JP4541915B2 - Synthetic floor slab - Google Patents

Synthetic floor slab Download PDF

Info

Publication number
JP4541915B2
JP4541915B2 JP2005034428A JP2005034428A JP4541915B2 JP 4541915 B2 JP4541915 B2 JP 4541915B2 JP 2005034428 A JP2005034428 A JP 2005034428A JP 2005034428 A JP2005034428 A JP 2005034428A JP 4541915 B2 JP4541915 B2 JP 4541915B2
Authority
JP
Japan
Prior art keywords
ribs
floor slab
less
bottom plate
ecc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005034428A
Other languages
Japanese (ja)
Other versions
JP2006219900A (en
Inventor
昇 坂田
久美子 須田
一郎 福田
豊 佐々木
茂希 本間
忍 高橋
栄世 岩村
清実 相河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2005034428A priority Critical patent/JP4541915B2/en
Publication of JP2006219900A publication Critical patent/JP2006219900A/en
Application granted granted Critical
Publication of JP4541915B2 publication Critical patent/JP4541915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、建築物や橋梁の床版、或いは、海洋等の構造物の耐圧面構造部材として使用可能な合成床版に関するものである。   The present invention relates to a composite floor slab that can be used as a floor slab of a building or a bridge, or a pressure-resistant surface structural member of a structure such as the ocean.

橋梁等の床版として、H形鋼やI形鋼に鉄筋を配筋した構造部材にコンクリートを打設した鋼コンクリート合成床版(以下、単に「合成床版」という)が知られる。   As a floor slab such as a bridge, a steel-concrete composite slab (hereinafter simply referred to as “synthetic floor slab”) in which concrete is placed on a structural member in which reinforcing bars are arranged on an H-shaped steel or an I-shaped steel is known.

下記特許文献1は、こうした合成床版の代表的なタイプを示すもので、図9に示すように、鋼板からなる埋殺し型枠(底板)1上にI形鋼やH形鋼よりなる形鋼2を定間隔で並べ、各形鋼2に開設した孔3に鉄筋4を配筋した構造部材5にコンクリート6を打設したものよりなっている。
特開平9−221706号公報
The following Patent Document 1 shows a typical type of such a synthetic floor slab. As shown in FIG. 9, a shape made of I-shaped steel or H-shaped steel on an embedded formwork (bottom plate) 1 made of a steel plate. The steel 2 is arranged at regular intervals, and the concrete 6 is placed on the structural member 5 in which the reinforcing bars 4 are arranged in the holes 3 opened in each shape steel 2.
JP-A-9-221706

合成床版としてはこのほか、構造部材の形鋼や鉄筋或いはケーブルにプレストレスを与えてコンクリートのひび割れの発生を防ぐようにしたものが知られ、軽量化を図るため鉄粉等を混入した膨張コンクリートを使用したものも知られる。   In addition to this, synthetic floor slabs are known that prestress structural steel, reinforcing bars, or cables to prevent the cracking of concrete. In order to reduce weight, expansion with iron powder mixed in The one using concrete is also known.

前記特許文献1の合成床版では、負曲げの部分などでは、コンクリートが引張側となるために、引張力は鉄筋のみで負担するため、断面が比較的大きくなり、また鉄筋量が多くなる。   In the composite floor slab of Patent Document 1, since the concrete is on the tension side in the negative bending portion or the like, the tensile force is borne only by the reinforcing bars, so the cross section becomes relatively large and the amount of reinforcing bars increases.

さらに、ひび割れ発生により劣化因子の浸透量が多くなることから、鉄筋や鋼板の腐食の問題が生じる。また、負曲げ部以外にも、乾燥収縮や温度差によってコンクリートにひび割れが生じ、その部分から水が浸入して床版の疲労耐久性が大幅に低下する。   Furthermore, since the penetration amount of deterioration factors increases due to the occurrence of cracks, the problem of corrosion of reinforcing bars and steel plates arises. In addition to the negative bending portion, cracking occurs in the concrete due to drying shrinkage and temperature difference, and water enters from that portion, and the fatigue durability of the floor slab is greatly reduced.

また、コンクリート6は粗骨材が形鋼2に開設した孔3にロッキングするなどするため、充填性に問題が残る。   In addition, since the concrete 6 locks the coarse aggregate in the hole 3 opened in the shape steel 2, there remains a problem in the filling property.

一方、コンクリートのひび割れの発生を防ぐために構造部材の形鋼や鉄筋或いはケーブルにプレストレスを与えるのでは手数がかかり、用途も限定されてしまう。   On the other hand, in order to prevent the occurrence of cracks in the concrete, applying prestress to the structural steel, reinforcing bar, or cable of the structural member is troublesome and uses are limited.

本発明の目的は前記従来例の不都合を解消し、プレストレスを与える必要がなく、コンクリートのひび割れを防ぎ、かつ強度を向上させることができ、しかも施工性も良好な合成床版を提供することを目的とする。   An object of the present invention is to provide a composite floor slab that eliminates the inconveniences of the conventional example, does not require prestress, prevents cracking of concrete, improves strength, and has good workability. With the goal.

前記目的を達成するため、請求項1記載の本発明は、型枠底板としての鋼板上に、多数の孔を帯状の鋼板に分布して設けたリブを適宜間隔を存して底板に対して直交するように並設し、これらリブおよび底板を主鉄筋代わりにし、前記リブの上方にこのリブと直交方向に配力鉄筋を適宜間隔おきに配設し、この底板上に前記リブおよび配力鉄筋が埋設する所定の厚さに、圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し かつ、リブは前記底板に溶接し、また、高靭性セメント複合材料(ECC)は前記リブの前記多数の孔に流入させることを要旨とするものである。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
In order to achieve the above object, the present invention according to claim 1 is directed to a steel plate as a mold bottom plate, and ribs provided with a large number of holes distributed in a strip-shaped steel plate with respect to the base plate at appropriate intervals. Arranged in parallel so that these ribs and bottom plate are used as main reinforcing bars, and distribution reinforcing bars are arranged above the ribs in the direction orthogonal to the ribs at appropriate intervals, and the ribs and distribution force are arranged on the bottom plate. to a predetermined thickness of reinforcing bars are embedded, compressive strength 30 N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, cracks dispersion indicated a tensile strain of 1% or more in a tensile test of the cured product of the wood age 28 days A PVA (Polyvinyl Alcohol) short fiber of the following [F1] is added to the formulation matrix of [M1] by 1 to 3 Vol. % High-toughness cement composite material (ECC) that is blended three-dimensionally or two-dimensionally randomly, and ribs are welded to the bottom plate, and high-toughness cement composite material (ECC) The gist is to flow into the plurality of holes of the rib .
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

請求項1記載の本発明によれば、コンクリートに替えて、高靭性セメント複合材料(ECC)を打設することにより、このECCがリブおよび底板や鉄筋と合成して引張力を負担するため、負曲げ区間においても断面を小さくできる。   According to the first aspect of the present invention, instead of concrete, by placing a high toughness cement composite material (ECC), this ECC is combined with the rib and the bottom plate and the reinforcing bar to bear the tensile force. The cross section can be reduced even in the negative bending section.

しかも、下部構造が小さくなるためコストが縮減できる。また、ひび割れ幅を抑制するため、劣化因子の浸透量が少なくなるため耐久性が向上する。乾燥収縮や温度差によるひび割れも分散するため耐久性が向上する。粗骨材を使用しておらず、かつ準自己充填性を示すため、充填性に優れる。   In addition, the cost can be reduced because the lower structure is smaller. Further, since the crack width is suppressed, the permeation amount of the deterioration factor is reduced, so that the durability is improved. Durability is improved because cracks due to drying shrinkage and temperature difference are also dispersed. Coarse aggregate is not used, and because it exhibits quasi self-filling properties, it is excellent in filling properties.

特に、リブについては、高靭性セメント複合材料(ECC)は粗骨材を使用していなので孔を閉塞して流動性を阻害することもない。   In particular, for ribs, high tough cement composite material (ECC) uses coarse aggregates, so that the pores are not blocked and flowability is not hindered.

また、前記リブの上方にこのリブと直交方向に配力鉄筋を適宜間隔おきに配設したことにより、主鉄筋代わりにしたリブがない部分についても作用する力の分散を図るとともに、乾燥収縮や温度応力によるひびわれを抑制することができる。   Further, by arranging the distribution reinforcing bars at appropriate intervals above the ribs in the direction orthogonal to the ribs, it is possible to distribute the force acting even on the part without the ribs instead of the main reinforcing bars, Cracks due to temperature stress can be suppressed.

前記作用に加えて、高靱性の繊維補強セメント複合材料(高靱性FRC材料)はその調合のマトリクスと繊維配合量により、引張ひずみが1%を越えることで、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じる。よって、ひび割れを確実に微小な幅に制御できるものである。   In addition to the above effects, high toughness fiber reinforced cement composite material (high toughness FRC material) has a tensile strain exceeding 1% depending on the matrix and fiber content of the formulation, and is almost perpendicular to the loading direction (stress direction). A crack dispersion type destruction phenomenon occurs in which many cracks (multi cracks) are generated in the direction. Therefore, cracks can be reliably controlled to a minute width.

さらに、リブは前記底板に溶接することで、底板と共に架設・供用時の荷重に抵抗するようにできる。また、高靭性セメント複合材料(ECC)は前記リブの前記多数の孔に流入させることにより、後死荷重および活荷重に対し前記底板を高靭性セメント複合材料(ECC)との合成部材とすることができる。なお、リブについては孔に鉄筋を通さない場合はより孔に対する高靭性セメント複合材料(ECC)の流動性を確保することができる。   Further, the rib can be welded to the bottom plate so as to resist the load at the time of erection and use together with the bottom plate. Further, the high-toughness cement composite material (ECC) is caused to flow into the numerous holes of the ribs, so that the bottom plate is made a composite member with the high-toughness cement composite material (ECC) against a post-dead load and a live load. Can do. In addition, about the rib, when not passing a reinforcing bar through a hole, the fluidity | liquidity of the high toughness cement composite material (ECC) with respect to a hole can be ensured more.

請求項2記載の本発明は、リブの孔に貫通させて鉄筋を配設することを要旨とするものである。   The gist of the present invention described in claim 2 is that the reinforcing bars are disposed through the holes of the ribs.

