JP2004003290A - Structure for preventing slippage between steel and concrete, and steel/concrete composite plate - Google Patents

Structure for preventing slippage between steel and concrete, and steel/concrete composite plate Download PDF

Info

Publication number
JP2004003290A
JP2004003290A JP2003028103A JP2003028103A JP2004003290A JP 2004003290 A JP2004003290 A JP 2004003290A JP 2003028103 A JP2003028103 A JP 2003028103A JP 2003028103 A JP2003028103 A JP 2003028103A JP 2004003290 A JP2004003290 A JP 2004003290A
Authority
JP
Japan
Prior art keywords
steel
concrete
rib
steel pipe
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028103A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
田中 正明
Toshiyuki Ishikawa
石川 敏之
Nobuto Okubo
大久保 宣人
Shigeyuki Matsui
松井 繁之
Akimitsu Kurita
栗田 章光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMAI TEKKO KK
Kurimoto Ltd
Katayama Stratech Corp
Original Assignee
KOMAI TEKKO KK
Kurimoto Ltd
Katayama Stratech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMAI TEKKO KK, Kurimoto Ltd, Katayama Stratech Corp filed Critical KOMAI TEKKO KK
Priority to JP2003028103A priority Critical patent/JP2004003290A/en
Publication of JP2004003290A publication Critical patent/JP2004003290A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Bridges Or Land Bridges (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slippage preventing structure for surely stopping slippage between a steel product and concrete, and for preventing cracks of concrete, and also to provide a steel/concrete composite plate. <P>SOLUTION: A steel-made rib 3 having a plurality of elongated holes 2 is erected on the bottom steel plate 1 of the steel/concrete composite plate, and a steel pipe 4 having a high rigidity is passed through each elongated hole 2 to be disposed intersecting perpendicularly to a rib 3, whereby the effect of stopping slippage of placed concrete 5 is secured enough, and deflection in the direction of disposing the steel pipe 4 due to repeated moment load is restrained by high bending rigidity of the steel pipe 4 without any increase in weight so as to prevent cracks of the concrete 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、鋼材面に打設されるコンクリートをずれ止めする構造と、鋼板で片面側の外郭を形成された鋼・コンクリート合成版に関するものである。
【0002】
【従来の技術】
橋梁等で用いられる鋼材とコンクリート間のずれ止めには、スタッド型ジベル、トラス型ジベル、孔あき鋼板型ジベル等、様々な構造のものが使用されている。このようなずれ止め構造は、外郭鋼板の片面側にコンクリートが打設される鋼・コンクリート合成版の中や、鋼主桁と各種コンクリート床版の結合部に多く用いられており、この他に、鋼主桁とコンクリート橋脚の結合部等に用いられることもある。
【0003】
前記スタッド型ジベルは構造が簡単であるが、スタッド1本当たりのコンクリートのずれ止め効果が小さいので、多数のスタッドを設ける必要がある。スタッド型ジベルは繰り返し荷重による疲労にも弱い。また、トラス型ジベルは、コンクリートのずれ止め効果は大きいが、構造が複雑で、打設されるコンクリートが回り込み難く、その充填性が悪くなる問題がある。一方、孔あき鋼板型ジベルは、比較的簡単な構造でコンクリートのずれ止め効果を期待でき、かつ、コンクリートの回り込みもよいことが知られている。
【0004】
この種の孔あき鋼板型ジベルを採用した鋼・コンクリート合成版としては、図6に示すような合成床版が周知である。この合成床版は、底面外郭を形成する底鋼板51の上面側に、所定の間隔を開けて孔あき鋼板製のリブ52を立設し、リブ52に所定の間隔を開けて設けられた複数の孔53に棒鋼54を通して、リブ52と直交方向に配筋し、底鋼板51上にコンクリート55を打設して、各リブ52と棒鋼54を埋設したものである。なお、各孔53でのコンクリート55の回り込みを確保するために、孔径は50〜100mm程度とされ、棒鋼54の直径はこれよりも十分に細い13〜22mm程度とされる。
【0005】
また、特開平9−221706号公報には、前記リブ52の上方にも鉄筋を配筋することが提案され、特開2001−248113号公報には、前記棒鋼54の両端部に定着頭部を一体に形成することが提案されている。
【0006】
【発明が解決しようとする課題】
上述した孔あき鋼板型ジベルを採用した従来の鋼・コンクリート合成版は、合成版に作用する繰り返しモーメント荷重により、リブの上端からコンクリートにひび割れが生じやすい問題がある。これは、リブの各孔に通される棒鋼が13〜22mm程度の小さな直径であまり曲げ剛性が大きくなく、繰り返しモーメント荷重による棒鋼の配筋方向での合成版の撓みを十分に抑制できないためである。
【0007】
前記棒鋼の曲げ剛性を高めるためには、棒鋼の直径を大きくすればよいが、棒鋼の直径を大きくすると、合成版の重量が増大する問題がある。また、コンクリートの回り込みを確保するためにリブの孔径も大きくする必要があるので、リブの高さが高くなり、合成版の厚み設計に支障を来す問題もある。
【0008】
上述したようなコンクリートのひび割れは、鋼・コンクリート合成版に限らず、コンクリートに撓みが生じる部位に孔あき鋼板型ジベルを採用した場合には生じる恐れがある。
【0009】
そこで、この発明の課題は、鋼材とコンクリート間のずれ止めを確実に行うことができ、かつ、コンクリートのひび割れを防止できるずれ止め構造と鋼・コンクリート合成版を提供することである。
【0010】
【課題を解決するための手段】
上記の課題を解決するために、この発明の鋼材とコンクリートのずれ止め構造は、鋼材のコンクリートが打設される面に沿って、帯状の鋼製リブを1枚または複数枚間隔を開けて立設し、複数の鋼パイプを前記リブの側面と概ね直角に交わるように配設して、これらのリブと鋼パイプを前記打設されるコンクリートで埋設し、前記鋼材とコンクリートとをずれ止めする構成を採用した。
【0011】
すなわち、鋼材のコンクリート打設面に、帯状の鋼製リブを1枚または複数枚間隔を開けて立設するとともに、複数の鋼パイプをリブの側面と概ね直角に交わるように配設して、これらのリブと鋼パイプを打設されるコンクリートで埋設することにより、リブと鋼パイプの組み合わせでコンクリートのずれ止め効果を確保するとともに、鋼材とコンクリートを合わせた全体の重量を増大させることなく、鋼パイプの高い曲げ剛性で、繰り返しモーメント荷重による鋼パイプの配設方向における撓みを抑制して、コンクリートのひび割れを防止できるようにした。また、鋼パイプはコンクリートと密着する表面積が大きく、1本当たりのコンクリートのずれ止め効果が大きいので、その配設本数を少なくすることができる。さらに、リブと平行方向のずれ止め効果のみならず、リブと直交方向のずれ止め効果も期待できる。
【0012】
前記各鋼パイプをリブの側面と交わるように配設する手段を、前記帯状のリブの長手方向に所定の間隔を開けて複数の孔を設け、これらの各孔に前記鋼パイプを通すものとすることにより、各鋼パイプを簡単な施工で配設することができる。
【0013】
前記リブの各孔を、リブの長手方向に延びる長孔とすることにより、鋼パイプを通したあとに、コンクリートの回り込みを許容する隙間を開けることができ、コンクリートの充填性をよくすることができる。
【0014】
前記各鋼パイプの外周の少なくとも一部を、前記リブの孔縁に溶接することにより、その輸送や現場での施工を容易にすることができる。
【0015】
また、この発明の鋼・コンクリート合成版は、片面の外郭を形成する外郭鋼板の片面側にコンクリートを打設し、打設されたコンクリートと前記外郭鋼板とをずれ止めする手段を設けた鋼・コンクリート合成版において、このずれ止め手段として、上述したいずれかのずれ止め構造を用いた構成を採用した。
【0016】
【発明の実施の形態】
以下、図1乃至図5に基づき、この発明の実施形態を説明する。図1は、本発明に係る鋼材とコンクリートのずれ止め構造を採用した鋼・コンクリート合成版を示す。この鋼・コンクリート合成版は橋梁用の床版であり、底面外郭を形成する底鋼板1の上面側に沿って、所定の間隔を開けて複数の孔2を設けた帯状の鋼製リブ3を、溶接により間隔を開けて平行に立設し、等しいピッチで設けられた各リブ3の孔2に鋼パイプ4を直角に通して、底鋼板1上にコンクリート5を打設し、各リブ3と鋼パイプ4を埋設したものである。この実施形態では、各リブ3は床版の幅方向に向けて立設され、各鋼パイプ4は床版の長手方向に配設されている。なお、リブ3の上方には鉄筋6も配筋されている。
【0017】
図2に示すように、前記各孔2は横長の長円形状に形成され、各孔2の中央に通された各鋼パイプ4の両側には、コンクリート5の回り込みを許容する十分な隙間が開けられている。なお、孔2の形状は、楕円形状や長方形形状等の他の横長形状としてもよい。
【0018】
図3は、図2の変形例を示す。この変形例では、各鋼パイプ4外周の上下部分が各孔2の縁に溶接されている。その他は、実施形態と同じである。このように、鋼パイプ4の外周を部分的に孔2の縁に溶接することにより、コンクリートの回り込みを確保した上で、コンクリートを打設する際に鋼パイプ4が所定の位置からずれるのを防止することができる。
【0019】
上記した実施形態では、鋼・コンクリート合成版の長手方向にずれ止め構造の鋼パイプを配設し、複数の鋼製リブを溶接で外郭鋼板に立設したが、鋼パイプは合成版の幅方向に配設してもよく、鋼製リブはボルト締め等で外郭鋼板に立設してもよい。
【0020】
また、実施形態では、鋼製リブに等しいピッチで孔を設けて各孔に鋼パイプを通すことにより、鋼パイプを等間隔に配設したが、孔のピッチを変化させて、各鋼パイプの配設間隔を適宜変えるようにしてもよい。なお、鋼製リブに孔を設けることなく、鋼パイプの端を溶接等で鋼製リブと交わるように固定してもよい。
【0021】
さらに、本発明に係る鋼材とコンクリートのずれ止め構造は、実施形態の鋼・コンクリート合成版の他に、鋼主桁と各種コンクリート床版の結合部や鋼主桁とコンクリート橋脚の結合部等、他の形態の鋼材とコンクリートの結合部にも採用することができる。
【0022】
【実施例1】
図1に示した鋼・コンクリート合成床版を用意し、これをスパンの長さ3000mmで支持して、その中央部に集中荷重Pを負荷する静的曲げ試験を行った。用意した床版の構造諸元は以下の通りである。

Figure 2004003290
【0023】
図4は、静的曲げ試験における荷重Pと撓み変位δの関係を示すグラフである。この試験結果より、実施例の床版は設計荷重PS (240kN)に対して十分な曲げ強度を有することが分かる。
【0024】
【実施例2】
実施例1と同様に、図1に示した鋼・コンクリート合成床版を用意し、移動する集中荷重を床版の支間中央位置に繰り返し負荷する輪荷重走行試験を行った。スパンの長さは2200mmとし、負荷する荷重とその繰り返し数は、177kNで30万回、206kNで30万回、さらに235kNで40万回の合計100万回とした。用意した床版の構造諸元は以下の通りである。
Figure 2004003290
【0025】
この輪荷重走行試験の結果、所定の100万回の繰り返し載荷を終了しても床版の破壊現象は発生せず、床版としての使用限界を超えるような撓みも認められなかった。この試験床版の設計荷重PS は100kNであり、本試験の載荷荷重はこれよりも十分大きいことから、実施例の床版は十分な疲労耐久性を有していることがわかる。
【0026】
【実施例3】
実施形態の鋼・コンクリート合成床版のコンクリートのずれ止め効果を調査するために、前記底鋼板に1つの孔を有する1枚のリブを溶接し、孔に1本の鋼パイプを通してコンクリートで埋設したテスト用サンプルを用意し、コンクリートのリブと平行方向へのずれ止めに対する押し抜き試験を行った。コンクリートのずれ止め効果は、コンクリートの押し抜き荷重Qで評価した。テスト用サンプルの厚さ寸法、リブとリブ孔の寸法、鋼パイプの寸法、およびコンクリート、リブ鋼板、鋼パイプの強度は、実施例1の合成床版と同じである。なお、比較例として、前記鋼パイプを直径16mmで同一強度の棒鋼とし、リブ孔を直径70mmの円形としたときの押し抜き破断荷重QB を、次式で算出した。
B = 1.45 {(d2 −φst 2 )・fcu+φst 2 ・fst}− 26.1   (1)
(1)式は、保坂らによる「孔あき鋼板ジベルのせん断特性に関する実験的研究」:土木学会構造工学論文集、Vol.46A(2000年 3月) に発表されたものであり、各記号の意味は、d:孔あき鋼板ジベルの孔径(mm)、φst:棒鋼の直径(mm)、fcu:コンクリートの圧縮強度(kN/mm2 )、fst:棒鋼の引張強度(kN/mm2 )である。
【0027】
図5は、押し抜き試験における押し抜き荷重Qとコンクリートと鋼パイプ間の相対ずれγとの関係を示すグラフである。(1)式から算出した棒鋼を用いた孔あき鋼板ジベルの押し抜き破断荷重QB が約400kNであるのに対して、実施例の押し抜き荷重Qは600kN強である。したがって、鋼パイプを用いた実施例のものは、棒鋼を用いた従来のものに対して、約50%コンクリートのずれ止め効果が向上している。また、実施例のものは、相対ずれγが増大しても押し抜き荷重Qが低下しておらず、じん性の高いずれ止め構造であることがわかる。
【0028】
【発明の効果】
以上のように、この発明の鋼材とコンクリートのずれ止め構造は、鋼材のコンクリート打設面に、帯状の鋼製リブを1枚または複数枚間隔を開けて立設するとともに、複数の鋼パイプをリブの側面と概ね直角に交わるように配設して、これらのリブと鋼パイプを打設されるコンクリートで埋設するようにしたので、リブと鋼パイプの組み合わせでコンクリートのずれ止め効果を十分に確保できるとともに、ずれ止め構造の重量を増大させることなく、鋼パイプの高い曲げ剛性で、繰り返しモーメント荷重による鋼パイプの配設方向における撓みを抑制し、コンクリートのひび割れを防止することができる。鋼パイプはコンクリートと密着する表面積が大きく、1本あたりのコンクリートのずれ止め効果が大きいので、その配設本数を少なくすることができる。さらに、リブと平行方向のずれ止め効果のみならず、リブと直交方向のずれ止め効果も期待できる。
【0029】
前記各鋼パイプをリブの側面と交わるように配設する手段を、前記帯状のリブの長手方向に所定の間隔を開けて複数の孔を設け、これらの各孔に前記鋼パイプを通すものとすることにより、各鋼パイプを簡単な施工で配設することができる。
【0030】
前記リブの各孔を、リブの長手方向に延びる長孔とすることにより、鋼パイプを通したあとに、コンクリートの回り込みを許容する隙間を開けることができ、コンクリートの充填性をよくすることができる。
【0031】
また、この発明の鋼・コンクリート合成版は、外郭鋼板の片面側に打設されるコンクリートのずれ止め手段として、上述した鋼材とコンクリートのずれ止め構造を採用したので、コンクリートのずれ止め効果を十分に確保でき、かつ、その重量を増大させることなく、鋼パイプの高い曲げ剛性でコンクリートのひび割れを防止することができる。なお、合成版を床版とする場合は、鋼パイプの内部空間を、ライフライン、通信回線、路面凍結防止ヒータ等の配設に利用することもできる。
【図面の簡単な説明】
【図1】本発明に係る鋼材とコンクリートのずれ止め構造を採用した鋼・コンクリート合成版を示す一部切欠き斜視図
【図2】図1の要部を拡大して示す斜視図
【図3】図2の変形例を示す斜視図
【図4】静的曲げ試験における荷重と撓み変位の関係を示すグラフ
【図5】押し抜き試験における荷重と相対ずれの関係を示すグラフ
【図6】従来の鋼・コンクリート合成床版を示す一部省略切欠き斜視図
【符号の説明】
1 底鋼板
2 孔
3 リブ
4 鋼パイプ
5 コンクリート
6 鉄筋[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for preventing concrete cast on a steel material surface from slipping, and to a steel / concrete composite plate having a steel plate having an outer shell on one side.
[0002]
[Prior art]
BACKGROUND ART Various structures such as stud-type dowels, truss-type dowels, and perforated steel plate dowels are used to prevent slippage between steel and concrete used in bridges and the like. Such slip-prevention structures are widely used in steel-concrete composite slabs in which concrete is cast on one side of the outer steel plate, and in the joints between steel main girders and various concrete slabs. In some cases, it is used as a joint between a steel girder and a concrete pier.
[0003]
Although the stud type dowel has a simple structure, a large number of studs need to be provided because the effect of preventing concrete from slipping per stud is small. Stud type dowels are also vulnerable to fatigue due to repeated loading. Further, the truss-type dowel has a large effect of preventing concrete from slipping, but has a problem that the structure is complicated, the concrete to be poured is hard to go around, and its filling property is deteriorated. On the other hand, it is known that a perforated steel plate type dowel can be expected to have an effect of preventing concrete from slipping with a relatively simple structure, and that the concrete can be wrapped around.
[0004]
As a steel / concrete composite plate employing this type of perforated steel plate type dowel, a composite floor slab as shown in FIG. 6 is well known. In this composite floor slab, ribs 52 made of a perforated steel plate are erected at predetermined intervals on the upper surface side of a bottom steel plate 51 forming a bottom outer shell, and a plurality of ribs 52 are provided at predetermined intervals on the ribs 52. A steel bar 54 is passed through a steel bar 54 in a hole 53, and is arranged in a direction perpendicular to the ribs 52. Concrete 55 is cast on the bottom steel plate 51, and the ribs 52 and the steel bar 54 are buried. In addition, in order to ensure that the concrete 55 wraps around each hole 53, the hole diameter is about 50 to 100 mm, and the diameter of the steel bar 54 is about 13 to 22 mm, which is sufficiently smaller than this.
[0005]
Also, Japanese Patent Application Laid-Open No. 9-221706 proposes that reinforcing bars are arranged above the ribs 52, and Japanese Patent Application Laid-Open No. 2001-248113 discloses that fixing heads are provided at both ends of the steel bar. It has been proposed to be formed integrally.
[0006]
[Problems to be solved by the invention]
The conventional steel / concrete composite plate employing the above-described perforated steel plate type dowel has a problem that the concrete is apt to crack from the upper end of the rib due to the repeated moment load acting on the composite plate. This is because the steel bar passed through each hole of the rib has a small diameter of about 13 to 22 mm and does not have much bending rigidity, and it is not possible to sufficiently suppress the bending of the composite plate in the rebar arrangement direction of the steel bar due to the repeated moment load. is there.
[0007]
In order to increase the bending rigidity of the bar, the diameter of the bar may be increased. However, if the diameter of the bar is increased, there is a problem that the weight of the composite plate increases. In addition, since it is necessary to increase the hole diameter of the rib in order to secure the wraparound of the concrete, the height of the rib is increased, and there is a problem that the thickness design of the composite plate is hindered.
[0008]
The above-described cracking of concrete is not limited to the steel-concrete composite plate, and may be caused when a perforated steel plate type jewel is used in a portion where the concrete bends.
[0009]
Therefore, an object of the present invention is to provide a slip-preventing structure and a steel-concrete composite plate that can surely prevent slippage between steel material and concrete and that can prevent cracks in concrete.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the structure for preventing slippage between steel and concrete according to the present invention is characterized in that one or more strip-shaped steel ribs are provided at intervals along the surface on which steel concrete is cast. And a plurality of steel pipes are disposed so as to intersect the side surface of the rib at substantially right angles, and these ribs and the steel pipe are buried in the concrete to be cast, and the steel material and the concrete are prevented from slipping. The configuration was adopted.
[0011]
That is, one or more strip-shaped steel ribs are erected on the concrete casting surface of the steel material at intervals, and a plurality of steel pipes are arranged so as to intersect the side surface of the rib substantially at right angles. By burying these ribs and steel pipes with cast concrete, the ribs and steel pipes can be combined to secure the concrete's slip-prevention effect, without increasing the overall weight of the steel and concrete combined. With the high bending rigidity of the steel pipe, bending in the direction in which the steel pipe is arranged due to repeated moment loads is suppressed, and cracking of concrete can be prevented. Further, since the steel pipe has a large surface area in close contact with concrete and a large effect of preventing concrete from slipping, the number of steel pipes can be reduced. Further, not only the effect of preventing displacement in the direction parallel to the rib but also the effect of preventing displacement in the direction perpendicular to the rib can be expected.
[0012]
Means for arranging each steel pipe so as to intersect the side surface of the rib, providing a plurality of holes at predetermined intervals in the longitudinal direction of the strip-shaped rib, and passing the steel pipe through each of these holes. By doing so, each steel pipe can be arranged with simple construction.
[0013]
By making each hole of the rib a long hole extending in the longitudinal direction of the rib, after passing through the steel pipe, it is possible to make a gap allowing the wraparound of the concrete, thereby improving the filling property of the concrete. it can.
[0014]
By welding at least a part of the outer circumference of each of the steel pipes to the edge of the hole of the rib, transportation and construction at the site can be facilitated.
[0015]
Further, the steel / concrete composite plate of the present invention is a steel / concrete plate provided with means for placing concrete on one side of an outer steel plate forming an outer shell on one side and preventing slippage between the cast concrete and the outer steel plate. In the concrete composite plate, a configuration using any one of the above-described slip prevention structures was adopted as the slip prevention means.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a steel / concrete composite plate employing a structure for preventing slippage between a steel material and concrete according to the present invention. This steel / concrete composite slab is a floor slab for a bridge. A strip-shaped steel rib 3 provided with a plurality of holes 2 at predetermined intervals is provided along the upper surface side of a bottom steel plate 1 forming a bottom shell. The steel pipe 4 is passed through the holes 2 of the ribs 3 provided at an equal pitch at a right angle, and concrete 5 is cast on the bottom steel plate 1 by welding. And the steel pipe 4 is buried. In this embodiment, each rib 3 stands upright in the width direction of the floor slab, and each steel pipe 4 is arranged in the longitudinal direction of the floor slab. Reinforcing bars 6 are also arranged above the ribs 3.
[0017]
As shown in FIG. 2, each hole 2 is formed in a horizontally long oval shape, and on both sides of each steel pipe 4 passed through the center of each hole 2, there is a sufficient gap to allow the concrete 5 to go around. It is open. The shape of the hole 2 may be another horizontally long shape such as an elliptical shape or a rectangular shape.
[0018]
FIG. 3 shows a modification of FIG. In this modification, the upper and lower portions of the outer periphery of each steel pipe 4 are welded to the edge of each hole 2. Others are the same as the embodiment. In this way, by partially welding the outer periphery of the steel pipe 4 to the edge of the hole 2, it is possible to ensure that the concrete wraps around, and to prevent the steel pipe 4 from shifting from a predetermined position when casting concrete. Can be prevented.
[0019]
In the above-described embodiment, the steel pipe of the steel / concrete composite plate is provided with a non-slip structure in the longitudinal direction, and a plurality of steel ribs are erected on the outer steel plate by welding. And the steel ribs may be erected on the outer steel plate by bolting or the like.
[0020]
Further, in the embodiment, the steel pipes are arranged at equal intervals by providing holes at the same pitch as the steel ribs and passing the steel pipes through the holes, but the pitch of the holes is changed to change the pitch of the steel pipes. The arrangement intervals may be appropriately changed. In addition, the end of the steel pipe may be fixed by welding or the like so as to cross the steel rib without providing a hole in the steel rib.
[0021]
Furthermore, the slip-prevention structure of steel and concrete according to the present invention is, besides the steel-concrete composite plate of the embodiment, a joint between a steel main girder and various concrete floor slabs, a joint between a steel main girder and a concrete pier, and the like. The present invention can also be applied to other types of joints between steel and concrete.
[0022]
Embodiment 1
A steel-concrete composite floor slab shown in FIG. 1 was prepared, supported by a span of 3000 mm, and subjected to a static bending test in which a concentrated load P was applied to the center. The structural specifications of the prepared floor slab are as follows.
Figure 2004003290
[0023]
FIG. 4 is a graph showing the relationship between the load P and the deflection displacement δ in the static bending test. From this test result, it can be seen that the floor slab of the example has a sufficient bending strength with respect to the design load P S (240 kN).
[0024]
Embodiment 2
In the same manner as in Example 1, the steel / concrete composite slab shown in FIG. 1 was prepared, and a wheel load running test was performed in which a moving concentrated load was repeatedly applied to the center of the span of the slab. The span length was 2200 mm, and the applied load and the number of repetitions were 300,000 times at 177 kN, 300,000 times at 206 kN, and 400,000 times at 235 kN, for a total of 1 million times. The structural specifications of the prepared floor slab are as follows.
Figure 2004003290
[0025]
As a result of the wheel load running test, no destruction phenomenon of the floor slab occurred even after predetermined one million repetitive loadings were completed, and no bending exceeding the use limit of the floor slab was observed. Design load P S of the test slab is 100 kN, since applied load of this test is sufficiently larger than this, the floor plates of Examples are seen to have sufficient fatigue resistance.
[0026]
Embodiment 3
In order to investigate the effect of the steel-concrete composite floor slab of the embodiment to prevent concrete from slipping, one rib having one hole was welded to the bottom steel plate, and the steel plate was buried with concrete through one steel pipe in the hole. A test sample was prepared, and a push-out test was performed on a concrete rib to prevent it from slipping in a direction parallel to the rib. The concrete slippage-preventing effect was evaluated by the concrete punching load Q. The thickness dimension of the test sample, the dimensions of the ribs and the rib holes, the dimensions of the steel pipe, and the strength of the concrete, rib steel plate, and steel pipe are the same as those of the composite floor slab of Example 1. As a comparative example, the steel pipe as the steel bars of the same intensity in diameter 16 mm, the punching breaking load Q B when the rib hole had a round shape having a diameter of 70 mm, was calculated by the following equation.
Q B = 1.45 {(d 2 -φ st 2) · f cu + φ st 2 · f st} - 26.1 (1)
Equation (1) is described by Hosaka et al., "Experimental study on shear characteristics of perforated steel dowel": Transactions of Japan Society of Structural Engineering, Vol. 46A (March 2000). The meaning of each symbol is as follows: d: hole diameter (mm) of perforated steel plate dowel, φ st : diameter of bar steel (mm), f cu : compressive strength of concrete (KN / mm 2 ), f st : tensile strength of bar steel (kN / mm 2 ).
[0027]
FIG. 5 is a graph showing a relationship between a punching load Q and a relative shift γ between concrete and a steel pipe in a punching test. (1) Whereas the punching breaking load Q B of perforated steel dowels using the calculated steel bar is approximately 400kN from equation load Q punching examples are 600kN little. Therefore, in the embodiment using the steel pipe, the effect of preventing the concrete from slipping by about 50% is improved as compared with the conventional one using the steel bar. Further, in the case of the embodiment, the punching load Q did not decrease even if the relative shift γ increased, and it can be seen that the structure has a high toughness and an end stop structure.
[0028]
【The invention's effect】
As described above, the structure for preventing the steel material and concrete from slipping according to the present invention is such that one or more strip-shaped steel ribs are erected at intervals on the concrete casting surface of the steel material, and a plurality of steel pipes are formed. The ribs and steel pipes are arranged so as to intersect at approximately right angles with the side faces of the ribs, and these ribs and steel pipes are buried with concrete to be cast. It is possible to prevent the concrete pipe from being bent due to the repeated moment load in the direction in which the steel pipe is arranged due to the high bending rigidity of the steel pipe without increasing the weight of the slip prevention structure, and to prevent the concrete from cracking. Steel pipes have a large surface area in close contact with concrete and have a large effect of preventing concrete from slipping, so that the number of steel pipes can be reduced. Further, not only the effect of preventing displacement in the direction parallel to the rib but also the effect of preventing displacement in the direction perpendicular to the rib can be expected.
[0029]
Means for arranging each steel pipe so as to intersect the side surface of the rib, providing a plurality of holes at predetermined intervals in the longitudinal direction of the strip-shaped rib, and passing the steel pipe through each of these holes. By doing so, each steel pipe can be arranged with simple construction.
[0030]
By making each hole of the rib a long hole extending in the longitudinal direction of the rib, after passing through the steel pipe, it is possible to make a gap allowing the wraparound of the concrete, thereby improving the filling property of the concrete. it can.
[0031]
In addition, the steel / concrete composite plate of the present invention employs the above-described structure for preventing slippage of steel and concrete as a means for preventing slippage of concrete cast on one side of the outer steel plate, so that the effect of preventing slippage of concrete is sufficient. And the concrete can be prevented from cracking with high bending rigidity of the steel pipe without increasing its weight. When the composite plate is a floor slab, the internal space of the steel pipe can be used for arranging a lifeline, a communication line, a road surface freezing heater, and the like.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a steel / concrete composite plate employing a structure for preventing slippage of steel material and concrete according to the present invention. FIG. 2 is an enlarged perspective view showing a main part of FIG. FIG. 4 is a perspective view showing a modification of FIG. 2; FIG. 4 is a graph showing a relationship between load and deflection displacement in a static bending test; FIG. 5 is a graph showing a relationship between load and relative displacement in a punching test; Cutaway perspective view of a partially omitted composite steel / concrete floor slab [Explanation of symbols]
1 bottom steel plate 2 hole 3 rib 4 steel pipe 5 concrete 6 steel bar

Claims (5)

鋼材のコンクリートが打設される面に沿って、帯状の鋼製リブを1枚または複数枚間隔を開けて立設し、複数の鋼パイプを前記リブの側面と概ね直角に交わるように配設して、これらのリブと鋼パイプを前記打設されるコンクリートで埋設し、前記鋼材とコンクリートとをずれ止めするようにした鋼材とコンクリートのずれ止め構造。Along the surface on which steel concrete is cast, one or more strip-shaped steel ribs are erected at intervals, and a plurality of steel pipes are disposed so as to intersect the side surfaces of the ribs at substantially right angles. Then, the ribs and the steel pipe are buried in the concrete to be cast, and the steel material and the concrete are prevented from slipping. 前記各鋼パイプをリブの側面と交わるように配設する手段が、前記帯状のリブの長手方向に所定の間隔を開けて複数の孔を設け、これらの各孔に前記鋼パイプを通すものである請求項1に記載の鋼材とコンクリートのずれ止め構造。The means for arranging each of the steel pipes so as to intersect with the side surface of the rib is provided with a plurality of holes at predetermined intervals in the longitudinal direction of the strip-shaped rib, and the steel pipe is passed through each of these holes. The structure for preventing slippage between a steel material and concrete according to claim 1. 前記リブの各孔を、リブの長手方向に延びる長孔とした請求項2に記載の鋼材とコンクリートのずれ止め構造。3. The structure according to claim 2, wherein each hole of the rib is an elongated hole extending in the longitudinal direction of the rib. 前記各鋼パイプの外周の少なくとも一部を、前記リブの孔縁に溶接した請求項2または3に記載の鋼材とコンクリートのずれ止め構造。The structure for preventing a steel material and concrete from slipping according to claim 2 or 3, wherein at least a part of an outer periphery of each of the steel pipes is welded to a hole edge of the rib. 片面の外郭を形成する外郭鋼板の片面側にコンクリートを打設し、打設されたコンクリートと前記外郭鋼板とをずれ止めするずれ止め手段を設けた鋼・コンクリート合成版において、このずれ止め手段として、請求項1乃至4のいずれかに記載のずれ止め構造を用いたことを特徴とする鋼・コンクリート合成版。In a steel-concrete composite plate provided with slip-stopping means for slipping concrete on one side of an outer steel sheet forming an outer shell on one side and preventing slippage between the poured concrete and the outer steel sheet, A steel / concrete composite plate using the slip-preventing structure according to any one of claims 1 to 4.
JP2003028103A 2002-04-26 2003-02-05 Structure for preventing slippage between steel and concrete, and steel/concrete composite plate Pending JP2004003290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028103A JP2004003290A (en) 2002-04-26 2003-02-05 Structure for preventing slippage between steel and concrete, and steel/concrete composite plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002125357 2002-04-26
JP2003028103A JP2004003290A (en) 2002-04-26 2003-02-05 Structure for preventing slippage between steel and concrete, and steel/concrete composite plate

Publications (1)

Publication Number Publication Date
JP2004003290A true JP2004003290A (en) 2004-01-08

Family

ID=30447467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028103A Pending JP2004003290A (en) 2002-04-26 2003-02-05 Structure for preventing slippage between steel and concrete, and steel/concrete composite plate

Country Status (1)

Country Link
JP (1) JP2004003290A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152647A (en) * 2004-11-29 2006-06-15 Kogi Corp Concrete composite cast iron lid
JP2006219900A (en) * 2005-02-10 2006-08-24 Kajima Corp Composite floor slab
JP2010138685A (en) * 2008-11-13 2010-06-24 Ihi Infrastructure Systems Co Ltd Dowel device for joining concrete member to steel member, combined floor slab having the dowel device, and steel-concrete structure
KR101357005B1 (en) * 2012-10-18 2014-02-03 (주)코스틸 Deck system for slab improved piping structure
CN103643631A (en) * 2013-11-30 2014-03-19 郑州大学 Cement concrete bridge deck pavement layer with temperature adjusting function
JP2018059345A (en) * 2016-10-06 2018-04-12 清水建設株式会社 Composite floor slab
CN108071070A (en) * 2016-11-11 2018-05-25 重庆大学 It a kind of longitudinal direction can limited slip joint
CN110258910A (en) * 2019-06-28 2019-09-20 中铁大桥科学研究院有限公司 Aperture sheet metal-ultra-high performance concrete composite structure and its construction method
JP2019183481A (en) * 2018-04-09 2019-10-24 株式会社駒井ハルテック Joining structure of composite floor slabs
CN112177217A (en) * 2020-09-09 2021-01-05 山东汇富建设集团建筑工业有限公司 Prestressed concrete truss laminated slab and manufacturing method thereof
CN113062201A (en) * 2021-02-22 2021-07-02 浙江大学 Profiled steel sheet assembled combination box bridge
CN113897862A (en) * 2021-09-29 2022-01-07 中电建路桥集团有限公司 Semi-rigid base pavement maintenance structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152647A (en) * 2004-11-29 2006-06-15 Kogi Corp Concrete composite cast iron lid
JP2006219900A (en) * 2005-02-10 2006-08-24 Kajima Corp Composite floor slab
JP4541915B2 (en) * 2005-02-10 2010-09-08 鹿島建設株式会社 Synthetic floor slab
JP2010138685A (en) * 2008-11-13 2010-06-24 Ihi Infrastructure Systems Co Ltd Dowel device for joining concrete member to steel member, combined floor slab having the dowel device, and steel-concrete structure
KR101357005B1 (en) * 2012-10-18 2014-02-03 (주)코스틸 Deck system for slab improved piping structure
CN103643631A (en) * 2013-11-30 2014-03-19 郑州大学 Cement concrete bridge deck pavement layer with temperature adjusting function
JP2018059345A (en) * 2016-10-06 2018-04-12 清水建設株式会社 Composite floor slab
CN108071070A (en) * 2016-11-11 2018-05-25 重庆大学 It a kind of longitudinal direction can limited slip joint
JP2019183481A (en) * 2018-04-09 2019-10-24 株式会社駒井ハルテック Joining structure of composite floor slabs
CN110258910A (en) * 2019-06-28 2019-09-20 中铁大桥科学研究院有限公司 Aperture sheet metal-ultra-high performance concrete composite structure and its construction method
CN112177217A (en) * 2020-09-09 2021-01-05 山东汇富建设集团建筑工业有限公司 Prestressed concrete truss laminated slab and manufacturing method thereof
CN113062201A (en) * 2021-02-22 2021-07-02 浙江大学 Profiled steel sheet assembled combination box bridge
CN113897862A (en) * 2021-09-29 2022-01-07 中电建路桥集团有限公司 Semi-rigid base pavement maintenance structure

Similar Documents

Publication Publication Date Title
CA2069814C (en) Load supporting structure
JP5443079B2 (en) Joint structure of precast composite slab
JP2004003290A (en) Structure for preventing slippage between steel and concrete, and steel/concrete composite plate
US20060179750A1 (en) Composite beam
KR100554408B1 (en) Composite Girder for Bridge and Construction Method
JP2003221808A (en) Corrugated steel-plate web girder
KR101119050B1 (en) structure for filling-up a steel reinforced concrete on H shaped section steel in slab bridge
KR101664997B1 (en) Constructing method of precast T type modular composite rahmen bridge and composite rahmen bridge constructed by the same, and construction thing therefor
KR101105404B1 (en) Deck plate system using cap plate
JP2008088634A (en) Composite steel-concrete floor slab
JP4086863B2 (en) Continuous girder structure in double span girder bridge
JP2008063805A (en) Connection structure of full precast concrete slab
JP2002275833A (en) Continuing method of simple beam of existing bridge and continuous beam structure
AU6999801A (en) A composite beam
KR200348999Y1 (en) Dubel for composite structure
KR100550241B1 (en) Girder bridge
JP6449805B2 (en) Synthetic deck deck plate
JP2000038797A (en) Semi-precast floor slab
JP2002088977A (en) Horizontal restraining bar for columnar concrete member and concrete member making use thereof
JP6868994B2 (en) Synthetic floor slab
JP2006183320A (en) Reinforcing structure and reinforcing method of corner part of existing steel pier
JP3587582B2 (en) Segment for tunnel
JP3950748B2 (en) Bridge girder
JP2002294628A (en) Continuous girder for bridge
JPH11350867A (en) Segment piece and construction method of underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040527

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Effective date: 20060810

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107

A521 Written amendment

Effective date: 20070104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070305

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070406

Free format text: JAPANESE INTERMEDIATE CODE: A912