JP2002068806A - Ultrahigh strength hydraulic composition - Google Patents
Ultrahigh strength hydraulic compositionInfo
- Publication number
- JP2002068806A JP2002068806A JP2000258553A JP2000258553A JP2002068806A JP 2002068806 A JP2002068806 A JP 2002068806A JP 2000258553 A JP2000258553 A JP 2000258553A JP 2000258553 A JP2000258553 A JP 2000258553A JP 2002068806 A JP2002068806 A JP 2002068806A
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic composition
- strength
- fiber
- weight
- strength hydraulic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、150MPa以上の超高
強度(圧縮強度)を発現することができる超高強度水硬
性組成物に関する。The present invention relates to an ultrahigh-strength hydraulic composition capable of exhibiting ultrahigh strength (compressive strength) of 150 MPa or more.
【0002】[0002]
【従来の技術】セメントを主体とする水硬性組成物にお
いて、圧縮強度が150MPa以上の超高強度の硬化体を製造
するためには、シリカフューム等の平均粒径が1.0μm
以下である超微粉末が配合される。2. Description of the Related Art In a hydraulic composition mainly composed of cement, in order to produce an ultra-high-strength cured product having a compressive strength of 150 MPa or more, an average particle size of silica fume or the like is 1.0 μm.
The following ultrafine powder is blended.
【0003】前記のシリカフュームのような超微粉末は
一般に高価である。そして、150MPa以上の超高強度の硬
化体を製造するためには、前記超微粉末の使用量は多く
する必要があり、該水硬性組成物の価格はかなり高くな
る。[0003] Ultrafine powders such as the silica fumes described above are generally expensive. In order to produce a cured product having an ultra-high strength of 150 MPa or more, it is necessary to use a large amount of the ultrafine powder, and the price of the hydraulic composition becomes considerably high.
【0004】[0004]
【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究した結果、特定の材料を使用す
れば、高価な超微粉末(シリカフューム等)の使用量を
少なくしても、150MPa以上の超高強度(圧縮強度)の硬
化体を製造することができるとの知見を得、本発明に到
達した。Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, if a specific material is used, the amount of expensive ultrafine powder (such as silica fume) can be reduced. Also, the present inventors have found that a cured product having an ultra-high strength (compression strength) of 150 MPa or more can be produced, and have reached the present invention.
【0005】即ち、本発明は、少なくとも、セメント、
ポゾラン質微粉末、粒径2mm以下の細骨材、減水剤及び
水を含む超高強度水硬性組成物において、該ポゾラン質
微粉末の一部又は全てがけい藻土であることを特徴とす
る超高強度水硬性組成物である(請求項1)。さらに、
本発明においては、金属繊維及び/又は有機質繊維(請
求項2)、平均粒径3〜20μmの無機粉末(請求項
5)、平均粒度1mm以下の繊維状粒子又は薄片状粒子
(請求項6)を含むことが好ましいものである。That is, the present invention provides at least cement,
Pozzolanic fine powder, fine aggregate having a particle size of 2 mm or less, ultra-high strength hydraulic composition containing water reducing agent and water, characterized in that part or all of the pozzolanic fine powder is diatomaceous earth It is an ultra-high strength hydraulic composition (Claim 1). further,
In the present invention, metal fibers and / or organic fibers (Claim 2), inorganic powder having an average particle size of 3 to 20 μm (Claim 5), fibrous particles or flaky particles having an average particle size of 1 mm or less (Claim 6) It is preferable to include
【0006】[0006]
【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の超高強度水硬性組成物は、少なくとも、
セメント、ポゾラン質微粉末、粒径2mm以下の細骨材、
減水剤及び水を含むものであり、該ポゾラン質微粉末の
一部又は全てがけい藻土である。本発明において、セメ
ントの種類は限定するものではなく、普通ポルトランド
セメント、早強ポルトランドセメント、中庸熱ポルトラ
ンドセメント、低熱ポルトランドセメント等の各種ポル
トランドセメントや高炉セメント、フライアッシュセメ
ント等の混合セメントを使用することができる。本発明
においては、硬化後の早期強度を向上しようとする場合
は、早強ポルトランドセメントを使用することが好まし
く、水と混練した際の流動性を向上しようとする場合
は、中庸熱ポルトランドセメントや低熱ポルトランドセ
メントを使用することが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. Ultra-high strength hydraulic composition of the present invention, at least,
Cement, pozzolanic fine powder, fine aggregate with a particle size of 2 mm or less,
It contains a water reducing agent and water, and part or all of the pozzolanic fine powder is diatomaceous earth. In the present invention, the type of cement is not limited, and ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, various portland cements such as low-heat Portland cement, blast furnace cement, and mixed cements such as fly ash cement are used. be able to. In the present invention, when it is intended to improve the early strength after curing, it is preferable to use an early-strength Portland cement, and when it is intended to improve the fluidity when kneaded with water, a moderately heated Portland cement or It is preferred to use low heat Portland cement.
【0007】本発明において、ポゾラン質微粉末として
は、けい藻土を使用する。けい藻土は、硬化後の強度発
現性、耐久性等から、粒径1〜100μmのものが好まし
く、より好ましくは粒径5〜50μm、さらにより好まし
くは粒径10〜30μmのものである。 なお、本発明にお
いては、ポゾラン質微粉末として、前記けい藻土ととも
に、他のポゾラン質微粉末(シリカフューム、シリカダ
スト、フライアッシュ、スラグ等)を使用することは差
し支えないが、超高強度水硬性組成物の価格等を考慮し
て、他のポゾラン質微粉末は、けい藻土100重量部に対
して、100重量部以下が好ましい。ポゾラン質微粉末の
配合量は、セメント100重量部に対して5〜50重量部が好
ましい。ポゾラン質微粉末が少ないと、硬化後の強度が
低下するので好ましくない。ポゾラン質微粉末の添加量
が多くなると、単位水量が増大するので硬化後の強度や
耐久性が低下するので好ましくない。In the present invention, diatomaceous earth is used as the pozzolanic fine powder. Diatomaceous earth preferably has a particle size of 1 to 100 μm, more preferably 5 to 50 μm, and still more preferably 10 to 30 μm from the viewpoint of strength development and durability after curing. In the present invention, other pozzolanic fine powder (silica fume, silica dust, fly ash, slag, etc.) may be used as the pozzolanic fine powder together with the diatomaceous earth, In consideration of the price of the hard composition, etc., the amount of the other pozzolanic fine powder is preferably 100 parts by weight or less based on 100 parts by weight of diatomaceous earth. The blending amount of the pozzolanic fine powder is preferably 5 to 50 parts by weight based on 100 parts by weight of cement. When the amount of the pozzolanic fine powder is small, the strength after curing is undesirably reduced. If the amount of the pozzolanic fine powder is increased, the unit water amount is increased, so that the strength and durability after curing are undesirably reduced.
【0008】本発明においては、粒径2mm以下の細骨材
が用いられる。ここで、本発明における細骨材の粒径と
は、85%重量累積粒径である。細骨材の粒径が2mmを超
えると、硬化後の強度が低下するので好ましくない。な
お、本発明においては、最大粒径が2mm以下の細骨材を
用いることが好ましく、最大粒径が1.5mm以下の細骨材
を用いることがより好ましい。細骨材としては、川砂、
陸砂、海砂、砕砂、珪砂又はこれらの混合物を使用する
ことができる。細骨材の配合量は、流動性や硬化後の強
度、耐久性等から、セメント100重量部に対して50〜250
重量部が好ましく、80〜180重量部がより好ましい。In the present invention, fine aggregate having a particle size of 2 mm or less is used. Here, the particle size of the fine aggregate in the present invention is an 85% weight cumulative particle size. If the particle size of the fine aggregate exceeds 2 mm, the strength after curing is undesirably reduced. In the present invention, it is preferable to use fine aggregate having a maximum particle size of 2 mm or less, and it is more preferable to use fine aggregate having a maximum particle size of 1.5 mm or less. As fine aggregate, river sand,
Land sand, sea sand, crushed sand, quartz sand or a mixture thereof can be used. The amount of the fine aggregate is 50 to 250 parts per 100 parts by weight of the cement, from the viewpoint of fluidity, strength after curing, and durability.
Part by weight is preferred, and 80 to 180 parts by weight is more preferred.
【0009】減水剤としては、リグニン系、ナフタレン
スルホン酸系、メラミン系、ポリカルボン酸系の減水
剤、AE減水剤、高性能減水剤又は高性能AE減水剤を
使用することができる。これらのうち、減水効果の大き
な高性能減水剤又は高性能AE減水剤を使用することが
好ましい。減水剤の配合量は、セメント100重量部に対
して、固形分換算で0.5〜4.0重量部が好ましい。セメン
ト100重量部に対して、減水剤量(固形分換算)が0.5重
量部未満では、混練が困難になるとともに、流動性が低
く成形などの作業も困難になるので好ましくない。セメ
ント100重量部に対して、減水剤量(固形分換算)が4.0
重量部を超えると、硬化後の強度や耐久性が低下するの
で好ましくない。なお、減水剤は、液状又は粉末状どち
らでも使用可能である。As the water reducing agent, a lignin-based, naphthalene-sulfonic acid-based, melamine-based, polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high performance water reducing agent or a high performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent having a large water reducing effect. The compounding amount of the water reducing agent is preferably 0.5 to 4.0 parts by weight in terms of solid content based on 100 parts by weight of cement. If the amount of the water reducing agent (in terms of solid content) is less than 0.5 part by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the fluidity is low and work such as molding becomes difficult. Water reducing agent amount (solid content conversion) is 4.0 per 100 parts by weight of cement
Exceeding the weight parts is not preferred because the strength and durability after curing are reduced. The water reducing agent can be used in either liquid or powder form.
【0010】水量は、セメント100重量部に対して10〜3
0重量部が好ましく、より好ましくは15〜25重量部であ
る。セメント100重量部に対して、水量が10重量部未満
では、混練が困難になるとともに、流動性が低く成形な
どの作業も困難になるので好ましくない。セメント100
重量部に対して、水量が30重量部を超えると、硬化後の
強度や耐久性が低下するので好ましくない。The amount of water is 10 to 3 parts per 100 parts by weight of cement.
The amount is preferably 0 parts by weight, more preferably 15 to 25 parts by weight. If the amount of water is less than 10 parts by weight with respect to 100 parts by weight of cement, kneading becomes difficult, and the flowability is low, and the work such as molding becomes difficult. Cement 100
If the amount of water exceeds 30 parts by weight with respect to part by weight, the strength and durability after curing are undesirably reduced.
【0011】本発明においては、硬化後の曲げ強度を大
幅に高める観点から、超高強度水硬性組成物に金属繊維
及び/又は有機質繊維を含ませることが好ましい。金属
繊維としては、鋼繊維、アモルファス繊維等が挙げられ
るが、中でも鋼繊維は強度に優れており、またコストや
入手のし易さの点からも好ましいものである。金属繊維
は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径
が0.01mm未満では繊維自身の強度が不足し、張力を受け
た際に切れやすくなる。径が1.0mmを超えると、同一配
合量での本数が少なくなり、曲げ強度を向上させる効果
が低下する。長さが30mmを超えると、混練の際ファイバ
ーボールが生じやすくなる。長さが2mm未満では曲げ強
度を向上させる効果が低下する。金属繊維の配合量は、
超高強度水硬性組成物の体積の4%未満が好ましく、よ
り好ましくは3%未満である。金属繊維の配合量が多く
なると混練時の作業性等を確保するために単位水量も増
大するので、金属繊維の配合量は前記の量が好ましい。In the present invention, from the viewpoint of greatly increasing the flexural strength after curing, it is preferable that the ultrahigh-strength hydraulic composition contains metal fibers and / or organic fibers. Examples of the metal fiber include a steel fiber and an amorphous fiber. Among them, the steel fiber is excellent in strength, and is preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. When the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and the fiber tends to be cut when subjected to tension. If the diameter is more than 1.0 mm, the number of pieces with the same compounding amount decreases, and the effect of improving the bending strength decreases. If the length exceeds 30 mm, fiber balls tend to be formed during kneading. If the length is less than 2 mm, the effect of improving the bending strength decreases. The amount of metal fiber
It is preferably less than 4%, more preferably less than 3% of the volume of the ultra high strength hydraulic composition. When the blending amount of the metal fiber increases, the unit water amount also increases in order to ensure workability during kneading, etc., so the blending amount of the metal fiber is preferably the above-mentioned amount.