請求項2記載の本発明によれば、このような鉄筋を配設することでより確実に強度を確保することができる。   According to this invention of Claim 2, intensity | strength can be ensured more reliably by arrange | positioning such a reinforcing bar.

請求項3記載の本発明は、リブの孔に貫通させる鉄筋は、端部にフックまたは支圧板による定着部を設けることを要旨とするものである。   The gist of the present invention described in claim 3 is that the reinforcing bar penetrating the hole of the rib is provided with a fixing portion by a hook or a bearing plate at the end.

請求項3記載の本発明によれば、リブの孔に貫通させる鉄筋は、端部にフックまたは支圧板による定着部を設けることで、高靭性セメント複合材料(ECC)との定着を高め、より、効果的なものとすることができる。   According to the third aspect of the present invention, the reinforcing bar penetrating the hole of the rib is provided with a fixing portion by a hook or a bearing plate at the end portion, thereby improving the fixing with the high toughness cement composite material (ECC), and more. Can be effective.

請求項4記載の本発明は、前記リブと平行する方向に適宜間隔をおいて補強鉄筋を配設することを要旨とするものである。   The gist of the present invention described in claim 4 is that reinforcing reinforcing bars are arranged at appropriate intervals in a direction parallel to the ribs.

請求項4記載の本発明によれば、必要に応じて、リブと平行する補強鉄筋を配設して、強度を一層向上させることができる。   According to the fourth aspect of the present invention, it is possible to further improve the strength by arranging reinforcing reinforcing bars parallel to the ribs as necessary.

請求項5記載の本発明は、型枠底板としての鋼板とリブの表面には防水層を塗布し、その上に高靭性セメント複合材料(ECC)を打設することを要旨とするものである。   The gist of the present invention described in claim 5 is that a waterproof layer is applied to the surfaces of the steel plate and the rib as the mold bottom plate, and a high toughness cement composite material (ECC) is placed thereon. .

請求項5記載の本発明によれば、防水層を設けることで耐久性を向上させることができるが、防水層は鋼板との付着力のほうがコンクリートよりも高いため、ECC上に防水層を塗布する場合よりも、耐久性、施工性の面でも優れる。   According to the fifth aspect of the present invention, the durability can be improved by providing the waterproof layer, but the waterproof layer has a higher adhesion to the steel plate than the concrete, so the waterproof layer is applied on the ECC. It is also superior in terms of durability and workability compared to the case of doing.

以上述べたように本発明の合成床版は、プレストレスを与える必要がなく、コンクリートのひび割れを防ぎ、かつ強度を向上させることができ、しかも施工性も良好なものである。   As described above, the composite floor slab of the present invention does not need to be prestressed, can prevent cracking of concrete, improve strength, and has good workability.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の合成床版の第1実施形態を示す縦断正面図、図2は同上縦断側面図で、図中7は型枠としての底板を形成する鋼板である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal front view showing a first embodiment of the composite floor slab of the present invention, FIG. 2 is a longitudinal side view of the same, and 7 is a steel plate forming a bottom plate as a mold.

この底板を形成する鋼板7上に、多数の孔8を帯状の鋼板に分布して設けたリブ9を適宜間隔を存して底板に対して直交するように並設した。リブ9は前記底板7に溶接し、これら底板を形成する鋼板7およびリブ9は主鉄筋代わりにするものである。   On the steel plate 7 forming the bottom plate, ribs 9 provided with a large number of holes 8 distributed in a strip-shaped steel plate were juxtaposed so as to be orthogonal to the bottom plate with appropriate intervals. The rib 9 is welded to the bottom plate 7, and the steel plate 7 and the rib 9 forming the bottom plate are used as a substitute for the main reinforcing bar.

前記型枠底板としての鋼板7とリブ9の表面には防水層10を塗布する。この防水層10には市販の吹付け硬化型の防水樹脂塗料を適用できる。   A waterproof layer 10 is applied to the surfaces of the steel plate 7 and the rib 9 as the mold bottom plate. A commercially available spray-curing waterproof resin coating can be applied to the waterproof layer 10.

前記リブ9の上方にこのリブと直交方向に配力鉄筋11を適宜間隔おきに配設する。   Distributing reinforcing bars 11 are disposed above the ribs 9 at appropriate intervals in a direction orthogonal to the ribs.

そして、型枠底板としての鋼板7とリブ9上に前記リブ9および配力鉄筋11が埋設する所定の厚さに、圧縮強度30N/mm以上、引張強度1.5N/mm以上、弾性係数15000N/mm以上の高靭性セメント複合材料(ECC)12を打設して、本発明の合成床版13を形成した。高靭性セメント複合材料(ECC)12は前記リブ9の前記多数の孔8に流入させる。 Then, a predetermined thickness of the ribs 9 and Hairyoku reinforcing bar 11 on the steel plate 7 and the ribs 9 of the mold bottom plate is embedded, compressive strength 30 N / mm 2 or more, a tensile strength of 1.5 N / mm 2 or more, the elastic A high toughness cement composite material (ECC) 12 having a coefficient of 15000 N / mm 2 or more was cast to form the synthetic floor slab 13 of the present invention. A high toughness cement composite (ECC) 12 flows into the plurality of holes 8 in the rib 9.

この高靭性セメント複合材料(ECC)12は、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合した。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m以上400kg/m以下
練り上がり時の空気量20%以上
高性能AE減水剤量30kg/m未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
This high toughness cement composite material (ECC) 12 is a crack dispersion type in which tensile strain is 1% or more in a tensile test of a cured product on the age of 28 days, and is a PVA (Polyvinyl Alcohol) short fiber of [F1] below 1 to 3 Vol. % Blending amount was three-dimensional random or two-dimensional random.
[M1]
-Water binder ratio (W / C) 25% or more-Sand binder weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more 400 kg / m 3 or less Air volume when kneaded 20% or more High-performance AE water reducing agent less than 30 kg / m 3 [F1]
Fiber diameter 50 μm or less Fiber length: 5-20 mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less

なお、前記〔M1〕の調合マトリクスにおいて、練り上がり時の空気量は3.5%以上20%以下でもよい。   In the [M1] preparation matrix, the amount of air when kneaded may be 3.5% or more and 20% or less.

前記引張ひずみは、材令28日以上の硬化体の引張試験で得られる応力−歪み曲線において、最大引張応力値でのひずみ量(%)をいう。実際には、材令28日での試験体の引張試験(例えば断面30mm×13mmの試験体を80mmの試験区間で引張試験を行う)における引張ひずみ(%)で代表される。   The tensile strain refers to a strain amount (%) at the maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured product having a material age of 28 days or more. Actually, it is represented by a tensile strain (%) in a tensile test (for example, a test specimen having a cross section of 30 mm × 13 mm is subjected to a tensile test in an 80 mm test section) on the 28th day of the material age.

この引張ひずみが1%以上であることは、載荷方向(応力方向)とほぼ直角方向に多数のクラック(マルチクラック)が発生するクラック分散型の破壊現象が生じていることを意味する。   That the tensile strain is 1% or more means that a crack dispersion type fracture phenomenon in which a large number of cracks (multi-cracks) are generated in a direction substantially perpendicular to the loading direction (stress direction).

〔F1〕の条件を満たすビニロン短繊維としては,ポリビニールアルコール樹脂を原料として製造されたコンクリートと同等以上の弾性係数を有する短繊維であるのが好ましく,代表的なものとして繊維長12mm、繊維径0.04mm、引張強度1690N/mmの高強度ビニロン繊維を使用する。 The vinylon short fiber satisfying the condition of [F1] is preferably a short fiber having a modulus of elasticity equal to or greater than that of concrete manufactured using polyvinyl alcohol resin as a typical material. A high-strength vinylon fiber having a diameter of 0.04 mm and a tensile strength of 1690 N / mm 2 is used.

高靭性セメント複合材料(ECC)12を構成する材料は、セメント・混和材・細骨材・繊維・水であり、練り混ぜ量を60Lとした場合の割合は下記表1の通りである。   The materials constituting the high toughness cement composite material (ECC) 12 are cement, admixture, fine aggregate, fiber, and water, and the ratio when the mixing amount is 60 L is as shown in Table 1 below.

Figure 0004541915
Figure 0004541915

下記表2に示す計18ケースの室内試験結果を基に、以下に高靭性セメント複合材料(ECC)12の硬化物性について記す。なお、ケースの要因は、セメント種類と練上り温度とした。   Based on the indoor test results of 18 cases shown in Table 2 below, the cured material properties of the high toughness cement composite material (ECC) 12 will be described below. Case factors were cement type and kneading temperature.

1)圧縮強度および曲げ強度
圧縮強度試験は、JIS A 1108に準拠し、φ100×200mmの供試体を用いて行った。曲げ強度試験は、JIS R 5201に準拠し、40×40×160mmの試験体を用いて行った。両試験とも、各ケース3体ずつ試験を行い、全データの平均、標準偏差、変動係数および本データより算出される、5%不良率を許容する信頼区間の下限値(m‐1.645σ)を求めた。なお、試験材齢は28日とし、それまで温度20℃の環境で封かん状態にて養生を行った。
1) Compressive strength and bending strength The compressive strength test was performed using a specimen of φ100 × 200 mm in accordance with JIS A 1108. The bending strength test was performed in accordance with JIS R 5201 using a 40 × 40 × 160 mm specimen. In both tests, three cases are tested in each case, and the lower limit of the confidence interval (m-1.645σ) that allows a 5% defect rate calculated from the average, standard deviation, coefficient of variation, and this data of all data. Asked. In addition, the test material age was 28 days, and curing was performed in a sealed state in an environment at a temperature of 20 ° C. until then.

Figure 0004541915
Figure 0004541915

Figure 0004541915
Figure 0004541915

試験結果を前記表3に示す。圧縮強度の平均値は44.2N/mm2であり.標準偏差5.0N/mm2、変動係数11.4%であった。曲げ強度の平均は12.2N/mm2であり、標準偏差1.5N/mm2、変動係数11.8%であった。5%不良率を許容する信頼区間の下限値(m−1.645σ)は、圧縮強度で36.0N/mm2、曲げ強度で9.9N/mm2である。 The test results are shown in Table 3 above. The average value of the compressive strength is at 44.2N / mm 2. The standard deviation was 5.0 N / mm 2 and the coefficient of variation was 11.4%. Average flexural strength was 12.2N / mm 2, standard deviation 1.5 N / mm 2, was 11.8% coefficient of variation. 5% the lower limit of the confidence interval which permits defect rate (m-1.645σ) is, 36.0N / mm 2 in compression strength, bending strength 9.9N / mm 2.

2)引張強度および引張ひずみ
引張試験方法を図4に示す。直接引張試験については、その試験方法が規格化されていないため、ダンベル型の供試体(測定区間長80mm、幅30mm、厚さ113mm)を用いた直接引張試験を抹用した。試験材齢は28日とし、それまで温度20℃の環境で封かん状態にて養生を行った。
2) Tensile strength and tensile strain Fig. 4 shows the tensile test method. Since the test method was not standardized for the direct tensile test, a direct tensile test using a dumbbell specimen (measurement section length 80 mm, width 30 mm, thickness 113 mm) was used. The test material age was 28 days, and curing was performed in a sealed state in an environment at a temperature of 20 ° C. until then.

試験時の載荷速度は0.5mm/分とし、供試体15の両側に取り付けた2本の変位計16の平均で引張ひずみを評価した。図中、17は変位計ホルダ、18はホルダ固定用ボルトである。   The loading speed at the time of the test was 0.5 mm / min, and the tensile strain was evaluated by the average of the two displacement meters 16 attached to both sides of the specimen 15. In the figure, 17 is a displacement meter holder, and 18 is a holder fixing bolt.

なお、1ケースの試験件数は5体として試験を行い、二次曲げの影響を排除する目的で、一方のひずみ計の変位が他方の2倍以上となったデータについては、不良データとして扱い、採用しないこととした。   In addition, for the purpose of eliminating the effects of secondary bending, the data for which the displacement of one strain gauge is more than twice that of the other is treated as defective data. Not adopted.

高靭性セメント複合材料(ECC)12の応力−ひずみ関係の一例を図5に示す。通常のセメント系材料とは異なり、初期ひび割れ発生以降、引張ひずみの増加に伴い応力か徐々に増加する擬似ひずみ硬化特性を示すことかわかる。ここで高靭性セメント複合材料(ECC)12の引張降伏強度および引張終局ひずみを図5に示すとおり定義する。つまり、引張降伏強度は、金属材料の下降伏点に相当する値として定義し、引張終局ひずみは、引張降伏強度を確保できる最大のひずみとして定着した。このように高靭性セメント複合材料(ECC)12の引張側の応力ひずみ曲線を完全弾塑性モデルとして定義することで、高靭性セメント複合材料(ECC)12の引張特性を設計に利用することも可能になる。   An example of the stress-strain relationship of the high toughness cement composite material (ECC) 12 is shown in FIG. It can be seen that, unlike ordinary cementitious materials, it exhibits pseudo-strain hardening characteristics in which the stress gradually increases with the increase in tensile strain after the initial cracking. Here, the tensile yield strength and ultimate tensile strain of the high toughness cement composite material (ECC) 12 are defined as shown in FIG. That is, the tensile yield strength was defined as a value corresponding to the lowering yield point of the metal material, and the ultimate tensile strain was established as the maximum strain that could ensure the tensile yield strength. By defining the stress-strain curve on the tensile side of the high toughness cement composite material (ECC) 12 as a complete elastoplastic model, the tensile properties of the high toughness cement composite material (ECC) 12 can be used for the design. become.

有効な試験結果が得られた全84試験体の結果から算出した引張降伏強度と引張終局ひずみを下記表4に示す。   Table 4 below shows the tensile yield strength and ultimate tensile strain calculated from the results of all 84 specimens from which effective test results were obtained.

Figure 0004541915
Figure 0004541915

引張降伏強度の平均値は3.8N/mm2であり、標準偏差0.4N/mm2、変動係数10.5%であった。引張終局ひずみの平均は3.0%であり、標準偏差1.1%、変動係数37.8%であった。5%不良率を許容する信頼区間の下限値(m−1.645σ)は、引張降伏強度で3.1N/mm2、引張終局ひずみで1.1%である。 The average value of the tensile yield strength was 3.8 N / mm 2, standard deviation 0.4 N / mm 2, was 10.5% coefficient of variation. The average ultimate tensile strain was 3.0%, with a standard deviation of 1.1% and a coefficient of variation of 37.8%. The lower limit (m−1.645σ) of the confidence interval that allows a 5% defect rate is 3.1 N / mm 2 in tensile yield strength and 1.1% in ultimate tensile strain.

なお、高靭性セメント複合材料(ECC)12の引張終局ひずみは、鋼材の降伏レベルでのひずみ(0.2%程度)を大きく上回る値である。   The ultimate tensile strain of the high toughness cement composite material (ECC) 12 is a value that greatly exceeds the strain (about 0.2%) at the yield level of the steel material.

以上のように、高靭性セメント複合材料(ECC)12では繊維によるクラックの拘束能力が高く、ひび割れの拡大を防ぎ、次のひび割れを発生させる。引き続き、次々と新たな微小なひび割れを数多く発生させるため、見かけ上非常に大きな引張りひずみが生じても荷重に耐えることができる。   As described above, the high toughness cement composite material (ECC) 12 has a high ability to restrain cracks caused by fibers, prevents the expansion of cracks, and generates the next crack. Subsequently, since many new micro cracks are generated one after another, even if an apparently very large tensile strain occurs, it can withstand the load.

また、ひび割れを微小な幅(例えば0.05mm以下)に制御できるので、ひび割れからの水の浸透を防ぐことも可能である。ひび割れからの全ての浸透を防ぐことができない場合でも、浸透量はひび割れ幅の3乗に比例すると言われており、ひび割れ幅を制御できることは浸透量を大きく制限することができることになる。   Further, since the crack can be controlled to a minute width (for example, 0.05 mm or less), it is also possible to prevent water penetration from the crack. Even when it is not possible to prevent all penetration from cracks, it is said that the penetration amount is proportional to the cube of the crack width, and the ability to control the crack width can greatly limit the penetration amount.

そして、ひび割れからの水の浸透を防ぐことにより、水に溶解してコンクリートに浸入しコンクリートを劣化させる硫酸塩や酸等の物質から防護でき、共用年数の延長に大きく貢献することができる。   And by preventing the penetration of water from cracks, it can be protected from substances such as sulfates and acids that dissolve in water and enter concrete and degrade concrete, which can greatly contribute to the extension of the common life.

他の実施形態として、図6に示すように、リブ9の多数の孔8に鉄筋19を貫通させて、この鉄筋19を配設してもよい。   As another embodiment, as shown in FIG. 6, rebars 19 may be disposed by penetrating rebars 19 through a large number of holes 8 of rib 9.

この鉄筋19には端部にフックまたは支圧板による定着部20を設けるが、定着部20がフックの場合は、図7(A)に示すように、このフックの先端から進めて孔8に通し、反転させて本体部を通すようにすればよい。図7の例はフックはU字形の場合である。また、鉄筋19の長さは状況に応じて設定でき、図7(A)は長い場合、(B)は短い場合である。さらに、(C)に示すように、フックの向きは位相角を90度替えてもよい。(上下方向ではなく、水平方向)   The reinforcing bar 19 is provided with a fixing part 20 by a hook or a pressure plate at the end. When the fixing part 20 is a hook, it is advanced from the tip of the hook and passed through the hole 8 as shown in FIG. The body portion may be passed through by reversing. In the example of FIG. 7, the hook is U-shaped. Further, the length of the reinforcing bar 19 can be set according to the situation. FIG. 7A shows a long case and FIG. 7B shows a short case. Furthermore, as shown in (C), the direction of the hook may change the phase angle by 90 degrees. (Horizontal, not up / down)

また、図8に示すように、定着部20となるフックの形状も、(a)に示すように鋭角フックの場合、(b)に示すように直角フックの場合などでもよい。さらに、図8の(c)に示すように、フックの代りに定着板をもって定着部20としてもよい。   Further, as shown in FIG. 8, the shape of the hook serving as the fixing unit 20 may be an acute angle hook as shown in (a), a right angle hook as shown in (b), or the like. Further, as shown in FIG. 8 (c), a fixing plate 20 may be used instead of a hook.

他の実施形態として、図3に示すように、必要に応じて前記リブ9と平行する方向に適宜間隔をおいて補強鉄筋14を配設するようにしてもよい。   As another embodiment, as shown in FIG. 3, reinforcing reinforcing bars 14 may be arranged at appropriate intervals in a direction parallel to the ribs 9 as necessary.

通常はこの補強鉄筋14は配置しなくとも設計上の数値をクリアーできるが、補強鉄筋14を設けることで強度を高めることが可能となる。   Normally, the numerical value in the design can be cleared without arranging the reinforcing bar 14, but the strength can be increased by providing the reinforcing bar 14.

本発明の合成床版の第1実施形態を示す縦断正面図である。1 is a longitudinal front view showing a first embodiment of a composite floor slab of the present invention. 本発明の合成床版の第1実施形態を示す縦断側面図である。1 is a longitudinal sectional side view showing a first embodiment of a composite floor slab of the present invention. 本発明の合成床版の第2実施形態を示す縦断側面図である。It is a vertical side view which shows 2nd Embodiment of the synthetic floor slab of this invention. 直接引張試験方法を示す説明図である。It is explanatory drawing which shows a direct tensile test method. 引張性能を示すグラフである。It is a graph which shows tensile performance. 本発明の合成床版の第2実施形態を示す縦断正面図である。It is a vertical front view which shows 2nd Embodiment of the synthetic floor slab of this invention. 本発明の合成床版の第2実施形態での鉄筋の配置法を示す説明図である。It is explanatory drawing which shows the arrangement | positioning method of the reinforcing bar in 2nd Embodiment of the synthetic floor slab of this invention. 本発明の合成床版の第2実施形態での鉄筋の変形例を示す説明図である。It is explanatory drawing which shows the modification of the reinforcing bar in 2nd Embodiment of the synthetic floor slab of this invention. 従来例を示す斜視図である。It is a perspective view which shows a prior art example.

1…埋殺し型枠(底板) 2…形鋼
3…孔 4…鉄筋
5…構造部材 6…コンクリート
7…鋼板 8…孔
9…リブ 10…防水層
11…配力鉄筋 12…高靭性セメント複合材料(ECC)
13…合成床版 14…補強鉄筋
15…供試体 16…変位計
17…変位計ホルダ 18…ホルダ固定用ボルト
19…鉄筋 20…定着部
DESCRIPTION OF SYMBOLS 1 ... Burial formwork (bottom plate) 2 ... Shape steel 3 ... Hole 4 ... Reinforcement 5 ... Structural member 6 ... Concrete 7 ... Steel plate 8 ... Hole 9 ... Rib 10 ... Waterproof layer 11 ... Power distribution reinforcement 12 ... High toughness cement composite Material (ECC)
DESCRIPTION OF SYMBOLS 13 ... Composite floor slab 14 ... Reinforcing bar 15 ... Specimen 16 ... Displacement meter 17 ... Displacement meter holder 18 ... Holder fixing bolt 19 ... Reinforcing bar 20 ... Fixing part

Claims (5)

型枠底板としての鋼板上に、多数の孔を帯状の鋼板に分布して設けたリブを適宜間隔を存して底板に対して直交するように並設し、これらリブおよび底板を主鉄筋代わりにし、前記リブの上方にこのリブと直交方向に配力鉄筋を適宜間隔おきに配設し、この底板上に前記リブおよび配力鉄筋が埋設する所定の厚さに、圧縮強度30N/mm以上、引張強度1.5N/mm以上で、材令28日の硬化体の引張試験において引張ひずみが1%以上を示すクラック分散型であって、下記〔F1〕のPVA(Polyvinyl Alcohol)短繊維を、〔M1〕の調合マトリクスに、1越え3Vol.%の配合量で、3次元ランダムまたは2次元ランダムに配合してなる高靭性セメント複合材料(ECC)を打設し かつ、リブは前記底板に溶接し、また、高靭性セメント複合材料(ECC)は前記リブの前記多数の孔に流入させることを特徴とする合成床版。
〔M1〕
・水結合材比(W/C)25%以上
・砂結合材料重量比(S/C)が1.5以下(0を含む)
細骨材の最大粒径0.8mm以下、平均粒径0.4mm以下、
単位水量250kg/m 以上400kg/m 以下
高性能AE減水剤量30kg/m 未満
〔F1〕
繊維径50μm以下
繊維長:5〜20mm
繊維引張強度:1500MPa〜2400MPa以下
On the steel plate as the formwork bottom plate, ribs with a large number of holes distributed in the strip-shaped steel plate are arranged side by side so as to be orthogonal to the bottom plate at appropriate intervals. Further, the reinforcing bars are arranged at appropriate intervals above the ribs in a direction orthogonal to the ribs, and the compression strength is 30 N / mm 2 to a predetermined thickness where the ribs and the reinforcing bars are embedded on the bottom plate. As described above, it is a crack dispersion type having a tensile strength of 1.5 N / mm 2 or more and a tensile strain of 1% or more in a tensile test of a cured product on the 28th day of the material age, and has the following [F1] PVA (Polyvinyl Alcohol) short. The fiber is added to the formulation matrix of [M1], exceeding 1 and 3 Vol. % High-toughness cement composite material (ECC) that is blended three-dimensionally or two-dimensionally randomly, and ribs are welded to the bottom plate, and high-toughness cement composite material (ECC) Is a synthetic floor slab characterized by flowing into the plurality of holes of the rib .
[M1]
・ Water binder ratio (W / C) 25% or more
-Sand binding material weight ratio (S / C) is 1.5 or less (including 0)
Fine aggregate maximum particle size 0.8mm or less, average particle size 0.4mm or less,
Unit water volume 250 kg / m 3 or more and 400 kg / m 3 or less
High-performance AE water reducing agent amount less than 30kg / m 3
[F1]
Fiber diameter 50μm or less
Fiber length: 5-20mm
Fiber tensile strength: 1500 MPa to 2400 MPa or less
前記リブの孔に貫通させて鉄筋を配設する請求項1に記載の合成床版。   The composite floor slab according to claim 1, wherein reinforcing bars are disposed through the holes of the ribs. リブの孔に貫通させる鉄筋は、端部にフックまたは支圧板による定着部を設ける請求項2記載の合成床版。   The composite floor slab according to claim 2, wherein the reinforcing bar penetrating the hole of the rib is provided with a fixing portion by a hook or a pressure plate at the end. 前記リブと平行する方向に適宜間隔をおいて補強鉄筋を配設する請求項1記載ないし請求項3のいずれかに記載の合成床版。   The composite floor slab according to any one of claims 1 to 3, wherein reinforcing reinforcing bars are disposed at appropriate intervals in a direction parallel to the ribs. 型枠底板としての鋼板とリブの表面には防水層を塗布し、その上に高靭性セメント複合材料(ECC)を打設する請求項1ないし請求項4のいずれかに記載の合成床版。   The synthetic floor slab according to any one of claims 1 to 4, wherein a waterproof layer is applied to the surfaces of the steel plate and ribs as the mold bottom plate, and a high toughness cement composite material (ECC) is placed thereon.
JP2005034428A 2005-02-10 2005-02-10 Synthetic floor slab Expired - Fee Related JP4541915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034428A JP4541915B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034428A JP4541915B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Publications (2)

Publication Number Publication Date
JP2006219900A JP2006219900A (en) 2006-08-24
JP4541915B2 true JP4541915B2 (en) 2010-09-08

Family

ID=36982405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034428A Expired - Fee Related JP4541915B2 (en) 2005-02-10 2005-02-10 Synthetic floor slab

Country Status (1)

Country Link
JP (1) JP4541915B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635272B2 (en) * 2010-01-14 2014-12-03 新日鉄住金エンジニアリング株式会社 Integration method of bottom steel plate and concrete in composite floor slab.
JP6251101B2 (en) * 2014-03-25 2017-12-20 鹿島建設株式会社 Repair method for steel pier foundation
CN107245944B (en) * 2017-03-20 2022-11-18 山东大学 Novel ultrahigh-performance ECC bridge deck combined structure suitable for steel bridge and construction method
JP7324399B2 (en) * 2019-05-15 2023-08-10 株式会社大林組 pavement structure
KR102101131B1 (en) * 2019-11-22 2020-04-16 한국농어촌공사 3D grid compression panel of Seismic strengthening fiber reinforced concrete and repair and reinforcement method of structure for water channel using the same
CN112482213A (en) * 2020-12-08 2021-03-12 内蒙古工业大学 Rigid pavement structure of combined steel bridge deck and construction method thereof
CN115059230A (en) * 2022-07-22 2022-09-16 同济大学 Steel bar truss mechanism with light ECC prefabricated layer
CN115288348B (en) * 2022-09-13 2023-05-12 山东德利森绿能建材科技有限公司 Bottom die of steel bar truss and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486202A (en) * 1990-07-31 1992-03-18 Ishikawajima Constr Materials Co Ltd Manufacture of fiber reinforced concrete product
JP2001248113A (en) * 2000-03-06 2001-09-14 Shimizu Corp Steel/concrete composite floor board
JP2003321871A (en) * 2002-04-30 2003-11-14 Narimoto Miwa Construction method for placing freshly-mixed concrete on steel plate surface
JP2004003290A (en) * 2002-04-26 2004-01-08 Kurimoto Ltd Structure for preventing slippage between steel and concrete, and steel/concrete composite plate
JP2004270270A (en) * 2003-03-07 2004-09-30 Yokogawa Bridge Corp Steel concrete composite floor slab bridge
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486202A (en) * 1990-07-31 1992-03-18 Ishikawajima Constr Materials Co Ltd Manufacture of fiber reinforced concrete product
JP2001248113A (en) * 2000-03-06 2001-09-14 Shimizu Corp Steel/concrete composite floor board
JP2004003290A (en) * 2002-04-26 2004-01-08 Kurimoto Ltd Structure for preventing slippage between steel and concrete, and steel/concrete composite plate
JP2003321871A (en) * 2002-04-30 2003-11-14 Narimoto Miwa Construction method for placing freshly-mixed concrete on steel plate surface
JP2004270270A (en) * 2003-03-07 2004-09-30 Yokogawa Bridge Corp Steel concrete composite floor slab bridge
JP2004324285A (en) * 2003-04-25 2004-11-18 Kajima Corp Surface protection method for skeleton concrete

Also Published As

Publication number Publication date
JP2006219900A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4541916B2 (en) Synthetic floor slab
Tanarslan Flexural strengthening of RC beams with prefabricated ultra high performance fibre reinforced concrete laminates
JP4541915B2 (en) Synthetic floor slab
Leung et al. Development of pseudo-ductile permanent formwork for durable concrete structures
Singh et al. Experimental studies on strength and ductility of CFRP jacketed reinforced concrete beam-column joints
Anandan et al. Comparative study on the behavior of modified ferrocement wrapped columns and cfrp wrapped columns
Li et al. Potential use of strain hardening ECC in permanent formwork with small scale flexural beams
Afefy et al. Strengthening of shear-deficient RC beams using near surface embedded precast cement-based composite plates (PCBCPs)
Gazalba Flexural behavior of steel reinforced lightweight concrete slab with bamboo permanent formworks
Qi et al. Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate
Esfandiari et al. Laboratory investigation on the buckling restrained braces with an optimal percentage of microstructure, polypropylene and hybrid fibers under cyclic loads
Ahmed et al. Steel fiber as replacement of minimum shear reinforcement for one-way thick bridge slab
Löber et al. Structural Glass Fiber Reinforced Concrete for Slabs on Ground
Fehling et al. Experimental investigations on UHPC structural elements subject to pure torsion
JP3762143B2 (en) Construction method of reinforced / unanchored seismic reinforced walls
JP6214393B2 (en) Multiple fine cracked fiber reinforced cement composites
Punnoose et al. Experimental study of strengthening of RC deep beam with web opening
Sharma Analytical research on ferrocement: design, strength and servicibility aspects
Ata et al. Experimental analysis of RC beam strengthened with discrete glass fiber
Dahham et al. Static structural performance of continuous composite slab strengthened by CFRP laminate in the hogging moment region
Ladi et al. Experimental evaluation of reinforced concrete beam retrofitted with ferrocement
Mobin et al. Re-strengthening of reinforced concrete (RC) beam using near surface mounted (NSM) steel re-bars
Rydval et al. Functionally layered thin slabs made from UHPC and ECC composites
Nagaraja et al. A Comparative Study of The Retrofitting of Reinforced Concrete Beams Under Flexural Loading
Krishna et al. An Experimental Study on Behavior of RCC Columns Retrofitted using CFRP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4541915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees