JP4862001B2 - Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material - Google Patents

Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material Download PDF

Info

Publication number
JP4862001B2
JP4862001B2 JP2008041178A JP2008041178A JP4862001B2 JP 4862001 B2 JP4862001 B2 JP 4862001B2 JP 2008041178 A JP2008041178 A JP 2008041178A JP 2008041178 A JP2008041178 A JP 2008041178A JP 4862001 B2 JP4862001 B2 JP 4862001B2
Authority
JP
Japan
Prior art keywords
self
less
strength
leveling material
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008041178A
Other languages
Japanese (ja)
Other versions
JP2009196856A (en
Inventor
貴夫 小出
康範 鈴木
誠一 長岡
浩司 河上
拓 松田
好克 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008041178A priority Critical patent/JP4862001B2/en
Publication of JP2009196856A publication Critical patent/JP2009196856A/en
Application granted granted Critical
Publication of JP4862001B2 publication Critical patent/JP4862001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Floor Finish (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、超高強度高耐久性セルフレベリング材及び超高強度高耐久性セルフレベリング材硬化体に関し、更に詳しくは、従来のセルフレベリング材と比べて高い強度発現性、特に、水結合材比が20.0%以下の超高強度領域においては150N/mmを超える圧縮強度を得ることが可能な超高強度高耐久性セルフレベリング材、及び、この超高強度高耐久性セルフレベリング材を水と混練し養生した超高強度高耐久性セルフレベリング材硬化体に関するものである。 The present invention relates to an ultra-high-strength, high-durability self-leveling material and an ultra-high-strength, high-durability self-leveling material, and more specifically, higher strength development than conventional self-leveling materials, in particular, the ratio of water bonding material In an ultra-high strength region of 20.0% or less, an ultra-high-strength high-durability self-leveling material capable of obtaining a compressive strength exceeding 150 N / mm 2 and this ultra-high-strength high-durability self-leveling material The present invention relates to a hardened body of ultra-high strength and high durability self-leveling material kneaded and cured with water.

セルフレベリング材とは、セルフレベリング性(自己水平性、自己流動性)を有する建築材料であり、金ごて押え以上の精度の平坦かつ平滑な床下地面、あるいはコンクリート製品の表面仕上げを高度な施工技術(熟練工)に頼らずに、短期間での大面積施工を可能とするモルタル材料である。
近年、構造物の大型化および高強度化に伴って、セルフレベリング材に対しても、従来の優れた流動性や耐久性を確保しつつ、150N/mmを超える圧縮強度や高い耐久性が求められている。
ところで、一般に、モルタル製品やコンクリート構造体等の圧縮強度は、それに含まれる骨材の品質、特に細骨材の品質に大きく左右される。通常、細骨材としては、天然産の川砂、山砂(陸砂)、海砂、砕砂等が使用されているが、産地、母岩種、ロット等により品質が大きくばらつくという問題が避けられない。特に、圧縮強度が150N/mmを超えるような極めて強度の高い領域では、供試体や構造物等に品質の悪い細骨材が混入すると、外部から応力が加わった場合に品質の悪い細骨材を含む部分に応力が集中し、本来発揮(期待)されるはずの強度より低い強度で破壊してしまう、つまり、品質の悪い細骨材が構造上の欠陥となってしまうこととなる。
Self-leveling material is a building material that has self-leveling properties (self-leveling and self-fluidity), and provides a high-level finish for a flat and smooth floor base surface that is more accurate than a trowel. It is a mortar material that enables large-area construction in a short period of time without relying on technology (skilled workers).
In recent years, with the increase in size and strength of structures, compressive strength and high durability exceeding 150 N / mm 2 have been ensured for self-leveling materials while ensuring excellent fluidity and durability. It has been demanded.
By the way, in general, the compressive strength of mortar products, concrete structures and the like greatly depends on the quality of aggregates contained therein, particularly the quality of fine aggregates. Normally, natural river sand, mountain sand (land sand), sea sand, crushed sand, etc. are used as fine aggregates, but the problem of large variations in quality depending on the production area, host rock type, lot, etc. can be avoided. Absent. In particular, in extremely high strength areas where the compressive strength exceeds 150 N / mm 2 , if poor quality fine aggregates are mixed into the specimen or structure, etc., fine bones with poor quality when external stress is applied. Stress concentrates on the part including the material and breaks at a strength lower than the strength that should be exhibited (expected), that is, a fine aggregate with poor quality becomes a structural defect.

また同様に、セルフレベリング材の流動性も、細骨材の密度、粒子の形状、最大粒径、粒度分布、吸水率等の物性により大きく左右され、特に、天然産の細骨材を使用した場合、セルフレベリング材の流動性は用いられた細骨材の品質に大きく左右される。
そこで、圧壊強度(硬度)や耐摩耗性が高くかつ品質の安定している細骨材として、高炉スラグ細骨材、フェロクロムスラグ細骨材、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ等のスラグ細骨材を用いた様々な技術が提案されている。
Similarly, the fluidity of the self-leveling material is greatly influenced by physical properties such as fine aggregate density, particle shape, maximum particle size, particle size distribution, water absorption, etc. Especially, natural fine aggregate was used. In this case, the fluidity of the self-leveling material greatly depends on the quality of the fine aggregate used.
Therefore, blast furnace slag fine aggregate, ferrochrome slag fine aggregate, ferronickel slag fine aggregate, copper slag fine aggregate, as fine aggregate with high crushing strength (hardness) and wear resistance and stable quality, Various techniques using slag fine aggregate such as electric furnace oxidation slag have been proposed.

例えば、水硬性物質(セメント)、シリカダスト(シリカヒューム)やシリカ質ダスト等の超微粉、高性能減水剤、粒径5mm程度以下に粉砕したフェロクロムスラグ粉砕品及び水を主成分とした超高強度セメント組成物(特許文献1)、セメント及び水等と混練することによりコンクリートあるいはモルタルの構成材料として用いられる細骨材の一部または全部をスラグ球あるいはスラグ亜球により構成した細骨材(特許文献2)、直径5mm以下に風砕して球状化したフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを、砂と混合してコンクリート用骨材とするフェロアロイスラグの利用方法(特許文献3)、風砕製法によるフェロニッケルスラグを粒径2.5mm以下、かつ、その細骨材中の混入率を30%以上に調合した高流動コンクリート用細骨材(特許文献4)、天然鉱物質微粉末または人工鉱物質微粉末からなる鉱物質微粉末、及び、粒径0.3〜5mmのフェロニッケルスラグ細骨材等の微粒分の欠如した細骨材を用いた流動性と強度発現に優れたモルタル及びコンクリート組成物(特許文献5)、セメント、粒状セメントクリンカー、減水剤、比重が2.7以上の骨材、超微粉等から構成される高強度モルタル組成物(特許文献6)等が提案されている。   For example, ultra-fine powder such as hydraulic substance (cement), silica dust (silica fume) and siliceous dust, high-performance water reducing agent, ferrochrome slag pulverized product pulverized to a particle size of about 5 mm or less, and ultra-high Strong aggregate composition (Patent Document 1), fine aggregate composed of slag spheres or slag subspheres, part or all of fine aggregates used as a constituent material of concrete or mortar by kneading with cement and water ( Patent Document 2), a ferroalloy slag made of ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which is crushed into a diameter of 5 mm or less and mixed with sand to form a concrete aggregate. Method of use (Patent Document 3), Ferronickel slag produced by air-crushing method with a particle size of 2.5 mm And a fine aggregate for high fluidity concrete (patent document 4) prepared by mixing the mixture ratio in the fine aggregate to 30% or more, a fine mineral powder consisting of a fine natural powder or a fine artificial mineral powder, And a mortar and concrete composition excellent in fluidity and strength expression using a fine aggregate lacking fine particles such as ferronickel slag fine aggregate having a particle size of 0.3 to 5 mm (Patent Document 5), cement, A high-strength mortar composition (Patent Document 6) composed of granular cement clinker, water reducing agent, aggregate having a specific gravity of 2.7 or more, ultrafine powder, and the like has been proposed.

これらの技術によれば、強度や流動性に優れたモルタルあるいはコンクリートが得られ、また、これまで用途が限られていたフェロクロムスラグ、フェロニッケルスラグ、シリコンマンガンスラグ、フェロマンガンスラグ等のフェロアロイスラグを細骨材として有効利用することができるという効果がある。
特許第2653402号公報 特開平5−32439号公報 特開平5−262542号公報 特開平8−325047号公報 特開平9−52744号公報 特開2005−119885号公報
According to these technologies, mortar or concrete excellent in strength and fluidity can be obtained, and ferroalloy slag such as ferrochrome slag, ferronickel slag, silicon manganese slag, ferromanganese slag, etc., which has been limited in use until now, can be obtained. There is an effect that it can be effectively used as a fine aggregate.
Japanese Patent No. 2653402 Japanese Patent Laid-Open No. 5-32439 Japanese Patent Laid-Open No. 5-262542 JP-A-8-325047 Japanese Patent Laid-Open No. 9-52744 JP 2005-119885 A

ところで、従来の公知技術においては、いずれの細骨材も、その最大粒径が2.5〜5mmであったり、あるいは特殊な球状化処理を施しているために、これらの細骨材を用いたセルフレベリング材を水結合材比20.0%以下の超高強度領域にて養生・硬化させて硬化体とした場合、圧縮強度が頭打ちとなり、150N/mmを超える圧縮強度を得るには不十分であるという問題点があった。 By the way, in the conventional well-known technique, since all the fine aggregates have a maximum particle size of 2.5 to 5 mm or have been subjected to a special spheroidizing treatment, these fine aggregates are used. In order to obtain compressive strength exceeding 150 N / mm 2 when the self-leveling material is cured and cured in an ultra-high strength region with a water binder ratio of 20.0% or less to obtain a cured product. There was a problem that it was insufficient.

本発明は、上記の課題を解決するためになされたものであって、従来のセルフレベリング材と比べて高い強度発現性と高い耐久性を有し、しかも、水結合材比が20.0%以下の超高強度領域においても150N/mmを超える圧縮強度を得ることが可能な超高強度高耐久性セルフレベリング材及び超高強度高耐久性セルフレベリング材硬化体を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and has higher strength development and higher durability than conventional self-leveling materials, and has a water bonding material ratio of 20.0%. An object of the present invention is to provide an ultra-high-strength high-durability self-leveling material and a super-high-strength high-durability self-leveling material cured body capable of obtaining a compressive strength exceeding 150 N / mm 2 even in the following ultra-high strength region. To do.

本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末からなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有した超高強度高耐久性セルフレベリング材を、水結合材比20.0%以下にて水と混練して養生させれば、圧縮強度が150N/mm以上の超高強度高耐久性セルフレベリング材硬化体を容易に得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have an alite content of 60% by weight or more and 70% by weight or less, and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g and less cement a, and belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of less than 3000 cm 2 / g or more and 4000 cm 2 / g cement B, a expandable material, BET method A hydraulic binder made of siliceous fine powder having a specific surface area of 1 m 2 / g or more and 20 m 2 / g or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and water absorption An ultra-high strength and highly durable self-leveling material containing an artificial high-density fine aggregate with a rate of 0.90% or less and a chemical admixture is kneaded with water at a water binder ratio of 20.0% or less. It was found that if cured, an ultra-high-strength, high-durability self-leveling material cured product having a compressive strength of 150 N / mm 2 or more can be easily obtained, and the present invention has been completed.

すなわち、本発明の超高強度高耐久性セルフレベリング材は、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有し、前記水硬性結合材は、前記セメントAを5重量%以上かつ15重量%以下、前記セメントBを60重量%以上かつ70重量%以下、前記膨張材を3重量%以上かつ7重量%以下、前記シリカ質微粉末を10重量%以上かつ30重量%以下の割合で混合してなり、前記人造高密度細骨材の単位容積及び前記水硬性結合材の単位容積の比率は、0.80以上かつ1.40以下であることを特徴とする。 That is, the ultra high strength and high durability self-leveling material of the present invention has an alite content of 60% by weight or more and 70% by weight or less and a brane specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less. and a, and belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of less than 3000 cm 2 / g or more and 4000 cm 2 / g cement B, a expandable material, the specific surface area by the BET method A hydraulic binder composed of a siliceous fine powder of 1 m 2 / g or more and 20 m 2 / g or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0 .90% or less artificial high-density fine aggregate and a chemical admixture, and the hydraulic binder contains 5% by weight or more and 15% by weight or less of the cement A. B is 60% by weight or more and 70% by weight or less, the expansion material is mixed by 3% by weight or more and 7% by weight or less, and the siliceous fine powder is mixed at a ratio of 10% by weight or more and 30% by weight or less, The ratio between the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder is 0.80 or more and 1.40 or less .

前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることが好ましい。 The artificial dense fine aggregate, ferronickel slag fine aggregate, copper slag sand, it is not preferable is an electric furnace one selected from the group of oxidized slag sand or two or more.

本発明の超高強度高耐久性セルフレベリング材硬化体は、本発明の超高強度高耐久性セルフレベリング材を水結合材比20.0%以下にて水と混練し養生してなる超高強度高耐久性セルフレベリング材硬化体であって、
この超高強度高耐久性セルフレベリング材硬化体の圧縮強度は、20℃にて28日間、あるいは、5℃以上にてセルフレベリング材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合、150N/mm以上であることを特徴とする。
The ultra-high strength and highly durable self-leveling material cured product of the present invention is an ultra-high strength product obtained by kneading and curing the ultra-high strength and highly durable self-leveling material of the present invention with water at a water binder ratio of 20.0% or less. It is a high strength durable self-leveling material cured body,
The compressive strength of this ultra-high strength and highly durable self-leveling material is heated at 60 ° C. or higher and 80 ° C. or lower after 20 days at 20 ° C. or after the condensation of the self-leveling material is completed at 5 ° C. or higher. It is characterized by being 150 N / mm 2 or more when cured under any condition of 24 hours.

本発明の超高強度高耐久性セルフレベリング材によれば、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有し、水硬性結合材を、セメントAを5重量%以上かつ15重量%以下、セメントBを60重量%以上かつ70重量%以下、膨張材を3重量%以上かつ7重量%以下、シリカ質微粉末を10重量%以上かつ30重量%以下の割合で混合したものとし、人造高密度細骨材の単位容積及び水硬性結合材の単位容積の比率を0.80以上かつ1.40以下としたので、従来のセルフレベリング材と比べて強度発現性及び耐久性が優れたものとなっている。
また、水結合材比が20.0%以下の超高強度領域においては、150N/mmを超える圧縮強度を得ることができ、従来のセルフレベリング材と比べて圧縮強度及び耐久性に優れたものとなっている。
According to the ultra-high strength and high durability self-leveling material of the present invention, the cement having an alite content of 60% by weight or more and 70% by weight or less and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less. and a, and belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of less than 3000 cm 2 / g or more and 4000 cm 2 / g cement B, a expandable material, the specific surface area by the BET method A hydraulic binder composed of a siliceous fine powder of 1 m 2 / g or more and 20 m 2 / g or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0 .90% or less artificial high-density fine aggregate and chemical admixture , hydraulic binder, cement A 5 wt% to 15 wt%, cement B 60 wt% A unit of artificial high-density fine aggregate that is mixed at a ratio of not less than 70% by weight, not less than 3% by weight and not more than 7% by weight, and siliceous fine powder not less than 10% by weight and not more than 30% by weight. Since the ratio of the volume and the unit volume of the hydraulic binder is 0.80 or more and 1.40 or less, strength development and durability are excellent as compared with the conventional self-leveling material.
Moreover, in the ultra-high strength region where the water binder ratio is 20.0% or less, a compressive strength exceeding 150 N / mm 2 can be obtained, which is superior in compressive strength and durability compared to conventional self-leveling materials. It has become a thing.

本発明の超高強度高耐久性セルフレベリング材硬化体によれば、20℃にて28日間、あるいは、5℃以上にてセルフレベリング材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合の硬化体の圧縮強度を150N/mm以上としたので、水結合材比が20.0%以下の超高強度領域においても150N/mmを超える圧縮強度を容易に得ることができる。しかも、この圧縮強度は、長期に亘って保持することが可能であるから、長期信頼性に優れたものとなる。
したがって、従来のセルフレベリング材を用いた場合と比べて圧縮強度及び耐久性に優れ、かつ長期信頼性に優れた超高強度高耐久性セルフレベリング材硬化体を提供することができる。
According to the cured body of the ultra-high strength and high durability self-leveling material of the present invention, it is not less than 60 ° C. and not more than 80 ° C. after the condensation of the self-leveling material is terminated at 20 ° C. for 28 days or at 5 ° C. or more. Since the compressive strength of the cured product when cured under any condition of 24 hours by heat curing is 150 N / mm 2 or more, even in an ultra-high strength region where the water binder ratio is 20.0% or less A compressive strength exceeding 150 N / mm 2 can be easily obtained. In addition, the compressive strength can be maintained over a long period of time, so that the long-term reliability is excellent.
Accordingly, it is possible to provide an ultra-high-strength and highly durable self-leveling material cured body that is excellent in compressive strength and durability as compared with the case where a conventional self-leveling material is used, and excellent in long-term reliability.

本発明の超高強度高耐久性セルフレベリング材及び超高強度高耐久性セルフレベリング材硬化体の最良の形態について説明する。
なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The best mode of the ultra-high-strength and highly durable self-leveling material and the ultra-high-strength and highly durable self-leveling material cured body of the present invention will be described.
The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.

本実施形態の超高強度高耐久性セルフレベリング材は、エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、化学混和剤とを含有してなる超高強度高耐久性セルフレベリング材である。 The ultra-high strength and high durability self-leveling material of the present embodiment is cement A having an alite content of 60% by weight or more and 70% by weight or less and a brain specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less. When a belite content 35 wt% or more and is 60 wt% or less and Blaine specific surface area of less than 3000 cm 2 / g or more and 4000 cm 2 / g cement B, a expandable material, the specific surface area by the BET method 1m A hydraulic binder composed of a siliceous fine powder of 2 / g or more and 20 m 2 / g or less, a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0.8. It is an ultra-high-strength, high-durability self-leveling material comprising 90% or less artificial high-density fine aggregate and a chemical admixture.

ここで、本実施形態の超高強度高耐久性セルフレベリング材について、詳細に説明する。
セメントAとしては、エーライト(CS:3CaO・SiO/珪酸三カルシウム)含有量が60重量%以上かつ70重量%以下であり、かつブレーン比表面積が4000cm/g以上かつ6500cm/g以下の早強ポルトランドセメントまたは超早強ポルトランドセメントが挙げられる。
セメントBとしては、ビーライト(CS:2CaO・SiO/珪酸二カルシウム)含有量が35重量%以上かつ60重量%以下であり、かつブレーン比表面積が3000cm/g以上かつ4000cm/g以下の低熱ポルトランドセメントまたは中庸熱セメントが挙げられる。
Here, the ultra high strength and high durability self-leveling material of the present embodiment will be described in detail.
The cement A, alite (C 3 S: 3CaO · SiO 2 / silicate tricalcium) content is 60 wt% or more and 70 wt% or less, and Blaine specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less early-strength Portland cement or ultra-early-strength Portland cement.
As the cement B, the content of belite (C 2 S: 2CaO · SiO 2 / dicalcium silicate) is 35% by weight or more and 60% by weight or less, and the brain specific surface area is 3000 cm 2 / g or more and 4000 cm 2 / Examples include low-heat Portland cement or moderately-heated cement of g or less.

本実施形態の超高強度高耐久性セルフレベリング材を得るためには、セメントAには安価な早強ポルトランドセメントを、セメントBにはビーライトを多く含有する低熱ポルトランドセメントを、使用することが特に好ましい。
また、このセメントAの水硬性結合材中の混合率は、5重量%以上かつ15重量%以下が好ましく、10重量%がより好ましい。
一方、セメントBの水硬性結合材中の混合率は、60重量%以上かつ70重量%以下が好ましく、65重量%がより好ましい。
セメントA及びBの水硬性結合材中の混合率が上記の範囲を外れた場合、高耐久性セルフレベリング材硬化体とした場合に、その圧縮強度が低下して150N/mm以上に保持することが困難になるからであり、また、場合によっては流動性が大幅に低下し、実用性が大幅に低下してしまうからである。
In order to obtain the ultra-high-strength and highly durable self-leveling material of the present embodiment, it is possible to use inexpensive early-strength Portland cement for cement A and low-heat Portland cement containing a lot of belite for cement B. Particularly preferred.
Further, the mixing ratio of the cement A in the hydraulic binder is preferably 5% by weight or more and 15% by weight or less, and more preferably 10% by weight.
On the other hand, the mixing ratio of cement B in the hydraulic binder is preferably 60% by weight or more and 70% by weight or less, and more preferably 65% by weight.
When the mixing ratio of the cement A and B in the hydraulic binder is out of the above range, when the highly durable self-leveling material is hardened, the compressive strength is lowered and held at 150 N / mm 2 or more. This is because it becomes difficult, and in some cases, the fluidity is significantly lowered and the practicality is greatly lowered.

膨張材としては、日本工業規格JIS A 6202「コンクリート用膨張材」に適合するカルシウムサルフォアルミネート系(エトリンガイト系)、石灰−カルシウムサルフォアルミネート複合系の膨張材が好適に用いられる。
また、膨張材の水硬性結合材中の混合率は、3重量%以上かつ7重量%以下が好ましく、5重量%がより好ましい。
膨張材の水硬性結合材中の混合率が上記の範囲を外れた場合、この膨張材を含む高耐久性セルフレベリング材を養生・硬化して高耐久性セルフレベリング材硬化体とした場合に、その収縮量を保証できないか、あるいは異常膨張してしまうから好ましくない。
As the expansion material, a calcium sulfoaluminate-based (ettringite-based) or lime-calcium sulfoaluminate composite expansion material conforming to Japanese Industrial Standards JIS A 6202 “Expansion material for concrete” is preferably used.
The mixing ratio of the expansion material in the hydraulic binder is preferably 3% by weight or more and 7% by weight or less, and more preferably 5% by weight.
When the mixing ratio of the expansion material in the hydraulic binder is out of the above range, the high durability self-leveling material containing the expansion material is cured and cured to obtain a high durability self-leveling material cured body. The amount of contraction cannot be guaranteed, or abnormal expansion occurs, which is not preferable.

シリカ質微粉末は、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末、例えば、電融ジルコニアを製造する際に副生成物として得られるジルコニア起源シリカ質微粉末、ケイ素またはフェロシリコンを製造する際に副生成物として得られるシリカフューム、シリカガラスを製造する際に副生成物として得られるシリカ質微粉末、ケイ素または二酸化ケイ素から合成される非晶質シリカ質微粉末、粒径10μm以下に分級または微粉砕されポゾラン活性を高めたフライアッシュ等が挙げられる。
実際には、超高強度高耐久性セルフレベリング材に要求される仕様や価格を考慮した上で、上記の様々なシリカ質微粉末から1種を選択し、または2種以上を選択・混合して使用する。
The siliceous fine powder is a siliceous fine powder having a specific surface area of 1 m 2 / g or more and 20 m 2 / g or less by the BET method, for example, a zirconia-derived siliceous fine powder obtained as a by-product when producing electrofused zirconia. Silica fume obtained as a by-product when producing powder, silicon or ferrosilicon, siliceous fine powder obtained as a by-product when producing silica glass, amorphous siliceous material synthesized from silicon or silicon dioxide Fine pulverized powder, fly ash classified or finely pulverized to a particle size of 10 μm or less and having enhanced pozzolanic activity, etc.
Actually, in consideration of the specifications and price required for ultra-high strength and high durability self-leveling material, select one of the above various siliceous fine powders, or select and mix two or more. To use.

特に、本実施形態の超高強度高耐久性セルフレベリング材に用いて好適なシリカ質微粉末としては、SiOの含有率が85%以上でありかつBET法による比表面積が1m/g以上かつ20m/g以下のジルコニア起源シリカ質微粉末、シリコン起源シリカフュームが挙げられる。 In particular, as a siliceous fine powder suitable for use in the ultra high strength and high durability self-leveling material of the present embodiment, the SiO 2 content is 85% or more and the specific surface area by the BET method is 1 m 2 / g or more. And zirconia origin siliceous fine powder and silicon origin silica fume of 20 m < 2 > / g or less are mentioned.

このシリカ質微粉末の水硬性結合材中の混合率は、10重量%以上かつ30重量%以下が好ましく、15重量%以上かつ20重量%以下がより好ましい。
このシリカ質微粉末の水硬性結合材中の混合率が上記の範囲を外れた場合、そのシリカ質微粉末を含む高耐久性セルフレベリング材を養生・硬化して高耐久性セルフレベリング材硬化体とした場合に、その圧縮強度が低下して150N/mm以上に保持することが困難になるからであり、また、場合によっては練混ぜが困難になり、実用性が大幅に低下してしまうからである。
このように、本実施形態の水硬性結合材は、上記のセメントA、セメントB、膨張材及びシリカ質微粉末を合わせたものである。
The mixing ratio of the siliceous fine powder in the hydraulic binder is preferably 10% by weight to 30% by weight, and more preferably 15% by weight to 20% by weight.
When the mixing ratio of the siliceous fine powder in the hydraulic binder is out of the above range, the highly durable self-leveling material is cured by curing and curing the highly durable self-leveling material containing the siliceous fine powder. In this case, the compressive strength is reduced, and it becomes difficult to maintain the compressive strength at 150 N / mm 2 or more. In some cases, kneading becomes difficult and the practicality is greatly reduced. Because.
Thus, the hydraulic binder of the present embodiment is a combination of the above cement A, cement B, expansion material, and siliceous fine powder.

人造高密度細骨材は、超高強度発現性および高流動性を付与するとともに、さらに高い耐摩耗性を付与するための細骨材であり、硬度が高く、耐摩耗性に優れ、最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上、吸水率が0.90%以下、好ましくは0.70%以下である。
ここで、この人造高密度細骨材の最大粒径、絶乾密度及び吸水率のうちいずれか1つが上記の範囲を外れると、その人造高密度細骨材を含む高耐久性セルフレベリング材を硬化体とした場合に、圧縮強度または流動性が大きく低下してしまうので好ましくない。
Artificial high-density fine aggregate is a fine aggregate for imparting ultra-high strength and fluidity, as well as providing higher wear resistance, and has high hardness, excellent wear resistance, and maximum grain size. The diameter is 1.2 mm or less, the absolute dry density is 2.90 g / cm 3 or more, and the water absorption is 0.90% or less, preferably 0.70% or less.
Here, when any one of the maximum particle diameter, the absolute dry density and the water absorption rate of the artificial high-density fine aggregate is out of the above range, a highly durable self-leveling material including the artificial high-density fine aggregate is removed. In the case of a cured body, the compressive strength or fluidity is greatly reduced, which is not preferable.

この人造高密度細骨材としては、例えば、フェロニッケルスラグ細骨材(日本工業規格JIS A 5011−2のFNS1.2適合品)、銅スラグ細骨材(日本工業規格JIS A 5011−3のCUS1.2適合品)、電気炉酸化スラグ細骨材(日本工業規格JIS A 5011−4のEFS1.2のNまたはH適合品)の群から選択される1種または2種以上を混合して使用することができる。
また、この人造高密度細骨材は、乾燥状態のものは、予め水硬性結合材や粉末状の化学混和剤等とプレミックスして使用することができるので好ましい。
As this artificial high-density fine aggregate, for example, ferronickel slag fine aggregate (Japanese Industrial Standard JIS A 501-2-2 FNS1.2 compliant product), copper slag fine aggregate (Japanese Industrial Standard JIS A 5011-3 CUS1.2 compliant product), electric furnace oxidation slag fine aggregate (Japan Industrial Standard JIS A 5011-4 EFS1.2 N or H compliant product) Can be used.
In addition, this artificial high-density fine aggregate is preferably in a dry state because it can be premixed with a hydraulic binder, a powdery chemical admixture or the like in advance.

本実施形態の超高強度高耐久性セルフレベリング材に占める人造高密度細骨材の単位容積及び水硬性結合材の単位容積の比率は、0.80以上かつ1.40以下が好ましく、より好ましくは1.00以上かつ1.20以下である。
この人造高密度細骨材の単位容積及び水硬性結合材の単位容積の比率が上記の範囲を外れると、高耐久性セルフレベリング材としての流動性が低下したり、あるいは、この高耐久性セルフレベリング材を養生・硬化して高耐久性セルフレベリング材硬化体とした場合に、その収縮が大きくなり、実用性が大幅に低下してしまうからである。
The ratio of the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder in the ultra high strength and high durability self-leveling material of the present embodiment is preferably 0.80 or more and 1.40 or less, more preferably Is 1.00 or more and 1.20 or less.
If the ratio of the unit volume of the artificial high-density fine aggregate and the unit volume of the hydraulic binder is out of the above range, the fluidity as the high-durability self-leveling material is reduced, or the high-durability self-leveling material This is because when the leveling material is cured and cured to obtain a highly durable self-leveling material cured body, the shrinkage becomes large and the practicality is greatly reduced.

化学混和剤としては、減水率の高い一般的なポリカルボン酸系高性能減水剤、メラミンスルホン酸系高性能減水剤等の減水剤が好適に用いられ、必要に応じてポリオキシアルキレンアルキルエーテル系等の消泡剤を併用することが好ましい。
この減水剤の添加量は、超高強度高耐久性セルフレベリング材の目標とする流動性に合わせて適宜調整するが、一般的な添加量としては、セメントA及びB、膨張材及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.3重量%以上かつ3.0重量%以下の範囲で添加することが好ましい。
また、消泡剤の添加量は、超高強度高耐久性セルフレベリング材の目標とする空気量に合わせて適宜調整するが、一般的な添加量としては、セメントA及びB、膨張材及びシリカ質微粉末からなる水硬性結合材の全体量に対して0.01重量%以上かつ0.1重量%以下の範囲で添加することが好ましい。
As the chemical admixture, water-reducing agents such as general polycarboxylic acid-based high-performance water reducing agents and melamine sulfonic acid-based high-performance water reducing agents with a high water-reducing rate are preferably used, and if necessary, polyoxyalkylene alkyl ether-based It is preferable to use an antifoaming agent such as
The amount of the water reducing agent added is appropriately adjusted according to the target fluidity of the ultra-high strength and high durability self-leveling material. As general addition amounts, cement A and B, the expanding material and the siliceous fine particle are added. It is preferable to add in the range of 0.3 wt% or more and 3.0 wt% or less with respect to the total amount of the hydraulic binder made of powder.
The amount of the antifoaming agent is appropriately adjusted according to the target air amount of the ultra-high strength and high durability self-leveling material, but general addition amounts include cement A and B, expansion material and silica. It is preferable to add in the range of 0.01 wt% or more and 0.1 wt% or less with respect to the total amount of the hydraulic binder made of fine powder.

この化学混和剤(減水剤及び消泡剤)の形状としては、粉体状、液体状のいずれをも使用することができる。特に、粉体状のものは、予め水硬性結合材や乾燥させた人造高密度細骨材等とプレミックスして使用することができるので好ましい。
なお、本実施形態の超高強度高耐久性セルフレベリング材に種々の性能を付加するために、増粘剤、収縮低減剤、合成樹脂粉末、合成樹脂繊維、金属繊維、炭素繊維、ガラス繊維、ポリマー、モノマー、オリゴマー、石灰石微粉末、流動化剤、凝結促進剤、凝結遅延剤、着色用顔料の群から選択される1種または2種以上を添加しても良い。
As the shape of this chemical admixture (water reducing agent and antifoaming agent), either powder or liquid can be used. In particular, a powdery material is preferable because it can be used by being premixed with a hydraulic binder, an artificial high-density fine aggregate previously dried, or the like.
In addition, in order to add various performances to the ultra high strength and high durability self-leveling material of this embodiment, a thickener, shrinkage reducing agent, synthetic resin powder, synthetic resin fiber, metal fiber, carbon fiber, glass fiber, You may add the 1 type (s) or 2 or more types selected from the group of a polymer, a monomer, an oligomer, a limestone fine powder, a fluidizing agent, a setting accelerator, a setting retarder, and a coloring pigment.

次に、本実施形態の超高強度高耐久性セルフレベリング材硬化体について説明する。
本実施形態の超高強度高耐久性セルフレベリング材硬化体は、本実施形態の超高強度高耐久性セルフレベリング材を水結合材比20.0%以下にて水と混練し養生してなる超高強度高耐久性セルフレベリング材硬化体であり、この超高強度高耐久性セルフレベリング材硬化体の圧縮強度が、20℃にて28日間、あるいは、5℃以上にてセルフレベリング材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合に150N/mm以上となる硬化体である。
Next, the ultra-high-strength and highly durable self-leveling material cured body of this embodiment will be described.
The ultra-high-strength and highly durable self-leveling material cured body of this embodiment is obtained by kneading and curing the ultra-high-strength and highly durable self-leveling material of this embodiment with water at a water binder ratio of 20.0% or less. It is an ultra-high strength and highly durable self-leveling material cured body, and the compression strength of this ultra-high strength and highly durable self-leveling material cured at 20 ° C for 28 days, or when the self-leveling material is condensed at 5 ° C or higher. Is a cured product that becomes 150 N / mm 2 or more when cured under any condition of 60 ° C. or more and 80 ° C. or less for 24 hours after termination.

上記の水結合材比、すなわち、上記のセメントA及びB、膨張材、シリカ質微粉末からなる水硬性結合材と練混ぜ水(化学混和剤は水とみなす)の重量比は、20.0%以下が好ましい。
ここで、この超高強度高耐久性セルフレベリング材の水結合材比を20.0%以下とした理由は、水結合材比が20.0%を超えると、この超高強度高耐久性セルフレベリング材を水と混練し養生することにより得られた超高強度高耐久性セルフレベリング材硬化体の圧縮強度が150N/mmを下回ってしまうからである。
The above-mentioned water binder ratio, that is, the weight ratio of the above-mentioned cement binders A and B, expansion material, siliceous fine powder and mixed water (the chemical admixture is regarded as water) is 20.0. % Or less is preferable.
Here, the reason why the water bonding material ratio of the ultra high strength and high durability self-leveling material is 20.0% or less is that when the water bonding material ratio exceeds 20.0%, the ultra high strength and high durability self-leveling material. This is because the compression strength of the ultra-high strength and highly durable self-leveling material cured product obtained by kneading the leveling material with water and curing is less than 150 N / mm 2 .

この超高強度高耐久性セルフレベリング材を水結合材比20.0%以下にて水と混練し、得られたモルタルを、20℃にて28日間、あるいは、5℃以上にてセルフレベリング材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生し、超高強度高耐久性セルフレベリング材硬化体とする。
このようにして得られた超高強度高耐久性セルフレベリング材硬化体の圧縮強度は、常に150N/mm以上を保持している。
This ultra-high strength and highly durable self-leveling material is kneaded with water at a water binder ratio of 20.0% or less, and the resulting mortar is self-leveling material at 20 ° C. for 28 days or at 5 ° C. or higher. After the coagulation is finished, it is cured under any condition of 60 ° C. or more and 80 ° C. or less for 24 hours to obtain an ultra-high strength and highly durable self-leveling material cured body.
The compression strength of the ultra-high-strength, high-durability self-leveling material cured body thus obtained always maintains 150 N / mm 2 or more.

以下、実施例、参考例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example , a reference example, and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

ここでは、セメント、膨張材、シリカ質微粉末、人造高密度細骨材、天然細骨材、化学混和剤、消泡剤及び水として、下記のものを用いた。
「セメントA」
早強ポルトランドセメント(CS含有量64%、CS含有量7%、絶乾密度3.15g/cm、ブレーン比表面積4400cm/g、住友大阪セメント(株)製)(以下HCと略記)
「セメントB」
低熱ポルトランドセメント(CS含有量26%、CS含有量56%、絶乾密度3.24g/cm、ブレーン比表面積3400cm/g、住友大阪セメント(株)製)(以下LCと略記)
Here, the following were used as cement, expansion material, siliceous fine powder, artificial high-density fine aggregate, natural fine aggregate, chemical admixture, antifoaming agent and water.
"Cement A"
Hayashi Portland Cement (C 3 S content 64%, C 2 S content 7%, absolute dry density 3.15 g / cm 3 , brain specific surface area 4400 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) Abbreviated)
"Cement B"
Low heat Portland cement (C 3 S content 26%, C 2 S content 56%, absolute dry density 3.24 g / cm 3 , Blaine specific surface area 3400 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) (Abbreviation)

「膨張材」
カルシウムサルフォアルミネート系膨張材:SACS(絶乾密度2.93g/cm、ブレーン比表面積2900cm/g、住友大阪セメント(株)製)(以下、EXと略記)
「シリカ質微粉末」
ジルコニア起源シリカ質微粉末:SF−SILICAFUME(SiO含有量94.7%、絶乾密度2.26g/cm、BET比表面積9.1m/g、巴工業(株)社製)(以下、ZSFと略記)
"Expanding material"
Calcium sulfoaluminate-based expansion material: SACS (absolute dryness 2.93 g / cm 3 , Blaine specific surface area 2900 cm 2 / g, manufactured by Sumitomo Osaka Cement Co., Ltd.) (hereinafter abbreviated as EX)
"Silica fine powder"
Zirconia-derived siliceous fine powder: SF-SILICAFUME (SiO 2 content 94.7%, absolute dry density 2.26 g / cm 3 , BET specific surface area 9.1 m 2 / g, manufactured by Sakai Kogyo Co., Ltd.) , Abbreviated as ZSF)

「人造高密度細骨材A」
1.2mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS1.2適合品、最大粒径1.2mm以下、絶乾密度3.01g/cm、吸水率0.7%、FM:2.21)(以下、FNS1.2と略記)
「人造高密度細骨材B」
5mmフェロニッケルスラグ細骨材(JIS A 5011−2のFNS5適合品、最大粒径5mm以下、絶乾密度2.97g/cm、吸水率0.9%、FM:2.47)(以下、FNS5と略記)
「人造高密度細骨材C」
1.2mm銅スラグ細骨材(JIS A 5011−3のCUS1.2適合品、最大粒径1.2mm以下、絶乾密度3.35g/cm、吸水率0.9%、FM:2.24)(以下、CUS1.2と略記)
"Artificial high-density fine aggregate A"
1.2 mm ferronickel slag fine aggregate (JIS A 5011-2 FNS 1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.01 g / cm 3 , water absorption 0.7%, FM: 2 .21) (hereinafter abbreviated as FNS1.2)
"Artificial high-density fine aggregate B"
5 mm ferronickel slag fine aggregate (JIS A 501-2 FNS5 compliant product, maximum particle size 5 mm or less, absolute dry density 2.97 g / cm 3 , water absorption 0.9%, FM: 2.47) (hereinafter, (Abbreviated as FNS5)
"Artificial high density fine aggregate C"
1.2 mm copper slag fine aggregate (JIS A 5011-3 CUS1.2 compliant product, maximum particle size 1.2 mm or less, absolute dry density 3.35 g / cm 3 , water absorption 0.9%, FM: 2. 24) (hereinafter abbreviated as CUS1.2)

「人造高密度細骨材D」
5mm銅スラグ細骨材(JIS A 5011−3のCUS5適合品、最大粒径5mm以下、絶乾密度3.30g/cm、吸水率1.2%、FM:2.64)(以下、CUS5と略記)
「人造高密度細骨材E」
1.2mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS1.2N適合品、最大粒径1.2mm以下、絶乾密度3.52g/cm、吸水率1.0%、FM:2.89)(以下、EFS1.2と略記)
「人造高密度細骨材F」
5mm電気炉酸化スラグ細骨材(JIS A 5011−4のEFS5N適合品、最大粒径5mm以下、絶乾密度3.49g/cm、吸水率1.7%、FM:3.10)(以下、EFS5と略記)
"Artificial high-density fine aggregate D"
5 mm copper slag fine aggregate (JIS A 5011-3 CUS5 compliant product, maximum particle size 5 mm or less, absolute dry density 3.30 g / cm 3 , water absorption 1.2%, FM: 2.64) (hereinafter, CUS5 Abbreviated)
"Artificial high density fine aggregate E"
1.2mm electric furnace oxidized slag fine aggregate (JIS A 5011-4 EFS1.2N compliant product, maximum particle size 1.2mm or less, absolute dry density 3.52g / cm 3 , water absorption 1.0%, FM: 2.89) (hereinafter abbreviated as EFS1.2)
"Artificial high density fine aggregate F"
5mm electric furnace oxidation slag fine aggregate (JIS A 5011-4 EFS5N compatible product, maximum particle size 5mm or less, absolute dry density 3.49g / cm 3 , water absorption 1.7%, FM: 3.10) (below , Abbreviated as EFS5)

「天然細骨材G」
愛知県産乾燥珪砂4号及び7号の混合砂(最大粒径1.2mm以下、絶乾密度2.66g/cm、吸水率0.7%、FM:2.46)(以下、SS1.2と略記)
「天然細骨材H」
千葉県産山砂(最大粒径1.2mm以下、絶乾密度2.56g/cm、吸水率2.28%、FM:2.18)(以下、HS1.2と略記)
"Natural fine aggregate G"
Aichi Prefecture dry silica sand No. 4 and No. 7 mixed sand (maximum particle size 1.2 mm or less, absolute dry density 2.66 g / cm 3 , water absorption 0.7%, FM: 2.46) (hereinafter SS1. (Abbreviated as 2)
"Natural fine aggregate H"
Chiba Prefecture mountain sand (maximum particle size 1.2 mm or less, absolute dry density 2.56 g / cm 3 , water absorption 2.28%, FM: 2.18) (hereinafter abbreviated as HS 1.2)

「化学混和剤」
ポリカルボン酸系高性能減水剤:シーカメント1200N(日本シーカ(株)社製)(以下、SPと略記)
「消泡剤」
シーカアンチフォームW(日本シーカ(株)社製)
「水」
上水道水
`` Chemical admixture ''
Polycarboxylic acid-based high-performance water reducing agent: SECIMENT 1200N (manufactured by Nippon Seika Co., Ltd.) (hereinafter abbreviated as SP)
"Antifoaming agent"
Seeker Anti-Form W (Nihon Seeca Co., Ltd.)
"water"
Tap water

上記のセメント、膨張材、シリカ質微粉末、人造高密度細骨材あるいは天然細骨材、高性能減水剤、消泡剤及び水を用いて、実施例1〜4、参考例及び比較例1〜14の超高強度高耐久性セルフレベリング材を作製した。
表1に、実施例1〜4、参考例及び比較例1〜14各々の超高強度高耐久性セルフレベリング材の組成を示す。
これらの超高強度高耐久性セルフレベリング材においては、全ての組成において目標空気量を2%の一定値とし、細骨材の種類、水結合材比、水硬性結合材の混合比率、細骨材及び水硬性結合材の単位容積比、化学混和剤の添加量を下記のとおりとした。
Examples 1-4, Reference Examples and Comparative Example 1 using the above cement, expansion material, siliceous fine powder, artificial high-density fine aggregate or natural fine aggregate, high-performance water reducing agent, antifoaming agent and water -14 ultrahigh strength and high durability self-leveling materials were produced.
Table 1 shows the compositions of the ultrahigh strength and high durability self-leveling materials of Examples 1 to 4, Reference Examples and Comparative Examples 1 to 14.
In these ultra-high strength and high durability self-leveling materials, the target air volume is a constant value of 2% in all compositions, the type of fine aggregate, water binder ratio, mixing ratio of hydraulic binder, fine bone The unit volume ratio of the material and the hydraulic binder and the addition amount of the chemical admixture were as follows.

実施例1、2、参考例及び比較例1〜5では、細骨材の種類が全て異なるが、水結合材比を20.0%、水硬性結合材中のセメントA(HC)の混合率を10重量%、セメントB(LC)の混合率を65重量%、膨張材(EX)の混合率を5重量%、シリカ質微粉末(ZSF)の混合率を20重量%、細骨材及び水硬性結合材の単位容積比を1.00の一定値とし、高性能減水剤(SP)の添加量を水硬性結合材に対して1.3重量%、消泡剤の添加量を水硬性結合材に対して0.05重量%とした。 In Examples 1, 2, Reference Examples and Comparative Examples 1-5, the types of fine aggregates are all different, but the water binder ratio is 20.0%, and the mixing ratio of cement A (HC) in the hydraulic binder 10 wt%, cement B (LC) mixing ratio 65 wt%, expansion material (EX) mixing ratio 5 wt%, siliceous fine powder (ZSF) mixing ratio 20 wt%, fine aggregate and The unit volume ratio of the hydraulic binder is set to a constant value of 1.00, the amount of the high-performance water reducing agent (SP) added is 1.3% by weight with respect to the hydraulic binder, and the amount of the antifoam added is hydraulic. The amount was 0.05% by weight based on the binder.

実施例3では、水硬性結合材中のセメントA(HC)の混合率を5重量%、セメントB(LC)の混合率を70重量%とした以外は、実施例1と同じ条件とした。
実施例4では、水硬性結合材中のセメントA(HC)の混合率を15重量%、セメントB(LC)の混合率を60重量%とした以外は、実施例1と同じ条件とした。
In Example 3 , the same conditions as in Example 1 were used except that the mixing ratio of cement A (HC) in the hydraulic binder was 5 wt% and the mixing ratio of cement B (LC) was 70 wt%.
In Example 4 , the same conditions as in Example 1 were used except that the mixing ratio of cement A (HC) in the hydraulic binder was 15 wt% and the mixing ratio of cement B (LC) was 60 wt%.

比較例6では、水硬性結合材中のセメントA(HC)の混合率を0重量%、セメントB(LC)の混合率を75重量%とした以外は、実施例1と同じ条件とした。
比較例7では、水硬性結合材中のセメントA(HC)の混合率を20重量%、セメントB(LC)の混合率を55重量%とした以外は、実施例1と同じ条件とした。
比較例8では、水硬性結合材中のセメントA(HC)の混合率を12重量%、セメントB(LC)の混合率を78重量%、シリカ質微粉末(ZSF)の混合率を5重量%とした以外は、実施例1と同じ条件とした。
In Comparative Example 6, the same conditions as in Example 1 were used except that the mixing ratio of cement A (HC) in the hydraulic binder was 0 wt% and the mixing ratio of cement B (LC) was 75 wt%.
In Comparative Example 7, the conditions were the same as in Example 1 except that the mixing ratio of cement A (HC) in the hydraulic binder was 20 wt% and the mixing ratio of cement B (LC) was 55 wt%.
In Comparative Example 8, the mixing ratio of cement A (HC) in the hydraulic binder is 12 wt%, the mixing ratio of cement B (LC) is 78 wt%, and the mixing ratio of siliceous fine powder (ZSF) is 5 wt%. The conditions were the same as in Example 1 except that%.

比較例9では、水硬性結合材中のセメントA(HC)の混合率を8重量%、セメントB(LC)の混合率を52重量%、シリカ質微粉末(ZSF)の混合率を35重量%とした以外は、実施例1と同じ条件とした。
比較例10では、水硬性結合材中のセメントA(HC)の混合率を10.7重量%、セメントB(LC)の混合率を69.3重量%、膨張材(EX)の混合率を0重量%とした以外は、実施例1と同じ条件とした。
比較例11では、水硬性結合材中のセメントA(HC)の混合率を9.3重量%、セメントB(LC)の混合率を60.7重量%、膨張材(EX)の混合率を10重量%とした以外は、実施例1と同じ条件とした。
In Comparative Example 9, the mixing ratio of cement A (HC) in the hydraulic binder is 8 wt%, the mixing ratio of cement B (LC) is 52 wt%, and the mixing ratio of siliceous fine powder (ZSF) is 35 wt%. The conditions were the same as in Example 1 except that%.
In Comparative Example 10, the mixing ratio of cement A (HC) in the hydraulic binder is 10.7 wt%, the mixing ratio of cement B (LC) is 69.3% wt, and the mixing ratio of expansion material (EX) is The conditions were the same as in Example 1 except that the content was 0% by weight.
In Comparative Example 11, the mixing ratio of cement A (HC) in the hydraulic binder is 9.3 wt%, the mixing ratio of cement B (LC) is 60.7 wt%, and the mixing ratio of the expansion material (EX) is The conditions were the same as in Example 1 except that the amount was 10% by weight.

比較例12では、細骨材及び水硬性結合材の単位容積比を1.50とした以外は、実施例1と同じ条件とした。
比較例13では、細骨材及び水硬性結合材の単位容積比を0.70とした以外は、実施例1と同じ条件とした。
比較例14では、水結合材比を22.0%、高性能減水剤(SP)の添加量を水硬性結合材に対して0.9重量%、消泡剤の添加量を水硬性結合材に対して0.04重量%とした以外は、実施例1と同じ条件とした。
なお、高性能減水剤(SP)及び消泡剤については、練混ぜ水とみなして水量を補正した。
In Comparative Example 12, the same conditions as in Example 1 were used except that the unit volume ratio of the fine aggregate and the hydraulic binder was 1.50.
In Comparative Example 13, the same conditions as in Example 1 were used except that the unit volume ratio of the fine aggregate and the hydraulic binder was 0.70.
In Comparative Example 14, the water binder ratio is 22.0%, the addition amount of the high-performance water reducing agent (SP) is 0.9% by weight with respect to the hydraulic binder, and the addition amount of the antifoaming agent is the hydraulic binder. The same conditions as in Example 1 were used except that the content was 0.04% by weight.
In addition, about the high performance water reducing agent (SP) and the antifoamer, it considered that it was mixing water and correct | amended the water quantity.

Figure 0004862001
Figure 0004862001

次に、実施例1〜4、参考例及び比較例1〜14各々の超高強度高耐久性セルフレベリング材の練混ぜ試験を行った。
20℃の恒温室内にて、表1に示す組成となるようにセメントA及びB、膨張材、シリカ質微粉末、細骨材、練混ぜ水、化学混和剤(SP)及び消泡剤を容量20Lの硬質ポリエチレン容器に投入し、電動式ハンドミキサーを用いて90秒間、高速攪拌(練混ぜ)を行った。なお、1バッチの練混ぜ量は10Lの一定値とした。
Next, a kneading test of each of the ultra high strength and high durability self-leveling materials of Examples 1 to 4, Reference Examples and Comparative Examples 1 to 14 was performed.
Cement A and B, expansion material, siliceous fine powder, fine aggregate, mixing water, chemical admixture (SP) and antifoaming agent in a constant temperature room at 20 ° C. to have the composition shown in Table 1 The mixture was put into a 20 L hard polyethylene container, and high-speed stirring (mixing) was performed for 90 seconds using an electric hand mixer. In addition, the mixing amount of 1 batch was made into the constant value of 10L.

練上がり後、直ちに、日本建築学会規準JASS 15M−103「セルフレベリング材の品質規準」に準拠し、内径50mm×高さ51mm (内容量100ml)の塩化ビニル製フローコーン及び厚さ5mmの磨きガラス板(フロー板)を用いてフロー値を測定し、セルフレベリング材の流動性を評価した。   Immediately after the completion of the work, in accordance with the Japanese Society of Architectural Standards JASS 15M-103 “Quality Standards for Self-Leveling Materials”, a flow cone made of vinyl chloride with an inner diameter of 50 mm and a height of 51 mm (content volume 100 ml) and a polished glass with a thickness of 5 mm The flow value was measured using a plate (flow plate), and the fluidity of the self-leveling material was evaluated.

また、実施例1〜4、参考例及び比較例1〜14各々について、土木学会規準JSCE−F 542−1999「充てんモルタルのブリーディング率及び膨張率試験方法」に準拠し、超高強度高耐久性セルフレベリング材のブリーディング率及び膨張収縮率(材齢7日)を測定した。 In addition, for each of Examples 1 to 4, Reference Examples and Comparative Examples 1 to 14, in accordance with Japan Society of Civil Engineers standard JSCE-F 542-1999 “Testing method for bleeding rate and expansion rate of filling mortar”, ultrahigh strength and high durability The bleeding rate and expansion / contraction rate (age age 7 days) of the self-leveling material were measured.

さらに、実施例1〜4、参考例及び比較例1〜14各々の超高強度高耐久性セルフレベリング材を用いて超高強度高耐久性セルフレベリング材硬化体を作製し、これらの硬化体各々の圧縮強度、耐摩耗性、耐衝撃性を測定した。
圧縮強度測定用の供試体として、直径50mm×高さ100mmの円柱供試体を18本ずつ作製した。これらの供試体は、水の蒸発を防ぐために、脱型する直前まで供試体の頭部をビニールフィルム及び輪ゴムで密封し、20℃の恒温室内にて注水24時間後まで封緘養生した。
Furthermore, using the ultra-high strength and high durability self-leveling material of each of Examples 1 to 4, Reference Example and Comparative Examples 1 to 14, a super high strength and high durability self-leveling material cured body was produced, The compressive strength, abrasion resistance, and impact resistance of each were measured.
As specimens for measuring compressive strength, 18 cylindrical specimens each having a diameter of 50 mm and a height of 100 mm were produced. In order to prevent evaporation of water, these specimens were sealed with vinyl film and rubber bands until just before demolding, and sealed and cured in a constant temperature room at 20 ° C. until 24 hours after water injection.

これらの供試体のうち12本は、注水24時間後で脱型し、所定の材齢まで20℃の水中にて標準養生した。また、残りの6本は、注水24時間後から供試体の頭部を密封したまま型枠ごと70℃の温水中に浸漬して24時間加熱養生し、注水48時間後に温水から取り出し、空気中にて室温になるまで放冷した後、脱型した。   Twelve of these specimens were demolded 24 hours after water injection, and were standardly cured in water at 20 ° C. until a predetermined age. The remaining 6 bottles were immersed in 70 ° C. warm water with the molds sealed after 24 hours of water injection, and heated and cured for 24 hours. The mixture was allowed to cool to room temperature and then demolded.

超高強度高耐久性セルフレベリング材硬化体の圧縮強度は、日本工業規格JIS A 1108「コンクリートの圧縮試験方法」に準じて測定した。ここでは、1材齢の供試体数を6本とし、測定した供試体数6本の圧縮強度データから変動係数を算出した。また、圧縮強度の測定材齢は、標準養生の場合は7日、28日の2種類とし、70℃にて加熱養生した場合は材齢2日とした。なお、全ての供試体について、圧縮試験を行う直前に両端面の研磨を行った。
また、実施例1〜4、参考例及び比較例1〜14各々の超高強度高耐久性セルフレベリング材を用いて、日本工業規格JIS A 1453「建築材料及び建築構成部分の摩耗試験方法(研摩紙法)」に準拠した直径120mm×厚さ20mmの円盤型供試体を作製し、20℃、相対湿度60%の恒温恒湿中にて養生・硬化させ、材齢7日において、20℃、相対湿度50%の恒温恒湿中にて荷重1000g×500回転の条件で耐摩耗性試験を行った。
The compressive strength of the ultra-high-strength and highly durable self-leveling material was measured according to Japanese Industrial Standard JIS A 1108 “Concrete Compression Test Method”. Here, the number of specimens of one material age was six, and the coefficient of variation was calculated from the compression strength data of the six specimens measured. In addition, the age at which the compressive strength was measured was 7 days and 28 days in the case of standard curing, and 2 days in the case of heat curing at 70 ° C. In addition, about all the test bodies, both end surfaces were grind | polished just before performing a compression test.
Moreover, using the ultra-high-strength and high-durability self-leveling materials of Examples 1 to 4, Reference Examples and Comparative Examples 1 to 14, Japanese Industrial Standard JIS A 1453 “Abrasion test method for building materials and building components (polishing) A disk-shaped specimen having a diameter of 120 mm and a thickness of 20 mm in accordance with the paper method) is prepared and cured and cured in constant temperature and humidity at 20 ° C. and a relative humidity of 60%. A wear resistance test was performed under the condition of a load of 1000 g × 500 rotations in a constant temperature and humidity environment with a relative humidity of 50%.

さらに、実施例1〜4、参考例及び比較例1〜14各々の超高強度高耐久性セルフレベリング材をワイヤーブラシで表面研磨処理した縦300mm×横300mm×厚さ50mmの超高強度コンクリート硬化体(水結合材比20.0%、空気量2%、単位水量150kg/m、結合材=低熱ポルトランドセメント:750kg/m、細骨材=3号珪砂:601kg/m、粗骨材=硬質砂岩砕石:827kg/m、91日間標準養生、硬化体4辺の縁に高さ10mmの塩化ビニル樹脂製のせき板を設置)の表面に流し込み、セルフレベリング材の厚さを10mmになるように金ごてで軽く表面仕上げを行った後、20℃、相対湿度60%の恒温恒湿中にて養生・硬化させ、材齢7日において、4kg鋼球をセルフレベリング材硬化体の表面から2m上方より20回繰り返して自然落下させる耐衝撃性試験を行った。
実施例1〜4、参考例及び比較例1〜14各々のJASS 15フロー、圧縮強度、膨張収縮率、ブリーディング率、耐摩耗性試験、耐衝撃性試験の測定結果を表2及び表3に示す。
Furthermore, the super high strength high durability self-leveling material of each of Examples 1 to 4, Reference Example and Comparative Examples 1 to 14 was subjected to surface polishing treatment with a wire brush, 300 mm long × 300 mm wide × 50 mm thick ultra high strength concrete cured. Body (water binder ratio 20.0%, air volume 2%, unit water volume 150 kg / m 3 , binder = low heat Portland cement: 750 kg / m 3 , fine aggregate = No. 3 silica sand: 601 kg / m 3 , coarse bone Material = hard sandstone crushed stone: 827 kg / m 3 , standard curing for 91 days, a 10 mm high vinyl chloride resin slab is installed on the edge of the hardened body), and the thickness of the self-leveling material is 10 mm. After lightly finishing the surface with a gold iron, it is cured and cured in constant temperature and humidity at 20 ° C. and a relative humidity of 60%. At 7 days of age, a 4 kg steel ball is cured by a self-leveling material. Were impact resistance tested to fall naturally by repeating 20 times than 2m above the surface of the.
Tables 2 and 3 show measurement results of JASS 15 flow, compressive strength, expansion / contraction rate, bleeding rate, abrasion resistance test, and impact resistance test of Examples 1 to 4, Reference Example and Comparative Examples 1 to 14, respectively. .

Figure 0004862001
Figure 0004862001

Figure 0004862001
Figure 0004862001

これらの測定結果によれば、実施例1、2及び参考例では、得られた高耐久性セルフレベリング材のJASS15フローが約230mmであり、流動性は極めて良好であった。また、圧縮強度も20℃標準養生の材齢28日では150〜152N/mm2、70℃加熱養生の材齢2日では158〜161N/mm2と非常に良好であった。
一方、比較例1〜3では、セルフレベリング材の流動性及び圧縮強度は、実施例1、2及び参考例より低かった。また、比較例4は珪砂を、比較例5は山砂をそれぞれ使用したために、セルフレベリング材の流動性及び圧縮強度のいずれもが実施例1、2及び参考例より著しく低く、特に20℃標準養生の材齢28日が150N/mmを下回っていた。
According to these measurement results, in Examples 1 and 2 and the reference example , the JASS15 flow of the obtained highly durable self-leveling material was about 230 mm, and the fluidity was very good. The compressive strength was also very good at 150 to 152 N / mm 2 at the age of 28 ° C. standard curing, and 158 to 161 N / mm 2 at the age of 2 days of 70 ° C. heating curing.
On the other hand, in Comparative Examples 1 to 3, the fluidity and compressive strength of the self-leveling material were lower than those of Examples 1 and 2 and the reference example . Further, since Comparative Example 4 used silica sand and Comparative Example 5 used mountain sand, both the fluidity and compressive strength of the self-leveling material were significantly lower than those of Examples 1, 2 and Reference Examples , and in particular, 20 ° C. standard. Curing age 28 days was below 150 N / mm 2 .

実施例3、4は、セメントA(HC)の混合率を5重量%、15重量%とした場合であるが、得られたセルフレベリング材の流動性は良好であり、圧縮強度も20℃標準養生の材齢28日では151〜154N/mm、70℃加熱養生の材齢2日では158〜161N/mmと良好であった。
比較例6では、セメントA(HC)の混合率を0重量%、セメントB(LC)の混合率を75重量%としたために、セルフレベリング材の流動性は実施例1と同等であったが、圧縮強度は20℃標準養生の材齢28日が150N/mmを下回っていた。また材齢7日の膨張収縮率が−0.2%と収縮しており、セルフレベリング材としては問題があった。
比較例7では、セメントA(HC)の混合率を20重量%、セメントB(LC)の混合率を55重量%としたために、セルフレベリング材の圧縮強度は実施例1と同等であったが、流動性は実施例1より著しく低いものであった。
Examples 3 and 4 are cases where the mixing ratio of cement A (HC) was 5% by weight and 15% by weight, but the fluidity of the obtained self-leveling material was good and the compressive strength was 20 ° C. standard. the age of 28 days of aging at the 151~154N / mm 2, 70 ℃ heat curing at the age of 2 days was as good as 158~161N / mm 2.
In Comparative Example 6, since the mixing ratio of cement A (HC) was 0 wt% and the mixing ratio of cement B (LC) was 75 wt%, the fluidity of the self-leveling material was equivalent to that of Example 1. The compressive strength was less than 150 N / mm 2 at the age of 28 ° C. standard curing. Moreover, the expansion / contraction rate of material age 7 contracted with -0.2%, and there was a problem as a self-leveling material.
In Comparative Example 7, since the mixing ratio of cement A (HC) was 20 wt% and the mixing ratio of cement B (LC) was 55 wt%, the compressive strength of the self-leveling material was equivalent to that of Example 1. The fluidity was significantly lower than that of Example 1.

比較例8では、シリカ質微粉末(ZSF)の混合率を5重量%としたために、セルフレベリング材の圧縮強度及び流動性は実施例1より著しく低いものであった。
比較例9では、シリカ質微粉末(ZSF)の混合率を35重量%としたために、セルフレベリング材の流動性は実施例1より良好であったが、圧縮強度は実施例1より低く、20℃標準養生の材齢28日では150N/mmを下回っていた。
比較例10では、膨張材(EX)の混合率を0重量%としたために、セルフレベリング材の流動性及び圧縮強度は実施例1と同等以上であったが、材齢7日の膨張収縮率が−0.5%と大きく収縮しており、セルフレベリング材の品質としては問題があった。
比較例11では、膨張材(EX)の混合率を10重量%としたために、セルフレベリング材の流動性及び圧縮強度が実施例1より低く、20℃標準養生の材齢28日では150N/mmを下回っていた。また材齢7日の膨張収縮率が+0.8%と大きく膨張しており、セルフレベリング材の品質としては問題があった。
In Comparative Example 8, since the mixing rate of the siliceous fine powder (ZSF) was 5% by weight, the compressive strength and fluidity of the self-leveling material were significantly lower than those in Example 1.
In Comparative Example 9, since the mixing rate of the siliceous fine powder (ZSF) was 35 wt%, the fluidity of the self-leveling material was better than that of Example 1, but the compressive strength was lower than that of Example 1, 20 It was less than 150 N / mm 2 at the age of 28 days of standard curing at ° C.
In Comparative Example 10, since the mixing ratio of the expansion material (EX) was 0% by weight, the fluidity and compressive strength of the self-leveling material were equal to or higher than those in Example 1, but the expansion / shrinkage ratio at age 7 days was achieved. However, there was a problem with the quality of the self-leveling material.
In Comparative Example 11, since the mixing ratio of the expansion material (EX) was 10% by weight, the fluidity and compressive strength of the self-leveling material were lower than those in Example 1, and 150 N / mm at the age of 28 days at 20 ° C. standard curing. It was below 2 . Further, the expansion / contraction rate on the age of 7 days was greatly expanded as + 0.8%, and there was a problem as the quality of the self-leveling material.

比較例12では、セルフレベリング材の圧縮強度は実施例1と同等であったが、細骨材及び水硬性結合材の単位容積比を1.50としたために、細骨材の量が多く、流動性は実施例1より著しく低かった。
比較例13では、セルフレベリング材の流動性及び圧縮強度は実施例1と同等以上であったが、細骨材及び水硬性結合材の単位容積比を0.70としたために、結合材ペースト量が多く、材齢7日の膨張収縮率が−0.2%と収縮しており、セルフレベリング材の品質としては問題があった。
比較例14は、水結合材比を22.0%としたために、セルフレベリング材の流動性及び圧縮強度が実施例1より著しく低く、圧縮強度はいずれの養生方法でも常に150N/mmを下回っていた。
In Comparative Example 12, the compressive strength of the self-leveling material was equivalent to Example 1, but the unit volume ratio of the fine aggregate and hydraulic binder was 1.50, so the amount of fine aggregate was large, The fluidity was significantly lower than Example 1.
In Comparative Example 13, the fluidity and compressive strength of the self-leveling material were equal to or higher than in Example 1, but the unit volume ratio of the fine aggregate and hydraulic binder was 0.70, so the amount of the binder paste The expansion / shrinkage ratio at 7 days of age was shrinking to -0.2%, and there was a problem with the quality of the self-leveling material.
In Comparative Example 14, since the water binder ratio was 22.0%, the fluidity and compressive strength of the self-leveling material were significantly lower than in Example 1, and the compressive strength was always below 150 N / mm 2 in any curing method. It was.

一方、耐摩耗性は、人造高密度細骨材を用いた場合は、実施例、参考例及び比較例共に0.8〜1.3gの範囲内であったのに対して、天然細骨材を使用した比較例4、5では、1.9〜2.2gと大きく、耐摩耗性が劣っていた。
また、耐衝撃性は、細骨材及び水硬性結合材の単位容積比を0.70とした(結合材ペースト量が多い)比較例13にのみ、ひび割れが発生した。
On the other hand, when the artificial high-density fine aggregate was used, the wear resistance was in the range of 0.8 to 1.3 g in all of Examples, Reference Examples and Comparative Examples, whereas natural fine aggregate was used. In Comparative Examples 4 and 5 using No. 1, the wear resistance was inferior, being as large as 1.9 to 2.2 g.
Moreover, as for the impact resistance, cracks occurred only in Comparative Example 13 in which the unit volume ratio of the fine aggregate and the hydraulic binder was 0.70 (the amount of the binder paste was large).

以上説明したように、最大粒径1.2mmの人造高密度細骨材(フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材)を使用したセルフレベリング材は、最大粒径5mmの人造高密度細骨材または最大粒径1.2mmの天然細骨材(珪砂、山砂)を使用したセルフレベリング材より優れた流動性、圧縮強度、耐摩耗性が得られ、さらに圧縮強度の変動係数が非常に小さいことが分かった。
セメントA(HC)の水硬性結合材に対する混合率が5重量%未満の場合では、セルフレベリング材硬化体の圧縮強度が低く、一方、セメントA(HC)の水硬性結合材に対する混合率が15重量%を超える場合では、練り上った直後のセルフレベリング材の流動性が大きく低下し、いずれも実用性に問題があることが分かった。
As explained above, self-leveling materials using artificial high-density fine aggregates with a maximum particle size of 1.2 mm (ferronickel slag fine aggregates, copper slag fine aggregates, electric furnace oxidized slag fine aggregates) Fluidity, compressive strength, and wear resistance superior to self-leveling materials using artificial high-density fine aggregates with a particle size of 5 mm or natural fine aggregates (silica sand, mountain sand) with a maximum particle size of 1.2 mm are obtained. It was also found that the coefficient of variation in compressive strength was very small.
When the mixing ratio of the cement A (HC) to the hydraulic binder is less than 5% by weight, the compression strength of the cured self-leveling material is low, while the mixing ratio of the cement A (HC) to the hydraulic binder is 15 In the case of exceeding the weight percent, it was found that the fluidity of the self-leveling material immediately after kneading was greatly reduced, and there was a problem in practical use.

膨張材(EX)の水硬性結合材に対する混合率が3重量%未満の場合では、セルフレベリング材硬化体の収縮率が大きく、また、混合率が7重量%を超える場合では、反対にセルフレベリング材硬化体の膨張率が大きくなり過ぎてしまい、実用性に問題があることが分かった。
シリカ質微粉末(ZSF)の水硬性結合材に対する混合率が10重量%未満の場合では、練混ぜが困難になって実用性が低下し、また、混合率が30重量%を超える場合では、セルフレベリング材の圧縮強度が大きく低下することが分かった。
さらに、細骨材及び水硬性結合材の単位容積比が0.8未満の場合では、セルフレベリング材硬化体の収縮率が大きく、さらに耐衝撃性が低下し、また、単位容積比が1.4を超える場合では、練り上がった直後のセルフレベリング材の流動性が低下してしまい、実用性が大幅に低下することが分かった。
When the mixing rate of the expansion material (EX) with respect to the hydraulic binder is less than 3% by weight, the shrinkage rate of the self-leveling material cured body is large, and when the mixing rate exceeds 7% by weight, the self-leveling is reversed. It has been found that the expansion coefficient of the cured material becomes too large and there is a problem in practicality.
When the mixing rate of the siliceous fine powder (ZSF) with respect to the hydraulic binder is less than 10% by weight, kneading becomes difficult and the practicality decreases, and when the mixing rate exceeds 30% by weight, It was found that the compressive strength of the self-leveling material was greatly reduced.
Furthermore, when the unit volume ratio of the fine aggregate and the hydraulic binder is less than 0.8, the shrinkage rate of the cured self-leveling material is large, the impact resistance is further lowered, and the unit volume ratio is 1. When exceeding 4, it turned out that the fluidity | liquidity of the self-leveling material immediately after kneading falls, and practicality falls significantly.

さらに、20℃における標準養生の材齢28日、70℃における加熱養生の材齢2日、のいずれにおいても圧縮強度が150N/mmを上回るためには、水結合材比は20.0%以下が必須要件であることが分かった。
なお、ブリーディング率は、実施例、参考例及び比較例共に0%であり、セルフレベリング材として問題はなかった。
Furthermore, in order for the compressive strength to exceed 150 N / mm 2 in both the standard curing age 28 days at 20 ° C. and the heating curing age 2 days at 70 ° C., the water binder ratio is 20.0%. The following are essential requirements:
The bleeding rate was 0% in all of the examples, reference examples and comparative examples, and there was no problem as a self-leveling material.

Claims (3)

エーライト含有量が60重量%以上かつ70重量%以下でありかつブレーン比表面積が4000cm/g以上かつ6500cm/g以下のセメントAと、ビーライト含有量が35重量%以上かつ60重量%以下でありかつブレーン比表面積が3000cm/g以上かつ4000cm/g以下のセメントBと、膨張材と、BET法による比表面積が1m/g以上かつ20m/g以下のシリカ質微粉末とからなる水硬性結合材と、
最大粒径が1.2mm以下、絶乾密度が2.90g/cm以上かつ吸水率が0.90%以下の人造高密度細骨材と、
化学混和剤とを含有し、
前記水硬性結合材は、前記セメントAを5重量%以上かつ15重量%以下、前記セメントBを60重量%以上かつ70重量%以下、前記膨張材を3重量%以上かつ7重量%以下、前記シリカ質微粉末を10重量%以上かつ30重量%以下の割合で混合してなり、
前記人造高密度細骨材の単位容積及び前記水硬性結合材の単位容積の比率は、0.80以上かつ1.40以下であることを特徴とする超高強度高耐久性セルフレベリング材。
Cement A having an alite content of 60 wt% or more and 70 wt% or less and a Blaine specific surface area of 4000 cm 2 / g or more and 6500 cm 2 / g or less, and a belite content of 35 wt% or more and 60 wt% less and and a Blaine cement specific surface area is less than 3000 cm 2 / g or more and 4000 cm 2 / g B, the expansion member and the BET specific surface area is 1 m 2 / g or more and 20 m 2 / g or less siliceous fine powder A hydraulic binder consisting of
An artificial high-density fine aggregate having a maximum particle size of 1.2 mm or less, an absolute dry density of 2.90 g / cm 3 or more, and a water absorption of 0.90% or less;
Containing chemical admixtures ,
The hydraulic binder is 5% by weight to 15% by weight of the cement A, 60% by weight to 70% by weight of the cement B, 3% by weight to 7% by weight of the expansion material, Silica fine powder is mixed at a ratio of 10 wt% or more and 30 wt% or less,
The ultra high strength and high durability self-leveling material, wherein the ratio of the unit volume of the artificial high density fine aggregate and the unit volume of the hydraulic binder is 0.80 or more and 1.40 or less .
前記人造高密度細骨材は、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材の群から選択された1種または2種以上であることを特徴とする請求項1記載の超高強度高耐久性セルフレベリング材。 The artificial dense fine aggregate, claims, characterized in that ferronickel slag fine aggregate, copper slag sand, is one or more selected from a group of electric furnace oxide slag sand 1 ultra high strength and high durability self-leveling material according. 請求項1または2記載の超高強度高耐久性セルフレベリング材を水結合材比20.0%以下にて水と混練し養生してなる超高強度高耐久性セルフレベリング材硬化体であって、
この超高強度高耐久性セルフレベリング材硬化体の圧縮強度は、20℃にて28日間、あるいは、5℃以上にてセルフレベリング材の凝結が終結した後から60℃以上かつ80℃以下の加熱養生にて24時間、のいずれかの条件にて養生した場合、150N/mm以上であることを特徴とする超高強度高耐久性セルフレベリング材硬化体。
An ultra-high-strength and highly durable self-leveling material cured product obtained by kneading and curing the ultra-high-strength and highly durable self-leveling material according to claim 1 or 2 with water at a water binder ratio of 20.0% or less. ,
The compressive strength of this ultra-high strength and highly durable self-leveling material is heated at 60 ° C. or higher and 80 ° C. or lower after 20 days at 20 ° C. or after the condensation of the self-leveling material is completed at 5 ° C. or higher. An ultra-high-strength, high-durability self-leveling material cured body characterized by having a curing rate of 150 N / mm 2 or more when cured under any of the conditions of 24 hours.
JP2008041178A 2008-02-22 2008-02-22 Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material Active JP4862001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041178A JP4862001B2 (en) 2008-02-22 2008-02-22 Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041178A JP4862001B2 (en) 2008-02-22 2008-02-22 Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material

Publications (2)

Publication Number Publication Date
JP2009196856A JP2009196856A (en) 2009-09-03
JP4862001B2 true JP4862001B2 (en) 2012-01-25

Family

ID=41140802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041178A Active JP4862001B2 (en) 2008-02-22 2008-02-22 Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material

Country Status (1)

Country Link
JP (1) JP4862001B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533559B2 (en) * 2010-10-28 2014-06-25 宇部興産株式会社 Self-flowing hydraulic composition
JP2012092599A (en) * 2010-10-28 2012-05-17 Ube Ind Ltd Concrete-floor structure and construction method of the same
KR101230256B1 (en) * 2010-12-02 2013-02-07 한국건설기술연구원 Ultra-high performance fiber reinforced cementitious composites and manufacturing method
JP2013049999A (en) * 2011-08-31 2013-03-14 Ohbayashi Corp Method for finishing surface using self leveling material
EP2695992B1 (en) * 2012-08-10 2016-12-07 Hans Rinninger u. Sohn GmbH & Co. Moulded concrete part and method for the production of a moulded concrete part
JP6530890B2 (en) * 2013-06-17 2019-06-12 宇部興産株式会社 High strength cement mortar composition and method of producing hardened high strength cement mortar
JP6417891B2 (en) * 2014-11-21 2018-11-07 宇部興産株式会社 High-strength concrete composition and method for producing high-strength concrete hardened body
CN109138310A (en) * 2018-10-23 2019-01-04 黄贺明 A kind of superhigh tenacity concrete inorganic decorating board and preparation method thereof of the surface containing pattern
EP4090639A1 (en) * 2020-01-14 2022-11-23 Holcim Technology Ltd Ultra-high performance concretes with high early strength
KR102463319B1 (en) * 2021-09-13 2022-11-07 주식회사 에스아이판 Mortar construction method to improve floor impact sound by lowering restraint and floor structure using the same
CN115594467B (en) * 2022-11-21 2023-05-26 湖南大学 Self-leveling self-compaction wear-resistant floor material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040985B1 (en) * 1999-03-04 2000-05-15 住友大阪セメント株式会社 Low heat generation type early strength cement and low heat generation type early strength concrete
JP2001240446A (en) * 2000-02-28 2001-09-04 Taiheiyo Cement Corp Self-leveling material with high durability
JP2004043234A (en) * 2002-07-11 2004-02-12 Ps Mitsubishi Construction Co Ltd Ultrahigh strength mortar
JP4384902B2 (en) * 2002-12-11 2009-12-16 株式会社大林組 Manufacturing method of mortar and concrete
JP2006111493A (en) * 2004-10-15 2006-04-27 Tokuyama Corp Concrete composition

Also Published As

Publication number Publication date
JP2009196856A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4862001B2 (en) Super high strength and high durability self-leveling material and super high strength and high durability self-leveling material
JP4861931B2 (en) Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete
JP4861930B2 (en) Ultra-high strength high-fluidity cement composition and ultra-high-strength high-fluidity cement hardened material
JP4747181B2 (en) Ultra-high-strength non-shrink grout material and ultra-high-strength non-shrink grout material
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
JP6086760B2 (en) Ultra-high-strength high-fluidity concrete, method for producing ultra-high-strength high-fluidity concrete, and cement composition
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
Al-Amoudi et al. Effect of superplasticizer on plastic shrinkage of plain and silica fume cement concretes
Özcan et al. Utilization of metakaolin and calcite: working reversely in workability aspect—As mineral admixture in self-compacting concrete
KR101243523B1 (en) High Strength Concrete Composition for High-Rise Building
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
Šerelis et al. Influence of water to cement ratio with different amount of binder on properties of ultra-high performance concrete
JPH0680456A (en) Fluid hydraulic composition
JPH0231026B2 (en)
KR101338502B1 (en) Shrinkage-reducing and Ultra High Early Strength Cement Binder Composition and Method for producing Secondary Goods of Precast Concrete using the same
JP2015131747A (en) cement composition
Dordi et al. Microfine gound granulated blast furnace slag for high performance concrete
Ofwa et al. Evaluating superplasticizer compatibility in the production of high performance concrete using portland pozzolana cement CEM II/BP
JPH08239249A (en) Cement composition
JP2001220201A (en) Fiber reinforced concrete
JP6264644B2 (en) Admixture, cement composition and hardened cement
KR101366062B1 (en) Concrete composition for bridge pavement and manufacturing method thereof
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2001240446A (en) Self-leveling material with high durability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4862001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250