【0012】有機質繊維としては、ビニロン繊維、ポリ
プロピレン繊維、ポリエチレン繊維、アラミド繊維、炭
素繊維等が挙げられる。有機質繊維は、径0.005〜1.0m
m、長さ2〜30mmのものが好ましい。有機質繊維の配合量
は、超高強度水硬性組成物の体積の10%未満が好まし
く、8%未満がより好ましい。なお、本発明において
は、金属繊維と有機質繊維を併用することは差し支えな
い。Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, carbon fiber and the like. Organic fibers are 0.005-1.0m in diameter
m and a length of 2 to 30 mm are preferred. The blending amount of the organic fiber is preferably less than 10%, more preferably less than 8% of the volume of the ultrahigh strength hydraulic composition. In the present invention, it is possible to use metal fibers and organic fibers in combination.
【0013】本発明においては、硬化後の充填密度を高
め、耐久性を向上させる観点から、超高強度水硬性組成
物に平均粒径3〜20μm、より好ましくは平均粒径4〜10
μmの無機粉末を含ませることが好ましい。無機粉末と
しては、石英粉末、石灰石粉末、炭化物、窒化物等が挙
げられるが、なかでも石英粉末は、コストの点や硬化体
の品質安定性の点から好ましいものである。石英粉末と
しては、石英や非晶質石英、オパール質やクリストバラ
イト質のシリカ含有粉末等が挙げられる。無機粉末の配
合量は、流動性、硬化後の強度や耐久性から、セメント
100重量部に対して50重量部以下が好ましく、20〜35重
量部がより好ましい。In the present invention, from the viewpoint of increasing the packing density after curing and improving the durability, the ultrahigh-strength hydraulic composition has an average particle size of 3 to 20 μm, more preferably 4 to 10 μm.
It is preferable to include a μm inorganic powder. Examples of the inorganic powder include quartz powder, limestone powder, carbide, and nitride. Among them, quartz powder is preferable from the viewpoint of cost and the stability of the quality of the cured product. Examples of the quartz powder include quartz and amorphous quartz, and opal and cristobalite silica-containing powders. The amount of the inorganic powder should be adjusted according to the fluidity, strength and durability after hardening.
It is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight, per 100 parts by weight.
【0014】本発明においては、硬化後の靱性を高める
観点から、超高強度水硬性組成物に平均粒度が1mm以下
の繊維状粒子又は薄片状粒子を含ませることが好まし
い。ここで、粒子の粒度とは、その最大寸法の大きさ
(特に、繊維状粒子ではその長さ)である。繊維状粒子
としては、ウォラストナイト、ボーキサイト、ムライト
等が、薄片状粒子としては、マイカフレーク、タルクフ
レーク、バーミキュライトフレーク、アルミナフレーク
等が挙げられる。繊維状粒子又は薄片状粒子の配合量
は、流動性、硬化後の強度や耐久性から、セメント100
重量部に対して35重量部以下が好ましく、10〜25重量部
がより好ましい。なお、繊維状粒子においては、硬化後
の靱性を高める観点から、長さ/直径の比で表される針
状度が3以上のものを用いるのが好ましい。In the present invention, from the viewpoint of increasing the toughness after curing, it is preferable that the ultrahigh-strength hydraulic composition contains fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of a particle is the size of its maximum dimension (in particular, its length for fibrous particles). Examples of the fibrous particles include wollastonite, bauxite, and mullite, and examples of the flaky particles include mica flake, talc flake, vermiculite flake, and alumina flake. The mixing amount of the fibrous particles or flaky particles is determined based on the flowability, strength and durability after curing, and the amount of cement 100
It is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight based on parts by weight. From the viewpoint of enhancing the toughness after curing, it is preferable to use fibrous particles having a needleiness expressed by a length / diameter ratio of 3 or more.
【0015】本発明の超高強度水硬性組成物の混練方法
としては、例えば、 1)水、減水剤以外の材料を予め混合しておき(プレミッ
クス)、該プレミックス、水、減水剤をミキサに投入
し、混練する。 2)水以外の材料を予め混合しておき(プレミックス、た
だし減水剤は粉末タイプのものを使用する)、該プレミ
ックス、水をミキサに投入し、混練する。 3)各材料を、それぞれ個別にミキサに投入し、混練す
る。 などが挙げられる。The method of kneading the ultrahigh-strength hydraulic composition of the present invention includes, for example, 1) mixing materials other than water and a water reducing agent in advance (premix), and mixing the premix, water, and the water reducing agent. Pour into mixer and knead. 2) Materials other than water are mixed in advance (a premix, but a water reducing agent of a powder type is used), and the premix and water are charged into a mixer and kneaded. 3) Each material is individually charged into a mixer and kneaded. And the like.
【0016】混練に用いるミキサは、通常のコンクリー
トの混練に用いられるどのタイプのものでもよく、例え
ば、揺動型ミキサ、パンタイプミキサ、二軸練りミキサ
等が用いられる。The mixer used for kneading may be of any type used for kneading ordinary concrete. For example, an oscillating mixer, a pan-type mixer, a biaxial kneading mixer and the like are used.
【0017】混練後、所定の型枠に混練物を投入して成
形し、その後、養生して硬化させる。なお、本発明にお
いて、養生は、気中養生や蒸気養生等を行えば良い。After kneading, the kneaded material is put into a predetermined mold, molded, then cured and cured. In addition, in this invention, what is necessary is just to perform air curing, steam curing, etc. for curing.
【0018】本発明の超高強度水硬性組成物では、150M
Paを超える圧縮強度と20MPaを超える曲げ強度を発現す
る硬化体が得られる。また、本発明の超高強度水硬性組
成物の硬化体は、緻密であり耐久性にも優れるものであ
る。The ultrahigh-strength hydraulic composition of the present invention has a
A cured product exhibiting a compressive strength exceeding Pa and a bending strength exceeding 20 MPa can be obtained. The cured product of the ultrahigh strength hydraulic composition of the present invention is dense and has excellent durability.
【0019】[0019]
【実施例】以下、実施例により本発明を説明する。 1.使用材料 以下に示す材料を使用した。 1)セメント ;低熱ポルトランドセメント(太平洋セメント(株)製) 2)ポゾラン質微粉末;けい藻土(粒径10〜30μm) 3)細骨材 ;珪砂4号と珪砂5号の2:1(重量比)混合品 4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm) 5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤 6)水 ;水道水 7)無機粉末 ;石英粉(平均粒径7μm) 8)繊維状粒子 ;ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)The present invention will be described below with reference to examples. 1. Materials used The following materials were used. 1) Cement; Low heat Portland cement (manufactured by Taiheiyo Cement Corporation) 2) Pozzolanic fine powder; diatomaceous earth (particle size: 10 to 30 μm) Weight ratio) Mixed product 4) Metal fiber; Steel fiber (diameter: 0.2 mm, length: 15 mm) 5) High-performance AE water reducing agent; Polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) Inorganic powder ; Quartz powder (average particle size 7μm) 8) Fibrous particles; Wollastonite (average length 0.3mm, length / diameter ratio 4)
【0020】実施例1 低熱ポルトランドセメント100重量部、けい藻土32.5重
量部、細骨材120重量部、高性能AE減水剤1.0重量部
(セメントに対する固形分)、水22重量部を二軸練りミ
キサに投入し、混練した。前記配合物をφ50×100mmの
型枠で成形し、20℃で48時間前置き後90℃で48時間蒸気
養生した。該硬化体の圧縮強度(3本の平均値)は180M
Paであった。また、前記配合物を4×4×16cmの型枠で
成形し、20℃で48時間前置き後90℃で48時間蒸気養生し
た。該硬化体の曲げ強度(3本の平均値)は20MPaであ
った。Example 1 Biaxial kneading of 100 parts by weight of low heat Portland cement, 32.5 parts by weight of diatomaceous earth, 120 parts by weight of fine aggregate, 1.0 part by weight of a high-performance AE water reducing agent (solid content based on cement), and 22 parts by weight of water It was charged into a mixer and kneaded. The composition was molded in a mold of φ50 × 100 mm, placed at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The compressive strength (average value of three) of the cured product is 180M
Pa. The composition was molded in a mold frame of 4 × 4 × 16 cm, placed at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The bending strength (average value of three pieces) of the cured product was 20 MPa.
【0021】実施例2 低熱ポルトランドセメント100重量部、けい藻土32.5重
量部、細骨材120重量部、高性能AE減水剤1.0重量部
(セメントに対する固形分)、水22重量部、石英粉30重
量部、ウォラストナイト24重量部、鋼繊維(水硬性組成
物中の体積の2%)を二軸練りミキサに投入し、混練し
た。圧縮強度と曲げ強度を実施例1と同様に測定した。
その結果、圧縮強度は200MPa、曲げ強度は40MPaであっ
た。Example 2 100 parts by weight of low heat Portland cement, 32.5 parts by weight of diatomaceous earth, 120 parts by weight of fine aggregate, 1.0 part by weight of high-performance AE water reducing agent (solid content based on cement), 22 parts by weight of water, 30 parts of quartz powder Parts by weight, 24 parts by weight of wollastonite, and steel fiber (2% of the volume in the hydraulic composition) were charged into a biaxial kneading mixer and kneaded. Compressive strength and flexural strength were measured as in Example 1.
As a result, the compressive strength was 200 MPa and the bending strength was 40 MPa.
【0022】[0022]
【発明の効果】以上説明したように、本発明の超高強度
水硬性組成物では、高価な超微粉末(シリカフューム
等)の使用量を少なくしても、150MPa以上の超高強度
(圧縮強度)の硬化体を製造することができる。As described above, the ultra-high-strength hydraulic composition of the present invention has an ultra-high strength (compression strength) of 150 MPa or more even when the amount of expensive ultrafine powder (silica fume, etc.) is reduced. ) Can be produced.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 14:48 C04B 14:48 A D 16:06 16:06 A B E 14:38 14:38 A 14:06 14:06 Z 14:38 14:38 C 14:20) 14:20) A 103:32 103:32 111:20 111:20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 14:48 C04B 14:48 A D 16:06 16:06 A B E 14:38 14:38 A 14 : 06 14:06 Z 14:38 14:38 C 14:20) 14:20) A 103: 32 103: 32 111: 20 111: 20
Claims (6)
末、粒径2mm以下の細骨材、減水剤及び水を含む超高強
度水硬性組成物において、該ポゾラン質微粉末の一部又
は全てがけい藻土であることを特徴とする超高強度水硬
性組成物。1. An ultra-high-strength hydraulic composition comprising at least cement, pozzolanic fine powder, fine aggregate having a particle size of 2 mm or less, a water reducing agent and water, wherein part or all of the pozzolanic fine powder is silicon. An ultra-high-strength hydraulic composition characterized by being algae soil.
求項1に記載の超高強度水硬性組成物。2. The ultra-high-strength hydraulic composition according to claim 1, comprising metal fibers and / or organic fibers.
mmの鋼繊維である請求項2記載の超高強度水硬性組成
物。3. The metal fiber has a diameter of 0.01 to 1.0 mm and a length of 2 to 30.
The ultrahigh-strength hydraulic composition according to claim 2, which is a steel fiber of mm.
〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチ
レン繊維、アラミド繊維、炭素繊維から選ばれる1種以
上の繊維である請求項2記載の超高強度水硬性組成物。4. An organic fiber having a diameter of 0.005 to 1.0 mm and a length of 2
The ultrahigh-strength hydraulic composition according to claim 2, which is at least one fiber selected from vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, and carbon fiber of up to 30 mm.
求項1〜4のいずれかに記載の超高強度水硬性組成物。5. The ultrahigh-strength hydraulic composition according to claim 1, further comprising an inorganic powder having an average particle size of 3 to 20 μm.
状粒子を含む請求項1〜5のいずれかに記載の超高強度
水硬性組成物。6. The ultrahigh-strength hydraulic composition according to claim 1, comprising fibrous particles or flaky particles having an average particle size of 1 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000258553A JP2002068806A (en) | 2000-08-29 | 2000-08-29 | Ultrahigh strength hydraulic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000258553A JP2002068806A (en) | 2000-08-29 | 2000-08-29 | Ultrahigh strength hydraulic composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002068806A true JP2002068806A (en) | 2002-03-08 |
Family
ID=18746851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000258553A Pending JP2002068806A (en) | 2000-08-29 | 2000-08-29 | Ultrahigh strength hydraulic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002068806A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7799128B2 (en) | 2008-10-10 | 2010-09-21 | Roman Cement, Llc | High early strength pozzolan cement blends |
US8377201B2 (en) | 2010-07-16 | 2013-02-19 | Roman Cement, Llc | Narrow PSD hydraulic cement, cement-SCM blends, and methods for making same |
US8974593B2 (en) | 2011-10-20 | 2015-03-10 | Roman Cement, Llc | Particle packed cement-SCM blends |
US9272953B2 (en) | 2010-11-30 | 2016-03-01 | Roman Cement, Llc | High early strength cement-SCM blends |
US10131575B2 (en) | 2017-01-10 | 2018-11-20 | Roman Cement, Llc | Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions |
US10730805B2 (en) | 2017-01-10 | 2020-08-04 | Roman Cement, Llc | Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions |
US10737980B2 (en) | 2017-01-10 | 2020-08-11 | Roman Cement, Llc | Use of mineral fines to reduce clinker content of cementitious compositions |
US11168029B2 (en) | 2017-01-10 | 2021-11-09 | Roman Cement, Llc | Use of mineral fines to reduce clinker content of cementitious compositions |
-
2000
- 2000-08-29 JP JP2000258553A patent/JP2002068806A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7972432B2 (en) | 2008-10-10 | 2011-07-05 | Roman Cement, Llc | High early strength pozzolan cement blends |
US8323399B2 (en) | 2008-10-10 | 2012-12-04 | Roman Cement, Llc | High early strength pozzolan cement blends |
US7799128B2 (en) | 2008-10-10 | 2010-09-21 | Roman Cement, Llc | High early strength pozzolan cement blends |
US8377201B2 (en) | 2010-07-16 | 2013-02-19 | Roman Cement, Llc | Narrow PSD hydraulic cement, cement-SCM blends, and methods for making same |
US8414700B2 (en) | 2010-07-16 | 2013-04-09 | Roman Cement, Llc | Narrow PSD hydraulic cement, cement-SCM blends, and methods for making same |
US8551245B2 (en) | 2010-07-16 | 2013-10-08 | Roman Cement Llc | Narrow PSD hydraulic cement, cement-SCM blends, and methods for making same |
US9272953B2 (en) | 2010-11-30 | 2016-03-01 | Roman Cement, Llc | High early strength cement-SCM blends |
US8974593B2 (en) | 2011-10-20 | 2015-03-10 | Roman Cement, Llc | Particle packed cement-SCM blends |
US9238591B2 (en) | 2011-10-20 | 2016-01-19 | Roman Cement, Llc | Particle packed cement-SCM blends |
USRE49415E1 (en) | 2011-10-20 | 2023-02-14 | Roman Cement, Llc | Particle packed cement-SCM blends |
US10131575B2 (en) | 2017-01-10 | 2018-11-20 | Roman Cement, Llc | Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions |
US10730805B2 (en) | 2017-01-10 | 2020-08-04 | Roman Cement, Llc | Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions |
US10737980B2 (en) | 2017-01-10 | 2020-08-11 | Roman Cement, Llc | Use of mineral fines to reduce clinker content of cementitious compositions |
US11168029B2 (en) | 2017-01-10 | 2021-11-09 | Roman Cement, Llc | Use of mineral fines to reduce clinker content of cementitious compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009051682A (en) | Ultra-high-strength high-fluidity concrete, and ultra-high-strength high-fluidity fresh concrete | |
JP4374106B2 (en) | High strength mortar and high strength concrete | |
JP2001240440A (en) | Steel fiber for reinforcing concrete and fiber reinforced concrete | |
JP4643857B2 (en) | Permeable concrete | |
JP2002068806A (en) | Ultrahigh strength hydraulic composition | |
JP4056696B2 (en) | Cement slurry | |
JP4167379B2 (en) | Cured body | |
JP2001220201A (en) | Fiber reinforced concrete | |
JP2001254302A (en) | Sleeper for railway line | |
JP2001212817A (en) | Method for producing fiber-reinforced concrete | |
JP2001207794A (en) | Concrete-made segment | |
JP2006137630A (en) | Concrete | |
JP2001226958A (en) | Steel pipe concrete pile | |
JP2001226162A (en) | Joint filler material for post-tension-prestressed concrete plate | |
JP2003055019A (en) | Hardened body | |
JP2001226160A (en) | Ultrahigh strength cement hardened body | |
JP2001247350A (en) | Repairing material | |
JP2001262562A (en) | Concrete pile | |
JP2003267764A (en) | Reinforcing plate | |
JP2003252671A (en) | Hardened body | |
JP2001253745A (en) | Fiber-reinforced concrete | |
JP2001226175A (en) | Surface coating material | |
JP2001213654A (en) | Quick-setting mortar or concrete with ultra high strength | |
JP2001240450A (en) | Mixture for mending the structure and mending method | |
JP2002137952A (en) | Hydraulic composition |