JP4541916B2 - Synthetic floor slab - Google Patents

Synthetic floor slab Download PDF

Info

Publication number
JP4541916B2
JP4541916B2 JP2005034429A JP2005034429A JP4541916B2 JP 4541916 B2 JP4541916 B2 JP 4541916B2 JP 2005034429 A JP2005034429 A JP 2005034429A JP 2005034429 A JP2005034429 A JP 2005034429A JP 4541916 B2 JP4541916 B2 JP 4541916B2
Authority
JP
Japan
Prior art keywords
less
precast plate
ecc
floor slab
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034429A
Other languages
Japanese (ja)
Other versions
JP2006219901A (en
Inventor
昇 坂田
久美子 須田
一郎 福田
豊 佐々木
茂希 本間
忍 高橋
栄世 岩村
清実 相河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005034429A priority Critical patent/JP4541916B2/en
Publication of JP2006219901A publication Critical patent/JP2006219901A/en
Application granted granted Critical
Publication of JP4541916B2 publication Critical patent/JP4541916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Road Paving Structures (AREA)

Description

本発明は、建築物や橋梁の床版、或いは、海洋等の構造物の耐圧面構造部材として使用可能な合成床版に関するものである。   The present invention relates to a composite floor slab that can be used as a floor slab of a building or a bridge, or a pressure-resistant surface structural member of a structure such as the ocean.

橋梁等の床版として、プレキャストコンクリートによる床版やプレキャストコンクリートと現場打設コンクリートとの合成床版が知られてる。   As floor slabs for bridges and the like, precast concrete slabs and composite slabs of precast concrete and on-site cast concrete are known.

下記特許文献1にその一例を示す。これは、図2に示すように縦梁3または横梁4の間隔に合わせたサイズのプレキャストコンクリート製の床版ユニット15とし、梁上で隣接する床版ユニット15を接合して連続版とした。   An example is shown in Patent Document 1 below. As shown in FIG. 2, a floor slab unit 15 made of precast concrete having a size corresponding to the interval between the vertical beams 3 or the horizontal beams 4 was used, and adjacent floor slab units 15 on the beam were joined to form a continuous version.

床版ユニット15の端部を斜め状端面(イ)に形成し、且つU字形の結合鉄筋16を突出しておき、この床版の端部を縦横梁3、4のフランジ17上面に配設して隣接する床版の端部同士が略V字状(逆台形)になるようにしてコンクリートを打設して連続化結合することとした。また、梁のフランジ17にはスタッドジベル18を溶接しており、連続化した床版ユニット15を縦横梁3、4にも結合している。   An end portion of the floor slab unit 15 is formed in an oblique end surface (A), and a U-shaped coupling rebar 16 is projected, and the end portion of the floor slab is disposed on the upper surface of the flange 17 of the vertical and horizontal beams 3 and 4. Thus, the concrete was cast in a continuous manner so that the ends of the adjacent floor slabs were substantially V-shaped (inverted trapezoidal). A stud gibber 18 is welded to the flange 17 of the beam, and the continuous floor slab unit 15 is also connected to the vertical and horizontal beams 3 and 4.

床版ユニット15の端部を斜め状端面(イ)に形成し、隣り合う床版ユニット15の対向する斜め状部(イ)によって略V字状(逆台形)にしている。このため縦梁3や横梁4のフランジ17を広げることなく床版ユニット15を設置できると共に、接合用コンクリート27の充填性を良好に出来る。
特開2004−183324号公報(既設杭桟橋の改修構造および改修工法)
The end portion of the floor slab unit 15 is formed in an inclined end surface (A), and is formed into a substantially V shape (reverse trapezoidal) by the opposing inclined portion (A) of the adjacent floor slab unit 15. Therefore, the floor slab unit 15 can be installed without expanding the flange 17 of the vertical beam 3 or the horizontal beam 4, and the filling property of the bonding concrete 27 can be improved.
JP 2004-183324 A (Repair structure and repair method of existing pile pier)

合成床版としては、床版ユニット15の部分を薄く形成し、その上にコンクリートを打設して、プレキャストコンクリートと現場打設コンクリートとの合成床版とすることも行われる。   As a composite floor slab, a portion of the floor slab unit 15 is formed thinly, and concrete is placed thereon to form a composite floor slab of precast concrete and on-site cast concrete.

前記接合用コンクリート27や上に打設するコンクリートは、プレキャストコンクリートである床版ユニット15ともどもひび割れが発生し易く、コンクリートのひび割れが貫通して大きなひび割れ開口を生じてしまうおそれが多い。   The joint concrete 27 and the concrete cast on the floor are easily cracked together with the floor slab unit 15 which is precast concrete, and there is a possibility that the cracks of the concrete penetrate and a large crack opening is generated.

その結果、再施工を定期的に実施する必要を生じ、維持管理費の増大を招く結果となっている。この場合、生じるひび割れ開口幅はこれまでの経験より0.6mmに達する。   As a result, it is necessary to perform re-construction regularly, resulting in an increase in maintenance costs. In this case, the resulting crack opening width reaches 0.6 mm from previous experience.

さらに、ひび割れ発生により劣化因子の浸透量が多くなることから、鉄筋や鋼板の腐食の問題が生じる。また、負曲げ部以外にも、乾燥収縮や温度差によってコンクリートにひび割れが生じ、その部分から水が浸入して床版の疲労耐久性が大幅に低下する。   Furthermore, since the penetration amount of deterioration factors increases due to the occurrence of cracks, the problem of corrosion of reinforcing bars and steel plates arises. In addition to the negative bending portion, cracking occurs in the concrete due to drying shrinkage and temperature difference, and water enters from that portion, and the fatigue durability of the floor slab is greatly reduced.

本発明の目的は前記従来例の不都合を解消し、打設部分は、RCまたはPCプレキャスト版と同じ無機系のものであり、RCまたはPCプレキャスト版との一体性を保持でき、しかも、流し込みもって施工できるので煩雑な工程を省略して施工の省力化を図かることができ、RCまたはPCプレキャスト版に生じるまたは生じた大きな開口幅のひび割れに追従せず、ひび割れを抑制し、有害物質の進入を阻止できる合成床版を提供することにある。   The object of the present invention is to eliminate the inconvenience of the conventional example, and the placement portion is of the same inorganic type as the RC or PC precast plate, can maintain the integrity with the RC or PC precast plate, and is poured. Since construction can be done, laborious work can be saved by omitting complicated processes, and it does not follow cracks with large opening width generated or generated in RC or PC precast plates, suppressing cracks and intruding harmful substances An object of the present invention is to provide a synthetic floor slab that can prevent the above.

前記目的を達成するため、請求項1記載の本発明は、RCまたはPCプレキャスト版を桁上を接合部として配置し、これらRCまたはPCプレキャスト版上およびこれらの接合部に、圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し、さらに、高靭性セメント複合材料(ECC)は、RCまたはPCプレキャスト版上に4〜10cm程度を打設することを要旨とするものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
In order to achieve the above object, the present invention according to claim 1 arranges RC or PC precast plates as joints on the girders, and has a compressive strength of 30 N / mm on and on these RC or PC precast plates. 2 or more, a tensile dispersion of 1.5 N / mm 2 or more, and a crack dispersion type in which a tensile strain is 1% or more in a tensile test of a cured product on the 28th day of the material age, and PVA (Polyvinyl Alcohol) of [F1] below Short fibers were added to a formulation matrix of [M1], exceeding 1 and 3 Vol. % High-toughness cement composite material (ECC) that is blended randomly or two-dimensionally at a blending amount of 3%. Further, the high-toughness cement composite material (ECC) is placed on the RC or PC precast plate. The gist is to place approximately 4 to 10 cm .
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

請求項3記載の発明は、RCまたはPCプレキャスト版を桁上を接合部として端部を突合せて配置し、これらRCまたはPCプレキャスト版上に、圧縮強度30N/mm以上、引張強度1.5N/mm以上の圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し、さらに、高靭性セメント複合材料(ECC)は、RCまたはPCプレキャスト版上に4〜10cm程度を打設することを要旨とするものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
In the invention according to claim 3, RC or PC precast plates are arranged with the ends of the RCs and PC precast plates joined as joints, and a compressive strength of 30 N / mm 2 or more and a tensile strength of 1.5 N are placed on these RC or PC precast plates. / mm 2 or more compression strength 30 N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, strain tension in the tensile test of the cured product of the wood age 28 days a crack distributed showing 1% or more, The following [F1] PVA (Polyvinyl Alcohol) short fibers are added to the formulation matrix of [M1], exceeding 1 to 3 Vol. % High-toughness cement composite material (ECC) that is blended randomly or two-dimensionally at a blending amount of 3%. Further, the high-toughness cement composite material (ECC) is placed on the RC or PC precast plate. The gist is to place approximately 4 to 10 cm .
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

請求項1または請求項3記載の本発明によれば、コンクリートに替えて、高靭性セメント複合材料(ECC)をRCまたはPCプレキャスト版上およびこれらの接合部に打設することにより、高靭性セメント複合材料(ECC)がひび割れ幅を抑制するため、劣化因子の浸透量が少なくなるため耐久性が向上する。乾燥収縮や温度差によるひび割れも分散するため耐久性が向上する。粗骨材を使用しておらず、かつ準自己充填性を示すため、充填性に優れる。   According to the first or third aspect of the present invention, instead of concrete, a high toughness cement composite material (ECC) is cast on an RC or PC precast plate and joints thereof, thereby providing a high toughness cement. Since the composite material (ECC) suppresses the crack width, the permeation amount of the deterioration factor is reduced, so that the durability is improved. Durability is improved because cracks due to drying shrinkage and temperature difference are also dispersed. Coarse aggregate is not used, and because it exhibits quasi self-filling properties, it is excellent in filling properties.

しかも、このECCがプレキャストコンクリート合成して引張力を負担するため、断面を小さくできる。   In addition, since this ECC synthesizes precast concrete and bears the tensile force, the cross section can be reduced.

さらに、ECCがプレキャストコンクリート合成して引張力を負担するため、断面を小さくできる結果として、RCまたはPCプレキャスト版上では4〜10cm程度の極めて薄い打設ですむ。また、4〜10cm程度の厚さで十分ECCがRCまたはPCプレキャスト版のひび割れが上層の舗装まで貫通することを抑制し、舗装耐久性向上が得られる。   Furthermore, since the ECC synthesizes the precast concrete and bears the tensile force, the result is that the cross section can be reduced, so that an extremely thin casting of about 4 to 10 cm is required on the RC or PC precast plate. In addition, with a thickness of about 4 to 10 cm, the ECC can sufficiently prevent cracks of the RC or PC precast plate from penetrating to the upper pavement, thereby improving pavement durability.

前記作用に加えて、高靱性の繊維補強セメント複合材料(高靱性FRC材料)はその調合のマトリクスと繊維配合量により、引張ひずみが1%を越えることで、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じる。よって、ひび割れを確実に微小な幅に制御できるものである。   In addition to the above effects, high toughness fiber reinforced cement composite material (high toughness FRC material) has a tensile strain exceeding 1% depending on the matrix and fiber content of the formulation, and is almost perpendicular to the loading direction (stress direction). A crack dispersion type destruction phenomenon occurs in which many cracks (multi cracks) are generated in the direction. Therefore, cracks can be reliably controlled to a minute width.

請求項2記載の本発明は、接合部では、RCまたはPCプレキャスト版から突出させた鉄筋同士を重ね継手で接続することを要旨とするものである。   The gist of the present invention described in claim 2 is that the reinforcing bars protruding from the RC or PC precast plate are connected by a lap joint at the joint.

請求項2記載の本発明によれば、高靭性セメント複合材料(ECC)を、RCまたはPCプレキャスト版から突出させ、重ね継手で接続した鉄筋との合成部材とすることができる。   According to this invention of Claim 2, a high toughness cement composite material (ECC) can be made to protrude from RC or a PC precast plate, and can be made into a synthetic member with the reinforcement connected by the lap joint.

請求項4記載の本発明は、RCまたはPCプレキャスト版と高靭性セメント複合材料(ECC)の境界面には無付着帯を設けることを要旨とするものである。   The gist of the present invention described in claim 4 is to provide a non-adhesive zone at the interface between the RC or PC precast plate and the high toughness cement composite material (ECC).

請求項4記載の本発明によれば、RCまたはPCプレキャスト版を桁上を接合部として端部を突合せて配置する場合に、無付着帯を設置することで、RCまたはPCプレキャスト版の収縮量をこの無付着帯で吸収することができる。   According to the present invention described in claim 4, when the RC or PC precast plate is placed with the end portion butted as a joint, the non-adhesive zone is provided, and the shrinkage amount of the RC or PC precast plate Can be absorbed by this non-adhesive zone.

請求項5記載の本発明は、桁上では、桁とRCまたはPCプレキャスト版間に配設したシール部材相互間に無収縮モルタルを敷いて設置床部を形成し、RCまたはPCプレキャスト版はこの設置床部に載置したことを要旨とするものである。   According to the fifth aspect of the present invention, on the girder, an installation floor is formed by laying non-shrink mortar between seal members disposed between the girder and the RC or PC precast plate. The gist is that it is placed on the installation floor.

請求項5記載の本発明によれば、このような設置床部を形成することにより、シール性を高めることができる。   According to this invention of Claim 5, a sealing performance can be improved by forming such an installation floor part.

以上述べたように本発明の合成床版は、コンクリートのひび割れを防ぎ、かつ強度を向上させることができ、しかも施工性も良好なものである。   As described above, the composite floor slab of the present invention can prevent cracking of concrete, improve the strength, and has good workability.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の合成床版の1実施形態を示す縦断正面図で、RC(鉄筋コンクリート)またはPC(プレキャストコンクリート)プレキャスト版1を鉄骨による縦梁3または横梁4の桁のフランジ上を接合部として配置した。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal front view showing an embodiment of a composite floor slab of the present invention, in which an RC (steel reinforced) or PC (precast concrete) precast slab 1 is joined to a flange of a beam of a longitudinal beam 3 or a cross beam 4 by a steel frame Arranged as.

このようにRCまたはPCプレキャスト版1を桁上に配設するに際して、桁とRCまたはPCプレキャスト版1間にシール部材としてシールスポンジ5を配設し、このシールスポンジ5相互間に無収縮モルタル6を敷いて設置床部7を形成し、RCまたはPCプレキャスト版1はこの設置床部7の上に載置した。   As described above, when the RC or PC precast plate 1 is disposed on the girders, the seal sponge 5 is disposed between the girders and the RC or PC precast plate 1 as a seal member, and the non-shrink mortar 6 is interposed between the seal sponges 5. The installation floor part 7 was formed by spreading the RC or PC precast plate 1 on the installation floor part 7.

また、RCまたはPCプレキャスト版1から接合鉄筋8を突出させ、この接合鉄筋8鉄筋同士を重ね継手で接続する。なお、RCまたはPCプレキャスト版1相互の接合はこれに限定されるものではなく、その他、種々の方法を選択でき、例えばU字形の結合鉄筋を突出しておき、これにより鉄筋の結合を行うようにしてもよい。   Moreover, the joining reinforcement 8 is protruded from the RC or PC precast plate 1, and the joining reinforcement 8 is connected by a lap joint. It should be noted that the RC or PC precast plate 1 is not limited to this connection, and various other methods can be selected. For example, a U-shaped connecting reinforcing bar is protruded, thereby connecting the reinforcing bars. May be.

このように、桁間の間隔に合わせたサイズのプレキャストコンクリート製の床版ユニットであるRCまたはPCプレキャスト版1を接合して連続版とするが、RCまたはPCプレキャスト版1は端部上角部をテーパー面によるハンチ1aとして,接合部における開口を広げるようにした。   In this way, the RC or PC precast plate 1 which is a precast concrete floor slab unit having a size matched to the interval between the girders is joined to form a continuous plate. As a haunch 1a with a tapered surface, the opening at the joint is widened.

他の実施形態として、図5に示すように、RCまたはPCプレキャスト版1を鉄骨による縦梁3または横梁4の桁のフランジ上を接合部として端部を突合せて配置してもよい。   As another embodiment, as shown in FIG. 5, the RC or PC precast plate 1 may be disposed with its ends abutted on the flange of the beam of the longitudinal beam 3 or the transverse beam 4 made of steel.

そして、RCまたはPCプレキャスト版1上およびこれらの接合部に、圧縮強度30N/mm以上、引張強度1.5N/mm以上、弾性係数15000N/mm以上の高靭性セメント複合材料(ECC)12を打設して、本発明の合成床版を形成した。 Then, the RC or PC precast plate 1 and on the junction of them, compressive strength 30 N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, the elastic modulus 15000 N / mm 2 or more high toughness cementitious composites (ECC) 12 was cast to form the composite floor slab of the present invention.

なお、高靭性セメント複合材料(ECC)は、RCまたはPCプレキャスト版1上に4〜10cm程度を打設するものとする。   The high toughness cement composite material (ECC) is placed about 4 to 10 cm on the RC or PC precast plate 1.

前記図5に示すように、RCまたはPCプレキャスト版1を端部を突合せて配置する場合には、RCまたはPCプレキャスト版1と高靭性セメント複合材料(ECC)の境界面には無付着帯10を設ける。この無付着帯10の形成は、剥離材を刷毛等で塗布したり、テープを貼り付けることで簡単に形成できる。   As shown in FIG. 5, when the RC or PC precast plate 1 is disposed with the end portions facing each other, the non-adhesive zone 10 is formed on the boundary surface between the RC or PC precast plate 1 and the high toughness cement composite material (ECC). Is provided. The non-adhesive band 10 can be easily formed by applying a release material with a brush or the like or attaching a tape.

この無付着帯10の設置は、RCまたはPCプレキャスト版1の上面側のみでもよいが、下記程度の長さがあればよい。   The non-adhesive band 10 may be installed only on the upper surface side of the RC or PC precast plate 1, but may have a length of the following extent.

PCa版の長さをL、無付着帯の長さをl2とすると、
PCa版の収縮量を、無付着帯で吸収する。

Figure 0004541916
εPCa:プレキャス版の収縮ひずみ、εECc:ECCの許容引張ひずみ(1%程度)
例えば、L =6m、εPCa=500×10-6、εECc=1%と仮定すると、
2(mm)=L×εPCa/εECc=6,000×0.05/1=300mm
30cm程度あれば良い。 If the length of the PCa plate is L and the length of the non-adhesive zone is l 2 ,
The shrinkage of the PCa plate is absorbed by the non-adhesive zone.
Figure 0004541916
ε PCa : shrinkage strain of precast plate , ε ECc : allowable tensile strain of ECC (about 1%)
For example, assuming L = 6 m, ε PCa = 500 × 10 −6 , and ε ECc = 1%,
l 2 (mm) = L × ε PCa / ε ECc = 6,000 × 0.05 / 1 = 300 mm
About 30cm is enough.

前記高靭性セメント複合材料(ECC)12の打設は流し込みによるものであり、ミキサで前記高靭性セメント複合材料(ECC)12を混練成形し、これをホッパーで受けて、ポンプにより流し込む。なお、吹き付けも可能である。   The casting of the high toughness cement composite material (ECC) 12 is performed by pouring. The high toughness cement composite material (ECC) 12 is kneaded and formed by a mixer, received by a hopper, and poured by a pump. Spraying is also possible.

この高靭性セメント複合材料(ECC)12は、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m3以上400kg/m3以下
練り上がり時の空気量3.5%以上20%以下
高性能AE減水剤量30kg/m3未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
This high toughness cement composite material (ECC) 12 is a crack dispersion type in which a tensile strain of 1% or more is shown in a tensile test of a cured product on the 28th day of the material age, and the following [F1] PVA (Polyvinyl Alcohol) short fiber 1 to 3 Vol. % Blending amount was three-dimensional random or two-dimensional random.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250kg / m 3 or more and 400kg / m 3 or less Air volume when kneaded 3.5% or more and 20% or less High-performance AE water reducing agent amount Less than 30kg / m 3 [F1]
Fiber diameter 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

なお、前記〔M1〕の調合マトリクスにおいて、練り上がり時の空気量は20%以上でもよい。   In the [M1] preparation matrix, the amount of air when kneaded may be 20% or more.

前記引張ひずみは、材令28日以上の硬化体の引張試験で得られる応力−歪み曲線において、最大引張応力値でのひずみ量(%)をいう。実際には、材令28日での試験体の引張試験(例えば断面30mm×13mmの試験体を80mmの試験区間で引張試験を行う)における引張ひずみ(%)で代表される。   The tensile strain refers to a strain amount (%) at the maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured product having a material age of 28 days or more. Actually, it is represented by a tensile strain (%) in a tensile test (for example, a test specimen having a cross section of 30 mm × 13 mm is subjected to a tensile test in an 80 mm test section) on the 28th day of the material age.

この引張ひずみが1%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じていることを意味する。   That the tensile strain is 1% or more means that a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the loading direction (stress direction).

〔F1〕の条件を満たすビニロン短繊維としては,ポリビニールアルコール樹脂を原料として製造されたコンクリートと同等以上の弾性係数を有する短繊維であるのが好ましく,代表的なものとして繊維長12mm、繊維径0.04mm、引張強度1690N/mmの高強度ビニロン繊維を使用する。 The vinylon short fiber satisfying the condition of [F1] is preferably a short fiber having an elastic modulus equal to or greater than that of concrete produced from polyvinyl alcohol resin, and a typical one is a fiber length of 12 mm, fiber A high-strength vinylon fiber having a diameter of 0.04 mm and a tensile strength of 1690 N / mm 2 is used.

高靭性セメント複合材料(ECC)12を構成する材料は、セメント・混和材・細骨材・繊維・水であり、練り混ぜ量を60Lとした場合の割合は下記表1の通りである。   The materials constituting the high toughness cement composite material (ECC) 12 are cement, admixture, fine aggregate, fiber, and water, and the ratio when the mixing amount is 60 L is as shown in Table 1 below.

Figure 0004541916
Figure 0004541916

下記表2に示す計18ケースの室内試験結果を基に、以下に高靭性セメント複合材料(ECC)12の硬化物性について記す。なお、ケースの要因は、セメント種類と練上り温度とした。   Based on the indoor test results of 18 cases shown in Table 2 below, the cured material properties of the high toughness cement composite material (ECC) 12 will be described below. Case factors were cement type and kneading temperature.

1)圧縮強度および曲げ強度
圧縮強度試験は、JIS A 1108に準拠し、φ100×200mmの供試体を用いて行った。曲げ強度試験は、JIS R 5201に準拠し、40×40×160mmの試験体を用いて行った。両試験とも、各ケース3体ずつ試験を行い、全データの平均、標準偏差、変動係数および本データより算出される、5%不良率を許容する信頼区間の下限値(m‐1.645σ)を求めた。なお、試験材齢は28日とし、それまで温度20℃の環境で封かん状態にて養生を行った。
1) Compressive strength and bending strength The compressive strength test was performed in accordance with JIS A 1108 using a specimen of φ100 × 200 mm. The bending strength test was performed in accordance with JIS R 5201 using a 40 × 40 × 160 mm specimen. In both tests, three cases are tested in each case, and the lower limit of the confidence interval (m-1.645σ) that allows a 5% defect rate calculated from the average, standard deviation, coefficient of variation, and this data of all data. Asked. In addition, the test material age was 28 days, and curing was performed in a sealed state in an environment at a temperature of 20 ° C. until then.

Figure 0004541916
Figure 0004541916

Figure 0004541916
Figure 0004541916

試験結果を前記表3に示す。圧縮強度の平均値は44.2N/mm2であり.標準偏差5.0N/mm2、変動係数11.4%であった。曲げ強度の平均は12.2N/mm2であり、標準偏差1.5N/mm2、変動係数11.8%であった。5%不良率を許容する信頼区間の下限値(m−1.645σ)は、圧縮強度で36.0N/mm2、曲げ強度で9.9N/mm2である。 The test results are shown in Table 3 above. The average value of the compressive strength is at 44.2N / mm 2. The standard deviation was 5.0 N / mm 2 and the coefficient of variation was 11.4%. Average flexural strength was 12.2N / mm 2, standard deviation 1.5 N / mm 2, was 11.8% coefficient of variation. 5% the lower limit of the confidence interval which permits defect rate (m-1.645σ) is, 36.0N / mm 2 in compression strength, bending strength 9.9N / mm 2.

2)引張強度および引張ひずみ
引張試験方法を図3に示す。直接引張試験については、その試験方法が規格化されていないため、ダンベル型の供試体(測定区間長80mm、幅30mm、厚さ113mm)を用いた直接引張試験を抹用した。試験材齢は28日とし、それまで温度20℃の環境で封かん状態にて養生を行った。
2) Tensile strength and tensile strain The tensile test method is shown in FIG. Since the test method was not standardized for the direct tensile test, the direct tensile test using a dumbbell-shaped specimen (measurement section length 80 mm, width 30 mm, thickness 113 mm) was abandoned. The test material age was 28 days, and curing was performed in a sealed state in an environment at a temperature of 20 ° C. until then.

試験時の載荷速度は0.5mm/分とし、供試体35の両側に取り付けた2本の変位計36の平均で引張ひずみを評価した。図中、37は変位計ホルダ、38はホルダ固定用ボルトである。   The loading speed at the time of the test was 0.5 mm / min, and the tensile strain was evaluated by the average of the two displacement meters 36 attached to both sides of the specimen 35. In the figure, 37 is a displacement meter holder, and 38 is a holder fixing bolt.

なお、1ケースの試験件数は5体として試験を行い、二次曲げの影響を排除する目的で、一方のひずみ計の変位が他方の2倍以上となったデータについては、不良データとして扱い、採用しないこととした。   In addition, for the purpose of eliminating the influence of secondary bending, the number of test cases in one case is 5 and the data in which the displacement of one strain gauge is more than twice that of the other is treated as defective data. Not adopted.

高靭性セメント複合材料(ECC)12の応力−ひずみ関係の一例を図4に示す。通常のセメント系材料とは異なり、初期ひび割れ発生以降、引張ひずみの増加に伴い応力か徐々に増加する擬似ひずみ硬化特性を示すことかわかる。ここで高靭性セメント複合材料(ECC)12の引張降伏強度および引張終局ひずみを図4に示すとおり定義する。つまり、引張降伏強度は、金属材料の下降伏点に相当する値として定義し、引張終局ひずみは、引張降伏強度を確保できる最大のひずみとして定着した。このように高靭性セメント複合材料(ECC)12の引張側の応力ひずみ曲線を完全弾塑性モデルとして定義することで、高靭性セメント複合材料(ECC)12の引張特性を設計に利用することも可能になる。   An example of the stress-strain relationship of the high toughness cement composite material (ECC) 12 is shown in FIG. It can be seen that, unlike ordinary cementitious materials, it exhibits pseudo-strain hardening characteristics in which the stress gradually increases with the increase in tensile strain after the initial cracking. Here, the tensile yield strength and ultimate tensile strain of the high toughness cement composite material (ECC) 12 are defined as shown in FIG. That is, the tensile yield strength was defined as a value corresponding to the lowering yield point of the metal material, and the ultimate tensile strain was established as the maximum strain that could ensure the tensile yield strength. By defining the stress-strain curve on the tensile side of the high toughness cement composite material (ECC) 12 as a complete elastoplastic model, the tensile properties of the high toughness cement composite material (ECC) 12 can be used for the design. become.

有効な試験結果が得られた全84試験体の結果から算出した引張降伏強度と引張終局ひずみを下記表4に示す。   Table 4 below shows the tensile yield strength and ultimate tensile strain calculated from the results of all 84 specimens from which effective test results were obtained.

Figure 0004541916
Figure 0004541916

引張降伏強度の平均値は3.8N/mm2であり、標準偏差0.4N/mm2、変動係数10.5%であった。引張終局ひずみの平均は3.0%であり、標準偏差1.1%、変動係数37.8%であった。5%不良率を許容する信頼区間の下限値(m−1.645σ)は、引張降伏強度で3.1N/mm2、引張終局ひずみで1.1%である。 The average value of the tensile yield strength was 3.8 N / mm 2, standard deviation 0.4 N / mm 2, was 10.5% coefficient of variation. The average ultimate tensile strain was 3.0%, with a standard deviation of 1.1% and a coefficient of variation of 37.8%. The lower limit (m−1.645σ) of the confidence interval that allows a 5% defect rate is 3.1 N / mm 2 in tensile yield strength and 1.1% in ultimate tensile strain.

なお、高靭性セメント複合材料(ECC)12の引張終局ひずみは、鋼材の降伏レベルでのひずみ(0.2%程度)を大きく上回る値である。   The ultimate tensile strain of the high toughness cement composite material (ECC) 12 is a value that greatly exceeds the strain (about 0.2%) at the yield level of the steel material.

以上のように、高靭性セメント複合材料(ECC)12では繊維によるクラックの拘束能力が高く、ひび割れの拡大を防ぎ、次のひび割れを発生させる。引き続き、次々と新たな微小なひび割れを数多く発生させるため、見かけ上非常に大きな引張りひずみが生じても荷重に耐えることができる。   As described above, the high toughness cement composite material (ECC) 12 has a high ability to restrain cracks caused by fibers, prevents the expansion of cracks, and generates the next crack. Subsequently, since many new micro cracks are generated one after another, even if an apparently very large tensile strain occurs, it can withstand the load.

また、ひび割れを微小な幅(例えば0.05mm以下)に制御できるので、ひび割れからの水の浸透を防ぐことも可能である。ひび割れからの全ての浸透を防ぐことができない場合でも、浸透量はひび割れ幅の3乗に比例すると言われており、ひび割れ幅を制御できることは浸透量を大きく制限することができることになる。   Further, since the crack can be controlled to a minute width (for example, 0.05 mm or less), it is also possible to prevent water penetration from the crack. Even if it is not possible to prevent all penetration from cracks, it is said that the penetration amount is proportional to the cube of the crack width, and controlling the crack width can greatly limit the penetration amount.

そして、ひび割れからの水の浸透を防ぐことにより、水に溶解してコンクリートに浸入しコンクリートを劣化させる硫酸塩や酸等の物質から防護でき、共用年数の延長に大きく貢献することができる。   And by preventing the penetration of water from cracks, it can be protected from substances such as sulfates and acids that dissolve in water and enter concrete and degrade concrete, which can greatly contribute to the extension of the common life.

本発明の合成床版の第1実施形態を示す縦断正面図である。It is a vertical front view which shows 1st Embodiment of the synthetic floor slab of this invention. 従来例を示す斜視図である。It is a perspective view which shows a prior art example. 直接引張試験方法を示す説明図である。It is explanatory drawing which shows a direct tensile test method. 引張性能を示すグラフである。It is a graph which shows tensile performance. 本発明の合成床版の第2実施形態を示す縦断正面図である。It is a vertical front view which shows 2nd Embodiment of the synthetic floor slab of this invention.

1…RCまたはPCプレキャスト版
1a…ハンチ
3…縦梁
4…横梁
5…シールスポンジ
6…無収縮モルタル
7…設置床部
8…接合鉄筋
10…無付着帯
12…高靭性セメント複合材料(ECC)
15…床版ユニット
16…結合鉄筋
17…梁のフランジ
18…スタッドジベル
27…接合用コンクリート
35…供試体
36…変位計
37…変位計ホルダ
38…ホルダ固定用ボルト
DESCRIPTION OF SYMBOLS 1 ... RC or PC precast plate 1a ... Haunch 3 ... Vertical beam 4 ... Horizontal beam 5 ... Seal sponge 6 ... Non-shrink mortar 7 ... Installation floor part 8 ... Joint reinforcement 10 ... Non-adhesion zone 12 ... High toughness cement composite material (ECC)
DESCRIPTION OF SYMBOLS 15 ... Floor slab unit 16 ... Connection reinforcing bar 17 ... Beam flange 18 ... Stud gibber 27 ... Joining concrete 35 ... Specimen 36 ... Displacement meter 37 ... Displacement meter holder 38 ... Holder fixing bolt

Claims (5)

RCまたはPCプレキャスト版を桁上を接合部として配置し、これらRCまたはPCプレキャスト版上およびこれらの接合部に、圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し、さらに、高靭性セメント複合材料(ECC)は、RCまたはPCプレキャスト版上に4〜10cm程度を打設することを特徴とする合成床版。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
The RC or PC precast plate arranged Ketajo as joint, the joint and on these these RC or PC precast plate, with compressive strength 30 N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, wood age A crack dispersion type in which tensile strain is 1% or more in a tensile test of a cured product on the 28th, and the following [F1] PVA (Polyvinyl Alcohol) short fiber is added to a mixed matrix of [M1] and exceeds 1 to 3 Vol. % High-toughness cement composite material (ECC) that is blended randomly or two-dimensionally at a blending amount of 3%. Further, the high-toughness cement composite material (ECC) is placed on the RC or PC precast plate. A synthetic floor slab characterized by placing about 4 to 10 cm.
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less
接合部では、RCまたはPCプレキャスト版から突出させた鉄筋同士を重ね継手で接続する請求項1記載の合成床版。   The composite floor slab according to claim 1, wherein the reinforcing bars protruded from the RC or PC precast plate are connected by a lap joint at the joint. RCまたはPCプレキャスト版を桁上を接合部として端部を突合せて配置し、これらRCまたはPCプレキャスト版上に、圧縮強度30N/mm以上、引張強度1.5N/mm以上の圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し、さらに、高靭性セメント複合材料(ECC)は、RCまたはPCプレキャスト版上に4〜10cm程度を打設することを特徴とする合成床版。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
Butt ends arranged RC or PC precast plate as a joining portion Ketajo, on these RC or PC precast plate, compression strength 30N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more compression strength 30N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, a crack decentralized strain tension in the tensile test of the cured product of the wood age 28 days showing the least 1%, PVA of the following [F1] (Polyvinyl Alcohol) short fibers were added to the formulation matrix of [M1], exceeding 1 to 3 Vol. % High-toughness cement composite material (ECC) that is blended randomly or two-dimensionally at a blending amount of 3%. Further, the high-toughness cement composite material (ECC) is placed on the RC or PC precast plate. A synthetic floor slab characterized by placing about 4 to 10 cm.
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less
RCまたはPCプレキャスト版と高靭性セメント複合材料(ECC)の境界面には無付着帯を設ける請求項3に記載の合成床版。   The synthetic floor slab according to claim 3, wherein a non-adhesive zone is provided at an interface between the RC or PC precast plate and the high toughness cement composite material (ECC). 桁上では、桁とRCまたはPCプレキャスト版間に配設したシール部材相互間に無収縮モルタルを敷いて設置床部を形成し、RCまたはPCプレキャスト版はこの設置床部に載置した請求項1ないし請求項4のいずれかに記載の合成床版。   On the girder, an installation floor is formed by laying non-shrink mortar between seal members disposed between the girder and the RC or PC precast plate, and the RC or PC precast plate is placed on the installation floor. The synthetic floor slab according to any one of claims 1 to 4.
JP2005034429A 2005-02-10 2005-02-10 Synthetic floor slab Expired - Fee Related JP4541916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034429A JP4541916B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034429A JP4541916B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Publications (2)

Publication Number Publication Date
JP2006219901A JP2006219901A (en) 2006-08-24
JP4541916B2 true JP4541916B2 (en) 2010-09-08

Family

ID=36982406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034429A Expired - Fee Related JP4541916B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Country Status (1)

Country Link
JP (1) JP4541916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762879A (en) * 2015-04-21 2015-07-08 南京交通职业技术学院 Jointless expansion structure of cement concrete bridge deck pavement layer

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184794A (en) * 2007-01-30 2008-08-14 Kajima Corp Step cushioning structure
JP2008231676A (en) * 2007-03-16 2008-10-02 Oriental Shiraishi Corp Manufacturing method for steel-concrete floor slab joining structure and buried form
JP5847483B2 (en) * 2011-08-05 2016-01-20 株式会社デイ・シイ Bridge wall railing method
CN102704624A (en) * 2012-05-31 2012-10-03 中国十七冶集团有限公司 Engineered cementitious composite (ECC)-reinforced concrete (RC) combination column and novel connection mode thereof
JP6251101B2 (en) * 2014-03-25 2017-12-20 鹿島建設株式会社 Repair method for steel pier foundation
CN104343203A (en) * 2014-11-04 2015-02-11 福州大学 Novel combined beam structure based on steel-ultra-high property concrete
JP6567965B2 (en) * 2015-12-09 2019-08-28 三井住友建設株式会社 Joint structure of PCa slab and its construction method
CN107956205A (en) * 2016-10-17 2018-04-24 重庆大学 A kind of ultra-high performance concrete-normal concrete combined bridge deck
CN106835973B (en) * 2017-03-20 2018-07-20 山东大学 Web-superhigh tenacity cement-base composite material combined bridge deck structure and method
CN108221532B (en) * 2018-01-03 2020-02-18 江苏路翔交通工程有限公司 Colored asphalt pavement and construction method thereof
JP6802219B2 (en) * 2018-07-04 2020-12-16 鹿島建設株式会社 Construction method of precast concrete members and joint structure of precast concrete members
CN109338874B (en) * 2018-12-10 2020-03-20 山东大学 Bridge composite pier column structure based on directional ECC and construction process
JP2020172751A (en) * 2019-04-08 2020-10-22 中日本高速道路株式会社 Concrete bridge reinforcement structure and reinforcement method
CN109930467B (en) * 2019-04-10 2023-10-10 西南交通大学 Steel-ECC-concrete composite beam and preparation method thereof
JP7370245B2 (en) * 2019-12-25 2023-10-27 日鉄エンジニアリング株式会社 Precast floor slab structures, precast floor slabs
CN111778835A (en) * 2020-07-01 2020-10-16 上海市城市建设设计研究总院(集团)有限公司 Combined beam of steel, common concrete and ultrahigh-performance concrete and construction method
CN112482213A (en) * 2020-12-08 2021-03-12 内蒙古工业大学 Rigid pavement structure of combined steel bridge deck and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486202A (en) * 1990-07-31 1992-03-18 Ishikawajima Constr Materials Co Ltd Manufacture of fiber reinforced concrete product
JPH06248742A (en) * 1993-02-24 1994-09-06 Kajima Corp Rc floor slab
JPH10131125A (en) * 1996-10-31 1998-05-19 Tokai Rubber Ind Ltd Elastic form material for precast concrete floor board and method for executing precast concrete floor board construction
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete
JP2005023726A (en) * 2003-07-01 2005-01-27 Taisei Corp Joining structure of beam and floor slab and joining method for beam and floor slab

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486202A (en) * 1990-07-31 1992-03-18 Ishikawajima Constr Materials Co Ltd Manufacture of fiber reinforced concrete product
JPH06248742A (en) * 1993-02-24 1994-09-06 Kajima Corp Rc floor slab
JPH10131125A (en) * 1996-10-31 1998-05-19 Tokai Rubber Ind Ltd Elastic form material for precast concrete floor board and method for executing precast concrete floor board construction
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete
JP2005023726A (en) * 2003-07-01 2005-01-27 Taisei Corp Joining structure of beam and floor slab and joining method for beam and floor slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762879A (en) * 2015-04-21 2015-07-08 南京交通职业技术学院 Jointless expansion structure of cement concrete bridge deck pavement layer

Also Published As

Publication number Publication date
JP2006219901A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4541916B2 (en) Synthetic floor slab
Täljsten et al. Concrete structures strengthened with near surface mounted reinforcement of CFRP
Oskouei et al. Experimental study of the punching behavior of GFRP reinforced lightweight concrete footing
Issa et al. Performance of transverse joint grout materials in full-depth precast concrete bridge deck systems
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
JP4541915B2 (en) Synthetic floor slab
KR100783818B1 (en) Seismic retrofitting method of high-performance fiber reinforced cementitious composites for existing structures
JP4390494B2 (en) Girder and floor slab joining structure and girder and floor slab joining method
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
JP4022205B2 (en) Joining structure of members
Abass et al. Shear behavior of reinforced concrete wide beams strengthened with CFRP sheet without stirrups
JP3952449B2 (en) Bridge superstructure
JP4035075B2 (en) Reinforcing structure and method for existing wall-like structure
Issa et al. Full-scale testing of prefabricated full-depth precast concrete bridge deck panel system
Palacios Performance of full-scale ultra-high performance fiber-reinforced concrete column subjected to extreme earthquake-type loading and effect of surface preparation on the cohesion and friction factors of the aashto interface shear equation
JP3910976B2 (en) Concrete member and method for reinforcing concrete member
JP2001159193A (en) Joining structure of steel pipe member and concrete member
Sharma Analytical research on ferrocement: design, strength and servicibility aspects
JP4097028B2 (en) How to repair polygonal column structures
JP3648094B2 (en) Construction method of earthquake-resistant wall of steel structure.
Elhadary et al. Projecting the resiliency of nano-modified cementitious composites with hybrid BFP/PVA fibers in shear key joints
Silva et al. Analysis of different interface treatments between masonry of AAC blocks and reinforced concrete structure after uniaxial compression strength test
Leung et al. SHCC permanent formwork for beam/slab members
JP2005171645A (en) Reinforcing method of overhanging beam section of reinforced concrete viaduct
Rai et al. Fiber Reinforced Polymer Composites, A novel way for strengthening structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4541916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees