛知県産乾燥珪砂4号及び7号の混合砂(最大粒径1.2mm以下、絶乾密度2.66g/cm、吸水率0.7%、FM:2.46)(以下、SS1.2と略記)
“Fine Aggregate E”
1.2mm electric furnace oxidized slag fine aggregate (JIS A 5011-4 EFS1.2N compliant product, maximum particle size 1.2mm or less, absolute dry density 3.52g / cm 3 , water absorption 1.0%, FM: 2.89) (hereinafter abbreviated as EFS1.2)
"Fine Aggregate F"
5mm electric furnace oxidation slag fine aggregate (JIS A 5011-4 EFS5N compatible product, maximum particle size 5mm or less, absolute dry density 3.49g / cm 3 , water absorption 1.7%, FM: 3.10) (below , Abbreviated as EFS5)
"Fine Aggregate G"
Aichi Prefecture dry silica sand No. 4 and No. 7 mixed sand (maximum particle size 1.2 mm or less, absolute dry density 2.66 g / cm 3 , water absorption 0.7%, FM: 2.46) (hereinafter SS1. (Abbreviated as 2)

「化学混和剤」
ポリカルボン酸系高性能AE減水剤:シーカメント1200N(日本シーカ(株)社製)(以下、SPと略記)
「消泡剤」
シーカアンチフォームW(日本シーカ(株)社製)
「水」
上水道水
`` Chemical admixture ''
Polycarboxylic acid-based high-performance AE water reducing agent: SEICAMENT 1200N (manufactured by Nippon SEICA Co., Ltd.) (hereinafter abbreviated as SP)
"Antifoaming agent"
Seeker Anti-Form W (Nihon Seeca Co., Ltd.)
"water"
Tap water

上記のセメント、シリカ質微粉末、粗骨材、細骨材、化学混和剤、消泡剤及び水を用いて、実施例、参考例及び比較例の超高強度高流動フレッシュコンクリートを作製した。
表1に、実施例、参考例及び比較例各々の超高強度高流動フレッシュコンクリートの組成を示す。
これらの超高強度高流動フレッシュコンクリートにおいては、コンクリートの単位水量を150kg/mとし、粗骨材の単位容積を320L/mとした。また、目標空気量を1.5%とした。
Using the above cement, fine siliceous powder, coarse aggregate, fine aggregate, chemical admixture, antifoaming agent and water, ultrahigh strength high flow fresh concretes of Examples , Reference Examples and Comparative Examples were prepared.
Table 1 shows the compositions of the ultra-high-strength, high-fluidity fresh concrete in each of the Examples , Reference Examples and Comparative Examples.
In these ultra high strength and high flow fresh concrete, the unit water volume of the concrete was 150 kg / m 3 and the unit volume of the coarse aggregate was 320 L / m 3 . The target air amount was 1.5%.

実施例1〜3、参考例1、2及び比較例1〜9では、水結合材比を13.7%、ZSFの置換率を20重量%、細骨材の単位容積を148L/mとした。
比較例10では、水結合材比を13.7%、ZSFの置換率を5重量%、細骨材の単位容積を170L/mとした。
比較例11では、水結合材比を13.7%、ZSFの置換率を35重量%、細骨材の単位容積を126L/mとした。
比較例12では、水結合材比を16.0%、ZSFの置換率を20重量%、細骨材の単位容積を200L/mとした。
In Examples 1 to 3, Reference Examples 1 and 2, and Comparative Examples 1 to 9, the water binder ratio was 13.7%, the ZSF substitution rate was 20% by weight, and the fine aggregate unit volume was 148 L / m 3 . did.
In Comparative Example 10, the water binder ratio was 13.7%, the substitution rate of ZSF was 5% by weight, and the unit volume of the fine aggregate was 170 L / m 3 .
In Comparative Example 11, the water binder ratio was 13.7%, the ZSF substitution rate was 35% by weight, and the fine aggregate unit volume was 126 L / m 3 .
In Comparative Example 12, the water binder ratio was 16.0%, the ZSF substitution rate was 20% by weight, and the fine aggregate unit volume was 200 L / m 3 .

また、実施例1〜3、参考例1、2及び比較例1〜11では、ポリカルボン酸系高性能AE減水剤(SP)の添加量を2.8重量%、消泡剤の添加量を0.04重量%とし、比較例12(水結合材比16.0%)では、ポリカルボン酸系高性能AE減水剤(SP)の添加量を1.9重量%、消泡剤の添加量を0.04重量%とした。
なお、粗骨材A〜Dは、いずれも予め表乾状態に調整してから練混ぜに使用し、高性能AE減水剤(SP)及び消泡剤については、練混ぜ水とみなして水量を補正した。
In Examples 1 to 3, Reference Examples 1 and 2, and Comparative Examples 1 to 11, the amount of polycarboxylic acid-based high-performance AE water reducing agent (SP) added is 2.8% by weight, and the amount of antifoaming agent added is 0.04% by weight, and in Comparative Example 12 (water binder ratio 16.0%), the amount of polycarboxylic acid-based high-performance AE water reducing agent (SP) added is 1.9% by weight, and the amount of antifoaming agent added Was 0.04 wt%.
The coarse aggregates A to D are used for mixing after being adjusted to the surface dry state in advance, and the high-performance AE water reducing agent (SP) and the antifoaming agent are regarded as mixing water and the amount of water is determined. Corrected.

Figure 0004861931
Figure 0004861931

次に、実施例1〜3、参考例1、2及び比較例1〜12各々の超高強度高流動フレッシュコンクリートの練混ぜ試験を行った。
各々の超高強度高流動フレッシュコンクリートについて、20℃の恒温室内にて、表1に示す組成となるように粗骨材、セメント、シリカ質微粉末(ZSF)及び細骨材を、容量100Lの二軸強制練りミキサ(太平洋機工社製)に投入して空練りを15秒間行い、次いで、表1に示す組成となるように練混ぜ水、高性能AE減水剤(SP)及び消泡剤を投入して120秒間練混ぜ後、かき落としを行い、さらに120秒間本練りを行った。なお、1バッチの練混ぜ量は55Lの一定とした。
Next, a kneading test of each of Examples 1 to 3, Reference Examples 1 and 2, and Comparative Examples 1 to 12 was performed on ultrahigh strength and high flow fresh concrete.
For each ultra-high strength high flow fresh concrete, coarse aggregate, cement, siliceous fine powder (ZSF) and fine aggregate having a capacity of 100 L in a constant temperature room at 20 ° C. to have the composition shown in Table 1. Put into a biaxial forced kneading mixer (manufactured by Taiheiyo Kiko Co., Ltd.) and perform kneading for 15 seconds. Then, mix water, high-performance AE water reducing agent (SP) and antifoaming agent so as to have the composition shown in Table 1. The mixture was added and kneaded for 120 seconds, then scraped off, and further kneaded for 120 seconds. In addition, the mixing amount of 1 batch was constant at 55L.

練上がり後、直ちに日本工業規格JIS A 1150「コンクリートのスランプフロー試験」及び日本工業規格JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法」に準拠してスランプフロー及び空気量を測定し、次いで、直径100mm×高さ200mmの大きさの圧縮強度測定用の円柱供試体を20本ずつ作製した。   Immediately after the kneading, the slump flow and the air amount are measured in accordance with Japanese Industrial Standards JIS A 1150 “Concrete Slump Flow Test” and Japanese Industrial Standards JIS A 1128 “Testing Method Based on Air Pressure of Fresh Concrete” Next, 20 cylindrical specimens for measuring compressive strength each having a diameter of 100 mm and a height of 200 mm were produced.

