JP2001226162A - Joint filler material for post-tension-prestressed concrete plate - Google Patents

Joint filler material for post-tension-prestressed concrete plate

Info

Publication number
JP2001226162A
JP2001226162A JP2000035754A JP2000035754A JP2001226162A JP 2001226162 A JP2001226162 A JP 2001226162A JP 2000035754 A JP2000035754 A JP 2000035754A JP 2000035754 A JP2000035754 A JP 2000035754A JP 2001226162 A JP2001226162 A JP 2001226162A
Authority
JP
Japan
Prior art keywords
post
prestressed concrete
fiber
joint material
concrete plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000035754A
Other languages
Japanese (ja)
Other versions
JP4376409B2 (en
Inventor
Mitsuru Tanimura
充 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000035754A priority Critical patent/JP4376409B2/en
Publication of JP2001226162A publication Critical patent/JP2001226162A/en
Application granted granted Critical
Publication of JP4376409B2 publication Critical patent/JP4376409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00672Pointing or jointing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joint filler material for a post-tension-prestressed concrete plate, which is capable of remarkably suppressing stress loss of a post-tension- prestressed concrete plate body whose production process comprises joining many high-strength precast plates together to form a joined plate body, placing PC steel in the joined plate body so as to pierce through the body and integrally forming them into the objective post-tension-prestressed concrete plate body by introducing prestress. SOLUTION: This joint filler material consists of a mix containing at least cement, a pozzolanic fine powder, fine aggregate having <=2 mm grain size, a water reducing agent and water, wherein preferably, the mix further additionally contains metallic fiber and/or organic fiber, an inorganic powder having a 3-20 μm average particle size and fibrous or flaky particles having a <=1 mm average particle size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポストテンション
プレストレストコンクリート版の接合目地材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint material for a post-tensioned prestressed concrete plate.

【0002】[0002]

【従来の技術】従来より、長さ10〜15m程度のプレキャ
スト版を多数接合し、PC鋼材を貫通させ、プレストレ
スを導入して一体化し、長さが数100mにもおよぶポスト
テンションプレストレストコンクリート版を製造するこ
とが行われている。このような一体化プレストレストコ
ンクリート版においては、従来接合目地部に30〜50MPa
程度の圧縮強度を発現するグラウト材が使用されてい
た。
2. Description of the Prior Art Conventionally, a number of precast prestressed concrete plates having a length of several hundred meters have been joined by joining a number of precast plates having a length of about 10 to 15 m, penetrating a PC steel material, introducing a prestress, and integrating them. It has been made. In such an integrated prestressed concrete slab, the conventional joint joint has a thickness of 30 to 50 MPa.
A grout material exhibiting a certain degree of compressive strength has been used.

【0003】[0003]

【発明が解決しようとする課題】近年、施工性の改善の
ために、プレキャスト版の薄層化・軽量化が進んでお
り、プレキャスト版の製造には、(超)高強度なコンク
リートが使用されている。このような高強度なプレキャ
スト版を多数接合し、PC鋼材を貫通させ、プレストレ
スを導入して一体化し、長さが数100mにもおよぶ一体化
プレストレストコンクリート版を製造するにあたって
は、極めて大きなポストテンション力を版体に導入しな
ければならないが、従来のグラウト材の使用では、その
強度レベルが不十分であるばかりか、該グラウト材の乾
燥収縮やクリープによって、一体化プレストレストコン
クリート版体のストレスロスが大きくなる、という問題
がある。
In recent years, precast plates have been made thinner and lighter in order to improve workability, and (ultra) high-strength concrete is used in the production of precast plates. ing. A number of such high-strength precast slabs are joined, penetrated by PC steel, prestressed and integrated to produce an integrated prestressed concrete slab with a length of several hundred meters. Although tension force must be introduced into the plate, the use of conventional grouting materials not only has insufficient strength levels, but also causes the shrinkage and creep of the grouting material to reduce the stress of the integrated prestressed concrete plate. There is a problem that loss increases.

【0004】本発明は、上記問題点を考慮してなされた
ものであって、その目的は、一体化プレストレストコン
クリート版用の高強度で、乾燥収縮やクリープが小さい
接合目地材を提供することである。
[0004] The present invention has been made in consideration of the above problems, and an object of the present invention is to provide a joint material having a high strength and a small drying shrinkage and creep for an integrated prestressed concrete slab. is there.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記目的を
達成するために鋭意研究した結果、特定の材料を組み合
わせた配合物を接合目地材として用いることで、上記目
的を達成することができるとの知見を得、本発明に到達
した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by using a combination of specific materials as a joint joint material. The present inventors have found that they can do this, and have reached the present invention.

【0006】即ち、本発明は、少なくとも、セメント、
ポゾラン質微粉末、粒径2mm以下の細骨材、減水剤、及
び水を含む配合物からなるポストテンションプレストレ
ストコンクリート版の接合目地材(請求項1)であり、
さらに、配合物に、金属繊維及び/又は有機質繊維(請
求項2)、平均粒径3〜20μmの無機粉末(請求項
5)、平均粒度1mm以下の繊維状粒子又は薄片状粒子
(請求項6)を含むことが好ましいものである。
That is, the present invention provides at least cement,
A joint material for a post-tensioned prestressed concrete slab comprising a compound containing pozzolanic fine powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent, and water (claim 1).
Further, the composition may contain metal fibers and / or organic fibers (Claim 2), inorganic powder having an average particle size of 3 to 20 μm (Claim 5), fibrous particles or flaky particles having an average particle size of 1 mm or less (Claim 6). ) Is preferable.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。なお、以降、本発明のポストテンションプレスト
レストコンクリート版の接合目地材を、単に目地材と略
す。本発明で使用するセメントの種類は限定するもので
はなく、普通ポルトランドセメント、早強ポルトランド
セメント、中庸熱ポルトランドセメント、低熱ポルトラ
ンドセメント等の各種ポルトランドセメントや高炉セメ
ント、フライアッシュセメント等の混合セメントを使用
することができる。本発明において、目地材の硬化後の
早期強度を向上しようとする場合は、早強ポルトランド
セメントを使用することが好ましく、配合物の流動性を
向上しようとする場合は、中庸熱ポルトランドセメント
や低熱ポルトランドセメントを使用することが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Hereinafter, the jointing material of the post-tensioned prestressed concrete plate of the present invention is simply referred to as jointing material. The type of cement used in the present invention is not limited, and various types of Portland cement such as ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, low-heat Portland cement, etc. and mixed cements such as blast furnace cement and fly ash cement are used. can do. In the present invention, when it is intended to improve the early strength of the joint material after curing, it is preferable to use an early-strength Portland cement, and when it is intended to improve the fluidity of the compound, it is preferable to use a medium heat Portland cement or a low heat Portland cement. It is preferred to use Portland cement.

【0008】ポゾラン質微粉末としては、シリカフュー
ム、シリカダスト、フライアッシュ、スラグ、火山灰、
シリカゾル、沈降シリカ等が挙げられる。一般に、シリ
カフュームやシリカダストでは、その平均粒径は、1.0
μm以下であり、粉砕等をする必要がないので本発明の
ポゾラン質微粉末として好適である。 ポゾラン質微粉
末の配合量は、目地材の硬化後の強度、乾燥収縮やクリ
ープから、セメント100重量部に対して5〜50重量部が好
ましい。ポゾラン質微粉末が少ないと硬化後の強度が低
下し、また、乾燥収縮やクリープも大きくなる。ポゾラ
ン質微粉末の添加量が多くなると単位水量が増大するの
で硬化後の強度が低下するとともに、乾燥収縮やクリー
プも大きくなる。
[0008] Pozzolanic fine powder includes silica fume, silica dust, fly ash, slag, volcanic ash,
Silica sol, precipitated silica and the like. Generally, silica fume and silica dust have an average particle size of 1.0
It is suitable for the pozzolanic fine powder of the present invention because it is not more than μm and does not need to be ground. The blending amount of the pozzolanic fine powder is preferably 5 to 50 parts by weight based on 100 parts by weight of cement, from the strength after curing of the joint material, drying shrinkage and creep. When the amount of the pozzolanic fine powder is small, the strength after curing decreases, and the drying shrinkage and creep increase. When the amount of the pozzolanic fine powder is increased, the unit water amount is increased, so that the strength after curing is reduced and the drying shrinkage and creep are also increased.

【0009】本発明においては粒径2mm以下の細骨材が
用いられる。ここで、本発明における細骨材の粒径と
は、85%重量累積粒径である。細骨材の粒径が2mmを超
えると、目地材の硬化後の強度が低下する。なお、本発
明においては、最大粒径が2mm以下の細骨材を用いるこ
とが好ましく、最大粒径が1.5mm以下の細骨材を用いる
ことがより好ましい。細骨材としては、川砂、陸砂、海
砂、砕砂、珪砂及びこれらの混合物を使用することがで
きる。細骨材の配合量は、目地材の硬化後の強度、乾燥
収縮やクリープから、セメント100重量部に対して50〜2
50重量部が好ましく、80〜180重量部がより好ましい。
In the present invention, fine aggregate having a particle size of 2 mm or less is used. Here, the particle size of the fine aggregate in the present invention is an 85% weight cumulative particle size. If the particle size of the fine aggregate exceeds 2 mm, the strength of the joint material after curing decreases. In the present invention, it is preferable to use fine aggregate having a maximum particle size of 2 mm or less, and it is more preferable to use fine aggregate having a maximum particle size of 1.5 mm or less. As fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand, and a mixture thereof can be used. The amount of the fine aggregate is from 50 to 2 parts per 100 parts by weight of cement based on the strength after curing of the joint material, drying shrinkage and creep.
It is preferably 50 parts by weight, more preferably 80 to 180 parts by weight.

【0010】減水剤としては、リグニン系、ナフタレン
スルホン酸系、メラミン系、ポリカルボン酸系の減水
剤、AE減水剤、高性能減水剤又は高性能AE減水剤を
使用することができる。これらのうち、減水効果の大き
な高性能減水剤又は高性能AE減水剤を使用することが
好ましい。減水剤の配合量は、セメント100重量部に対
して、固形分換算で0.5〜4.0重量部が好ましい。セメン
ト100重量部に対して、減水剤量が0.5重量部未満では、
混練が困難となるとともに、目地材の流動性や作業性が
低下する。セメント100重量部に対して、減水剤量が4.0
重量部を超えると硬化後の強度が低下する。なお、減水
剤は、液状又は粉末状どちらでも使用可能である。
As the water reducing agent, a lignin-based, naphthalene-sulfonic acid-based, melamine-based, polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The compounding amount of the water reducing agent is preferably 0.5 to 4.0 parts by weight in terms of solid content based on 100 parts by weight of cement. If the amount of water reducing agent is less than 0.5 part by weight with respect to 100 parts by weight of cement,
The kneading becomes difficult, and the fluidity and workability of the joint material decrease. Water reducing agent amount is 4.0 for 100 parts by weight of cement
If the amount is more than 10 parts by weight, the strength after curing decreases. The water reducing agent can be used in either liquid or powder form.

【0011】水量は、セメント100重量部に対して10〜3
0重量部が好ましく、より好ましくは15〜25重量部であ
る。セメント100重量部に対して、水量が10重量部未満
では、混練が困難となるとともに、目地材の流動性や作
業性が低下する。セメント100重量部に対して、水量が3
0重量部を超えると硬化後の強度が低下するとともに、
乾燥収縮やクリープも大きくなる。
The amount of water is 10 to 3 parts per 100 parts by weight of cement.
The amount is preferably 0 parts by weight, more preferably 15 to 25 parts by weight. If the amount of water is less than 10 parts by weight with respect to 100 parts by weight of cement, kneading becomes difficult and the fluidity and workability of the joint material decrease. Water is 3 per 100 parts by weight of cement
If it exceeds 0 parts by weight, the strength after curing decreases,
Drying shrinkage and creep also increase.

【0012】本発明においては、目地材の硬化後のひび
割れ抵抗性を高める観点から、前記配合物に金属繊維及
び/又は有機質繊維を含ませることが好ましい。金属繊
維としては、鋼繊維、アモルファス繊維等が挙げられる
が、中でも鋼繊維は強度に優れており、またコストや入
手のし易さの点からも好ましいものである。金属繊維
は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径
が0.01mm未満では繊維自身の強度が不足し、張力を受け
た際に切れやすくなる。径が1.0mmを超えると、同一配
合量での本数が少なくなり、曲げ強度を向上させる効果
が低下する。長さが30mmを超えると、混練の際ファイバ
ーボールが生じやすくなる。長さが2mm未満では曲げ強
度を向上させる効果が低下する。金属繊維の配合量は、
目地材中の体積の4%未満が好ましく、より好ましくは3
%未満である。金属繊維の含有量が多くなると混練時の
作業性等を確保するために単位水量も増大するので、金
属繊維の配合量は前記の量が好ましい。
In the present invention, from the viewpoint of increasing the cracking resistance of the joint material after curing, it is preferable that the compound contains metal fibers and / or organic fibers. Examples of the metal fiber include a steel fiber and an amorphous fiber. Among them, the steel fiber is excellent in strength, and is preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. When the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and the fiber tends to be cut when subjected to tension. If the diameter is more than 1.0 mm, the number of pieces with the same compounding amount decreases, and the effect of improving the bending strength decreases. If the length exceeds 30 mm, fiber balls tend to be formed during kneading. If the length is less than 2 mm, the effect of improving the bending strength decreases. The amount of metal fiber
Preferably less than 4% of the volume in the joint material, more preferably 3%
%. When the content of the metal fiber increases, the unit water amount also increases in order to ensure workability during kneading, and the like, so that the above-mentioned amount of the metal fiber is preferable.

【0013】有機質繊維としては、ビニロン繊維、ポリ
プロピレン繊維、ポリエチレン繊維、アラミド繊維、炭
素繊維等が挙げられる。有機質繊維は、径0.005〜1.0m
m、長さ2〜30mmのものが好ましい。有機質繊維の配合量
は、目地材中の体積の10%未満が好ましく、8%未満が
より好ましい。なお、本発明においては、金属繊維と有
機質繊維を併用することは差し支えない。
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, carbon fiber and the like. Organic fibers are 0.005-1.0m in diameter
m and a length of 2 to 30 mm are preferred. The blending amount of the organic fibers is preferably less than 10% of the volume in the joint material, and more preferably less than 8%. In the present invention, it is possible to use metal fibers and organic fibers in combination.

【0014】本発明においては、目地材の硬化後の充填
密度を高める観点から、配合物に平均粒径3〜20μm、
より好ましくは平均粒径4〜10μmの無機粉末を含ませ
ることが好ましい。無機粉末としては、石英粉末、石灰
石粉末、炭化物粉末や窒化物粉末が挙げられるが、石英
粉末は、コストの点や硬化後の品質安定性の点から、好
ましいものである。該石英粉末としては、石英や非晶質
石英、オパール質やクリストバライト質のシリカ含有粉
末等が挙げられる。無機粉末の配合量は、目地材の硬化
後の強度、乾燥収縮やクリープから、セメント100重量
部に対して50重量部以下が好ましく、20〜35重量部がよ
り好ましい。
In the present invention, from the viewpoint of increasing the filling density of the joint material after curing, the compound has an average particle size of 3 to 20 μm,
More preferably, it is preferable to include an inorganic powder having an average particle size of 4 to 10 μm. Examples of the inorganic powder include quartz powder, limestone powder, carbide powder, and nitride powder. Quartz powder is preferable from the viewpoint of cost and quality stability after curing. Examples of the quartz powder include quartz and amorphous quartz, and opal and cristobalite silica-containing powders. The amount of the inorganic powder is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight, based on 100 parts by weight of cement, from the viewpoint of strength after curing of the joint material, drying shrinkage and creep.

【0015】本発明においては、目地材の硬化後の靱性
を高める観点から、配合物に、平均粒度が1mm以下の繊
維状粒子又は薄片状粒子を含ませることが好ましい。こ
こで、粒子の粒度とは、その最大寸法の大きさ(特に、
繊維状粒子ではその長さ)である。繊維状粒子として
は、ウォラストナイト、ボーキサイト、ムライト等が、
薄片状粒子としては、マイカフレーク、タルクフレー
ク、バーミキュライトフレーク、アルミナフレーク等が
挙げられる。繊維状粒子又は薄片状粒子の配合量は、目
地材の硬化後の強度、乾燥収縮やクリープ、さらには靱
性等から、セメント100重量部に対して35重量部以下が
好ましく、10〜25重量部がより好ましい。なお、繊維状
粒子においては、目地材の硬化後の靱性を高める観点か
ら、長さ/直径の比で表される針状度が3以上のものを
用いるのが好ましい。
In the present invention, from the viewpoint of enhancing the toughness of the joint material after curing, it is preferable that the composition contains fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of a particle is the size of its largest dimension (particularly,
Length of the fibrous particles). As fibrous particles, wollastonite, bauxite, mullite, etc.
Examples of the flaky particles include mica flake, talc flake, vermiculite flake, and alumina flake. The compounding amount of the fibrous particles or flaky particles is preferably 35 parts by weight or less based on 100 parts by weight of cement, and more preferably 10 to 25 parts by weight, from the strength after curing of the joint material, drying shrinkage and creep, and further toughness. Is more preferred. From the viewpoint of enhancing the toughness of the joint material after curing, it is preferable to use fibrous particles having a needleiness expressed by a length / diameter ratio of 3 or more.

【0016】本発明において、目地材の混練方法は、特
に限定するものではなく、例えば、 1)水、減水剤以外の材料を予め混合しておき(プレミッ
クス)、該プレミックス、水、減水剤をミキサに投入
し、混練する。 2)水以外の材料を予め混合しておき(プレミックス、た
だし減水剤は粉末タイプのものを使用する)、該プレミ
ックス、水をミキサに投入し、混練する。 3)各材料を、それぞれ個別にミキサに投入し、混練す
る。等の方法が挙げられる。
In the present invention, the method of kneading the joint material is not particularly limited. For example, 1) materials other than water and water reducing agent are previously mixed (premix), and the premix, water, water reducing The agent is put into a mixer and kneaded. 2) Materials other than water are mixed in advance (a premix, but a water reducing agent of a powder type is used), and the premix and water are charged into a mixer and kneaded. 3) Each material is individually charged into a mixer and kneaded. And the like.

【0017】混練に用いるミキサは、通常のコンクリー
トの混練に用いられるどのタイプのものでもよく、例え
ば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ
等が用いられる。
The mixer used for kneading may be of any type used for kneading ordinary concrete, for example, an oscillating mixer, a pan-type mixer, a biaxial kneading mixer, or the like.

【0018】本発明において、目地材は、目地に流し込
めば良い。本発明の目地材は、「JIS R 5201(セメント
の物理試験方法)11.フロー試験」に記載される方法に
おいて、15回の落下運動を行わないで測定したフロー値
が、200mm以上と流動性に優れるものであり、また作業
性にも優れるものである。
In the present invention, the joint material may be poured into the joint. The joint material of the present invention has a flowability of not less than 200 mm, which is measured without performing 15 falling motions in the method described in “JIS R 5201 (Physical test method of cement) 11. Flow test”. It is also excellent in workability.

【0019】本発明において、目地材の養生は、養生シ
ートで覆い、養生すれば良い。本発明の目地材は、硬化
後200MPaを超える圧縮強度を発現するものである。ま
た、乾燥収縮やクリープも小さい。
In the present invention, the joint material can be cured by covering with a curing sheet and curing. The joint material of the present invention exhibits a compressive strength exceeding 200 MPa after curing. Also, drying shrinkage and creep are small.

【0020】[0020]

【実施例】以下、実施例により本発明を説明する。 1.使用材料 以下に示す材料を使用した。 1)セメント ;低熱ポルトランドセメント(太平洋セメント(株)製) 2)ポゾラン質微粉末;シリカフューム(平均粒径0.7μm) 3)細骨材 ;珪砂4号と珪砂5号の2:1(重量比)混合品 4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm) 5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤 6)水 ;水道水 7)無機粉末 ;石英粉(平均粒径7μm) 8)繊維状粒子 ;ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)The present invention will be described below with reference to examples. 1. Materials used The following materials were used. 1) Cement; Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) 2) Pozzolanic fine powder; silica fume (average particle size 0.7 μm) 3) Fine aggregate: 2: 1 of silica sand 4 and silica sand 5 (weight ratio) 4) Metal fiber; steel fiber (diameter: 0.2 mm, length: 15 mm) 5) High-performance AE water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) inorganic powder; quartz Powder (average particle diameter 7μm) 8) Fibrous particles; wollastonite (average length 0.3mm, length / diameter ratio 4)

【0021】実施例1 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部を二軸練
りミキサに投入し、混練した。該配合物のフロー値を、
「JIS R 5201(セメントの物理試験方法)11.フロー試
験」に記載される方法において、15回の落下運動を行わ
ないで測定した。その結果、フロー値は270mmであっ
た。また、前記配合物をφ50×100mmの型枠に流し込
み、20℃で24時間湿空養生後、脱型し、27日間気中養生
した。該硬化体の圧縮強度(3本の平均値)は210MPaで
あった。また、前記配合物を10×10×40cmの型枠に流し
込み、20℃で24時間湿空養生後、脱型し、27日間気中養
生した。該硬化体の曲げ強度(3本の平均値)は25MPa
であった。また、前記配合物を10×10×40cmの型枠に流
し込み、20℃で24時間湿空養生後、脱型し、27日間気中
養生した。該供試体を20℃、湿度60%で91日間保存し、
脱型時からの乾燥収縮量を求めた。該硬化体の乾燥収縮
量(3本の平均値)は48μmであった。また、前記配合
物を10×10×40cmの型枠に流し込み、20℃で24時間湿空
養生後、脱型し、27日間気中養生した。該供試体の載荷
重40MPaにおけるクリープ係数を求めた。該硬化体のク
リープ係数は0.2であった。
Example 1 100 parts by weight of low heat Portland cement, silica fume 3
2.5 parts by weight, 120 parts by weight of fine aggregate, 1.0 part by weight of a high-performance AE water reducing agent (solid content with respect to cement), and 22 parts by weight of water were charged into a twin-screw mixer and kneaded. The flow value of the formulation
In the method described in "JIS R 5201 (Physical test method for cement) 11. Flow test", the measurement was carried out without performing the falling motion 15 times. As a result, the flow value was 270 mm. Further, the composition was poured into a mold having a size of φ50 × 100 mm, cured at 20 ° C. for 24 hours under a moist air condition, demolded, and air-cured for 27 days. The compressive strength (average value of three strands) of the cured product was 210 MPa. Further, the composition was poured into a mold having a size of 10 × 10 × 40 cm, cured at 20 ° C. for 24 hours under a moist air condition, demolded, and air-cured for 27 days. Flexural strength (average value of three) of the cured body is 25 MPa
Met. Further, the composition was poured into a mold having a size of 10 × 10 × 40 cm, cured at 20 ° C. for 24 hours under a moist air condition, demolded, and air-cured for 27 days. The specimen was stored at 20 ° C. and 60% humidity for 91 days,
The amount of drying shrinkage from the time of demolding was determined. The amount of drying shrinkage of the cured product (average value of three pieces) was 48 μm. Further, the composition was poured into a mold having a size of 10 × 10 × 40 cm, cured at 20 ° C. for 24 hours under a moist air condition, demolded, and air-cured for 27 days. The creep coefficient of the specimen at a load of 40 MPa was determined. The cured product had a creep coefficient of 0.2.

【0022】実施例2 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部、鋼繊維
(配合物中の体積の2%)を二軸練りミキサに投入し、混
練した。該配合物のフロー値を実施例1と同様に測定し
た。その結果、フロー値は250mmであった。また、圧縮
強度と曲げ強度を実施例1と同様に測定した。その結
果、圧縮強度は210MPa、曲げ強度は47MPaであった。ま
た、乾燥収縮量も実施例1と同様に測定した。その結
果、乾燥収縮量は47μmであった。また、クリープ係数
も実施例1と同様に測定した。その結果、クリープ係数
は0.2であった。
Example 2 100 parts by weight of low heat Portland cement, silica fume 3
2.5 parts by weight, fine aggregate 120 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, steel fiber
(2% of the volume in the formulation) was charged into a twin-screw kneading mixer and kneaded. The flow value of the formulation was measured as in Example 1. As a result, the flow value was 250 mm. Further, the compression strength and the bending strength were measured in the same manner as in Example 1. As a result, the compressive strength was 210 MPa and the bending strength was 47 MPa. Further, the amount of drying shrinkage was measured in the same manner as in Example 1. As a result, the drying shrinkage was 47 μm. Further, the creep coefficient was measured in the same manner as in Example 1. As a result, the creep coefficient was 0.2.

【0023】実施例3 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部、石英粉
30重量部、ウォラストナイト24重量部、鋼繊維(配合物
中の体積の2%)を二軸練りミキサに投入し、混練し
た。該配合物のフロー値を実施例1と同様に測定した。
その結果、フロー値は250mmであった。また、圧縮強度
と曲げ強度を実施例1と同様に測定した。その結果、圧
縮強度は230MPa、曲げ強度は47MPaであった。また、乾
燥収縮量も実施例1と同様に測定した。その結果、乾燥
収縮量は46μmであった。また、クリープ係数も実施例
1と同様に測定した。その結果、クリープ係数は0.2で
あった。
Example 3 100 parts by weight of low heat Portland cement, silica fume 3
2.5 parts by weight, fine aggregate 120 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, quartz powder
30 parts by weight, 24 parts by weight of wollastonite, and steel fiber (2% of the volume in the composition) were put into a twin-screw mixer and kneaded. The flow value of the formulation was measured as in Example 1.
As a result, the flow value was 250 mm. Further, the compression strength and the bending strength were measured in the same manner as in Example 1. As a result, the compression strength was 230 MPa and the bending strength was 47 MPa. Further, the amount of drying shrinkage was measured in the same manner as in Example 1. As a result, the drying shrinkage was 46 μm. Further, the creep coefficient was measured in the same manner as in Example 1. As a result, the creep coefficient was 0.2.

【0024】[0024]

【発明の効果】以上説明したように、本発明の目地材
は、流動性が大きく作業性に優れるものである。また、
硬化後の強度が極めて大きく、乾燥収縮やクリープも小
さいものである。従って、本発明の目地材を使用するこ
とにより、高強度なプレキャスト版を多数接合し、PC
鋼材を貫通させ、プレストレスを導入して一体化したポ
ストテンションプレストレストコンクリート版体のスト
レスロスを大幅に抑制できる。
As described above, the joint material of the present invention has high fluidity and excellent workability. Also,
The strength after curing is extremely high, and the drying shrinkage and creep are small. Therefore, by using the joint material of the present invention, a large number of high strength precast
The stress loss of the post-tensioned prestressed concrete slab that is integrated by penetrating steel and introducing prestress can be greatly suppressed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、セメント、ポゾラン質微粉
末、粒径2mm以下の細骨材、減水剤、及び水を含む配合
物からなることを特徴とするポストテンションプレスト
レストコンクリート版の接合目地材。
1. A joint material for a post-tensioned prestressed concrete plate comprising at least a compound containing cement, fine pozzolanic powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent, and water.
【請求項2】 配合物に、金属繊維及び/又は有機質繊
維を含む請求項1に記載のポストテンションプレストレ
ストコンクリート版の接合目地材。
2. The joint material for a post-tensioned prestressed concrete slab according to claim 1, wherein the composition contains metal fibers and / or organic fibers.
【請求項3】 金属繊維が、径0.01〜1.0mm、長さ2〜30
mmの鋼繊維である請求項2記載のポストテンションプレ
ストレストコンクリート版の接合目地材。
3. The metal fiber has a diameter of 0.01 to 1.0 mm and a length of 2 to 30.
The joint material of the post-tensioned prestressed concrete plate according to claim 2, which is a steel fiber of mm.
【請求項4】 有機質繊維が、径0.005〜1.0mm、長さ2
〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチ
レン繊維、アラミド繊維、炭素繊維から選ばれる1種以
上の繊維である請求項2記載のポストテンションプレス
トレストコンクリート版の接合目地材。
4. An organic fiber having a diameter of 0.005 to 1.0 mm and a length of 2
The joint material for a post-tensioned prestressed concrete plate according to claim 2, wherein the joint material is at least one fiber selected from vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber having a size of about 30 mm.
【請求項5】 配合物に、平均粒径3〜20μmの無機粉
末を含む請求項1〜4のいずれかに記載のポストテンシ
ョンプレストレストコンクリート版の接合目地材。
5. The joint material for a post-tensioned prestressed concrete plate according to claim 1, wherein the composition contains an inorganic powder having an average particle size of 3 to 20 μm.
【請求項6】 配合物に、平均粒度1mm以下の繊維状粒
子又は薄片状粒子を含む請求項1〜5のいずれかに記載
のポストテンションプレストレストコンクリート版の接
合目地材。
6. The joint material for a post-tensioned prestressed concrete plate according to claim 1, wherein the composition contains fibrous particles or flaky particles having an average particle size of 1 mm or less.
JP2000035754A 2000-02-14 2000-02-14 Joint joint material for post tension prestressed concrete plate Expired - Fee Related JP4376409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000035754A JP4376409B2 (en) 2000-02-14 2000-02-14 Joint joint material for post tension prestressed concrete plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000035754A JP4376409B2 (en) 2000-02-14 2000-02-14 Joint joint material for post tension prestressed concrete plate

Publications (2)

Publication Number Publication Date
JP2001226162A true JP2001226162A (en) 2001-08-21
JP4376409B2 JP4376409B2 (en) 2009-12-02

Family

ID=18559911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000035754A Expired - Fee Related JP4376409B2 (en) 2000-02-14 2000-02-14 Joint joint material for post tension prestressed concrete plate

Country Status (1)

Country Link
JP (1) JP4376409B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019440A (en) * 2007-07-13 2009-01-29 National Agriculture & Food Research Organization Method for repairing concrete waterway with joint part
JP2009079428A (en) * 2007-09-26 2009-04-16 Kajima Corp Joint method of concrete members and manufacturing method of floor slab for prestressed concrete bridge
JP2010195681A (en) * 2010-04-15 2010-09-09 Taiheiyo Cement Corp High strength concrete member for high speed traffic system structure
KR101671438B1 (en) * 2015-12-07 2016-11-02 주식회사 삼표산업 Non-shrink grout mortar composition for filling joint of precast concrete members
JP2020133142A (en) * 2019-02-14 2020-08-31 株式会社ガイアート Concrete floor slab structure and large vehicle parking lot structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019440A (en) * 2007-07-13 2009-01-29 National Agriculture & Food Research Organization Method for repairing concrete waterway with joint part
JP2009079428A (en) * 2007-09-26 2009-04-16 Kajima Corp Joint method of concrete members and manufacturing method of floor slab for prestressed concrete bridge
JP2010195681A (en) * 2010-04-15 2010-09-09 Taiheiyo Cement Corp High strength concrete member for high speed traffic system structure
KR101671438B1 (en) * 2015-12-07 2016-11-02 주식회사 삼표산업 Non-shrink grout mortar composition for filling joint of precast concrete members
JP2020133142A (en) * 2019-02-14 2020-08-31 株式会社ガイアート Concrete floor slab structure and large vehicle parking lot structure
JP7329167B2 (en) 2019-02-14 2023-08-18 株式会社ガイアート Concrete floor slab structure and large vehicle parking structure

Also Published As

Publication number Publication date
JP4376409B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP4056696B2 (en) Cement slurry
JP4039801B2 (en) Hydraulic composition
JP2004115315A (en) High-flow concrete
JP2001220201A (en) Fiber reinforced concrete
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2002068806A (en) Ultrahigh strength hydraulic composition
JP2004155623A (en) Prestressed concrete
JP2001254302A (en) Sleeper for railway line
JP4167787B2 (en) Composite material
JP2002285667A (en) Board for buried form
JP2001226958A (en) Steel pipe concrete pile
JP2001212817A (en) Method for producing fiber-reinforced concrete
JP2001207794A (en) Concrete-made segment
JP4165992B2 (en) Hydraulic composition
JP2001247350A (en) Repairing material
JP2004224639A (en) Slab member
JP2001253749A (en) High-strength light weight cement hardened body
JP2001226175A (en) Surface coating material
JP2001262562A (en) Concrete pile
JP2001253745A (en) Fiber-reinforced concrete
JP2001226160A (en) Ultrahigh strength cement hardened body
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength
JP2004224633A (en) Prestressed concrete pavement slab
JP2001220200A (en) Water-sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4376409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees