KR101013088B1 - Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure - Google Patents

Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure Download PDF

Info

Publication number
KR101013088B1
KR101013088B1 KR1020100091088A KR20100091088A KR101013088B1 KR 101013088 B1 KR101013088 B1 KR 101013088B1 KR 1020100091088 A KR1020100091088 A KR 1020100091088A KR 20100091088 A KR20100091088 A KR 20100091088A KR 101013088 B1 KR101013088 B1 KR 101013088B1
Authority
KR
South Korea
Prior art keywords
concrete structure
anchor
shear
reinforcement
bending
Prior art date
Application number
KR1020100091088A
Other languages
Korean (ko)
Inventor
이규석
김성일
서만식
박상영
Original Assignee
매일종합건설(주)
주식회사 엠텍
(주)매일
매일엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매일종합건설(주), 주식회사 엠텍, (주)매일, 매일엔지니어링(주) filed Critical 매일종합건설(주)
Priority to KR1020100091088A priority Critical patent/KR101013088B1/en
Application granted granted Critical
Publication of KR101013088B1 publication Critical patent/KR101013088B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements

Abstract

PURPOSE: A method for simultaneously reinforcing the bending and shear resistances of a concrete structure is provided to achieve bending and shear reinforcement of a concrete structure at the same time by employing reinforcing materials against bending stress and anchors against shear stress. CONSTITUTION: A method for simultaneously reinforcing the bending and shear resistances of a concrete structure is as follows. A degraded surface of a concrete structure(C) is arranged. The arranged surface is repaired with mortar(M). A reinforcing material is installed in the site of the concrete structure where bending stress acts. An anchor(A) is installed in the site of the concrete structure where shear stress acts.

Description

콘크리트 구조물의 휨과 전단 동시 보강공법{shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure}Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure}

본 발명은 콘크리트 구조물의 휨과 전단 동시 보강공법에 관한 것이다.The present invention relates to the simultaneous reinforcement of bending and shearing of concrete structures.

일반적으로 콘크리트 구조물 보강공법은 크게 부착공법, 단면증설공법 등이 있다.In general, concrete structure reinforcement methods include large attachment method, cross-section expansion method.

여기서, 상기 부착공법에는 강판 부착공법, 섬유시트 보강공법, 섬유판 보강공법 등이 있다.Here, the attachment method is a steel plate attachment method, a fiber sheet reinforcement method, a fiber plate reinforcement method and the like.

상기 강판 부착공법은 강판을 이용하여 보강하는 공법으로, 강판의 자중이 크고, 시공시 중장비가 필요하다. The steel plate attachment method is a method of reinforcing using a steel plate, the weight of the steel sheet is large, and heavy equipment is required during construction.

또한, 강판 자체의 부식이 우려되며, 밀폐 현상으로 인한 통기성 결여로 계면 박리의 문제점이 있다.In addition, the corrosion of the steel sheet itself is concerned, there is a problem of interfacial peeling due to the lack of breathability due to the sealing phenomenon.

그리고 상기 섬유시트 보강공법은 보강성능에 비해 시공이 어렵고, 작업자의 숙련도에 의해 품질이 좌우되는 문제점이 있다.In addition, the fiber sheet reinforcement method has a problem that the construction is difficult compared to the reinforcing performance, the quality is dependent on the skill of the operator.

또한, 전면 시공으로 인해 통기성이 결여되어, 유지관리에도 어려움이 있다.In addition, due to the entire construction lacks breathability, there is a difficulty in maintenance.

그리고 상기 섬유판 보강공법은 재료적 물성은 우수하나, 보강대상 구조물과의 부착성능을 에폭시 접착제에만 의존할 수밖에 없음으로 단부 박리 등 부착 성능에 한계가 있다.In addition, the fiber board reinforcement method is excellent in material properties, but there is a limit in the adhesion performance, such as end peeling, because the adhesive performance with the structure to be reinforced is dependent only on the epoxy adhesive.

특히 전면 시공을 할 경우에는 통기성이 결여되어, 유지관리에도 어려움이 있다.In particular, when the entire construction lacks breathability, there is a difficulty in maintenance.

이러한 한계를 극복하기 위해 별도의 보강철물과 통기성을 부여한 보강자재 등을 개발하고 있다.In order to overcome these limitations, we are developing additional reinforcing steel and reinforcing materials that impart breathability.

한편, 상기 단면 증설공법은 콘크리트 구조물 외에 추가로 단면을 증설하여 콘크리트 구조물을 보강하는 공법으로 강재 증설공법, 보강재 매입공법, 콘크리트 증타공법 등이 있다.On the other hand, the cross-sectional expansion method is a method for reinforcing the concrete structure by further expanding the cross section in addition to the concrete structure, there is a steel expansion method, reinforcement buried method, concrete expansion method.

이중 콘크리트 증타공법은 휨보강 또는 전단보강에 많이 사용되는 공법으로 모재를 그라우팅하거나, 숏크리트 방식으로 분사하여 접착하는 방식, 형틀을 대고 유동성과 접착성이 좋은 고성능 콘크리트 모르타르 등을 타설 혹은 뿜칠 하여 보강하는 공법이다.Double concrete steaming method is a method widely used for flexural or shear reinforcement, grouting the base material, spraying by shotcrete method, and bonding or spraying or spraying high performance concrete mortar with good fluidity and adhesion. It is a construction method.

하지만, 현장조건에 따라 콘크리트 구조물과 증설한 모르타르 사이의 접착성에 문제가 있어 박리되는 경우가 많이 있어, 충분한 보강 효과를 얻기가 어렵다. However, depending on the site conditions, there is a problem in the adhesion between the concrete structure and the expanded mortar, which is often peeled, it is difficult to obtain a sufficient reinforcing effect.

또한, 내부공간의 제약으로 현실적으로 적용하기 불가능한 경우가 많다.In addition, it is often impossible to apply realistically due to the limitation of the internal space.

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위해 안출된 것으로, 콘크리트 구조물에 전단 응력이 작용하는 부위에 앵커를 설치하여 전단보강을 함으로써, 콘크리트 구조물의 전단 보강효과를 얻도록 한 콘크리트 구조물의 전단 보강공법을 제공하는데 그 목적이 있다.Therefore, the present invention was devised to solve the problems as described above, by installing the anchor in the site where the shear stress acts on the concrete structure by shear reinforcement, concrete structure to obtain the shear reinforcement effect of the concrete structure The purpose is to provide a shear reinforcement method.

또한, 콘크리트 구조물에 휨응력이 작용하는 부위의 표면에 보강재를 이용하여 휨 보강을 한 후, 콘크리트 구조물에 전단 응력이 작용하는 부위에 앵커를 설치하여 전단보강을 함으로써, 콘크리트 구조물의 휨과 전단 보강효과를 동시에 얻도록 한 콘크리트 구조물의 휨과 전단 동시 보강공법을 제공하는데 그 목적이 있다.In addition, after flexural reinforcement using the reinforcement material on the surface of the site where the bending stress is applied to the concrete structure, the shear reinforcement by installing the anchor at the site where the shear stress is applied to the concrete structure, the bending and shear reinforcement effect of the concrete structure The purpose is to provide a simultaneous reinforcement method for bending and shearing concrete structures to obtain the

상기한 목적을 달성하기 위한 본 발명에 따른 콘크리트 구조물의 전단 보강공법은 콘크리트 구조물의 열화된 표면을 정리하는 단계; 상기 정리된 표면에 모르타르를 이용하여 단면을 보수하는 단계; 상기 콘크리트 구조물의 전단 응력이 작용하는 부위에 앵커를 설치하는 단계로 이루어짐을 특징으로 한다.Shear reinforcement method of a concrete structure according to the present invention for achieving the above object comprises the steps of cleaning the deteriorated surface of the concrete structure; Repairing a cross section using mortar on the cleaned surface; Characterized in that it comprises the step of installing the anchor on the site where the shear stress of the concrete structure acts.

또한, 상기한 목적을 달성하기 위한 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강공법은 콘크리트 구조물의 열화된 표면을 정리하는 단계; 상기 정리된 표면에 모르타르를 이용하여 단면을 보수하는 단계; 상기 콘크리트 구조물의 휨응력이 작용하는 부위에 보강재를 고정 설치하는 단계; 상기 콘크리트 구조물의 전단응력이 작용하는 부위에 앵커를 설치하는 단계로 이루어짐을 특징으로 한다.In addition, the simultaneous bending and shear reinforcement method of the concrete structure according to the present invention for achieving the above object comprises the steps of cleaning the deteriorated surface of the concrete structure; Repairing a cross section using mortar on the cleaned surface; Fixing the reinforcement to a portion at which bending stress of the concrete structure acts; Characterized in that it comprises the step of installing the anchor in the shear stress acting portion of the concrete structure.

이상에서 설명한 바와 같이, 본 발명에 따른 콘크리트 구조물의 전단 보강공법은 콘크리트 구조물에 전단 응력이 작용하는 부위에 앵커를 설치하여 전단보강을 함으로써, 콘크리트 구조물의 전단 보강효과를 얻을 수 있는 이점이 있다.As described above, the shear reinforcement method of the concrete structure according to the present invention has an advantage that the shear reinforcement effect of the concrete structure can be obtained by installing the anchor at the site where the shear stress acts on the concrete structure.

또한, 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강공법은 콘크리트 구조물에 휨응력이 작용하는 부위의 표면에 보강재를 이용하여 휨 보강을 한 후, 콘크리트 구조물에 전단 응력이 작용하는 부위에 앵커를 설치하여 전단보강을 함으로써, 콘크리트 구조물의 휨과 전단 보강효과를 동시에 얻을 수 있는 이점이 있다.In addition, in the simultaneous reinforcement method of bending and shearing concrete structures according to the present invention after the reinforcement using the reinforcement on the surface of the site where the bending stress acts on the concrete structure, anchors are installed on the site where the shear stress is applied to the concrete structure By shear reinforcement, there is an advantage that the bending and shear reinforcement effect of the concrete structure can be simultaneously obtained.

도 1은 본 발명에 따른 콘크리트 구조물의 전단 보강상태를 도시한 예시도,
도 2는 본 발명에 따른 콘크리트 구조물의 전단 보수, 보강상태를 도시한 예시도,
도 3은 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강상태를 도시한 예시도,
도 4는 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보수, 보강상태를 도시한 예시도.
1 is an exemplary view showing a shear reinforcement state of a concrete structure according to the present invention,
2 is an exemplary view showing a shear repair, reinforcement state of a concrete structure according to the present invention;
3 is an exemplary view showing a state of simultaneous reinforcement of bending and shear of a concrete structure according to the present invention,
Figure 4 is an exemplary view showing the bending and shear shear repair, reinforcement state of the concrete structure according to the invention.

이하, 본 발명을 첨부한 예시도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

도 1은 본 발명에 따른 콘크리트 구조물의 전단 보강상태를 도시한 예시도이고, 도 2는 본 발명에 따른 콘크리트 구조물의 전단 보수, 보강상태를 도시한 예시도이다.1 is an exemplary view showing a shear reinforcement state of a concrete structure according to the present invention, Figure 2 is an exemplary view showing a shear repair, reinforcement state of a concrete structure according to the present invention.

이들 도면에 도시된 바와 같이, 본 발명에 따른 콘크리트 구조물의 전단 보강공법은 콘크리트 구조물(C)의 열화된 표면을 정리하는 단계; 상기 정리된 표면에 모르타르(M)를 이용하여 단면을 보수하는 단계; 상기 콘크리트 구조물(C)의 전단응력이 작용하는 부위에 앵커(A)를 설치하는 단계로 이루어진다.As shown in these drawings, the shear reinforcement method of the concrete structure according to the present invention comprises the steps of cleaning the deteriorated surface of the concrete structure (C); Repairing a cross section using mortar (M) on the clean surface; Comprising the step of installing the anchor (A) to the site where the shear stress of the concrete structure (C) acts.

또한, 상기 앵커(A)는 금속 또는 FRP 중 어느 하나 또는 적어도 2 이상의 재질로 구성되고, 케미컬 앵커(chemical anchor) 또는 미케니컬 앵커(mechanical anchor)로 구성된다.In addition, the anchor (A) is made of any one or at least two materials of metal or FRP, and is composed of a chemical anchor (chemical anchor) or a mechanical anchor (mechanical anchor).

상기 앵커(A)는 전단력이 작용하는 부위에 일정한 각도, 깊이, 간격, 직경으로 설치된다.The anchor (A) is installed at a predetermined angle, depth, interval, diameter on the site where the shear force is applied.

즉, 앵커의 삽입각도: 사인장 균열 방향에 30∼150°범위That is, the insertion angle of the anchor: in the range of 30 to 150 degrees in the direction of the sign crack

앵커의 삽입깊이: 최소 d/2이상(d: 유효깊이(종방향 인장철근의 중심에서 콘크리트 압축연단까지의 거리)), 최대 상부 인장철근까지Insertion depth of anchor: at least d / 2 (d: effective depth (distance from the center of longitudinal tension bar to the concrete compression edge)), up to the upper tension bar

앵커의 간격: 최대 d이하Anchor spacing: max d or less

앵커의 직경: 콘크리트 구조물의 특성에 따라 변화값의 직경 Anchor diameter: diameter of the change value depending on the characteristics of the concrete structure

상기한 바와 같은 구성으로 이루어진 본 발명에 따른 콘크리트 구조물의 전단 보강공법은 콘크리트 구조물(C)의 전단응력이 작용하는 부위에 일정한 각도, 깊이, 간격, 직경으로 앵커(A)를 설치하여 전단보강을 시행함으로써, 콘크리트 구조물(C)의 전단을 보강하는 작용효과가 있다.Shear reinforcement method of a concrete structure according to the present invention made of a configuration as described above to install the anchor (A) at a predetermined angle, depth, interval, diameter on the site where the shear stress of the concrete structure (C) acts shear reinforcement By implementing, there is an effect of reinforcing the shear of the concrete structure (C).

한편, 도 3은 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강상태를 도시한 예시도이고, 도 4는 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보수, 보강상태를 도시한 예시도이다.On the other hand, Figure 3 is an exemplary view showing the simultaneous reinforcement of the bending and shear of the concrete structure according to the invention, Figure 4 is an illustration showing the simultaneous repair and reinforcement of the bending and shear of the concrete structure according to the present invention.

이들 도면에 도시된 바와 같이, 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강공법은 콘크리트 구조물(C)의 열화된 표면을 정리하는 단계; 상기 정리된 표면에 모르타르(M)를 이용하여 단면을 보수하는 단계; 상기 콘크리트 구조물(C)의 휨응력이 작용하는 부위에 보강재(R)를 고정 설치하는 단계; 상기 콘크리트 구조물(C)의 전단응력이 작용하는 부위에 앵커(A)를 설치하는 단계로 이루어진다.As shown in these drawings, the simultaneous bending and shearing reinforcement method of the concrete structure according to the present invention comprises the steps of cleaning the deteriorated surface of the concrete structure (C); Repairing a cross section using mortar (M) on the clean surface; Fixing the reinforcing material (R) to a site where the bending stress of the concrete structure (C) acts; Comprising the step of installing the anchor (A) to the site where the shear stress of the concrete structure (C) acts.

또한, 상기 보강재(R)는 금속 또는 FRP중 어느 하나 또는 적어도 2 이상의 재질로 구성된다.In addition, the reinforcing material (R) is composed of any one or at least two or more of the metal or FRP.

그리고, 상기 앵커(A)는 금속 또는 FRP 중 어느 하나 또는 적어도 2 이상의 재질로 구성되고, 케미컬 앵커(chemical anchor) 또는 미케니컬 앵커(mechanical anchor)로 구성된다.And, the anchor (A) is made of any one or at least two or more materials of metal or FRP, and is composed of a chemical anchor (chemical anchor) or a mechanical anchor (mechanical anchor).

상기한 바와 같은 구성으로 이루어진 본 발명에 따른 콘크리트 구조물의 휨과 전단 동시 보강공법은 콘크리트 구조물(C)에 휨 응력이 작용하는 부위에 보강재(R)를 이용하여 휨 보강을 한 후, 콘크리트 구조물(C)의 전단응력이 작용하는 부위인 사인장 균열의 방향에 앵커(A)를 설치하여 전단보강을 시행함으로써, 콘크리트 구조물(C)의 휨과 전단을 동시에 보강하는 작용효과가 있다.Simultaneous reinforcement of the bending and shearing of the concrete structure according to the present invention having the configuration as described above after the reinforcement using the reinforcement (R) to the site where the bending stress acts on the concrete structure (C), the concrete structure ( Shear reinforcement is performed by installing anchor (A) in the direction of sinusoidal crack, which is the site of shear stress in C), which has the effect of simultaneously reinforcing the bending and shear of concrete structure (C).

[실시예][Example]

코스렘 GP와 케미컬 앵커를 이용한 슬래브 휨 전단 동시 보강Simultaneous Reinforcement of Slab Flexural Shear Using Koslem GP and Chemical Anchor

(Simultaneous moment and shear Strengthening of RC Slabs and Shells by using COSREM-GP and chemical anchor)(Simultaneous moment and shear Strengthening of RC Slabs and Shells by using COSREM-GP and chemical anchor)

1. 서론 Introduction

최근 외부 환경 변화에 따른 하중 증가, 기존 부재의 단면 손상 등으로 인한 기존 부재력의 보강이 많이 이루어지고 있으나, 전단보다는 주로 휨 보강이 이루어지고 있는 실정이다.Recently, a lot of reinforcement of the existing member force due to the increase of load according to the external environment changes, cross-sectional damage of the existing member, etc., but the bending reinforcement is mainly performed than the shear.

특히 박스 구조물의 슬래브, 벽체 등의 판구조물 전단 보강은 부재 단면 증설, 또는 추가적인 구조물 시공 등으로 이루어지고 있으나, 이는 현장 조건상 어려움이 많아 적용되지 못하고 있는 실정이다. In particular, shear reinforcement of plate structures such as slabs, walls, etc. of box structures is performed by expanding member sections or constructing additional structures, but this situation is not applicable due to many difficulties in the field conditions.

이에 따라 본 실험은 현장 여건 등을 고려하여 현실적으로 시공할 수 있는 판구조물의 휨과 전단 동시 보강공법의 효과를 알아보고자 실험을 하였다.Accordingly, this experiment was conducted to investigate the effects of simultaneous bending and shear reinforcement of plate structures that can be constructed in consideration of site conditions.

2. 실험개요2. Experiment Outline

2.1 실험체 계획2.1 Plan the specimen

본 실험에서는 길이 3m, 단면 크기 60cm x 30cm의 전단 보강근이 없는 실험체(CONT-S)와 전단 보강근(Stirrup)이 있는 실험체(RS-ST), COSREM-GP와 케미컬 앵커를 이용한 보강 실험체(RS-CA)를 제작하여 비교 검토하여 보강 효과를 알아보았다. In this experiment, the specimen without shear reinforcement (CONT-S) and the shear reinforcement (RS-ST) with shear reinforcement (RS-ST) with a length of 3m and a cross section of 60cm x 30cm (RS-) were used. CA) was fabricated and compared to examine the reinforcing effect.

또한, RS-CA실험체는 케미컬 앵커의 삽입 각도와 길이에 따라 보강량을 알아보기 위해 RS-CA-45S, RS-CA-45L, RS-CA-90으로 구분하여 제작하였다. In addition, RS-CA specimens were prepared by dividing the RS-CA-45S, RS-CA-45L, RS-CA-90 to determine the amount of reinforcement according to the insertion angle and length of the chemical anchor.

각 실험체의 제원은 다음과 같다.The specifications of each specimen are as follows.

① CONT-S(무보강)① CONT-S (no reinforcement)

Figure 112010060400612-pat00001
Figure 112010060400612-pat00001

② RS-ST(스터럽 보강)② RS-ST (Stirrup Reinforcement)

Figure 112010060400612-pat00002

Figure 112010060400612-pat00002

③ RS-CA-90(케미컬 앵커 90° 보강)③ RS-CA-90 (chemical anchor 90 ° reinforcement)

Figure 112010060400612-pat00003
Figure 112010060400612-pat00003

④ RS-CA-45S(케미컬 앵커 45° 보강)④ RS-CA-45S (chemical anchor 45 ° reinforcement)

Figure 112010060400612-pat00004
Figure 112010060400612-pat00004

⑤ RS-CA-45L(케미컬 앵커 45° 및 =280mm 보강)⑤ RS-CA-45L (chemical anchor 45 ° and = 280mm reinforcement)

Figure 112010060400612-pat00005
Figure 112010060400612-pat00005

2.2 재료시험2.2 Material test

보강재로는 COSREM-GP 패널과 케미컬 앵커를 사용하여 실시하였으며, 각각의 역학적 성질은 다음과 같다.The reinforcement was performed using a COSREM-GP panel and a chemical anchor. The mechanical properties of each were as follows.

품명Product Name 크기(㎜)Size (mm) 설계강도Design strength 비고Remarks 콘크리트concrete -- fck = 19.8 Mpafck = 19.8 Mpa 28일 압축강도28 days compressive strength 철근rebar D22, D10D22, D10 SS400SS400 COSREM-GPCOSREM-GP BxH = 100x35BxH = 100x35 500 Mpa500 Mpa AnchorAnchor Φ=10.7Φ = 10.7 SS400SS400

2.3 실험 방법2.3 Experimental Method

50ton 용량의 가력장치(Actuator)를 이용하여 전단파괴를 유도하기 위해 2점 가력으로 하중제어 방식으로 파괴시까지 실시하였으며 가력지점과 중앙부에 LVDT, COSREM-GP, 하부 주철근, 전단철근 및 전단보강 앵커에 Strain-gauge를 설치하였다.In order to induce shear failure using a 50ton capacity actuator, two-point force was applied until failure by load control method. LVDT, COSREM-GP, lower main reinforcing bar, shear reinforcing bar and shear reinforcing anchor at the point of center and center Strain-gauge was installed.


Figure 112010060400612-pat00006


Figure 112010060400612-pat00006


Figure 112010060400612-pat00007

[실험 전경 사진]

Figure 112010060400612-pat00007

[Experimental foreground photo]

Figure 112010060400612-pat00008


Figure 112010060400612-pat00008

3. 실험결과3. Experimental Results

무보강체인 CONT-S의 파괴 하중은 38.6 ton에서 발생하였으며, 철근D10@150 간격으로 보강한 실험체인 RS-ST 파괴하중은 40.4 ton, RS-CA-90의 파괴하중은 41.3 ton, RS-CA-45실험체는 47.6ton에서 파괴에 발생되었다.The fracture load of the non-reinforced CONT-S was 38.6 ton, and the RS-ST fracture load of the test specimen reinforced with reinforcing bars D10 @ 150 was 40.4 ton, and that of RS-CA-90 was 41.3 ton and RS-CA. The -45 specimens were destroyed at 47.6 tons.

실험체Experiment 파괴강도(Ton)Breaking Strength (Ton) 파괴하중 증가값Breaking load increase 비고Remarks CONT-SCONT-S 38.638.6 -- RS-STRS-ST 40.440.4 4.66%4.66% ㅿ = 1.8 tonㅿ = 1.8 ton RS-CA-90RS-CA-90 41.341.3 7.00%7.00% ㅿ = 2.7 tonㅿ = 2.7 ton RS-CA-45SRS-CA-45S 41.341.3 7.00%7.00% ㅿ = 2.7 tonㅿ = 2.7 ton RS-CA-45LRS-CA-45L 47.647.6 23.3%23.3% ㅿ = 9.0 tonㅿ = 9.0 ton

3.1 각 실험체 하중-변위 곡선3.1 Load Specimen Load Displacement

Figure 112010060400612-pat00009
Figure 112010060400612-pat00009

위의 그래프에서 보이는 바와 같이, 케미칼 앵커의 보강능력은 삽입 각도와 깊이에 따라 보강 효과가 차이가 있는 것으로 판단되었으며, 직각보다는 사인장 균열의 직각 방향인 경사 방향으로 삽입하는 것이 효과가 있는 것으로 나타났다. As shown in the graph above, the reinforcing ability of the chemical anchor was judged to have a difference in reinforcing effect according to the insertion angle and depth. .

이는 직각 방향으로 보강할 경우 전단 파괴는 취성 파괴로 케미컬 앵커와 콘크리트 사이의 갑작스러운 뽑힘 현상(Slippage)으로 인해 보강 효과가 떨어지는 것로 판단된다.This is because the shear failure is a brittle failure when reinforced at right angles and the reinforcement effect is deteriorated due to the sudden slippage between the chemical anchor and concrete.

또한, 삽입 깊이가 길수록 효과가 뛰어난 것으로 나타났다. 이는 앵커의 설치깊이가 길수록 보강 효과가 더 큰 것으로 판단된다. Also, the longer the insertion depth, the better the effect. The longer the installation depth of the anchor, the greater the reinforcement effect.

Figure 112010060400612-pat00010

(a) CONT-S
Figure 112010060400612-pat00010

(a) CONT-S
Figure 112010060400612-pat00011

(b) RS-ST
Figure 112010060400612-pat00011

(b) RS-ST
Figure 112010060400612-pat00012

(c) RS-CA-90
Figure 112010060400612-pat00012

(c) RS-CA-90
Figure 112010060400612-pat00013

(d) RS-CA-45S
Figure 112010060400612-pat00013

(d) RS-CA-45S
Figure 112010060400612-pat00014

(e) RS-CA-45L
Figure 112010060400612-pat00014

(e) RS-CA-45L

[최종 파괴 양상]                          [Final Destruction Aspects]

3.2 각 실험체 강성 평가3.2 Evaluation of each specimen stiffness

Figure 112010060400612-pat00015
Figure 112010060400612-pat00015

강성은 일반적으로 하중-처짐 곡선의 기울기로 정의되는데 다음 식과 같다.Stiffness is generally defined as the slope of the load-deflection curve.

K= Ρ/δ (Ρ:극한하중(ton), δ: 극한하중일 때의 변위(mm) )K = Ρ / δ (Ρ: ultimate load (ton), δ: displacement at extreme load (mm))

위의 그래프에서와 같이 휨 보강재가 부착되는 RS-CA-45S, RS-CA-45L, RS-CA-90의 시험체가 휨보강재가 부착되지 않는 RS-ST시험체보다 강성은 더 크게 나타나고 있다.As shown in the graph above, the test specimens of RS-CA-45S, RS-CA-45L, and RS-CA-90 with flexural stiffeners showed greater stiffness than the RS-ST specimens without flexural stiffeners.

이는 휨보강재가 가지는 단면 강성의 차이 때문으로 판단되며, 이는 전단보강 방법과는 상관없이 휨보강재의 존재 여부에 따라 강성이 차이가 발생하는 것으로 휨과 전단을 동시에 보강하기 위해서는 휨과 전단을 고려하여 동시에 보강하는 것이 효과를 발휘할 수 있는 것으로 판단된다. This is due to the difference in cross-section stiffness of the stiffener, which means that the stiffness varies depending on the existence of the stiffener, regardless of the shear stiffening method. At the same time, reinforcement seems to be effective.

4. 결론4. Conclusion

본 실험을 통해 슬래브의 전단 보강은 충분히 가능하다고 판단되며, 보강 방법에 다음과 같은 방법이 최대 효과를 기대할 수 있다고 판단된다.It is judged that the shear reinforcement of the slab is sufficiently possible through this experiment, and the following method can be expected to maximize the reinforcement method.

1) 앵커의 삽입 방향은 전단 균열의 사인장 균열과 직각 방향으로 하여 보강한다.1) Reinforce the anchor in the direction perpendicular to the sinusoidal crack of the shear crack.

2) 삽입 길이는 최대한 길이가 길수록 효과가 있다고 판단되나 현실적으로 뚫림 현상으로 인하여 상부면의 방수층 파괴 등이 발생될 수 있으므로 이를 고려하여 보강길이를 산정하는 것이 옳다고 판단된다.2) Insertion length is considered to be more effective as long as possible, but in reality, it is appropriate to calculate the reinforcement length in consideration of the destruction of the waterproof layer on the upper surface.

3) 휨보강을 위해서는 전단보강과는 별도의 휨보강 방법을 하여야만 보강효과를 얻을 수 있다.3) For flexural reinforcement, reinforcement effect can be obtained only by flexural reinforcement method separate from shear reinforcement.

A: 앵커 C: 콘크리트 구조물
M: 모르타르 R: 보강재
A: Anchor C: Concrete Structure
M: Mortar R: Stiffener

Claims (7)

삭제delete 삭제delete 삭제delete 콘크리트 구조물(C)의 열화된 표면을 정리하는 단계; 상기 정리된 표면에 모르타르를 이용하여 단면을 보수하는 단계; 상기 콘크리트 구조물(C)의 휨응력이 작용하는 부위에 보강재(R)를 고정 설치하는 단계; 상기 콘크리트 구조물(C)의 전단응력이 작용하는 부위에 앵커(A)를 설치하는 단계로 이루어지고, 상기 보강재(R)는 금속 또는 FRP중 어느 하나 또는 적어도 2 이상의 재질로 구성되며, 상기 앵커(A)는 금속 또는 FRP 중 어느 하나 또는 적어도 2 이상의 재질로 구성되고, 케미컬 앵커(chemical anchor) 또는 미케니컬 앵커(mechanical anchor)로 구성되며, 상기 앵커(A)의 삽입각도는 사인장 균열방향에 30∼150°범위로 하고, 앵커(A)의 삽입깊이는 최소 d/2이상(d: 유효깊이(종방향 인장철근의 중심에서 콘크리트 압축연단까지의 거리)), 최대상부 인장철근까지 하며, 앵커(A)의 삽입간격은 최대 d이하로 하며, 앵커(A)의 삽입직경은 콘크리트 구조물의 특성에 따라 변화값의 직경으로 함을 특징으로 하는 콘크리트 구조물의 휨과 전단 동시 보강공법.Arranging the deteriorated surface of the concrete structure (C); Repairing a cross section using mortar on the cleaned surface; Fixing the reinforcing material (R) to a site where the bending stress of the concrete structure (C) acts; Comprising the step of installing the anchor (A) in the shear stress acting portion of the concrete structure (C), the reinforcement (R) is made of any one or at least two or more materials of metal or FRP, the anchor ( A) is made of any one metal or FRP or at least two or more materials, and consists of a chemical anchor (mechanical anchor) or a mechanical anchor (mechanical anchor), the insertion angle of the anchor (A) is the sinusoidal crack direction And the insertion depth of the anchor (A) is at least d / 2 (d: effective depth (distance from the center of the longitudinal tension bar to the concrete compression edge)), up to the maximum tension bar. , The insertion gap of the anchor (A) is a maximum d or less, and the insertion diameter of the anchor (A) is the diameter of the change value according to the characteristics of the concrete structure, the simultaneous reinforcement and bending method of the concrete structure. 삭제delete 삭제delete 삭제delete
KR1020100091088A 2010-09-16 2010-09-16 Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure KR101013088B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100091088A KR101013088B1 (en) 2010-09-16 2010-09-16 Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100091088A KR101013088B1 (en) 2010-09-16 2010-09-16 Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure

Publications (1)

Publication Number Publication Date
KR101013088B1 true KR101013088B1 (en) 2011-02-14

Family

ID=43777186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100091088A KR101013088B1 (en) 2010-09-16 2010-09-16 Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure

Country Status (1)

Country Link
KR (1) KR101013088B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435624B1 (en) 2014-03-11 2014-09-02 (주)우암건설 Structural Reinforcing methods of Concrete Structures for Flexural, Shear and Seismic by using Multi-directional Carbon Fibre Laminates and Mechanical Anchor
KR101439353B1 (en) * 2014-03-11 2014-09-12 (주)우암건설 Shear Strengthening Methods of Concrete Structures by using Anchor
KR101522610B1 (en) * 2013-08-14 2015-05-27 한국건설기술연구원 Underground box structure for strengthening reinforced-concrete wall and slab using preflexion of bracing member, and method for reinforcing the same
KR102378784B1 (en) 2020-10-19 2022-03-29 서울시립대학교 산학협력단 Shear reinforcing method of concrete structure using fitting angle plate, strap plate, filling plate and structure of the same
KR102397840B1 (en) 2020-11-24 2022-05-16 한국건설기술연구원 Fiber reinforced plastic (frp) plate of partial detachment guidance type for delaying debonding failure, and method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375937B1 (en) * 2002-07-25 2003-03-15 Yang Jung Kim Method for reinforcing shear and tension of beam by post-tension of steel wire
KR20070083474A (en) * 2004-08-18 2007-08-24 다이세이 겐세쓰 가부시키가이샤 Shearing force reinforcing structure and shearing force reinforcing member
KR20100055656A (en) * 2008-11-18 2010-05-27 김지현 The method of repair using armature for nonstructural crack filling on the concrete floor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375937B1 (en) * 2002-07-25 2003-03-15 Yang Jung Kim Method for reinforcing shear and tension of beam by post-tension of steel wire
KR20070083474A (en) * 2004-08-18 2007-08-24 다이세이 겐세쓰 가부시키가이샤 Shearing force reinforcing structure and shearing force reinforcing member
KR20100055656A (en) * 2008-11-18 2010-05-27 김지현 The method of repair using armature for nonstructural crack filling on the concrete floor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522610B1 (en) * 2013-08-14 2015-05-27 한국건설기술연구원 Underground box structure for strengthening reinforced-concrete wall and slab using preflexion of bracing member, and method for reinforcing the same
KR101435624B1 (en) 2014-03-11 2014-09-02 (주)우암건설 Structural Reinforcing methods of Concrete Structures for Flexural, Shear and Seismic by using Multi-directional Carbon Fibre Laminates and Mechanical Anchor
KR101439353B1 (en) * 2014-03-11 2014-09-12 (주)우암건설 Shear Strengthening Methods of Concrete Structures by using Anchor
KR102378784B1 (en) 2020-10-19 2022-03-29 서울시립대학교 산학협력단 Shear reinforcing method of concrete structure using fitting angle plate, strap plate, filling plate and structure of the same
KR102397840B1 (en) 2020-11-24 2022-05-16 한국건설기술연구원 Fiber reinforced plastic (frp) plate of partial detachment guidance type for delaying debonding failure, and method for the same

Similar Documents

Publication Publication Date Title
Ismail et al. Diagonal shear behaviour of unreinforced masonry wallettes strengthened using twisted steel bars
De Lorenzis et al. Strengthening of reinforced concrete structures with near surface mounted FRP rods
Mukherjee et al. Performance of reinforced concrete beams externally prestressed with fiber composites
Tang et al. Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars
JP4541916B2 (en) Synthetic floor slab
Esmaeeli et al. Retrofitting of interior RC beam–column joints using CFRP strengthened SHCC: cast-in-place solution
Lee et al. Flexural strengthening of reinforced concrete beams with pre-stressed near surface mounted CFRP systems
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
Oskouei et al. Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing
Al-Jaberi et al. Pseudo-static cyclic loading comparison of reinforced masonry walls strengthened with FRCM or NSM FRP
Jumaat et al. Experimental and numerical analysis of end anchored steel plate and CFRP laminate flexurally strengthened rc beams
Nguyen et al. Seismic response of a rocking bridge column using a precast hybrid fiber-reinforced concrete (HyFRC) tube
Marthong et al. Structural behavior of recycled aggregate concrete beam-column connection in presence of micro concrete at joint region
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
Men et al. Experimental research on seismic behavior of a composite RCS frame
Cheng et al. Shear strength and drift capacity of fiber-reinforced concrete slab-column connections subjected to biaxial displacements
Oukaili et al. Punching shear strength of reinforced concrete flat plates with openings
KR100783818B1 (en) Seismic retrofitting method of high-performance fiber reinforced cementitious composites for existing structures
Jawdhari Behavior of RC beams strengthened in flexure with spliced CFRP rod panels
KR100432318B1 (en) use a carbon point the existing structure of repair & reinforcement method or construction
Hassan et al. Retrofitting of shear-damaged RC T-beams using U-shaped SHCC jacket
Wang et al. Self-stressed steel fiber reinforced concrete as negative moment connection for strengthening of multi-span simply-supported girder bridges
Shaheen et al. Characteristics of ferrocement lightweight wall
Mustafaraj et al. External shear strengthening of unreinforced masonry panels using ferrocement jacketing
Sathiaseelan et al. Influence of ferro cement retrofit in the stiffened in fill RC frame

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200128

Year of fee payment: 10