これらの供試体は、水の蒸発を防ぐために脱型する直前まで供試体の頭部をビニールと輪ゴムで密封し、20℃の恒温室内にて材齢2日まで封緘養生した。
これらの供試体のうち15本は材齢2日で脱型し、所定の材齢まで20℃の水中にて標準養生した。残りの5本は、材齢2日目から供試体頭部を密封したまま型枠ごと70℃の温水中に浸漬して加熱養生し、材齢7日で温水から取り出し、空気中で室温になるまで放冷した後、脱型した。
These specimens were sealed with vinyl and rubber bands until just before demolding to prevent water evaporation, and sealed and cured in a constant temperature room at 20 ° C. until 2 days of age.
Fifteen of these specimens were demolded at the age of 2 days, and were standardly cured in water at 20 ° C. until a predetermined age. The remaining 5 pieces were immersed in warm water of 70 ° C. together with the mold with the specimen head sealed from the second day of material age, heat-cured, removed from the warm water at the age of 7 days, and brought to room temperature in the air. After standing to cool, it was demolded.

次いで、これらの供試体の圧縮強度を日本工業規格JIS A 1108「コンクリートの圧縮試験方法」に準拠して測定した。なお、1材齢の供試体の数を5本とし、測定した供試体数5本の圧縮強度データから変動係数を算出した。また、圧縮強度の測定材齢は、標準養生は7日、28日、91日の3種類とし、70℃の加熱養生は材齢7日の1種類とした。これら全ての供試体は、圧縮試験を行う直前に両端面の研磨を行った。
実施例1〜3、参考例1、2及び比較例1〜12各々の超高強度高流動フレッシュコンクリートの練混ぜ試験の結果を表2に示す。
Next, the compressive strength of these specimens was measured according to Japanese Industrial Standard JIS A 1108 “Concrete Compression Test Method”. The number of specimens of one age was five, and the coefficient of variation was calculated from the compression strength data of the five specimens measured. In addition, the material age for measuring the compressive strength was 3 types for standard curing, 7 days, 28 days, and 91 days, and the heating curing at 70 ° C. was one type for 7 days. All these specimens were polished on both end faces immediately before the compression test.
Table 2 shows the results of the kneading test of each of Examples 1 to 3, Reference Examples 1 and 2, and Comparative Examples 1 to 12 of ultra high strength and high flow fresh concrete.

Figure 0004861931
Figure 0004861931

これらの測定結果によれば、実施例1〜3及び参考例1、2では、得られたフレッシュコンクリートの流動性は極めて良好であり、圧縮強度も20℃標準養生の材齢91日では203〜212N/mm、70℃加熱養生の材齢7日では209〜220N/mmと、200N/mmを超えており、非常に良好であった。特に、粗骨材にKS13、細骨材にFNS1.2を使用した実施例2の圧縮強度が最も高かった。 According to these measurement results, in Examples 1 to 3 and Reference Examples 1 and 2 , the fluidity of the obtained fresh concrete is extremely good, and the compressive strength is 203 to 203 at a age of 91 ° C. of standard curing at 20 ° C. the 212N / mm 2, 70 ℃ heat curing at the age of 7 days and 209~220N / mm 2, are over 200 N / mm 2, was very good. In particular, the compressive strength of Example 2 using KS13 as the coarse aggregate and FNS1.2 as the fine aggregate was the highest.

一方、比較例1〜5は、実施例1〜3及び参考例1、2と粗骨材が同一のものであったが、細骨材(FNS)の最大粒径が5mmと大きく、得られたコンクリートの流動性は実施例1〜3及び参考例1、2と同等あるいはやや劣る程度であったが、圧縮強度は実施例1〜3及び参考例1、2より低かった。
比較例6は、実施例1、2及び参考例1と細骨材が同一のものであったが、粗骨材(KS)の最大粒径が5mmと小さく、得られたコンクリートの流動性は実施例1、2及び参考例1よりやや劣る程度であったが、圧縮強度は実施例1、2及び参考例1より低かった。
比較例7〜9は、実施例1、2及び参考例1と粗骨材が同一のものであったが、細骨材に珪砂(SS1.2)を使用したために、得られたコンクリートの流動性は実施例1、2及び参考例1よりやや劣る程度であったが、圧縮強度は実施例1、2及び参考例1より大幅に低かった。
On the other hand, Comparative Examples 1 to 5 were the same in Examples 1 to 3 and Reference Examples 1 and 2 , but the coarse aggregate was as large as 5 mm. The fluidity of the concrete was comparable to or slightly inferior to Examples 1-3 and Reference Examples 1 and 2 , but the compressive strength was lower than that of Examples 1-3 and Reference Examples 1 and 2 .
In Comparative Example 6, the fine aggregate was the same as in Examples 1 and 2 and Reference Example 1 , but the maximum particle size of coarse aggregate (KS) was as small as 5 mm, and the fluidity of the obtained concrete was Although it was slightly inferior to Examples 1 and 2 and Reference Example 1 , the compressive strength was lower than that of Examples 1 and 2 and Reference Example 1 .
In Comparative Examples 7 to 9, the coarse aggregate was the same as in Examples 1 and 2 and Reference Example 1 , but because silica sand (SS1.2) was used for the fine aggregate, the flow of the obtained concrete Although the properties were slightly inferior to those of Examples 1 and 2 and Reference Example 1 , the compressive strength was significantly lower than those of Examples 1 and 2 and Reference Example 1 .

比較例10は、ZSFの置換率を5重量%としたために、今回の試験条件ではフレッシュコンクリートを練り上げることができなかった。
比較例11は、ZSFの置換率を35重量%としたために、フレッシュコンクリートの流動性は実施例1と同等であったが、圧縮強度は実施例1より低かった。
比較例12は、水結合材比を16.0%、ZSFの置換率を20重量%としたために、コンクリートの流動性は実施例1と同等であったが、圧縮強度は実施例1より著しく低く、例えば、20℃における標準養生の材齢91日、70℃における加熱養生の材齢7日、のいずれにおいても200N/mmを下回った。
なお、コンクリートの空気量は、実施例、参考例及び比較例のいずれにおいても1.4%〜1.7%とほぼ目標どおりであった。

In Comparative Example 10, since the substitution rate of ZSF was 5% by weight, fresh concrete could not be kneaded under the test conditions of this time.
In Comparative Example 11, the flow rate of fresh concrete was equivalent to Example 1 because the substitution rate of ZSF was 35% by weight, but the compressive strength was lower than Example 1.
In Comparative Example 12, since the water binder ratio was 16.0% and the substitution rate of ZSF was 20% by weight, the fluidity of the concrete was the same as that of Example 1, but the compressive strength was significantly higher than that of Example 1. For example, it was lower than 200 N / mm 2 in both the age of standard curing at 20 ° C. and the age of heat curing at 70 ° C. for 7 days.
In addition, the air quantity of the concrete was 1.4% to 1.7% in all of the examples , reference examples, and comparative examples, which was almost as targeted.

以上説明したように、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材(フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材)を使用したコンクリートは、それ以外の人造高密度細骨材や珪砂を使用したコンクリートと比べて流動性及び圧縮強度に優れており、さらに供試体の圧縮強度の変動係数が大幅に小さいことが分かった。 As described above, the coarse aggregate having an average particle diameter of 10 mm or more and 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, and a maximum particle diameter of 1.2 mm or less , Artificial high density fine aggregate with absolute dry density of 2.90 g / cm 3 or more and water absorption of 0.90% or less (ferronickel slag fine aggregate, copper slag fine aggregate, electric furnace oxidized slag fine aggregate) Compared to other concretes using artificial high-density fine aggregates and silica sand, the concrete using is superior in fluidity and compressive strength, and the coefficient of variation of the compressive strength of the specimen is significantly smaller. It was.

また、シリカ質微粉末(ZSF)のセメントに対する置換率が10重量%以上かつ30重量%以下の範囲を外れた場合には、コンクリートの圧縮強度の低下が大きくなったり、あるいは練混ぜが困難となって、実用性が大幅に低下していることが分かった。
さらに、20℃における標準養生の材齢91日、70℃における加熱養生の材齢7日、のいずれにおいても圧縮強度が200N/mmを上回るためには、水結合材比を15.0%以下として練混ぜることが必要であることが分かった。
In addition, when the substitution rate of the siliceous fine powder (ZSF) with respect to the cement is out of the range of 10% by weight or more and 30% by weight or less, the decrease in the compressive strength of the concrete becomes large, or the kneading is difficult. As a result, it was found that the practicality was greatly reduced.
Furthermore, in order for the compressive strength to exceed 200 N / mm 2 in both the age of standard curing at 20 ° C. and the age of heat curing at 70 ° C., the water binder ratio is 15.0%. It turns out that it is necessary to knead as follows.

Claims (5)

セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなることを特徴とする超高強度高流動コンクリート。 A hydraulic binder that 10 wt% or more and 30 wt% or less specific surface area by BET method was replaced by 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder cement, the average particle diameter of more than 10mm And 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, a coarse aggregate, a maximum particle size of 1.2 mm or less, and an absolute dry density of 2.90 g / cm 3 or more. An ultra-high-strength, high-fluidity concrete comprising an artificial high-density fine aggregate having a water absorption rate of 0.90% or less and a chemical admixture. 前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることを特徴とする請求項1記載の超高強度高流動コンクリート。   The artificial high-density fine aggregate is one or more selected from the group consisting of ferronickel slag fine aggregate, copper slag fine aggregate, and electric furnace oxidized slag fine aggregate. 1. Ultra high strength high fluidity concrete according to 1. 前記粗骨材は、天然粗骨材及び/または人造粗骨材からなり、前記天然粗骨材は、硬質砂岩砕石、安山岩砕石、玄武岩砕石、石英片岩砕石の群から選択された1種または2種以上からなり、前記人造粗骨材は、人造コランダム及び/または焼結ボーキサイトからなることを特徴とする請求項1または2記載の超高強度高流動コンクリート。   The coarse aggregate is composed of natural coarse aggregate and / or artificial coarse aggregate, and the natural coarse aggregate is one or two selected from the group of hard sandstone crushed stone, andesite crushed stone, basalt crushed stone, quartz schist crushed stone The ultra-high-strength, high-fluidity concrete according to claim 1 or 2, wherein the artificial coarse aggregate is made of artificial seeds and / or sintered bauxite. 水結合材比が15.0%以下、かつ、前記人造高密度細骨材の単位容積量が100L/m以上かつ200L/m以下にて混練、養生され、
前記養生を20℃にて91日間、50℃以上かつ80℃以下にて7日間、のいずれかにて行った場合の圧縮強度は、200N/mm以上であることを特徴とする請求項1、2または3記載の超高強度高流動コンクリート。
The water binder ratio is 15.0% or less, and the unit volume of the artificial high-density fine aggregate is kneaded and cured at 100 L / m 3 or more and 200 L / m 3 or less,
The compressive strength when the curing is performed at any one of 91 days at 20 ° C and 7 days at 50 ° C or more and 80 ° C or less is 200 N / mm 2 or more. 2. Ultra high strength high fluid concrete as described in 2 or 3.
セメントの10重量%以上かつ30重量%以下をBET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末にて置換した水硬性結合材と、平均粒径が10mm以上かつ20mm以下、絶乾密度が2.60g/cm以上かつ吸水率が1.20%以下の粗骨材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤と、水とを含有し、
前記シリカ質微粉末は、固形分率50重量%以上のスラリーとして添加されていることを特徴とする超高強度高流動フレッシュコンクリート。
A hydraulic binder that 10 wt% or more and 30 wt% or less specific surface area by BET method was replaced by 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder cement, the average particle diameter of more than 10mm And 20 mm or less, an absolute dry density of 2.60 g / cm 3 or more and a water absorption of 1.20% or less, a coarse aggregate, a maximum particle size of 1.2 mm or less, and an absolute dry density of 2.90 g / cm 3 or more. And the artificial high density fine aggregate whose water absorption is 0.90% or less, a chemical admixture, and water,
The ultrafine high-fluidity fresh concrete, wherein the siliceous fine powder is added as a slurry having a solid content of 50% by weight or more.
JP2007218300A 2007-08-24 2007-08-24 Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete Active JP4861931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218300A JP4861931B2 (en) 2007-08-24 2007-08-24 Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218300A JP4861931B2 (en) 2007-08-24 2007-08-24 Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete

Publications (2)

Publication Number Publication Date
JP2009051682A JP2009051682A (en) 2009-03-12
JP4861931B2 true JP4861931B2 (en) 2012-01-25

Family

ID=40503104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218300A Active JP4861931B2 (en) 2007-08-24 2007-08-24 Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete

Country Status (1)

Country Link
JP (1) JP4861931B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210595B1 (en) * 2010-09-29 2012-12-11 한국철도기술연구원 Heavyweight Concrete Composition using Slag By-products
KR101230256B1 (en) * 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
KR101323591B1 (en) 2011-09-27 2013-11-01 한국철도기술연구원 Concrete composition using the electric arc furnace oxidizing slag and second articles prepared with the same
JP6086760B2 (en) * 2013-03-05 2017-03-01 住友大阪セメント株式会社 Ultra-high-strength high-fluidity concrete, method for producing ultra-high-strength high-fluidity concrete, and cement composition
JP6205843B2 (en) * 2013-05-24 2017-10-04 宇部興産株式会社 High-strength cement paste composition and method for producing high-strength cement paste hardened body
JP6207935B2 (en) * 2013-09-03 2017-10-04 住友大阪セメント株式会社 Method for producing high-strength concrete
JP6732404B2 (en) * 2014-12-24 2020-07-29 太平洋マテリアル株式会社 Fiber-reinforced cement composite material and manufacturing method thereof
JP5940207B1 (en) * 2015-02-24 2016-06-29 太平洋セメント株式会社 Method for producing hardened cementitious material using cement composition
JP5997807B2 (en) * 2015-06-16 2016-09-28 株式会社大林組 High strength mortar composition
JP7068655B2 (en) * 2018-06-08 2022-05-17 住友大阪セメント株式会社 High-strength concrete composition and high-strength concrete hardened body
CN111689760A (en) * 2020-07-06 2020-09-22 江西理工大学 Copper smelting waste residue based building ceramsite and preparation method thereof
CN113429144A (en) * 2021-07-21 2021-09-24 广西新途茂环保科技有限公司 Encrypted silica fume composite admixture and application thereof in high-performance concrete

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384902B2 (en) * 2002-12-11 2009-12-16 株式会社大林組 Manufacturing method of mortar and concrete
JP2006182645A (en) * 2006-03-08 2006-07-13 Taiheiyo Cement Corp Binding material

Also Published As

Publication number Publication date
JP2009051682A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4861931B2 (en) Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete
JP4861930B2 (en) Ultra-high strength high-fluidity cement composition and ultra-high-strength high-fluidity cement hardened material
JP4862001B2 (en) Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material
JP6086760B2 (en) Ultra-high-strength high-fluidity concrete, method for producing ultra-high-strength high-fluidity concrete, and cement composition
JP4747181B2 (en) Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
KR101917513B1 (en) Ferronickel slag grinding aid, concrete composition for reducing heat of hydration comprising ferronickel slag and method for preparing the same
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP6295085B2 (en) Cement composition
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
JPH0231026B2 (en)
JP2002068806A (en) Ultrahigh strength hydraulic composition
JP2002037653A (en) Cement slurry
JP2001220201A (en) Fiber reinforced concrete
JP2001254302A (en) Sleeper for railway line
JP2006137630A (en) Concrete
JP4994080B2 (en) Cement composition and method for producing the same
KR101727728B1 (en) Blended concrete composite using silica fume and manufacturing method thereof
JPH05238787A (en) High-strength cement composition
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
Ismail et al. Evaluation on the Mechanical Properties of Concrete Using Clay Brick as Sand Substitution
JP5484655B2 (en) Method for suppressing alkali-aggregate reaction in concrete or mortar
JP4478285B2 (en) Wear resistant material
JP2001226160A (en) Ultrahigh strength cement hardened body
JP2001240446A (en) Self-leveling material with high durability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250