JP2005171645A - Reinforcing method of overhanging beam section of reinforced concrete viaduct - Google Patents

Reinforcing method of overhanging beam section of reinforced concrete viaduct Download PDF

Info

Publication number
JP2005171645A
JP2005171645A JP2003414075A JP2003414075A JP2005171645A JP 2005171645 A JP2005171645 A JP 2005171645A JP 2003414075 A JP2003414075 A JP 2003414075A JP 2003414075 A JP2003414075 A JP 2003414075A JP 2005171645 A JP2005171645 A JP 2005171645A
Authority
JP
Japan
Prior art keywords
less
reinforced
fiber
concrete
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414075A
Other languages
Japanese (ja)
Inventor
Masaki Seki
雅樹 関
Tomonori Motokisawa
知紀 元木澤
Hiroshi Inaguma
弘 稲熊
Shigeaki Rokugo
恵哲 六郷
Minoru Kunieda
稔 国枝
Kumiko Suda
久美子 須田
Noboru Sakata
昇 坂田
Tetsushi Kanda
徹志 閑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003414075A priority Critical patent/JP2005171645A/en
Publication of JP2005171645A publication Critical patent/JP2005171645A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spraying reinforced material having the same inorganic system as that of a concrete skeleton capable of holding the integrity with the skeleton, obtaining the bending reinforced effective like in the case tension reinforcement is increased by using a fiber reinforced cement composite material of the reinforced material having at least traction yield strength 3.6 (MPa) and 0.5% or above of end elongation, reducing a reinforced cost for enabling the influence of self-weight to lighten, thinning down the increased thickness since area of reinforcement is decreased and increasing durability against an external deterioration factor since the width of flexural crack becomes very small. <P>SOLUTION: The roughening treatment is applied to the surface of concrete of the lower face of an overhanging beam section 22 of a reinforced concrete viaduct 21 so that the interfacial bond strength can become at least 1.5 N/mm<SP>2</SP>. Alternatively, the existing reinforcement 14 is chipped, and the high ductile fiber reinforced cement composite material (high ductile FRC material) 15 having at least traction yield strength 3.6 (MPa) and 0.5% or above of end elongation is sprayed thereon. Accordingly, maintenance expenses can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、鉄道橋である鉄筋コンクリート高架橋の張り出し梁部の補強工法に関するものである。   The present invention relates to a method for reinforcing an overhanging beam portion of a reinforced concrete viaduct that is a railway bridge.

例えば、鉄筋コンクリート高架橋において、張り出し梁部に新たに高さの高い防音壁等を設置する場合に、暴風時の風荷重に対して張り出し梁部の既設断面では使用性能が確保できないことが問題になる。   For example, in the case of a reinforced concrete viaduct, when installing a new soundproof wall with a high height on the overhanging beam part, it becomes a problem that the existing section of the overhanging beam part cannot secure the use performance against the wind load during a storm. .

このような場合に、従来はセメント系の補修材料を用いて下面増厚工法によって補強を行うことになる。   In such a case, conventionally, a cement-based repair material is used to reinforce by the lower surface thickening method.

下記特許文献1は、張り出し梁部ではなく、床板の補強方法であるが、図6に示すように補修を必要とする床板2の下面(床板2とプレートガータ1の接合部でコンクリートが下向きに膨らんでいる部分)に、必要数の定着孔4を穿設し、床板2の下面に所要量のせん断キー5を打ち込み、定着孔4に鉄筋またはFRPロッド等の棒状の補強筋6の両端を挿入し、定着孔4と補強筋6との隙間にグラウト材7を注入して定着する。   The following Patent Document 1 is a method of reinforcing a floor plate, not an overhanging beam portion, but the bottom surface of the floor plate 2 that requires repair as shown in FIG. 6 (concrete faces downward at the joint between the floor plate 2 and the plate garter 1). The necessary number of fixing holes 4 are drilled in the swelled part), a required amount of shear key 5 is driven into the lower surface of the floor board 2, and both ends of reinforcing bars 6 such as reinforcing bars or FRP rods are inserted into the fixing holes 4. Then, the grout material 7 is injected into the gap between the fixing hole 4 and the reinforcing bar 6 and fixed.

定着長が十分にとれない場合は、機械式定着具8を併用する。補強
筋6を配筋した下方に型枠を設置し、床板2下面と型枠との間にコンクリートまたはモルタルを注入する。
If the fixing length is not sufficient, the mechanical fixing device 8 is used in combination. A formwork is installed below the reinforcing bars 6 and concrete or mortar is injected between the lower surface of the floor board 2 and the formwork.

特開平8−218326号公報JP-A-8-218326

この特許文献1のような増厚工法では、必要鉄筋量が多くなるため、躯体全体の厚さが厚くなってしまうという欠点がある。   In the thickening method as in Patent Document 1, since the amount of necessary reinforcing bars is increased, there is a drawback that the thickness of the entire casing is increased.

なお、張り出し梁部には、風荷重の作用等によって曲げひび割れが発生するため、外的な劣化因子の浸入を遮断する必要が生じる。   It should be noted that bending cracks are generated in the overhanging beam portion due to the action of wind load or the like, so that it is necessary to block the penetration of external deterioration factors.

これに対しては、従来は表面被覆材を塗布しているが、表面被覆材については、荷重を繰返し受けることによって、曲げひび割れが表面被覆材を貫通するため、定期的な補修を必要とし、維持管理費の増大につながっている。   For this, surface coating material has been applied in the past, but for surface coating material, bending cracks penetrate through the surface coating material by repeatedly receiving a load, so periodic repairs are required. This has led to an increase in maintenance costs.

さらに、表面保護工として表面被覆材は、樹脂塗料系、ポリマー系材料で、材料の強度および遮蔽性が高いという利点を有するが、材料が高価であること、また、弾性係数や熱膨張係数が既存躯体のコンクリートと大きく異なるため、外力が繰り返し加わると、この外力により既存部分との間に剥離が生じて剥落しやすい欠点がある。   Furthermore, as a surface protector, the surface coating material is a resin paint-based or polymer-based material, and has the advantage of high material strength and shielding properties. However, the material is expensive, and has an elastic coefficient and thermal expansion coefficient. Since it is greatly different from the concrete of the existing frame, there is a drawback that when external force is repeatedly applied, the external force causes separation between the existing part and peeling off easily.

特に、樹脂塗では紫外線に弱い場合が多く、また、前記のように有機特有の樹脂特性と無機特有の躯体のコンクリート特性とが異なるため、追随性が悪い。   In particular, the resin coating is often weak against ultraviolet rays, and the followability is poor because the resin characteristic peculiar to organic and the concrete characteristic peculiar to inorganic are different as described above.

この発明の目的は前記従来例の不都合を解消し、補強材はコンクリート躯体と同じ無機系のものであり、躯体との一体性を保持でき、しかも、増厚厚さを小さくし、供用期間中における維持管理費をできるだけ少なくできる鉄筋コンクリート高架橋の張り出し梁部の補強工法を提供することにある。   The object of the present invention is to eliminate the inconveniences of the conventional examples, and the reinforcing material is the same inorganic material as the concrete case, can maintain the integrity with the case, and further reduce the thickness and increase the service life. The purpose of this project is to provide a method to reinforce the overhanging beam section of a reinforced concrete viaduct that can reduce the maintenance cost as much as possible.

前記目的を達成するため、請求項1記載のこの発明は、鉄筋コンクリート高架橋の張り出し梁部の下面のコンクリートの表面を界面の付着強度が1.5N/mm以上になるような目粗しの処理を行うか、または、既存鉄筋をはつりだし、ここに引張降伏強度2.0(MPa)以上、終局伸び0.5%以上の繊維補強セメント複合材料を吹き付けることを要旨とするものである。 In order to achieve the above object, the present invention according to claim 1 is characterized in that the surface of the concrete on the lower surface of the overhanging beam portion of the reinforced concrete viaduct is subjected to a roughening treatment such that the adhesion strength of the interface is 1.5 N / mm 2 or more. The gist of the present invention is to carry out or to lift an existing rebar and spray a fiber-reinforced cement composite material having a tensile yield strength of 2.0 (MPa) or more and an ultimate elongation of 0.5% or more.

請求項1記載のこの発明によれば、引張降伏強度2.0(MPa)以上、終局伸び0.5%以上の繊維補強セメント複合材料を吹き付けることで、この吹付け補強部分において引張応力を負担することができる。   According to the first aspect of the present invention, by applying a fiber reinforced cement composite material having a tensile yield strength of 2.0 (MPa) or more and an ultimate elongation of 0.5% or more, it is possible to bear a tensile stress in the spray reinforcement portion. .

すなわち、通常のコンクリートやセメント系補修材料では、ひび割れが入るとすぐに0.02%程度の引張りひずみで引張り破断してしまうので、設計に引張り性能を考慮できない。これに対して、本発明は吹き付ける繊維補強セメント複合材料が、ひび割れ発生以降も引張応力が増加するという、いわゆる、擬似ひずみ硬化特性を示し、鉄筋の降伏ひずみ(約0.2%)の5倍以上の引張ひずみにおいてもひび割れ強度を下回らないと言う引張ひずみ性能に優れた特性を有している。この特性を有することにより、引張負担を設計に見込むことができる。   In other words, ordinary concrete and cement-based repair materials are not able to consider the tensile performance in the design because they break at a tensile strain of about 0.02% as soon as cracks occur. On the other hand, the fiber-reinforced cement composite material to be sprayed exhibits a so-called pseudo-strain hardening property that the tensile stress increases after the occurrence of cracking, and is more than 5 times the yield strain (about 0.2%) of the reinforcing bar. It has excellent tensile strain performance that it does not fall below the crack strength even in tensile strain. By having this characteristic, a tensile load can be expected in the design.

また、躯体コンクリートの表面に目粗しの処理を行い、その上に繊維補強セメント複合材料(高靱性FRC材料)を吹き付けることで、既存部分との一体化を図るためのアンカー等の設置も不要となり、施工性の向上が図れる。   Also, it is not necessary to install anchors etc. for integration with existing parts by roughening the surface of the concrete and spraying fiber reinforced cement composite material (high toughness FRC material) on it. Thus, the workability can be improved.

請求項2記載のこの発明は、繊維補強セメント複合材料は、
下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した高靱性の繊維補強セメント複合材料(高靱性FRC材料)であることを要旨とするものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
・細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下
・単位水量250kg/m以上400kg/m以下
・練り上がり時の空気量3.5%以上20%以下
・高性能AE減水剤量30kg/m未満
〔F1〕
・繊維径50μm以下
・繊維長:5〜20mm
・繊維引張強度:1500MPa〜2400MPa以下
This invention according to claim 2 is characterized in that the fiber-reinforced cement composite material is
The following [F1] PVA (Polyvinyl Alcohol) short fibers are added to the formulation matrix of [M1], exceeding 1 to 3 Vol. The high-toughness fiber-reinforced cement composite material (high-toughness FRC material) blended three-dimensionally randomly or two-dimensionally with a blending amount of%.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
・ Maximum particle size of fine aggregate 0.8mm or less, average particle size 0.4mm or less ・ Unit water volume 250kg / m 3 or more and 400kg / m 3 or less ・ Air volume at the time of kneading 3.5% or more and 20% or less ・ High performance AE water reducing agent less than an amount 30kg / m 3 [F1]
・ Fiber diameter 50μm or less ・ Fiber length: 5-20mm
・ Fiber tensile strength: 1500 MPa to 2400 MPa or less

請求項2記載のこの発明によれば、高靱性の繊維補強セメント複合材料(高靱性FRC材料)はその調合のマトリクスと繊維配合量により、引張ひずみが1%を越えることで、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じる。   According to the second aspect of the present invention, the high-toughness fiber-reinforced cement composite material (high-toughness FRC material) has a tensile strain exceeding 1% due to its formulation matrix and fiber blending amount. Direction) and a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) occur in a direction substantially perpendicular to the direction.

よって、ひび割れを確実に微小な幅に制御できるものであり、このような高靱性の繊維補強セメント複合材料(高靱性FRC材料)を表面保護工として用いることで、曲げ荷重や疲労荷重による躯体コンクリートにひび割れが生じても機能を保持する表面保護工を実現できる。   Therefore, cracks can be reliably controlled to a very small width, and by using such a high toughness fiber reinforced cement composite material (high toughness FRC material) as a surface protector, frame concrete due to bending load or fatigue load Even if cracks occur, it is possible to realize a surface protection work that maintains the function.

以上述べたようにこの発明の鉄筋コンクリート高架橋の張り出し梁部の補強工法は、吹き付ける補強材はコンクリート躯体と同じ無機系のものであり、躯体との一体性を保持でき、この補強材は引張降伏強度2.0(MPa)以上、終局伸び0.5%以上の繊維補強セメント複合材料を用いることによって引張り鉄筋を増加させた場合と同様に曲げ補強効果が得られるものである。   As described above, the reinforcing method of the overhanging beam portion of the reinforced concrete viaduct of the present invention is that the reinforcing material to be sprayed is the same inorganic system as the concrete frame, and can maintain the integrity with the frame, and this reinforcing material has the tensile yield strength By using a fiber reinforced cement composite material having 2.0 (MPa) or more and an ultimate elongation of 0.5% or more, the bending reinforcement effect can be obtained in the same manner as when the tensile reinforcement is increased.

また、通常のコンクリートを用いた場合に比べて鉄筋量が少なくなるので、増厚厚さが薄くなり、自重の影響を軽減できるため、補強コストが低減できる。   In addition, since the amount of reinforcing bars is reduced compared to the case of using normal concrete, the thickness of the increased thickness is reduced and the influence of its own weight can be reduced, so that the reinforcement cost can be reduced.

さらに、曲げひび割れ幅が非常に小さくなるので外的な劣化因子に対する耐久性が向上する。維持管理費が低減できるものである。   Furthermore, since the bending crack width is very small, durability against external deterioration factors is improved. Maintenance costs can be reduced.

以下、図面についてこの発明の実施の形態を詳細に説明する。図1はこの発明の鉄筋コンクリート高架橋21の張り出し梁部22の補強工法の1実施形態を示す説明図で、図中10は橋軸直角方向に並列し、橋軸方向に間隔を隔てて配列する橋脚、11は橋軸直角方向に並列する橋脚10を連結する梁、12は橋軸方向に隣接する橋脚10を連結する桁、13は鉄道軌道が敷設される、または、道路となるスラブであり、このスラブ13の延設部として張り出し梁部22がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing an embodiment of a method for reinforcing a projecting beam portion 22 of a reinforced concrete viaduct 21 according to the present invention. In FIG. 1, reference numeral 10 denotes a bridge pier arranged in parallel in the direction perpendicular to the bridge axis and arranged at intervals in the bridge axis direction. , 11 is a beam for connecting piers 10 parallel to the direction perpendicular to the bridge axis, 12 is a girder for connecting adjacent piers 10 in the direction of the bridge axis, 13 is a slab on which a railroad track is laid or becomes a road, There is an overhanging beam portion 22 as an extension portion of the slab 13.

張り出し梁部22は鉄道橋の梁等の、大きな活荷重を負担し、過酷な曲げ疲労を受けるものである。   The overhanging beam portion 22 bears a large live load such as a railroad bridge beam and receives severe bending fatigue.

前記鉄筋コンクリート高架橋21の張り出し梁部22の下面のコンクリートの表面を界面の付着強度が1.5N/mm以上になるような目粗しの処理を行うか、または、既存鉄筋14をはつりだし、ここに引張降伏強度2.0(MPa)以上、終局伸び0.5%以上、望ましくは1%以上の高靱性の繊維補強セメント複合材料(高靱性FRC材料)15を吹き付ける。なお、必要に応じて鉄筋またはFRPを配置するようにしてもよい。 The concrete surface on the lower surface of the overhanging beam portion 22 of the reinforced concrete viaduct 21 is subjected to a roughening treatment such that the adhesion strength of the interface is 1.5 N / mm 2 or more, or the existing rebar 14 is lifted. A high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 having a tensile yield strength of 2.0 (MPa) or more, an ultimate elongation of 0.5% or more, and preferably 1% or more is sprayed. In addition, you may make it arrange | position a reinforcing bar or FRP as needed.

前記目粗しの処理は、高圧洗浄、サンドブラスト、サンダー等によるものであり、例えば、±1mm以下の凹凸をつけるものである。   The roughening treatment is performed by high-pressure cleaning, sand blasting, sander, or the like, and for example, unevenness of ± 1 mm or less is applied.

この高靱性の繊維補強セメント複合材料(高靱性FRC材料)15は、材令28日の硬化体の引張試験において引張ひずみ(終局伸び)が0.5%以上、望ましくは1%以上を示すクラック(ひび割れ)分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
・細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下
・単位水量250kg/m以上400kg/m以下
・練り上がり時の空気量3%以上、20%以下
・高性能AE減水剤量30
kg/m未満
〔F1〕
・繊維径50μm以下
・繊維長:5〜20mm
・繊維引張強度:1500MPa〜2400MPa以下
This high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 has a crack (crack) that exhibits a tensile strain (final elongation) of 0.5% or more, preferably 1% or more in a tensile test of a cured product on the age of 28 days. ) A dispersion type PVA (Polyvinyl Alcohol) short fiber of [F1] described below was added to the preparation matrix of [M1] by 1 to 3 Vol. % Blending amount was three-dimensional random or two-dimensional random.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
・ Maximum particle size of fine aggregate 0.8mm or less, average particle size 0.4mm or less ・ Unit water volume 250kg / m 3 or more and 400kg / m 3 or less ・ Air volume 3% or more and 20% or less when kneaded ・ High performance AE water reduction 30 dosage
kg / m less than 3 [F1]
・ Fiber diameter 50μm or less ・ Fiber length: 5-20mm
・ Fiber tensile strength: 1500 MPa to 2400 MPa or less

高靱性の繊維補強セメント複合材料(高靱性FRC材料)15の特定する事項について以下にさらに説明する。〔M1〕の調合において、マトリクスの水結合材比が25%未満では〔F1〕の繊維にとってはマトリクスの弾性係数と破壊靭性が高くなってマルチクラックが発生せず、0.5%以上の引張ひずみ(終局伸び)が発生し難い。なお、水/結合材比は、詳しくは水/(セメント+混和材)を意味している。   The matters specified by the high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 will be further described below. In the formulation of [M1], when the water binder ratio of the matrix is less than 25%, the elastic modulus and fracture toughness of the matrix of the fiber of [F1] are high and multi-cracks do not occur, and a tensile strain of 0.5% or more ( (Eventual growth) is unlikely to occur. The water / binding material ratio specifically means water / (cement + admixture).

使用できる混和材としては、高炉スラグ微粉末、フライアッシュ、シリカフユーム、石灰石微粉末等が挙げられる。   Examples of admixtures that can be used include blast furnace slag fine powder, fly ash, silica fumes, and fine limestone powder.

セメントの一部をフライアッシュで置換した場合、置換率は全体結合量に対して重量比で40%以下(0を含む)とする。フライアッシュは粒子が球形のためにボールベアリング効果で流動性を改善できる。高炉スラグ微粉末は粒子が角張っているので、かかる効果は期待できない。   When a part of the cement is replaced with fly ash, the replacement ratio is 40% or less (including 0) in terms of weight ratio with respect to the total bonding amount. Fly ash can improve fluidity by the ball bearing effect because the particles are spherical. Since the blast furnace slag fine powder has angular particles, such an effect cannot be expected.

また、この繊維配合量であっても、繊維の長さが5mm未満であると、マルチクラックが発生しないので、5mm以上の長さのものを使用する必要がある。しかし、20mmより長いものを使用しても、前記の配合量ではマルチクラックが発生しなくなる。したがって〔F1〕の繊維の長さは5〜20mmとする必要があり、好ましくは8〜15mmである。   Moreover, even if it is this fiber compounding quantity, if the length of a fiber is less than 5 mm, since a multicrack will not generate | occur | produce, it is necessary to use the thing of length 5mm or more. However, even when a length longer than 20 mm is used, multi-cracking does not occur with the above blending amount. Therefore, the length of the fiber of [F1] needs to be 5 to 20 mm, preferably 8 to 15 mm.

セメントの種類として普通ポルトランドセメント(太平洋セメント株式会社製)、低熱は低熱ポルトランドセメント(太平洋セメント株式会社製)が使用できる。   As the type of cement, normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) and low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) can be used.

繊維は前記径、長さおよび引張強度を有するPVA繊維(ビニロン繊維)を使用した。   As the fiber, PVA fiber (vinylon fiber) having the above-mentioned diameter, length and tensile strength was used.

各材料を練り混ぜ、テーブルフローとボックス充填高さを測定すると共にそれらの試験において材料分離の程度を観察してそのフレッシュ性状を評価した。また、硬化後の特性としては、材令28日の引張試験に供し、引張応力−ひずみ曲線における最大引張応力値でのひずみ量(終局伸び量)(%)を求めマルチクラックの発生の有無を調べた。   Each material was kneaded, the table flow and the box filling height were measured, and the fresh properties were evaluated by observing the degree of material separation in these tests. In addition, as a characteristic after curing, it was subjected to a tensile test on the 28th day of the material age, and the strain amount (final elongation amount) (%) at the maximum tensile stress value in the tensile stress-strain curve was obtained to determine whether or not multi-crack occurred. Examined.

前記引張ひずみ(終局伸び)は、材令28日以上の硬化体の引張試験で得られる応力−歪み曲線において、最大引張応力値でのひずみ量(終局伸び量)(%)をいう。   The tensile strain (final elongation) refers to a strain amount (final elongation amount) (%) at a maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured product having a material age of 28 days or more.

図2に試験方法を示すが、実際には、材令28日での試験体(供試体)の引張試験(例えば断面30mm×13mmの試験体を80mmの試験区間で引張試験を行う)における引張ひずみ(終局伸び)(%)で代表される。終局伸びは、引張試験方法により測定された破断伸びの複数の測定値からを算出した平均値と標準偏差を用いて、5パーセントの危険率で推定した下側信頼区間の値以下に設定した設計用特性値である。   Fig. 2 shows the test method. Actually, the tensile test in a test specimen (test specimen) on the 28th day of material age (for example, a test specimen having a cross section of 30 mm x 13 mm is subjected to a tensile test in an 80 mm test section). It is represented by strain (ultimate elongation) (%). The ultimate elongation is designed to be equal to or less than the value of the lower confidence interval estimated with a 5 percent risk using the mean and standard deviation calculated from multiple measurements of the breaking elongation measured by the tensile test method. Characteristic value.

図3、図4に引張試験の結果を示す。図4は図3の一部分を拡大したものである。直線台形状部分が解析値である。この図からも知見できるように構造設計上設定できる材料設定値の例は下記表1のごときであり、設計値は、圧縮強度(MPa)が35.5以上、引張降伏強度(MPa)が2.0以上、ヤング係数(×10MPa)が1.5以上、終局伸びが0.5%以上となる。 3 and 4 show the results of the tensile test. FIG. 4 is an enlarged view of a part of FIG. The straight trapezoidal portion is the analysis value. Examples of material setting values that can be set in the structural design as can be seen from this figure are as shown in Table 1 below. The design values are 35.5 or more in compressive strength (MPa), 2.0 or more in tensile yield strength (MPa), The Young's modulus (× 10 4 MPa) is 1.5 or more and the ultimate elongation is 0.5% or more.

Figure 2005171645
Figure 2005171645

通常のコンクリートやセメント系補修材料では、ひび割れが入るとすぐに0.02%程度の引張りひずみで引張り破断してしまうので、設計に引張り性能を考慮できない。これに対して、高靱性の繊維補強セメント複合材料(高靱性FRC材料)15は、図3、図4に示すようにひび割れ発生以降も引張応力が増加するという、いわゆる、擬似ひずみ硬化特性を示し、鉄筋の降伏ひずみ(約0.2%)の5倍以上の引張ひずみにおいてもひび割れ強度を下回らないと言う引張ひずみ性能に優れた特性を有している。この特性を有することにより、引張負担を設計に見込むことができる。   With ordinary concrete and cement-based repair materials, as soon as cracks occur, they will break at a tensile strain of about 0.02%, so the tensile performance cannot be considered in the design. On the other hand, the high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 exhibits a so-called pseudo-strain hardening characteristic in which the tensile stress increases after the occurrence of cracks as shown in FIGS. It has excellent tensile strain performance that it does not fall below the cracking strength even at a tensile strain of 5 times or more the yield strain (about 0.2%) of the reinforcing bar. By having this characteristic, a tensile load can be expected in the design.

この引張ひずみが0.5%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じていることを意味する。   The tensile strain of 0.5% or more means that a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the loading direction (stress direction).

図3に吹き付けのシステムを示すと、ミキサ16で前記高靱性の繊維補強セメント複合材料(高靱性FRC材料)15を混練成形し、これをホッパー17で受けて、ポンプ18により耐圧ホース19を圧送し、圧搾空気を混入する吹付けガン20で吹き付ける。   FIG. 3 shows a spraying system in which the high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 is kneaded and formed by a mixer 16 and received by a hopper 17, and a pressure-resistant hose 19 is pumped by a pump 18. Then, it sprays with the spray gun 20 which mixes compressed air.

高靱性の繊維補強セメント複合材料(高靱性FRC材料)15では繊維によるクラックの拘束能力が高く、ひび割れの拡大を防ぎ、次のひび割れを発生させる。引き続き、次々と新たな微小なひび割れを数多く発生させるため、見かけ上非常に大きな引張りひずみが生じても荷重に耐えることができる。また、ひび割れを微小な幅(例えば0.05mm以下)に制御できる。   The high-toughness fiber-reinforced cement composite material (high-toughness FRC material) 15 has a high ability to restrain cracks caused by fibers, prevents the cracks from expanding, and generates the next cracks. Subsequently, since many new micro cracks are generated one after another, even if an apparently very large tensile strain occurs, it can withstand the load. Further, the crack can be controlled to a minute width (for example, 0.05 mm or less).

この発明の鉄筋コンクリート高架橋の張り出し梁部の補強工法の1実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the reinforcement construction method of the overhanging beam part of the reinforced concrete viaduct of this invention. 試験方法の説明図である。It is explanatory drawing of a test method. 図2に示したダンベル型の試験体による引張試験の結果を示したグラフである。It is the graph which showed the result of the tension test by the dumbbell-type test body shown in FIG. 図3の横軸が0〜10,000の部分の拡大図である。FIG. 4 is an enlarged view of a portion where the horizontal axis in FIG. 3 is 0 to 10,000. 吹付けのシステム図である。It is a system diagram of spraying. 従来例を示す縦断側面図である。It is a vertical side view which shows a prior art example.

符号の説明Explanation of symbols

1…プレートガータ 2…床板
4…定着孔 5…せん断キー
6…補強筋 7…グラウト材
8…機械式定着具 10…橋脚
11…梁 12…桁
13…スラブ 14…既存鉄筋
15…高靱性の繊維補強セメント複合材料(高靱性FRC材料)
16…ミキサ 17…ホッパー
18…ポンプ 19…耐圧ホース
20…吹付けガン 21…鉄筋コンクリート高架橋
22…張り出し梁部
DESCRIPTION OF SYMBOLS 1 ... Plate gutter 2 ... Floor board 4 ... Fixing hole 5 ... Shear key 6 ... Reinforcing bar 7 ... Grout material 8 ... Mechanical fixing tool 10 ... Pier 11 ... Beam 12 ... Girder 13 ... Slab 14 ... Existing rebar 15 ... High toughness Fiber reinforced cement composite (high toughness FRC material)
16 ... Mixer 17 ... Hopper 18 ... Pump 19 ... Pressure hose 20 ... Spray gun 21 ... Reinforced concrete viaduct 22 ... Overhang beam

Claims (2)

鉄筋コンクリート高架橋の張り出し梁部の下面のコンクリートの表面を界面の付着強度が1.5N/mm以上になるような目粗しの処理を行うか、または、既存鉄筋をはつりだし、ここに引張降伏強度2.0(MPa)以上、終局伸び0.5%以上の繊維補強セメント複合材料を吹き付けることを特徴とする鉄筋コンクリート張り出し梁部の補強工法。 The surface of the concrete on the underside of the reinforced concrete viaduct overhanging the surface of the concrete is roughened so that the bond strength at the interface is 1.5 N / mm 2 or more, or the existing rebar is pulled out and the tensile yield strength is applied here. Reinforcement method of reinforced concrete overhanging beam, characterized by spraying fiber reinforced cement composite material with 2.0 (MPa) or more and ultimate elongation of 0.5% or more. 繊維補強セメント複合材料は、
下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した高靱性の繊維補強セメント複合材料(高靱性FRC材料)である請求項1記載の鉄筋コンクリート張り出し梁部の補強工法。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
・細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下
・単位水量250kg/m以上400kg/m以下
・練り上がり時の空気量3.5%以上20%以下
・高性能AE減水剤量30
kg/m未満
〔F1〕
・繊維径50μm以下
・繊維長5〜20mm
・繊維引張強度:1500MPa〜2400MPa以下
Fiber reinforced cement composite material
The following [F1] PVA (Polyvinyl Alcohol) short fibers are added to the formulation matrix of [M1], exceeding 1 to 3 Vol. The reinforcing method for a reinforced concrete overhanging beam portion according to claim 1, which is a high-toughness fiber-reinforced cement composite material (high-toughness FRC material) blended three-dimensionally randomly or two-dimensionally in a blending amount of 2%.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
・ Maximum particle size of fine aggregate 0.8mm or less, average particle size 0.4mm or less ・ Unit water volume 250kg / m 3 or more and 400kg / m 3 or less ・ Air volume at the time of kneading 3.5% or more and 20% or less ・ High performance AE water reducing agent Amount 30
kg / m less than 3 [F1]
・ Fiber diameter 50μm or less ・ Fiber length 5-20mm
・ Fiber tensile strength: 1500 MPa to 2400 MPa or less
JP2003414075A 2003-12-12 2003-12-12 Reinforcing method of overhanging beam section of reinforced concrete viaduct Pending JP2005171645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414075A JP2005171645A (en) 2003-12-12 2003-12-12 Reinforcing method of overhanging beam section of reinforced concrete viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414075A JP2005171645A (en) 2003-12-12 2003-12-12 Reinforcing method of overhanging beam section of reinforced concrete viaduct

Publications (1)

Publication Number Publication Date
JP2005171645A true JP2005171645A (en) 2005-06-30

Family

ID=34733991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414075A Pending JP2005171645A (en) 2003-12-12 2003-12-12 Reinforcing method of overhanging beam section of reinforced concrete viaduct

Country Status (1)

Country Link
JP (1) JP2005171645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065623A (en) * 2012-09-25 2014-04-17 Kajima Corp Curable cement-based composite material for repair and repair method using the same
JP2015183451A (en) * 2014-03-25 2015-10-22 鹿島建設株式会社 Repair method for foundation part of steel bridge pier
CN107988923A (en) * 2016-03-10 2018-05-04 山东高速潍日公路有限公司 A kind of method of the automatic dabbing in works bottom surface
JP2019518893A (en) * 2016-06-08 2019-07-04 パカダール エス.エー. Method of design and manufacture of concrete structure based on verification of concrete fatigue strength by test

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065623A (en) * 2012-09-25 2014-04-17 Kajima Corp Curable cement-based composite material for repair and repair method using the same
JP2015183451A (en) * 2014-03-25 2015-10-22 鹿島建設株式会社 Repair method for foundation part of steel bridge pier
CN107988923A (en) * 2016-03-10 2018-05-04 山东高速潍日公路有限公司 A kind of method of the automatic dabbing in works bottom surface
JP2019518893A (en) * 2016-06-08 2019-07-04 パカダール エス.エー. Method of design and manufacture of concrete structure based on verification of concrete fatigue strength by test
JP7065041B2 (en) 2016-06-08 2022-05-11 パカダール エス.エー. Method of designing and manufacturing concrete structures based on verification of concrete fatigue strength by testing

Similar Documents

Publication Publication Date Title
JP4541916B2 (en) Synthetic floor slab
KR100783818B1 (en) Seismic retrofitting method of high-performance fiber reinforced cementitious composites for existing structures
Courard et al. Recommendations for the repair, the lining or the strengthening of concrete slabs or pavements with bonded cement-based material overlays
JP2006219900A (en) Composite floor slab
JP2001288899A (en) Cross section repairing method for structural member
KR101013088B1 (en) Shear reinforcing method and bending and shear simultaneously reinforcing method of a concrete structure
JP4817304B2 (en) Fiber reinforced mortar or fiber reinforced concrete, and method for constructing a frame using the same
KR100591913B1 (en) High-tension fiber-mixed reinforcing mortar
Zhang et al. Cyclic loading test for reinforced concrete columns strengthened with high-strength engineered cementitious composite jacket
JP2005171645A (en) Reinforcing method of overhanging beam section of reinforced concrete viaduct
CN102912893B (en) High-ductility fiber concrete combination block masonry wall and construction method thereof
JP2010144377A (en) Covering structure and covering method
US20220089489A1 (en) Concrete structure repaired and reinforced using textile grid reinforcement and highly durable inorganic binder and method of repairing and reinforcing the same
Yadav et al. Enlargement of geo polymer compound material for the renovation of conventional concrete structures
Rakgate et al. Effectiveness of surface preparation on the capacity of plated reinforced concrete beams
JP2004324285A (en) Surface protection method for skeleton concrete
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
JP4545667B2 (en) Floor slab repair method using buried formwork
JP4535421B2 (en) Slope concrete construction method
Shakir et al. Strengthening of reinforced self-compacting concrete T-deep beam with large opening by carbon fiber sheets
KR100572035B1 (en) Development of equipment and repairing mortar for shotcrete
JP2002371796A (en) Concrete repair method
CN206360401U (en) A kind of anti-bend reinforced device of beam
Bin Jumaat et al. Structural performance of reinforced concrete beams repairing from spalling
JP6313542B2 (en) Repair / reinforcement structure and repair / reinforcement method for existing steel girder longitudinal-cross girder joints

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127