JP2001226958A - Steel pipe concrete pile - Google Patents
Steel pipe concrete pileInfo
- Publication number
- JP2001226958A JP2001226958A JP2000034437A JP2000034437A JP2001226958A JP 2001226958 A JP2001226958 A JP 2001226958A JP 2000034437 A JP2000034437 A JP 2000034437A JP 2000034437 A JP2000034437 A JP 2000034437A JP 2001226958 A JP2001226958 A JP 2001226958A
- Authority
- JP
- Japan
- Prior art keywords
- steel pipe
- fiber
- concrete pile
- pipe concrete
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Piles And Underground Anchors (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼管を外殻とし、
その内側に圧縮強度130MPaを超える超高強度コンクリー
トをライニングした鋼管コンクリート杭に関する。The present invention relates to a steel pipe having an outer shell,
The present invention relates to steel pipe concrete piles lined with ultra-high-strength concrete exceeding 130 MPa in compressive strength.
【0002】[0002]
【従来の技術】従来より使用されている鋼管コンクリー
ト杭は、鋼管を外殻とし、圧縮強度80MPa程度の高強度
コンクリートを内側にライニングしているので、特に曲
げ抵抗力や曲げ剛性が大きく、大きな曲げモーメントや
せん断力が作用する基礎杭、あるいは変位の制限条件が
大きい場合の基礎杭として使用されている。2. Description of the Related Art Conventionally used steel pipe concrete piles have a steel pipe as an outer shell and a high-strength concrete with a compressive strength of about 80 MPa lining inside, so that the bending resistance and the bending rigidity are particularly large and large. It is used as a foundation pile on which a bending moment or a shear force acts, or as a foundation pile when displacement limitation is large.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前述し
た従来の鋼管コンクリート杭(圧縮強度80MPa程度の高
強度コンクリートを内側にライニングしたもの)には、
1)例えば、外径が600mmと大型の鋼管コンクリート杭の
場合では、コンクリート厚が80〜90mmと厚く、鋼管コン
クリート杭の重量が大きくなり、運搬等に手間がかか
る。また、杭の厚さも100mm程度と厚く、基礎杭として
の打ち込みにも手間がかかる。2)コンクリートの乾燥収
縮の防止や、鋼管とコンクリートの密着性を高めるため
に膨張材を使用するのが普通であるが、膨張材の使用に
よるケミカルプレストレスが過大とならないように注意
する必要がある。などの欠点があった。However, the above-mentioned conventional steel pipe concrete pile (having a high-strength concrete with a compressive strength of about 80 MPa lining on the inside) described above,
1) For example, in the case of a large steel pipe concrete pile with an outer diameter of 600 mm, the concrete thickness is as thick as 80 to 90 mm, the weight of the steel pipe concrete pile increases, and it takes time to transport and the like. In addition, the thickness of the pile is as thick as about 100 mm, and it takes time to drive as a foundation pile. 2) Intumescent materials are usually used to prevent drying shrinkage of the concrete and to improve the adhesion between the steel pipe and the concrete.However, care must be taken to avoid excessive chemical prestress due to the use of intumescent materials. is there. There were drawbacks such as.
【0004】そのため、コンクリート厚を薄くすること
ができ、また、膨張材を使用する必要のない鋼管コンク
リート杭が望まれていた。[0004] Therefore, there has been a demand for a steel pipe concrete pile which can reduce the thickness of concrete and does not require the use of an expanding material.
【0005】[0005]
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究した結果、特定の材料を組み合
わせた配合物で鋼管の内側をライニングすることによ
り、上記課題を解決することができるとの知見を得、本
発明に到達した。Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, has solved the above-mentioned problems by lining the inside of a steel pipe with a compound combining specific materials. The inventors have found that the present invention can be performed, and have reached the present invention.
【0006】即ち、本発明は、コンクリート部分が、少
なくとも、セメント、ポゾラン質微粉末、粒径2mm以下
の細骨材、減水剤、及び水を含む配合物の硬化体からな
る鋼管コンクリート杭(請求項1)であり、さらに、配
合物に、金属繊維及び/又は有機質繊維(請求項2)、
平均粒径3〜20μmの無機粉末(請求項5)、平均粒度1
mm以下の繊維状粒子又は薄片状粒子(請求項6)、粗骨
材(請求項7)を含むことが好ましいものである。That is, the present invention provides a steel pipe concrete pile in which the concrete portion is made of a hardened material of a compound containing at least cement, pozzolanic fine powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent, and water. Item 1), and the composition further comprises metal fibers and / or organic fibers (Claim 2).
Inorganic powder having an average particle size of 3 to 20 μm (claim 5), an average particle size of 1
It is preferable to include fibrous particles or flaky particles having a diameter of not more than mm (claim 6) and coarse aggregate (claim 7).
【0007】[0007]
【発明の実施の形態】以下、本発明について詳細に説明
する。本発明で使用するセメントの種類は限定するもの
ではなく、普通ポルトランドセメント、早強ポルトラン
ドセメント、中庸熱ポルトランドセメント、低熱ポルト
ランドセメント等の各種ポルトランドセメントや高炉セ
メント、フライアッシュセメント等の混合セメントを使
用することができる。本発明において、硬化体の早期強
度を向上しようとする場合は、早強ポルトランドセメン
トを使用することが好ましく、配合物の流動性を向上し
ようとする場合は、中庸熱ポルトランドセメントや低熱
ポルトランドセメントを使用することが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The type of cement used in the present invention is not limited, and various types of Portland cement such as ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, low-heat Portland cement, etc. and mixed cements such as blast furnace cement and fly ash cement are used. can do. In the present invention, if it is intended to improve the early strength of the cured product, it is preferable to use an early-strength Portland cement, and if it is intended to improve the fluidity of the composition, a moderate heat Portland cement or a low heat Portland cement is used. It is preferred to use.
【0008】ポゾラン質微粉末としては、シリカフュー
ム、シリカダスト、フライアッシュ、スラグ、火山灰、
シリカゾル、沈降シリカ等が挙げられる。一般に、シリ
カフュームやシリカダストでは、その平均粒径は、1.0
μm以下であり、粉砕等をする必要がないので本発明の
ポゾラン質微粉末として好適である。ポゾラン質微粉末
の配合量は、硬化体の強度や乾燥収縮量の低減から、セ
メント100重量部に対して5〜50重量部が好ましい。ポゾ
ラン質微粉末が少ないと強度発現性が低下する。ポゾラ
ン質微粉末の添加量が多くなると単位水量が増大するの
でやはり強度発現性が低下する。[0008] Pozzolanic fine powder includes silica fume, silica dust, fly ash, slag, volcanic ash,
Silica sol, precipitated silica and the like. Generally, silica fume and silica dust have an average particle size of 1.0
It is suitable for the pozzolanic fine powder of the present invention because it is not more than μm and does not need to be ground. The blending amount of the pozzolanic fine powder is preferably 5 to 50 parts by weight with respect to 100 parts by weight of cement from the viewpoint of reducing the strength of the cured product and the amount of drying shrinkage. When the amount of the pozzolanic fine powder is small, strength developability is reduced. When the addition amount of the pozzolanic fine powder increases, the unit water amount increases, so that the strength developability also decreases.
【0009】本発明においては粒径2mm以下の細骨材が
用いられる。ここで、本発明における細骨材の粒径と
は、85%重量累積粒径である。細骨材の粒径が2mmを超
えると、コンクリートの強度が低下する。なお、本発明
においては、最大粒径が2mm以下の細骨材を用いること
が好ましく、最大粒径が1.5mm以下の細骨材を用いるこ
とがより好ましい。細骨材としては、川砂、陸砂、海
砂、砕砂、珪砂及びこれらの混合物を使用することがで
きる。細骨材の配合量は、硬化体の強度や乾燥収縮量の
低減から、セメント100重量部に対して50〜250重量部が
好ましく、80〜180重量部がより好ましい。In the present invention, fine aggregate having a particle size of 2 mm or less is used. Here, the particle size of the fine aggregate in the present invention is an 85% weight cumulative particle size. When the particle size of the fine aggregate exceeds 2 mm, the strength of the concrete decreases. In the present invention, it is preferable to use fine aggregate having a maximum particle size of 2 mm or less, and it is more preferable to use fine aggregate having a maximum particle size of 1.5 mm or less. As fine aggregate, river sand, land sand, sea sand, crushed sand, silica sand, and a mixture thereof can be used. The amount of the fine aggregate is preferably 50 to 250 parts by weight, more preferably 80 to 180 parts by weight, based on 100 parts by weight of cement, from the viewpoint of reducing the strength of the cured product and the amount of drying shrinkage.
【0010】減水剤としては、リグニン系、ナフタレン
スルホン酸系、メラミン系、ポリカルボン酸系の減水
剤、AE減水剤、高性能減水剤又は高性能AE減水剤を
使用することができる。これらのうち、減水効果の大き
な高性能減水剤又は高性能AE減水剤を使用することが
好ましい。減水剤の配合量は、セメント100重量部に対
して、固形分換算で0.5〜4.0重量部が好ましい。セメン
ト100重量部に対して、減水剤量(固形分換算)が0.5重
量部未満では、混練が困難になるとともに、配合物の流
動性が低く成形などの作業も困難である。セメント100
重量部に対して、減水剤量(固形分換算)が4.0重量部
を超えると強度が低下する。なお、減水剤は、液状又は
粉末状どちらでも使用可能である。As the water reducing agent, a lignin-based, naphthalene-sulfonic acid-based, melamine-based, polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The compounding amount of the water reducing agent is preferably 0.5 to 4.0 parts by weight in terms of solid content based on 100 parts by weight of cement. If the amount of the water reducing agent (in terms of solid content) is less than 0.5 part by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the fluidity of the composition is low, and work such as molding is also difficult. Cement 100
If the amount of the water reducing agent (in terms of solid content) exceeds 4.0 parts by weight, the strength is reduced. The water reducing agent can be used in either liquid or powder form.
【0011】水量は、セメント100重量部に対して10〜3
0重量部が好ましく、より好ましくは15〜25重量部であ
る。セメント100重量部に対して、水量が10重量部未満
では、混練が困難となるとともに、配合物の流動性が低
く成形などの作業も困難である。セメント100重量部に
対して、水量が30重量部を超えると強度が低下し、ま
た、乾燥収縮量も大きくなる。The amount of water is 10 to 3 parts per 100 parts by weight of cement.
The amount is preferably 0 parts by weight, more preferably 15 to 25 parts by weight. If the amount of water is less than 10 parts by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the flowability of the composition is low, and work such as molding is also difficult. If the amount of water exceeds 30 parts by weight with respect to 100 parts by weight of the cement, the strength decreases and the amount of drying shrinkage increases.
【0012】本発明においては、硬化体の曲げ強度を大
幅に高める観点から、前記配合物に金属繊維及び/又は
有機質繊維を含ませることが好ましい。金属繊維として
は、鋼繊維、アモルファス繊維等が挙げられるが、中で
も鋼繊維は強度に優れており、またコストや入手のし易
さの点からも好ましいものである。金属繊維は、径0.01
〜1.0mm、長さ2〜30mmのものが好ましい。径が0.01mm未
満では繊維自身の強度が不足し、張力を受けた際に切れ
やすくなる。径が1.0mmを超えると、同一配合量での本
数が少なくなり、曲げ強度を向上させる効果が低下す
る。長さが30mmを超えると、混練の際ファイバーボール
が生じやすくなる。長さが2mm未満では曲げ強度を向上
させる効果が低下する。金属繊維の配合量は、配合物の
体積の4%未満が好ましく、より好ましくは3%未満であ
る。金属繊維の含有量が多くなると混練時の作業性等を
確保するために単位水量も増大するので、金属繊維の配
合量は前記の量が好ましい。In the present invention, from the viewpoint of greatly increasing the bending strength of the cured product, it is preferable that the composition contains metal fibers and / or organic fibers. Examples of the metal fiber include a steel fiber and an amorphous fiber. Among them, the steel fiber is excellent in strength, and is preferable from the viewpoint of cost and availability. Metal fiber has a diameter of 0.01
~ 1.0mm, length 2 ~ 30mm is preferred. When the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and the fiber tends to be cut when subjected to tension. If the diameter is more than 1.0 mm, the number of pieces with the same compounding amount decreases, and the effect of improving the bending strength decreases. If the length exceeds 30 mm, fiber balls tend to be formed during kneading. If the length is less than 2 mm, the effect of improving the bending strength decreases. The blending amount of the metal fiber is preferably less than 4%, more preferably less than 3% of the volume of the blend. When the content of the metal fiber increases, the unit water amount also increases in order to ensure workability during kneading, and the like, so that the above-mentioned amount of the metal fiber is preferable.
【0013】有機質繊維としては、ビニロン繊維、ポリ
プロピレン繊維、ポリエチレン繊維、アラミド繊維、炭
素繊維等が挙げられる。有機質繊維は、径0.005〜1.0m
m、長さ2〜30mmのものが好ましい。有機質繊維の配合量
は、配合物の体積の10%未満が好ましく、8%未満がよ
り好ましい。なお、本発明においては、金属繊維と有機
質繊維を併用することは差し支えない。Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, carbon fiber and the like. Organic fibers are 0.005-1.0m in diameter
m and a length of 2 to 30 mm are preferred. The blending amount of the organic fiber is preferably less than 10% of the volume of the blend, more preferably less than 8%. In the present invention, it is possible to use metal fibers and organic fibers in combination.
【0014】本発明においては、硬化体の充填密度を高
める観点から、配合物に、平均粒径3〜20μm、より好
ましくは平均粒径4〜10μmの無機粉末を含ませること
が好ましい。無機粉末としては、石英粉末、石灰石粉
末、炭化物、窒化物等が挙げられるが、なかでも石英粉
末は、コストの点や硬化体の品質安定性の点から好まし
いものである。石英粉末としては、石英や非晶質石英、
オパール質やクリストバライト質のシリカ含有粉末等が
挙げられる。無機粉末の配合量は、硬化体の強度から、
セメント100重量部に対して50重量部以下が好ましく、2
0〜35重量部がより好ましい。In the present invention, from the viewpoint of increasing the packing density of the cured product, the composition preferably contains an inorganic powder having an average particle size of 3 to 20 μm, more preferably 4 to 10 μm. Examples of the inorganic powder include quartz powder, limestone powder, carbide, and nitride. Among them, quartz powder is preferable from the viewpoint of cost and the stability of the quality of the cured product. Quartz powder, quartz or amorphous quartz,
Opal and cristobalite silica-containing powders and the like can be mentioned. The amount of the inorganic powder is determined based on the strength of the cured product.
50 parts by weight or less is preferable for 100 parts by weight of cement, and 2
0 to 35 parts by weight is more preferred.
【0015】本発明においては、硬化体の靱性を高める
観点から、配合物に、平均粒度が1mm以下の繊維状粒子
又は薄片状粒子を含ませることが好ましい。ここで、粒
子の粒度とは、その最大寸法の大きさ(特に、繊維状粒
子ではその長さ)である。繊維状粒子としては、ウォラ
ストナイト、ボーキサイト、ムライト等が、薄片状粒子
としては、マイカフレーク、タルクフレーク、バーミキ
ュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子又は薄片状粒子の配合量は、硬化体の強度や
靱性等から、セメント100重量部に対して35重量部以下
が好ましく、10〜25重量部がより好ましい。なお、繊維
状粒子においては、硬化体の靱性を高める観点から、長
さ/直径の比で表される針状度が3以上のものを用いる
のが好ましい。In the present invention, from the viewpoint of increasing the toughness of the cured product, it is preferable that the composition contains fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of a particle is the size of its maximum dimension (in particular, its length for fibrous particles). Examples of the fibrous particles include wollastonite, bauxite, and mullite, and examples of the flaky particles include mica flake, talc flake, vermiculite flake, and alumina flake.
The blending amount of the fibrous particles or flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight, based on 100 parts by weight of cement, from the viewpoint of the strength and toughness of the cured product. From the viewpoint of increasing the toughness of the cured product, it is preferable to use fibrous particles having a needleiness expressed by a length / diameter ratio of 3 or more.
【0016】本発明においては、前記配合物に、粗骨材
を含ませてもかまわない。粗骨材としては、粒径範囲が
2.5〜40mmの砂利、砕石、及びこれらの混合物等が挙げ
られる。粗骨材の配合量は、混練時の作業性や硬化体の
強度等から、配合物中の60vol%以下が好ましく、50vol
%以下がより好ましい。In the present invention, the composition may contain coarse aggregate. For coarse aggregate, the particle size range
2.5 to 40 mm of gravel, crushed stone, mixtures thereof, and the like. The blending amount of the coarse aggregate is preferably 60 vol% or less in the blend, from the viewpoint of workability during kneading and the strength of the cured product,
% Or less is more preferable.
【0017】本発明において、配合物の混練方法は、特
に限定するものではなく、例えば、 粗骨材を使用しない場合、 1)水、減水剤以外の材料を予め混合しておき(プレミッ
クス)、該プレミックス、水、減水剤をミキサに投入
し、混練する。 2)水以外の材料を予め混合しておき(プレミックス、た
だし減水剤は粉末タイプのものを使用する)、該プレミ
ックス、水をミキサに投入し、混練する。 3)各材料を、それぞれ個別にミキサに投入し、混練す
る。 粗骨材を使用する場合、 1)水、減水剤、粗骨材以外の材料を予め混合しておき
(プレミックス)、該プレミックス、水、減水剤、粗骨
材をミキサに投入し、混練する。 2)水、粗骨材以外の材料を予め混合しておき(プレミッ
クス、ただし減水剤は粉末タイプのものを使用する)、
該プレミックス、水、粗骨材をミキサに投入し、混練す
る。 3)各材料を、それぞれ個別にミキサに投入し、混練す
る。 等の方法が挙げられる。In the present invention, the method of kneading the compound is not particularly limited. For example, when coarse aggregate is not used, 1) materials other than water and water reducing agent are previously mixed (premix). The premix, water, and a water reducing agent are charged into a mixer and kneaded. 2) Materials other than water are mixed in advance (a premix, but a water reducing agent of a powder type is used), and the premix and water are charged into a mixer and kneaded. 3) Each material is individually charged into a mixer and kneaded. When using coarse aggregate: 1) Water, water reducing agent, materials other than coarse aggregate are previously mixed (premix), and the premix, water, water reducer, and coarse aggregate are put into a mixer, Knead. 2) Mix materials other than water and coarse aggregate in advance (premix, but use powder type water reducing agent)
The premix, water and coarse aggregate are put into a mixer and kneaded. 3) Each material is individually charged into a mixer and kneaded. And the like.
【0018】混練に用いるミキサは、通常のコンクリー
トの混練に用いられるどのタイプのものでもよく、例え
ば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ
等が用いられる。The mixer used for kneading may be of any type used for ordinary kneading of concrete, for example, an oscillating mixer, a pan-type mixer, a twin-screw mixer, or the like.
【0019】本発明において、鋼管コンクリート杭の成
形方法は特に限定するものではない。例えば、 1)外殻となる鋼管の内側に、配合物を流し込み遠心成形
しても良いし、 2)鋼管の内側に中子を設置し、鋼管と中子の間に配合物
を流し込んで成形しても良い。 本発明において、粗骨材を含まない配合物は、「JIS R
5201(セメントの物理試験方法)11.フロー試験」に記
載される方法において、15回の落下運動を行わないで測
定したフロー値が、200mm以上と流動性に優れるもので
あり、鋼管内への流し込みを容易に行うことができる。
また、本発明において、養生条件は特に限定するもので
はなく、蒸気養生等を行えば良い。In the present invention, the method for forming the steel pipe concrete pile is not particularly limited. For example, 1) the compound may be poured into the outer shell of the steel pipe and centrifugally molded.2) The core is installed inside the steel pipe and the compound is poured between the steel pipe and the core to form. You may. In the present invention, a composition containing no coarse aggregate is referred to as JIS R
5201 (Physical test method of cement) 11. Flow test ”, the flow value measured without performing 15 dropping motions is 200 mm or more, which is excellent in fluidity, Pouring can be performed easily.
In the present invention, curing conditions are not particularly limited, and steam curing or the like may be performed.
【0020】本発明の配合物の硬化体は130MPaを超える
圧縮強度を発現するので、コンクリート厚を薄くするこ
とができ、鋼管コンクリート杭の軽量化が可能である。
また、杭の厚さも薄くできるので、基礎杭としての打ち
込みも容易になる。さらに、本発明の配合物の硬化体の
乾燥収縮量は極めて小さいので、鋼管とコンクリートの
密着性を高めるために膨張材を使用する必要はない。Since the cured product of the composition of the present invention exhibits a compressive strength exceeding 130 MPa, the concrete thickness can be reduced and the steel pipe concrete pile can be reduced in weight.
In addition, since the pile can be made thinner, it can be easily driven as a foundation pile. Furthermore, since the amount of drying shrinkage of the cured product of the composition of the present invention is extremely small, it is not necessary to use an expanding material in order to enhance the adhesion between the steel pipe and the concrete.
【0021】[0021]
【実施例】以下、実施例により本発明を説明する。 1.使用材料 以下に示す材料を使用した。 1)セメント ;低熱ポルトランドセメント(太平洋セメント(株)製) 2)ポゾラン質微粉末;シリカフューム(平均粒径0.7μm) 3)細骨材 ;珪砂4号と珪砂5号の2:1(重量比)混合品 4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm) 5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤 6)水 ;水道水 7)無機粉末 ;石英粉(平均粒径7μm) 8)繊維状粒子 ;ウォラストナイト(平均長さ0.3mm、長さ/直径の比4) 9)粗骨材 ;砕石1505The present invention will be described below with reference to examples. 1. Materials used The following materials were used. 1) Cement; Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) 2) Pozzolanic fine powder; silica fume (average particle size 0.7 μm) 3) Fine aggregate: 2: 1 of silica sand 4 and silica sand 5 (weight ratio) 4) Metal fiber; steel fiber (diameter: 0.2 mm, length: 15 mm) 5) High-performance AE water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) inorganic powder; quartz Flour (average particle size 7 μm) 8) Fibrous particles; wollastonite (average length 0.3 mm, length / diameter ratio 4) 9) Coarse aggregate; crushed stone 1505
【0022】実施例1 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部を二軸練
りミキサに投入し、混練した。該配合物のフロー値を、
「JIS R 5201(セメントの物理試験方法)11.フロー試
験」に記載される方法において、15回の落下運動を行わ
ないで測定した。その結果、フロー値は270mmであっ
た。また、前記配合物をφ50×100mmの型枠に流し込
み、20℃で48時間前置き後90℃で48時間蒸気養生した。
該硬化体の圧縮強度(3本の平均値)は210MPaであっ
た。さらに、前記配合物を10×10×40cmの型枠に流し込
み、20℃で48時間前置き後90℃で48時間蒸気養生した。
該硬化体の曲げ強度(3本の平均値)は25MPaであっ
た。また、前記配合物を10×10×40cmの型枠に流し込
み、20℃で48時間前置き後90℃で48時間蒸気養生した。
そして、20℃まで冷却後、脱型した。該供試体を20℃、
湿度60%で91日間保存し、脱型時からの乾燥収縮量を求
めた。該硬化体の乾燥収縮量(3本の平均値)は50μm
であった。Example 1 Low heat Portland cement 100 parts by weight, silica fume 3
2.5 parts by weight, 120 parts by weight of fine aggregate, 1.0 part by weight of a high-performance AE water reducing agent (solid content with respect to cement), and 22 parts by weight of water were charged into a twin-screw mixer and kneaded. The flow value of the formulation
In the method described in "JIS R 5201 (Physical test method for cement) 11. Flow test", the measurement was carried out without performing the falling motion 15 times. As a result, the flow value was 270 mm. Further, the composition was poured into a mold of φ50 × 100 mm, placed at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours.
The compressive strength (average value of three strands) of the cured product was 210 MPa. Further, the composition was poured into a mold of 10 × 10 × 40 cm, placed at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours.
The bending strength (average value of three pieces) of the cured product was 25 MPa. Further, the composition was poured into a mold having a size of 10 × 10 × 40 cm, placed at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours.
Then, after cooling to 20 ° C., the mold was removed. The specimen was heated at 20 ° C.
It was stored at a humidity of 60% for 91 days, and the amount of drying shrinkage from the time of demolding was determined. The amount of drying shrinkage of the cured product (average value of three) is 50 μm
Met.
【0023】実施例2 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部、鋼繊維
(配合物中の体積の2%)を二軸練りミキサに投入し、混
練した。該配合物のフロー値を実施例1と同様に測定し
た。その結果、フロー値は250mmであった。また、圧縮
強度と曲げ強度も実施例1と同様に測定した。その結
果、圧縮強度は210MPa、曲げ強度は47MPaであった。ま
た、乾燥収縮量も実施例1と同様に測定した。その結
果、乾燥収縮量は50μmであった。Example 2 100 parts by weight of low heat Portland cement, silica fume 3
2.5 parts by weight, fine aggregate 120 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, steel fiber
(2% of the volume in the formulation) was charged into a twin-screw kneading mixer and kneaded. The flow value of the formulation was measured as in Example 1. As a result, the flow value was 250 mm. Further, the compression strength and the bending strength were measured in the same manner as in Example 1. As a result, the compressive strength was 210 MPa and the bending strength was 47 MPa. Further, the amount of drying shrinkage was measured in the same manner as in Example 1. As a result, the drying shrinkage was 50 μm.
【0024】実施例3 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材120重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部、石英粉
30重量部、ウォラストナイト24重量部、鋼繊維(配合物
中の体積の2%)を二軸練りミキサに投入し、混練し
た。該配合物のフロー値を実施例1と同様に測定した。
その結果、フロー値は250mmであった。また、圧縮強度
と曲げ強度も実施例1と同様に測定した。その結果、圧
縮強度は230MPa、曲げ強度は47MPaであった。また、乾
燥収縮量も実施例1と同様に測定した。その結果、乾燥
収縮量は47μmであった。Example 3 100 parts by weight of low heat Portland cement, silica fume 3
2.5 parts by weight, fine aggregate 120 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, quartz powder
30 parts by weight, 24 parts by weight of wollastonite, and steel fiber (2% of the volume in the composition) were put into a twin-screw mixer and kneaded. The flow value of the formulation was measured as in Example 1.
As a result, the flow value was 250 mm. Further, the compression strength and the bending strength were measured in the same manner as in Example 1. As a result, the compression strength was 230 MPa and the bending strength was 47 MPa. Further, the amount of drying shrinkage was measured in the same manner as in Example 1. As a result, the drying shrinkage was 47 μm.
【0025】実施例4 実施例3で使用した配合物と粗骨材の容積比が7:3とな
るように、各材料を二軸練りミキサに投入し、混練し
た。該配合物の圧縮強度と曲げ強度を実施例1と同様に
測定した。その結果、圧縮強度は135MPa、曲げ強度は13
MPaであった。また、乾燥収縮量も実施例1と同様に測
定した。その結果、乾燥収縮量は48μmであった。Example 4 Each material was charged into a twin-screw kneading mixer and kneaded so that the volume ratio of the mixture used in Example 3 and the coarse aggregate was 7: 3. The compression strength and bending strength of the composition were measured in the same manner as in Example 1. As a result, the compressive strength is 135 MPa and the bending strength is 13
MPa. Further, the amount of drying shrinkage was measured in the same manner as in Example 1. As a result, the drying shrinkage was 48 μm.
【0026】実施例5 低熱ポルトランドセメント100重量部、シリカフューム3
2.5重量部、細骨材180重量部、高性能AE減水剤1.0重
量部(セメントに対する固形分)、水22重量部、石英粉
30重量部、ウォラストナイト24重量部、鋼繊維(配合物
中の体積の2%)を二軸練りミキサに投入し、混練し
た。外径600mm×長さ10mの鋼管(鋼管厚9mm)に、該配
合物を投入し(コンクリート厚が40mmとなる量)、遠心
成形(低速2G×2分、低速5G×5分、中速15G×5分、高速
35G×15分)を行った。遠心成形後のノロの発生は認め
られなかった。Example 5 Low heat Portland cement 100 parts by weight, silica fume 3
2.5 parts by weight, fine aggregate 180 parts by weight, high-performance AE water reducing agent 1.0 part by weight (solid content with respect to cement), water 22 parts by weight, quartz powder
30 parts by weight, 24 parts by weight of wollastonite, and steel fiber (2% of the volume in the composition) were put into a twin-screw mixer and kneaded. The mixture is put into a steel pipe (outer diameter 600 mm × length 10 m) (steel pipe thickness 9 mm) (the amount of concrete becomes 40 mm) and centrifugal molding (low speed 2 G × 2 minutes, low speed 5 G × 5 minutes, medium speed 15 G) × 5 minutes, high speed
35G x 15 minutes). No slag was found after centrifugal molding.
【0027】[0027]
【発明の効果】以上説明したように、本発明の鋼管コン
クリート杭においては、圧縮強度が130MPaを超える配合
物を用いて製造するので、コンクリート厚を薄くするこ
とができ、鋼管コンクリート杭の軽量化が可能である。
また、杭の厚さも薄くできるので、基礎杭としての打ち
込みも容易になる。さらに、本発明の配合物の硬化体の
乾燥収縮量は極めて小さいので、鋼管とコンクリートの
密着性を高めるために膨張材を使用する必要はない。As described above, since the steel pipe concrete pile of the present invention is manufactured using a compound having a compressive strength exceeding 130 MPa, the concrete thickness can be reduced, and the weight of the steel pipe concrete pile can be reduced. Is possible.
In addition, since the pile can be made thinner, it can be easily driven as a foundation pile. Furthermore, since the amount of drying shrinkage of the cured product of the composition of the present invention is extremely small, it is not necessary to use an expanding material in order to enhance the adhesion between the steel pipe and the concrete.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 14:48 C04B 14:48 D 24:26 24:26 E 14:38) 14:38) C 103:32 103:32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 14:48 C04B 14:48 D 24:26 24:26 E 14:38) 14:38) C103: 32 103: 32
Claims (7)
ント、ポゾラン質微粉末、粒径2mm以下の細骨材、減水
剤、及び水を含む配合物の硬化体からなることを特徴と
する鋼管コンクリート杭。1. A steel pipe concrete pile, wherein the concrete portion is made of a hardened material of a compound containing at least cement, fine pozzolanic powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent, and water.
維を含む請求項1に記載の鋼管コンクリート杭。2. The steel pipe concrete pile according to claim 1, wherein the composition contains metal fibers and / or organic fibers.
mmの鋼繊維である請求項2記載の鋼管コンクリート杭。3. The metal fiber has a diameter of 0.01 to 1.0 mm and a length of 2 to 30.
The steel pipe concrete pile according to claim 2, which is a steel fiber of mm.
〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチ
レン繊維、アラミド繊維、炭素繊維から選ばれる1種以
上の繊維である請求項2記載の鋼管コンクリート杭。4. An organic fiber having a diameter of 0.005 to 1.0 mm and a length of 2
The steel pipe concrete pile according to claim 2, wherein the steel pipe concrete pile is at least one fiber selected from vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber of up to 30 mm.
末を含む請求項1〜4のいずれかに記載の鋼管コンクリ
ート杭。5. The steel pipe concrete pile according to claim 1, wherein the composition contains an inorganic powder having an average particle size of 3 to 20 μm.
子又は薄片状粒子を含む請求項1〜5のいずれかに記載
の鋼管コンクリート杭。6. The steel pipe concrete pile according to claim 1, wherein the composition contains fibrous particles or flaky particles having an average particle size of 1 mm or less.
いずれかに記載の鋼管コンクリート杭。7. The steel pipe concrete pile according to claim 1, wherein the composition contains coarse aggregate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000034437A JP4745480B2 (en) | 2000-02-14 | 2000-02-14 | Steel pipe concrete pile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000034437A JP4745480B2 (en) | 2000-02-14 | 2000-02-14 | Steel pipe concrete pile |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001226958A true JP2001226958A (en) | 2001-08-24 |
JP4745480B2 JP4745480B2 (en) | 2011-08-10 |
Family
ID=18558786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000034437A Expired - Fee Related JP4745480B2 (en) | 2000-02-14 | 2000-02-14 | Steel pipe concrete pile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4745480B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155623A (en) * | 2002-11-08 | 2004-06-03 | Taiheiyo Cement Corp | Prestressed concrete |
JP2004316828A (en) * | 2003-04-18 | 2004-11-11 | Taiheiyo Cement Corp | Underground buried pipe |
JP2004323294A (en) * | 2003-04-24 | 2004-11-18 | Taiheiyo Cement Corp | Concrete |
JP2006169054A (en) * | 2004-12-16 | 2006-06-29 | Taiheiyo Cement Corp | Centrifugally molded concrete product |
CN103601440A (en) * | 2013-10-29 | 2014-02-26 | 江苏名和集团有限公司 | C60 steel pipe self-compacting concrete |
-
2000
- 2000-02-14 JP JP2000034437A patent/JP4745480B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155623A (en) * | 2002-11-08 | 2004-06-03 | Taiheiyo Cement Corp | Prestressed concrete |
JP2004316828A (en) * | 2003-04-18 | 2004-11-11 | Taiheiyo Cement Corp | Underground buried pipe |
JP2004323294A (en) * | 2003-04-24 | 2004-11-18 | Taiheiyo Cement Corp | Concrete |
JP4520106B2 (en) * | 2003-04-24 | 2010-08-04 | 太平洋セメント株式会社 | concrete |
JP2006169054A (en) * | 2004-12-16 | 2006-06-29 | Taiheiyo Cement Corp | Centrifugally molded concrete product |
JP4621017B2 (en) * | 2004-12-16 | 2011-01-26 | 太平洋セメント株式会社 | Centrifugal concrete products |
CN103601440A (en) * | 2013-10-29 | 2014-02-26 | 江苏名和集团有限公司 | C60 steel pipe self-compacting concrete |
Also Published As
Publication number | Publication date |
---|---|
JP4745480B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001181004A (en) | High-strength mortar and high-strength concrete | |
JP2001240440A (en) | Steel fiber for reinforcing concrete and fiber reinforced concrete | |
JP4643857B2 (en) | Permeable concrete | |
JP4056696B2 (en) | Cement slurry | |
JP2001270756A (en) | Cured material | |
JP2001226958A (en) | Steel pipe concrete pile | |
JP2002068806A (en) | Ultrahigh strength hydraulic composition | |
JP2001220201A (en) | Fiber reinforced concrete | |
JP4376409B2 (en) | Joint joint material for post tension prestressed concrete plate | |
JP2001207794A (en) | Concrete-made segment | |
JP2001254302A (en) | Sleeper for railway line | |
JP2001212817A (en) | Method for producing fiber-reinforced concrete | |
JP2001323436A (en) | Wave-dissipating block | |
JP2003055019A (en) | Hardened body | |
JP2001247350A (en) | Repairing material | |
JP2001262562A (en) | Concrete pile | |
JP2002137952A (en) | Hydraulic composition | |
JP2001225891A (en) | Structure for water storage | |
JP2001271340A (en) | Complex pile | |
JP2001233652A (en) | Concrete pole | |
JP2001253745A (en) | Fiber-reinforced concrete | |
JP2003267764A (en) | Reinforcing plate | |
JP2001220200A (en) | Water-sealing material | |
JP2001226175A (en) | Surface coating material | |
JP2001213659A (en) | Binder for overlay concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091204 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091222 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20100312 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110127 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110512 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |