JP2009019440A - Method for repairing concrete waterway with joint part - Google Patents

Method for repairing concrete waterway with joint part Download PDF

Info

Publication number
JP2009019440A
JP2009019440A JP2007183881A JP2007183881A JP2009019440A JP 2009019440 A JP2009019440 A JP 2009019440A JP 2007183881 A JP2007183881 A JP 2007183881A JP 2007183881 A JP2007183881 A JP 2007183881A JP 2009019440 A JP2009019440 A JP 2009019440A
Authority
JP
Japan
Prior art keywords
fiber
concrete
less
joint part
waterway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007183881A
Other languages
Japanese (ja)
Other versions
JP5190634B2 (en
Inventor
Susumu Masukawa
晋 増川
Masaru Tokashiki
勝 渡嘉敷
Mitsuhiro Mori
充広 森
Tetsuo Nakaya
哲郎 中矢
Noboru Sakata
昇 坂田
Tetsushi Kanda
徹志 閑田
Masaru Fujishiro
勝 藤代
Yoshiki Hiraishi
剛紀 平石
Yuji Uchida
雄士 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
National Agriculture and Food Research Organization
Original Assignee
Kajima Corp
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, National Agriculture and Food Research Organization filed Critical Kajima Corp
Priority to JP2007183881A priority Critical patent/JP5190634B2/en
Publication of JP2009019440A publication Critical patent/JP2009019440A/en
Application granted granted Critical
Publication of JP5190634B2 publication Critical patent/JP5190634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for repairing a concrete waterway with joint parts capable of enhancing sealability and preventing water from springing out of a joint part by reducing the compressive force concentrated on the joint part when the cross section of a waterway structure is repaired by forming thin its wall thickness. <P>SOLUTION: A block out 4 is formed in the front surface of an existing concrete on both sides of the joint part 2 of an existing concrete waterway skeleton 1. A non-adhered band 5 astride the joint part 2 is fitted to the bottom surface of the through hole 4. The portion of the block out 4 and the front surface part of the existing concrete 6 are filled or coated with a highly rigid fiber-reinforced cement compound material (highly tough FRC material). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水路構造物の断面補修のうち、肉薄で補修した場合に目地部に集中する圧縮力を軽減するための目地部を有するコンクリート製水路の補修工法に関するものである。   The present invention relates to a method for repairing a concrete waterway having a joint for reducing the compressive force concentrated on the joint when the repair is thin and repaired in a cross-section of the waterway structure.

図2に示すように水路構造物である農業用水路では、既設コンクリート水路躯体1の部材と部材の目地部2(継目)が存在し、老朽化した水路ではこの目地部2からの湧水3が問題になっている。   As shown in FIG. 2, in an agricultural channel which is a channel structure, there are members of an existing concrete channel 1 and joints 2 (joints) of members, and in an aged channel, spring water 3 from the joints 2 is present. It is a problem.

下記特許文献1では、老朽化したコンクリート製水路を施工当時と同等の機能に効率良く回復するものとして、下地処理工程にて、下地処理した水路の非老朽化部分の表面に、樹脂系水性接着剤を塗布して水路の表面を中性化し、乾燥後に付着力の高い高弾性特殊モルタルを塗工することが記載されている。
特開2006−16789号
In the following Patent Document 1, a water-based resin-based adhesive is applied to the surface of a non-aged portion of a water channel that has been ground-treated in the ground treatment process, as an efficient recovery of an aged concrete water channel to the same function as at the time of construction. It is described that the surface of a water channel is neutralized by applying an agent, and a highly elastic special mortar having high adhesion is applied after drying.
JP 2006-16789

また、老朽化した水路目地の補修対策が求められる中、コンクリート製農業用開発水路および水路トンネルの目地部における効果的な漏水防止対策として、下記特許文献2がある。
特開2005−1282180号
Moreover, while the countermeasure against repair of an aged waterway joint is calculated | required, there exists the following patent document 2 as an effective water leakage prevention countermeasure in the joint development part for concrete agriculture, and the joint part of a waterway tunnel.
JP 2005-128180

この特許文献2は、水路や水路トンネル等のコンクリート構造物の目地部を漏水防止用シール材の形状に適合させて、加工又は形成した後、当該漏水防止用シール材を目地部の所定位置に容易に装填でき、当該漏水防止用シール材の上面及び表面に引張応力を発生させないもので、図3に示すように、コンクリート構造物17、17の継目に形成された目地部18を箱抜きし、具体的には上面開口部18aとしての前記段差面17b、17bと、これに連なる中間部18bとしての壁面17a、17a及びこの壁面17a、17aに連なる目地部18の断面略山形状の深部18cを加工又は形成する。そして、該壁面17a、17a若しくは前記段差面17b、17bにエポキシ樹脂等の接着剤21を封入し、充填シールを行う。而して、前記漏水防止用シール材19を前記目地部18に装填する。   In this patent document 2, a joint part of a concrete structure such as a waterway or a waterway tunnel is adapted to the shape of the water leakage prevention seal material, processed or formed, and then the water leakage prevention seal material is placed at a predetermined position of the joint part. It can be easily loaded and does not generate a tensile stress on the upper surface and the surface of the water leakage prevention sealing material. As shown in FIG. 3, the joint portion 18 formed at the joint of the concrete structures 17 and 17 is unboxed. Specifically, the stepped surfaces 17b and 17b as the upper surface opening 18a, the wall surface 17a and 17a as the intermediate portion 18b connected to the stepped surface 17b, and the deep portion 18c having a substantially mountain shape in cross section of the joint portion 18 connected to the wall surfaces 17a and 17a. Is processed or formed. Then, an adhesive 21 such as an epoxy resin is sealed in the wall surfaces 17a and 17a or the stepped surfaces 17b and 17b to perform filling and sealing. Thus, the sealing material 19 for preventing water leakage is loaded into the joint portion 18.

前記特許文献1では、比較的薄肉での補修が可能であるが、目地部に対する配慮が特段なされているわけではなく、目地部に集中する圧縮力を軽減することはできない。   In Patent Document 1, repair with a relatively thin wall is possible, but consideration is not given to the joint portion, and the compressive force concentrated on the joint portion cannot be reduced.

特許文献2は目地部からの湧水には対処できるものの、目地部を箱抜きし、そこに漏水防止用シール材の配設によりこれを行うものであり、特許文献1と同様に目地部に集中する圧縮力を軽減することはできない。   Although patent document 2 can cope with the spring water from a joint part, this is performed by unboxing the joint part and disposing a sealing material for preventing water leakage there. The concentrated compression force cannot be reduced.

本発明の目的は前記従来例の不都合を解消し、水路構造物の断面補修のうち、肉薄で補修をした場合に、シール性の向上のみならず、目地部に集中する圧縮力を軽減することで、目地部からの湧水を防止できる目地部を有するコンクリート製水路の補修工法を提供することにある。   The object of the present invention is to eliminate the inconvenience of the conventional example, and to reduce not only the sealing performance but also the compressive force concentrated on the joint when the repair is thin in the cross section repair of the water channel structure. Then, it is providing the repair method of the concrete waterway which has a joint part which can prevent the spring from a joint part.

前記目的を達成するため請求項1記載の本発明は、既設コンクリート水路躯体の目地部を跨いで既設コンクリート表層に箱抜きを形成し、該箱抜き底面に目地部を跨ぐ無付着帯を設け、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した高靱性の繊維補強セメント複合材料(高靱性FRC材料)を前記箱抜き部および既設コンクリート表面部に充填あるいは塗布することを要旨とするものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m以上400kg/m以下
高性能AE減水剤量30kg/m未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
In order to achieve the above object, the present invention according to claim 1, wherein the boxing is formed on the existing concrete surface layer straddling the joint part of the existing concrete waterway frame, and a non-adhesive zone is provided on the bottom surface of the box to straddle the joint part. A crack dispersion type in which tensile strain is 1% or more in a tensile test of a cured product on the age of 28 days, and a PVA (Polyvinyl Alcohol) short fiber of [F1] below is added to the formulation matrix of [M1] by more than 1 3 Vol. The high-toughness fiber-reinforced cement composite material (high-toughness FRC material) blended three-dimensionally or two-dimensionally randomly is filled or applied to the boxed portion and the existing concrete surface portion with a blending amount of 1%. Is.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less High-performance AE water reducing agent amount 30 kg / m 3 or less [F1]
Fiber diameter 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

目地部には、コンクリートの材齢変化伴う温度応力(圧縮、引張)が作用するため、ほとんどの場合、従来品のモルタルやコンクリートは設置の初期においてひび割れが生じ、目地部から湧水が生じる。   Since temperature stress (compression, tension) with age change of concrete acts on the joint part, in most cases, conventional mortar and concrete are cracked at the initial stage of installation, and spring water is generated from the joint part.

請求項1記載の本発明によれば、高靱性の繊維補強セメント複合材料(高靱性FRC材料)はその調合のマトリクスと繊維配合量により、引張ひずみが1%を越えることで、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じる。よって、ひび割れを確実に微小な幅に制御できるものであり、このような高靱性の繊維補強セメント複合材料(高靱性FRC材料)を目地部での局部的な応力集中を軽減するものとして用いることで、一軸張力下においてひずみ硬化を示し、微細で高密度の複数ひび割れを形成する。その結果、目地部での応力集中による局部破壊を無くすことが可能となる。   According to the first aspect of the present invention, the high-toughness fiber-reinforced cement composite material (high-toughness FRC material) has a tensile strain exceeding 1% due to its formulation matrix and fiber blending amount. Direction) and a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the direction. Therefore, cracks can be reliably controlled to a minute width, and such a high-toughness fiber-reinforced cement composite material (high-toughness FRC material) should be used to reduce local stress concentration at joints. Thus, strain hardening is exhibited under uniaxial tension, and a plurality of fine and high-density cracks are formed. As a result, local breakage due to stress concentration at the joint can be eliminated.

具体的には、引張力に対しては、目地部付近での既存コンクリートと高靱性の繊維補強セメント複合材料との間に無付着区間を設けることで高靱性の繊維補強セメント複合材料のひび割れ分散作用を利用した応力の軽減を図り、圧縮力に対しては目地部付近で高靱性の繊維補強セメント複合材料を厚めに設けることで、その軽減を図ることが可能となる。   Specifically, for tensile force, the non-adhesive section is provided between the existing concrete near the joint and the high-toughness fiber-reinforced cement composite material, thereby cracking the high-toughness fiber-reinforced cement composite material. It is possible to reduce the stress by utilizing the action, and to reduce the compressive force by providing a thick tough fiber-reinforced cement composite near the joint.

なお、箱抜きによる溝を設けることによる、角部への応力集中については、で高靱性の繊維補強セメント複合材料の目地部付近以外の既設コンクリート表面部に塗布する薄厚部分で分散させることができるので問題はない。悪影響がある場合にはテーパーを付けてもよい。   Note that the stress concentration at the corners by providing grooves by boxing can be dispersed in a thin part to be applied to the existing concrete surface part other than the joint part of the high-toughness fiber-reinforced cement composite material. So there is no problem. If there is an adverse effect, it may be tapered.

請求項2記載の本発明は、箱抜き部の深さは、水路スパンLに対して0.001L〜0.05Lの範囲であり、既設コンクリート表面部に塗布する高靱性の繊維補強セメント複合材料の厚さは5mm以上であることを要旨とするものである。   In the present invention according to claim 2, the depth of the box opening part is in the range of 0.001 L to 0.05 L with respect to the water channel span L, and the tough fiber-reinforced cement composite material applied to the existing concrete surface part. The gist of this is that the thickness is 5 mm or more.

請求項2記載の本発明によれば、目地部付近での高靱性の繊維補強セメント複合材料の部材厚を10mm以上確保することにより、抵抗応力が増し、局部破壊を免れることができる。また、薄厚補修部の厚さを5mm以上であるとすることで、一軸引張応力下においてひずみ硬化を示し、微細で高密度の複数ひび割れを形成するので、曲げ荷重や疲労荷重による躯体コンクリートにひび割れが生じても機能を保持する表面保護工を実現できる。   According to the second aspect of the present invention, by securing the member thickness of the high-toughness fiber-reinforced cement composite material in the vicinity of the joint portion to 10 mm or more, the resistance stress can be increased and the local fracture can be avoided. In addition, by setting the thickness of the thin repaired part to be 5 mm or more, it shows strain hardening under uniaxial tensile stress and forms multiple fine and high-density cracks. Even if this occurs, it is possible to realize a surface protective work that retains the function.

なお、伸び性能の小さい一般的なモルタルでは、目地部を厚くしたところと、薄くなるところの境界部でひび割れが生じるが、高靱性の繊維補強セメント複合材料は伸び性能が大きいので、境界部にある程度の引張力が働いても、大きなひび割れは生じない。   In general mortar with low elongation performance, cracks occur at the boundary where the joint is thickened and thinned, but the high-toughness fiber reinforced cement composite material has high elongation performance. Even if a certain amount of tensile force is applied, large cracks do not occur.

請求項3記載の本発明は、箱抜き部の幅は、水路スパンLに対して0.001L〜0.05Lの範囲であることを要旨とするものである。   The gist of the present invention described in claim 3 is that the width of the box opening portion is in the range of 0.001 L to 0.05 L with respect to the water channel span L.

請求項3記載の本発明によれば、厚い部分で高靱性の繊維補強セメント複合材料と既設コンクリートが付着するため、応力が局部的に集中するのではなく、全体的に分散する。水路スパンLに対して0.001L〜0.05Lの範囲は、そのために必要な幅が確保できるものである。   According to the third aspect of the present invention, since the high-toughness fiber-reinforced cement composite material and the existing concrete adhere to each other at a thick portion, the stress is not concentrated locally but dispersed as a whole. A range of 0.001 L to 0.05 L with respect to the water channel span L can secure a necessary width.

請求項4記載の本発明は、高靱性の繊維補強セメント複合材料は、圧縮応力30N/mm2、引張終局ひずみ0.2%以上であり、最大荷重作用時のひび割れ幅は0.2以下であることを要旨とするものである。 According to the present invention, the high toughness fiber-reinforced cement composite material has a compressive stress of 30 N / mm 2 and a tensile ultimate strain of 0.2% or more, and a crack width at the time of maximum load action is 0.2 or less. It is a summary.

請求項4記載の本発明によれば、高靱性の繊維補強セメント複合材料のひび割れ分散性を確保する上で、圧縮強度の大小がひび割れ分散性に大きく起因するため、30N/mm2程度となるように配合を選定した。また、一般的な鋼材の弾性限界は0.2%であり、高靱性の繊維補強セメント複合材料が鋼材と複合構造として用いられた場合、ECCが0.2%の終局ひずみを持つことで補強効果が期待でき、さらに、最大荷重作用時のひび割れ幅が0.2mm以下とすることにより、一般的に構造物の補修が必要とされるひび割れ幅に至らない。 According to the fourth aspect of the present invention, in order to ensure the crack dispersibility of the high-toughness fiber-reinforced cement composite material, the magnitude of the compressive strength is largely attributed to the crack dispersibility, so that it is about 30 N / mm 2. The formulation was selected as follows. In addition, the elastic limit of general steel materials is 0.2%, and when high-toughness fiber reinforced cement composite material is used as a composite structure with steel material, it has reinforcement with ECC having an ultimate strain of 0.2%. The effect can be expected, and further, by making the crack width at the maximum load action 0.2 mm or less, the crack width that generally requires repair of the structure is not reached.

請求項5記載の本発明は、目地部を跨ぐ無付着帯は、シリコンやビニールテープなど、既設コンクリートとの付着が完全に切れるものを選択することを要旨とするものである。   The gist of the present invention described in claim 5 is to select a non-adhesive band that straddles the joint part, such as silicon or vinyl tape, that completely adheres to the existing concrete.

請求項5記載の本発明によれば、張力に対しては、目地部付近での既存コンクリートと高靱性の繊維補強セメント複合材料との間に無付着区間を設けることで高靱性の繊維補強セメント複合材料のひび割れ分散作用を利用した応力の軽減を図ることができるが、この無付着区間は無付着帯を既設コンクリートとの付着が完全に切れるものを選択することで、効果の完全性を期することができる。   According to the fifth aspect of the present invention, a high-toughness fiber-reinforced cement is provided by providing a non-adhesive section between the existing concrete near the joint and the high-toughness fiber-reinforced cement composite material for tension. Although the stress can be reduced by utilizing the crack dispersion action of the composite material, the non-adherent zone is selected so that the non-adherent zone is completely disconnected from the existing concrete, so that the completeness of the effect can be expected. can do.

請求項6記載の本発明は、箱抜き部に充填する高靱性の繊維補強セメント複合材料と既設コンクリート表面部に塗布する繊維補強セメント複合材料の表面は連続させることを要旨とするものである。   The gist of the present invention described in claim 6 is that the surface of the high-toughness fiber-reinforced cement composite material to be filled in the box opening portion and the fiber-reinforced cement composite material to be applied to the existing concrete surface portion are made continuous.

請求項6記載の本発明によれば、繊維補強セメント複合材料による圧縮力軽減部と、繊維補強セメント複合材料による薄厚補修部とを一体的に連続させることで、双方の相乗的効果を確実にすることができ、また、体裁もよいものとなる。   According to the sixth aspect of the present invention, the synergistic effect of both can be ensured by continuously connecting the compressive force reducing portion made of the fiber-reinforced cement composite material and the thin repair portion made of the fiber-reinforced cement composite material. And the appearance will be good.

以上述べたように本発明の目地部を有するコンクリート製水路の補修工法は、水路構造物の断面補修のうち、肉薄で補修をした場合に、シール性の向上のみならず、目地部に集中する圧縮力を軽減することで、目地部からの湧水を防止できるものである。   As described above, the repair method for a concrete water channel having a joint part according to the present invention concentrates on the joint part as well as improving the sealing performance when the repair is thin in the cross-section repair of the water channel structure. By reducing the compression force, spring water from the joint can be prevented.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の目地部を有するコンクリート製水路の補修工法の1実施形態を示す縦断正面図で、
水路構造物として農業用水路の場合であり、図中1は既設コンクリート水路躯体を示し、部材と部材の目地部2(継目)が存在する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal front view showing an embodiment of a repair method for a concrete waterway having a joint according to the present invention.
This is a case of an agricultural waterway as the waterway structure. In the figure, 1 indicates an existing concrete waterway frame, and there are a member and a joint part 2 (seam) of the member.

本発明は、既設コンクリート水路躯体1の目地部2を跨いで既設コンクリート6の表層に箱抜き4を形成し、該箱抜き4の底面に目地部2を跨ぐ無付着帯5を設け、高靱性の繊維補強セメント複合材料(高靱性FRC材料)を前記箱抜き4の部分および既設コンクリート6の表面部に充填あるいは塗布し、箱抜き4の部分では高靱性の繊維補強セメント複合材料の補修部による圧縮力軽減部7とし、既設コンクリート6の表面部では高靱性の繊維補強セメント複合材料の薄厚補修部8とした。図中9は水である。   In the present invention, a box opening 4 is formed on the surface layer of the existing concrete 6 across the joint portion 2 of the existing concrete waterway frame 1, and a non-adhesive zone 5 is provided on the bottom surface of the box opening 4 to straddle the joint portion 2. The fiber reinforced cement composite material (high toughness FRC material) is filled or applied on the portion of the boxing 4 and the surface portion of the existing concrete 6, and the portion of the boxing 4 is made by the repaired portion of the high toughness fiber reinforced cement composite material. The compressive force reducing portion 7 was used, and the surface portion of the existing concrete 6 was a thin tough repair portion 8 of a high-toughness fiber-reinforced cement composite material. In the figure, 9 is water.

前記目地部2を跨ぐ無付着帯5は、シリコンやビニールテープなど、既設コンクリート6との付着が完全に切れるものを選択する。   As the non-adhesion zone 5 straddling the joint portion 2, a material such as silicon or vinyl tape that adheres completely to the existing concrete 6 is selected.

前記高靱性の繊維補強セメント複合材料の充填あるいは塗布は、流し込み施工でもよいが、吹き付け施工も採用し得る。   The filling or application of the high-toughness fiber-reinforced cement composite material may be performed by pouring or spraying.

高靱性の繊維補強セメント複合材料(高靱性FRC材料)は、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合したものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m以上400kg/m以下
高性能AE減水剤量30 kg/m未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
A high-toughness fiber-reinforced cement composite material (high-toughness FRC material) is a crack dispersion type in which a tensile strain is 1% or more in a tensile test of a hardened material on the 28th day of the material age, and is PVA (Polyvinyl) of the following [F1]. Alcohol) short fibers were added to the formulation matrix of [M1], exceeding 1 to 3 Vol. % Blended in a three-dimensional random or two-dimensional random manner.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less High-performance AE water reducing agent amount 30 kg / m 3 or less [F1]
Fiber diameter 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

吹き付け施工に適するためには、前記〔M1〕の調合マトリクスにおいて、練り上がり時の空気量は3.5%以上20%以下でもよいが、これを20%以上とすることが好ましい。   In order to be suitable for spray construction, the amount of air at the time of kneading may be 3.5% or more and 20% or less in the [M1] preparation matrix, but it is preferable to set this to 20% or more.

空気連行量を増加させるため、高靱性の繊維補強セメント複合材料(高靱性FRC材料)2の混和時に、AE剤、AE減水剤、高性能AE減水剤等の空気連行性混和剤が使用される。   In order to increase the amount of air entrainment, air-entraining admixtures such as AE agents, AE water reducing agents, and high-performance AE water reducing agents are used when mixing high-toughness fiber-reinforced cement composite materials (high-toughness FRC materials) 2 .

使用できる空気連行性混和剤は、セメント配合物に微細な独立気泡を連行できる混和剤であり、直径250μm以下、好ましくは20〜200μmの独立気泡を3〜6容量%連行できるものが良い。   The air-entraining admixture that can be used is an admixture that can entrain fine closed cells in the cement formulation, and is capable of entraining 3 to 6 vol% of closed cells having a diameter of 250 μm or less, preferably 20 to 200 μm.

このような空気連行性混和剤としては、JIS A6204(コンクリート用化学混和剤)のAE剤、AE減水剤若しくは高性能AE減水剤及びそれらと同等の性能を有する化合物があげられ、市販品を使用することもできる。これらは1種単独で使用してもよく、また2種以上を併用してもよい。   Examples of such air-entraining admixtures include AE agent of JIS A6204 (chemical admixture for concrete), AE water reducing agent or high performance AE water reducing agent, and compounds having the same performance as those, and use commercially available products. You can also These may be used alone or in combination of two or more.

AE剤としては、例えば、脂肪酸塩、樹脂酸塩、ナフテン酸塩等の石鹸系AE剤;高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアリールエーテル硫酸エステル塩等の硫酸エステル系AE剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアリールエーテル等のエーテル系AE剤、ポリオキシエチレンソルビタン脂肪酸エステル系AE剤等のノニオン系AE剤;ベタイン系AE剤、イミダゾリンベタイン系AE剤等の両性界面活性剤系AE剤等が挙げられる。なお、これらの中には、起泡剤としての機能を有するものもある。   Examples of the AE agent include soap-based AE agents such as fatty acid salts, resin acid salts, and naphthenates; sulfuric acids such as higher alcohol sulfates, polyoxyethylene alkyl ether sulfates, and polyoxyethylene aryl ether sulfates. Ester-based AE agents; Ether-based AE agents such as polyoxyethylene alkyl ether and polyoxyethylene aryl ether, Nonionic AE agents such as polyoxyethylene sorbitan fatty acid ester-based AE agents; Betaine-based AE agents, Imidazoline betaine-based AE agents, etc. These amphoteric surfactant-based AE agents are listed. Some of these have a function as a foaming agent.

AE減水剤としては、例えば、主成分としてリグニンスルホン酸塩若しくはその誘導体、オキシ有機酸塩、アルキルアリールスルホン酸塩、ポリオキシエチレンアルキルアリールエーテル類、ポリオール複合体、高級アルコールのスルホン酸塩等を含む化合物等が挙げられる。また、これらの化合物が主成分であれば、前述したAE剤が一部に含有されていてもよい。   Examples of the AE water reducing agent include lignin sulfonate or a derivative thereof, oxyorganic acid salt, alkylaryl sulfonate, polyoxyethylene alkylaryl ether, polyol complex, sulfonate of higher alcohol, etc. as a main component. And the like. Moreover, if these compounds are main components, the AE agent mentioned above may be partially contained.

高性能AE減水剤としては、例えば、主成分としてポリカルボン酸エーテル類、変性リグニンスルホン酸塩、アルキルアリールスルホン酸塩、芳香族アミノスルホン酸塩、変性ナフタレンスルホン酸塩、変性メチロールメラミン縮合物、メラミンスルホン酸塩等を含む化合物等が挙げられる。また、これらの化合物が主成分であれば、前述したAE剤又はAE減水剤が一部に含有されていてもよい。   Examples of the high-performance AE water reducing agent include polycarboxylic acid ethers, modified lignin sulfonates, alkylaryl sulfonates, aromatic amino sulfonates, modified naphthalene sulfonates, modified methylol melamine condensates as main components, Examples include compounds containing melamine sulfonate. Moreover, if these compounds are main components, the AE agent or AE water reducing agent mentioned above may be partially contained.

前記引張ひずみは、材令28日以上の硬化体の引張試験で得られる応力−歪み曲線において、最大引張応力値でのひずみ量(%)をいう。実際には、材令28日での試験体の引張試験(例えば断面30mm×13mmの試験体を80mmの試験区間で引張試験を行う)における引張ひずみ(%)で代表される。   The tensile strain refers to a strain amount (%) at the maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured product having a material age of 28 days or more. Actually, it is represented by a tensile strain (%) in a tensile test (for example, a test specimen having a cross section of 30 mm × 13 mm is subjected to a tensile test in an 80 mm test section) on the 28th day of the material age.

この引張ひずみが1%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じていることを意味する。   That the tensile strain is 1% or more means that a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the loading direction (stress direction).

前記高靱性の繊維補強セメント複合材料は、圧縮応力30N/mm2、引張終局ひずみ0.2%以上であり、最大荷重作用時のひび割れ幅は0.2以下である。 The high-toughness fiber-reinforced cement composite material has a compressive stress of 30 N / mm 2 , a tensile ultimate strain of 0.2% or more, and a crack width at the maximum load action of 0.2 or less.

前記箱抜き4の部の深さは、水路スパンLに対して0.001L〜0.05Lの範囲とする。これにより、箱抜き4の部の深さは10mm以上となる。このように目地部2付近での前記高靱性の繊維補強セメント複合材料の部材厚を10mm以上確保することで、抵抗応力が増し、局部破壊を逃れることができる。   The depth of the box opening 4 is in the range of 0.001 L to 0.05 L with respect to the water channel span L. Thereby, the depth of the part of the box opener 4 becomes 10 mm or more. Thus, by ensuring the member thickness of the high-toughness fiber-reinforced cement composite material in the vicinity of the joint portion 2 to be 10 mm or more, the resistance stress can be increased and the local fracture can be avoided.

また、前記箱抜き4の部の幅も、水路スパンLに対して0.001L〜0.05Lの範囲であるとする。   Further, the width of the box opening 4 is also in the range of 0.001 L to 0.05 L with respect to the water channel span L.

前記箱抜き4の形成に際し、角部への応力の集中については影響がほとんどないと考えられるが、悪影響がある場合にはテーパーをつけるようにしてもよい。   It is considered that there is almost no influence on the concentration of stress on the corners when forming the box 4, but if there is an adverse effect, it may be tapered.

一方、前記既設コンクリート表面部での高靱性の繊維補強セメント複合材料の薄厚補修部8は、厚さは5mm以上であるとした。   On the other hand, the thickness of the thin repair portion 8 of the high-toughness fiber-reinforced cement composite material on the surface of the existing concrete is 5 mm or more.

また、箱抜き4の部分に充填する高靱性の繊維補強セメント複合材料と既設コンクリート表面部に塗布する繊維補強セメント複合材料の表面は段差を設けることなく、一体的に連続させるものとする。   Further, the surface of the high-toughness fiber reinforced cement composite material to be filled in the box opening 4 and the surface of the fiber reinforced cement composite material to be applied to the existing concrete surface portion shall be continuously integrated without providing a step.

本発明の目地部を有するコンクリート製水路の補修工法の1実施形態を示す縦断正面図である。It is a vertical front view which shows one Embodiment of the repair construction method of the concrete waterway which has a joint part of this invention. 目地部を有する農業用水路の説明図である。It is explanatory drawing of the agricultural waterway which has a joint part. 従来例の縦断側面図である。It is a vertical side view of a prior art example.

符号の説明Explanation of symbols

1…既設コンクリート水路躯体 2…目地部
3…湧水 4…箱抜き
5…無付着帯 6…既設コンクリート
7…圧縮力軽減部 8…薄厚補修部
9…水 17…コンクリート構造物
17a…壁面 17b…段差面
18…目地部 18a…開口部
18b…中間部 18c…深部
19…漏水防止用シール材 21…接着剤
DESCRIPTION OF SYMBOLS 1 ... Existing concrete waterway frame 2 ... Joint part 3 ... Spring water 4 ... Box extraction 5 ... Non-adhesion zone 6 ... Existing concrete 7 ... Compression force reduction part 8 ... Thin repair part 9 ... Water 17 ... Concrete structure 17a ... Wall surface 17b ... Step surface 18 ... Joint portion 18a ... Opening portion 18b ... Intermediate portion 18c ... Deep portion 19 ... Sealant 21 for preventing water leakage 21 ... Adhesive

Claims (6)

既設コンクリート水路躯体の目地部を跨いで既設コンクリート表層に箱抜きを形成し、該箱抜き底面に目地部を跨ぐ無付着帯を設け、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した高靱性の繊維補強セメント複合材料(高靱性FRC材料)を前記箱抜き部および既設コンクリート表面部に充填あるいは塗布することを特徴とする目地部を有するコンクリート製水路の補修工法。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m以上400kg/m以下
高性能AE減水剤量30kg/m未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
A box is formed in the existing concrete surface layer across the joint part of the existing concrete waterway frame, and a non-adhesive zone is formed on the bottom surface of the box to straddle the joint part. % PVA (Polyvinyl Alcohol) short fiber of [F1] below is added to the formulation matrix of [M1] by more than 1 and 3 Vol. A high-toughness fiber-reinforced cement composite material (high-toughness FRC material) blended three-dimensionally or two-dimensionally randomly is filled or applied to the boxed portion and the existing concrete surface portion at a blending amount of%. Repair method for concrete waterways with joints.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less High-performance AE water reducing agent amount 30 kg / m 3 or less [F1]
Fiber diameter 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less
箱抜き部の深さは、水路スパンLに対して0.001L〜0.05Lの範囲であり、既設コンクリート表面部に塗布する高靱性の繊維補強セメント複合材料の厚さは5mm以上である請求項1記載の目地部を有するコンクリート製水路の補修工法。   The depth of the box opening part is in the range of 0.001 L to 0.05 L with respect to the water channel span L, and the thickness of the high-toughness fiber-reinforced cement composite material applied to the existing concrete surface part is 5 mm or more. The repair method of the concrete waterway which has the joint part of claim | item 1. 箱抜き部の幅は、水路スパンLに対して0.001L〜0.05Lの範囲である請求項1または請求項2記載の目地部を有するコンクリート製水路の補修工法。   The method for repairing a concrete waterway having joints according to claim 1 or 2, wherein the width of the box opening part is in a range of 0.001L to 0.05L with respect to the waterway span L. 高靱性の繊維補強セメント複合材料は、圧縮応力30N/mm2、引張終局ひずみ0.2%以上であり、最大荷重作用時のひび割れ幅は0.2以下である請求項1ないし請求項3のいずれかに記載の目地部を有するコンクリート製水路の補修工法。 The high-toughness fiber-reinforced cement composite material has a compressive stress of 30 N / mm 2 , a tensile ultimate strain of 0.2% or more, and a crack width at the maximum load action of 0.2 or less. A repair method for a concrete waterway having a joint part according to any one of the above. 目地部を跨ぐ無付着帯は、シリコンやビニールテープなど、既設コンクリートとの付着が完全に切れるものを選択する請求項1ないし請求項4のいずれかに記載の目地部を有するコンクリート製水路の補修工法。   The non-adhesive zone straddling the joint portion is selected from the ones that completely adhere to the existing concrete, such as silicon and vinyl tape, and repairing the concrete water channel having the joint portion according to any one of claims 1 to 4. Construction method. 箱抜き部に充填する高靱性の繊維補強セメント複合材料と既設コンクリート表面部に塗布する繊維補強セメント複合材料の表面は連続させる請求項1ないし請求項5のいずれかに記載の目地部を有するコンクリート製水路の補修工法。   The concrete having a joint part according to any one of claims 1 to 5, wherein the surface of the high-toughness fiber-reinforced cement composite material to be filled in the box opening part and the fiber-reinforced cement composite material to be applied to the existing concrete surface part are made continuous. Repair method for waterworks.
JP2007183881A 2007-07-13 2007-07-13 Repair method for concrete channel with joints Active JP5190634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183881A JP5190634B2 (en) 2007-07-13 2007-07-13 Repair method for concrete channel with joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183881A JP5190634B2 (en) 2007-07-13 2007-07-13 Repair method for concrete channel with joints

Publications (2)

Publication Number Publication Date
JP2009019440A true JP2009019440A (en) 2009-01-29
JP5190634B2 JP5190634B2 (en) 2013-04-24

Family

ID=40359316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183881A Active JP5190634B2 (en) 2007-07-13 2007-07-13 Repair method for concrete channel with joints

Country Status (1)

Country Link
JP (1) JP5190634B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140850A (en) * 1997-11-13 1999-05-25 Otsuka Kogyo:Kk Concrete channel
JP2001226162A (en) * 2000-02-14 2001-08-21 Taiheiyo Cement Corp Joint filler material for post-tension-prestressed concrete plate
JP2001322857A (en) * 2000-05-15 2001-11-20 Taiheiyo Cement Corp Mortar composition for joining fresh concrete at construction joint
JP2002054121A (en) * 2000-08-10 2002-02-20 Kyoei:Kk Concrete trough, and method and structure for reinforcing joint of the concrete trough
JP2007084363A (en) * 2005-09-20 2007-04-05 Kajima Corp Composite fiber reinforced cement base material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140850A (en) * 1997-11-13 1999-05-25 Otsuka Kogyo:Kk Concrete channel
JP2001226162A (en) * 2000-02-14 2001-08-21 Taiheiyo Cement Corp Joint filler material for post-tension-prestressed concrete plate
JP2001322857A (en) * 2000-05-15 2001-11-20 Taiheiyo Cement Corp Mortar composition for joining fresh concrete at construction joint
JP2002054121A (en) * 2000-08-10 2002-02-20 Kyoei:Kk Concrete trough, and method and structure for reinforcing joint of the concrete trough
JP2007084363A (en) * 2005-09-20 2007-04-05 Kajima Corp Composite fiber reinforced cement base material

Also Published As

Publication number Publication date
JP5190634B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
Hwang et al. Cyclic loading test for beam-column connections with 600 MPa (87 ksi) beam flexural reinforcing bars
KR100635464B1 (en) Fiber reinforced mortar and repair-reinforcement method using thereof
KR101568923B1 (en) Lightweight and high toughness concrete composition for absorbing shock and method of manufacturing the wing-wall by using the composition
KR101821395B1 (en) Coating agents compositions having self-healing function for concrete structure and coating agents construction method using that
WO2007106122A3 (en) Reinforcement fibers and methods of making and using same
JP5415015B2 (en) Spray repair method
Ding et al. Theoretical analysis on optimal fiber-matrix interfacial bonding and corresponding fiber rupture effect for high ductility cementitious composites
KR101746933B1 (en) Construction Method for Earthquake-proof of Structure
US10094506B2 (en) Corrugated metal pipe repair system and method
Dewi et al. Crack behavior study of bamboo reinforced concrete beam with additional pegs in reinforcing
JP5190634B2 (en) Repair method for concrete channel with joints
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
JP6921536B2 (en) Construction method of anchors to be installed in existing masonry and post-construction anchors
KR101935721B1 (en) Method of repair and reinforcement of structure using injection device of improved uniform injection and prevention property of material separation of repair and reinforcement composition
JP4209714B2 (en) Surface protection method for frame concrete
JP2007100423A (en) Repair structure on rear face of concrete slab in bridge
JP2007146546A (en) Concrete structure reinforcing structure and concrete structure reinforcing method
JP2013159951A (en) Structure and method for reinforcing the same
JP6108335B2 (en) Beam-column joint structure
KR101517925B1 (en) Organic and inorganic smart complex cracks repairing materials composition based on bisphenol oxirane polymer and polyamine
JP6254919B2 (en) Repair method for cylindrical concrete structures
JP5936059B2 (en) Ready-made pile
Mostofinejad et al. Experimental study on grooving detail for elimination of debonding of FRP sheets from concrete surface
JP6868379B2 (en) How to repair earthen plaster walls and repair materials used in the same method
KR101439353B1 (en) Shear Strengthening Methods of Concrete Structures by using Anchor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5190634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250