JP4167787B2 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
JP4167787B2
JP4167787B2 JP2000021381A JP2000021381A JP4167787B2 JP 4167787 B2 JP4167787 B2 JP 4167787B2 JP 2000021381 A JP2000021381 A JP 2000021381A JP 2000021381 A JP2000021381 A JP 2000021381A JP 4167787 B2 JP4167787 B2 JP 4167787B2
Authority
JP
Japan
Prior art keywords
weight
composite
parts
strength
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021381A
Other languages
Japanese (ja)
Other versions
JP2001213661A (en
Inventor
剛士 小野
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2000021381A priority Critical patent/JP4167787B2/en
Publication of JP2001213661A publication Critical patent/JP2001213661A/en
Application granted granted Critical
Publication of JP4167787B2 publication Critical patent/JP4167787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明の属する技術分野】
この発明は、複合部材、特に普通コンクリートと超高強度硬化体を複合して、ひび割れ強度向上、及び/又は耐久性を高めた複合部材に関する。
【0002】
【従来の技術】
従来、コンクリートで構造物を構築する場合、コンクリートのひび割れ及びひび割れ幅がその構造物を構成するコンクリート部材の使用限界となるケースが多い。又、コンクリート部材は、コンクリートの中性化等の耐久性により、鉄筋のかぶりが決定されている。上記いずれの場合においても、部材断面を大きくすることでひび割れ防止や耐久性向上を図っているのが現状であり、その結果、コンクリート部材の重量が大となり、また、コンクリート部材を支える基礎や柱部等の部材も大きな断面となる等大変不経済であるほか、運搬等において大きな機械力を使用しなければならない欠点を持っている。また、鋼材と比較し、一般にコンクリート自体の耐久性は優れているとはいえ、腐食作用、凍結融解作用、あるいは化学作用が厳しい環境におけるコンクリート構造物のコンクリート部材として使用するには、例えば、海水による侵食、摩耗、凍結融解による剥離の発生等、長期的な使用にはやはり耐久性の課題が残る。
【0003】
【発明が解決しようとする課題】
したがって、この発明は、安価で取り扱いが容易な普通コンクリートと、超高強度特性、高靭性、耐衝撃性及び高耐久性を有する超高強度セメント系の硬化体を一体化することにより、部材断面厚さの低減・軽量化を可能とした上で、極めてひび割れ強度の向上、及び/又は耐久性の向上、意匠性の向上した複合部材を提供することを目的とする。
【0004】
【課題を解決するための手段】
上述の目的を達成するために、この発明の複合部材によれば、少なくとも、セメント 100 重量部に対し、ポゾラン質微粉末 5 50 重量部、粒径 2mm 以下の骨材 50 250 重量部、減水剤(固形分換算) 0.5 4.0 重量部、水 10 30 重量部を含む配合物であって、前記ポゾラン質微粉末がシリカフュームであり、該配合物の凝結後の体積の 4 %未満となる量の金属繊維を含む配合物を型枠に配置し、該配合物が硬化する前に普通コンクリートを打設することにより、該配合物の硬化体と普通コンクリートを一体化してなる複合部材であって、上記硬化体を複合部材の引張側、及び/又は、耐久性要求側に配置してなること(請求項1)、金属繊維が、径 0.01 1.0mm 、長さ 2 30mm の鋼繊維であること(請求項2)、配合物に、平均粒径 3 20 μmの無機粉末を含むこと(請求項3)、配合物に、平均粒度 1mm 以下の繊維状粒子又は薄片状粒子を含むこと(請求項4)、を特徴とする。以下、この発明を詳しく説明する。
【0005】
【発明の実施の形態】
この発明の複合部材を構成する硬化体に使用するセメントは、ポルトランドセメント、混合セメント、速硬セメントなどの各種のセメントを使用することができる。ポルトランドセメントは、普通、早強、超早強、中庸熱、耐硫酸塩、低熱、白色などの各種ポルトランドセメントがいずれも使用できるが、中庸熱、耐硫酸塩、低熱の各ポルトランドセメントは、アルミネート鉱物(C3A)の含有量が少なく、流動性が良いので好ましい。フライアッシュセメント、高炉セメント、シリカセメント等の混合セメントは、組成物中のポルトランドセメント分が他のセメントより相対的に少ないので流動性を高める点では好ましい。また、硬化体の早期強度を向上しようとする場合は、早強ポルトランドセメントを使用することが好ましく速硬セメントは短時間で硬化するので流動性が早く失われるが、早期に強度の発現を求められる場合には効果的である。
【0006】
セメントの使用量は、後述するポゾラン質微粉末の使用量と併せて決定されるが、配合物中の単位セメント量が500〜1000kg/m3、好ましくは700〜850kg/m3 の範囲とすることにより、各種配合物との作用と相俟って、圧縮強度が150MPa以上、特に200MPa以上の超高強度用硬化体を得ることができる。単位セメント量が500kg/m3 を下回ると、目的とする超強度硬化体を得ることが困難となり、又、セメント使用量が1000kg/m3 を超えると、ポゾラン質微粉末の使用と併せて、配合物の練り混ぜが困難となり好ましくない。
【0007】
次に、ポゾラン質微粉末は、セメントとのポゾラン反応に関与する微粉末であり、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ等の平均粒径が1.5μm未満のものが用いられる。中でもシリカフュームは、平均粒径が1.0μm以下であり、粉砕する必要がなく、ポゾラン反応に好適である。ポゾラン質微粉末は、そのマイクロフィラー効果及びセメント分散効果によりコンクリートが緻密化し、圧縮強度が向上する。一方、微粉末の添加量が多くなると単位水量を増大するので、ポゾラン質微粉末量はセメント100重量部に対して5〜50重量部が好ましい。
【0008】
この発明において、骨材は通常のコンクリートに使用されている砂、例えば、川砂、陸砂、海砂、砕砂、珪砂及びこれらの混合物をを用いることができるが、粒径は2mm篩通過量が85重量%以上、好ましくは1.5mm篩通過量が85重量%以上、さらに好ましくは1.2mm篩通過量が85重量%以上のものを使用する。このような骨材粒子を使用することにより、配合物の分離抵抗性を高めると共に、硬化体の充填度及び強度を高めることができる。上記骨材の配合量は、セメント100重量部に対して、50〜250部の範囲、好ましくは80〜180重量部の範囲とすることにより、コンクリートの作業性や分離抵抗性に優れ、硬化後の強度やクラックに対する抵抗性を保持しつつ、経済的な硬化体を得ることができる。
【0009】
また、この発明においては、上記骨材に加えて、平均粒径3.0〜20μm、好ましくは4〜10μmの無機粉末を配合することにより、さらに硬化体の充填密度を高めることができる。無機粉末としては、石英粉末、例えば、石英や非晶質石英、オパール質やクリストバライト質のシリカ含有粉末、あるいは、岩石粉末、石灰石粉末、高炉スラグ、火山灰、分級フライアッシュ、さらにはAl23等の酸化物粉末、SiC2等の炭化物粉末、SiN等の窒化物粉末が使用できるが、中でも、石英粉末はコストや硬化体の品質安定性の面から好ましいものである。無機粉末は、セメント100重量部に対して無機粉末が50重量部以下の範囲、好ましくは20〜35重量部の範囲で含まれると、流動性が良く、硬化体が強度に優れた緻密な充填構造を形成しやすいものとなる。
【0010】
次に、この発明は減水剤を併用する。減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。中でも、高性能減水剤又は高性能AE減水剤を使用することが好ましい。この発明においては、従来のコンクリートと比べて硬化体中に占める微粉体の体積が多いことが特徴の一つであるが、この場合においても、減水剤の添加量を適切に調整することにより、コンクリートに所定の流動性を与えることができる。減水剤の添加量(セメントに対して外割)は、コンクリートの流動性や分離抵抗性、硬化後の強度、さらにはコスト等から、セメントに対して、固形分換算で、0.1〜10重量%、好ましくは0.5〜4.0重量%とする。添加量が0.1重量%未満では減水効果が実質上無く、またこれを10重量%越えて添加しても減水性、流動性の改善効果が頭打ちとなる。
【0011】
この発明において、水/セメント比は、コンクリートの流動性や分離抵抗性、硬化体の強度や耐久性等から、10〜30重量%が好ましく、15〜25重量%がより好ましい。
【0012】
この発明においては、硬化体の曲げ強度を高める観点から、配合物に金属繊維及び/又は有機質繊維を含ませることが好ましい。金属繊維としては、鋼繊維、アモルファス繊維等が挙げられるが、中でも鋼繊維は強度に優れており、またコストや入手のし易さの点からも好ましいものである。金属繊維は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径が0.01mm未満では繊維自身の強度が不足し、張力を受けた際に切れやすくなる。径が1.0mmを超えると、同一配合量での本数が少なくなり、コンクリートの曲げ強度が低下する。長さが30mmを超えると、混練の際ファイバーボールが生じやすくなる。長さが2mm未満ではマトリックスとの付着力が低下し曲げ強度が低下する
【0013】
金属繊維の配合量は凝結後の硬化体体積の4%未満が好ましく、より好ましくは3.5%未満である。金属繊維の含有量は、流動性と硬化体の曲げ強度の観点から定められる。一般に、金属繊維の含有量が多くなると曲げ強度が向上するが、一方、流動性を確保するために単位水量も増大するので、金属繊維の含有量は前記の量が好ましい。
【0014】
有機質繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、アクリル繊維、炭素繊維等が挙げられる。有機質繊維は、径0.005〜1.0mm、長さ2〜30mmのものが好ましい。有機質繊維の含有量は、凝結後の硬化体体積の10%未満が好ましく、7%未満がより好ましい。なお、この発明においては、金属繊維と有機質繊維を併用することは差し支えない。
【0015】
この発明においては、硬化体の靱性を高める観点から、平均粒度が1mm以下の繊維状粒子又は薄片状粒子を含ませることが好ましい。ここで、粒子の粒度とはその最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。繊維状粒子としては、ウォラストナイト、ボーキサイト、ムライト等が、薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。繊維状粒子又は薄片状粒子の配合量は、コンクリートの流動性、硬化体の強度や靱性等から、セメント100重量部に対して35重量部以下が好ましく、10〜25重量部がより好ましい。なお、繊維状粒子においては、硬化体の靱性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
【0016】
尚、以上説明した配合成分のほかに、この発明は、通常、コンクリートにおいて用いられる急硬・急結材、高強度混和剤、水和促進剤、凝結調整剤などの各種コンクリート混和材料も使用できる。
【0017】
また、前記各成分の混合及び混練方法に制限は無く、均一に混合混練できれば良く、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等、各種のミキサを使用することができる。さらに、配合成分の添加順序にも特に制限されるものではない。
【0018】
次に、この発明の複合部材を構成する普通コンクリートは、通常使用されているコンクリートのことであって、28日標準養生時の圧縮強度が100MPa以下のものを言い、この普通コンクリートを前記詳述した超強度硬化体と一体化する。一体化は、引張側、及び/又は、耐久性要求側に前記超強度硬化体を構成する配合物を成形、配置し、該配合物が硬化する前に普通コンクリートを打設しても良く、また、硬化後に打設しても良い。硬化後に普通コンクリートを打設する場合は、該コンクリートとの付着性を高めるために、硬化体表面を粗面仕上げ、ジベル筋、あるいは各種シアーコッター等を設け、強固な一体化を図ることが望ましい。
【0019】
尚、超強度硬化体配合物の成形及び養生は、通常のコンクリートにおける各種の成形方法及び養生方法が適用可能であり、流し込み成形のほか、管状体にあっては遠心成形等も適用でき、常温養生、高温養生、常圧蒸気養生、高温高圧養生のいずれの方法も採用でき、必要ならば、これらの組合わせを行ってより超高強度硬化体とすることができる。また、従来のコンクリートと同様に配筋し、加えてプレストレストを導入することも可能である。
【0020】
上述した普通コンクリートと超高強度硬化体を一体化したこの発明の複合部材は、引張側、及び/又は、耐久性要求側に超高強度硬化体を配置することで、該超高強度硬化体の物性を充分に発揮し、高強度特性、高靭性、耐衝撃性及び高耐久性を有する複合部材とすることができ、また、部材全体として断面厚さを低減し、このため大型で長尺寸法化が可能である。
【0021】
【実施例】
以下、実施例を挙げてこの発明を説明する。
(使用材料)
セメント:低熱ポルトランドセメント(太平洋セメント(株)製)
ポゾラン質微粉末:シリカフューム(平均粒径0.7μm)
骨材:珪砂4号と珪砂5号の2:1(重量比)混合品(2mm篩通過量が100重量%)
金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
高性能AE減水剤:ポリカルボン酸系高性能AE減水剤
水:上水道水
石英粉(平均粒径7μm)
繊維状粒子:ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)
【0022】
実施例1
低熱ポルトランドセメント100重量部、シリカフューム32.5重量部、骨材120重量部、高性能AE減水剤をセメントに対して1.0重量%(固形分)、水/セメント比22重量%の条件で各材料を、二軸練りミキサに一括投入して混練りした。次いで、前置き(20℃)48時間後、90℃で48時間蒸気養生して、直径50mm、長さ100mmの円柱(圧縮試験用)、及び幅40mm、長さ160mm、厚さ40mmの棒状(曲げ試験用)成形品を得た。得られた成形品の圧縮強度は、210MPa、曲げ強度は25MPaであった。尚、混練物のフロー値は270mmであった。
【0023】
実施例2
鋼繊維を配合物中の体積の2%を加えたほかは実施例1と同様にして成形品を得た。得られた成形品の圧縮強度は、210MPa、曲げ強度は47MPa、混練物のフロー値は250mmであった。
【0024】
実施例3
実施例2の配合物に石英粉を30重量部、ウォラストナイトを24重量部を加えたほかは実施例1と同様にして成形品を得た。尚、得られた成形品の圧縮強度は、230MPa、曲げ強度は47MPa、混練物のフロー値は250mmであった。
【0025】
比較例
セメントとして普通ポルトランドセメント100重量部、骨材として細骨材160重量部(山形産砕砂)、粗骨材300重量部(秩父産砕石)を用い、水/セメント比40重量%としたほかは実施例1と同様に成形品を得た。得られた成形品の圧縮強度は60MPa、曲げ強度は7MPa、混練物のスランプフロー値は550mmであった。
【0026】
実施例4
実施例1〜3、及び比較例で得た成形品を用いて耐摩耗及び耐衝撃試験を行った。耐摩耗試験はピンオンディスク法により摩耗重量を測定し、また、耐衝撃試験は、シャルピー法で行った。測定結果は、実施例1の成形品摩耗量を100とすると、実施例2、3のそれは110、110であり、比較例では60であった。また、実施例1におけるエネルギー吸収率を1とすると、実施例2、3は、それぞれ80、100であり、比較例では1/5であった。
【0027】
実施例5
実施例1〜3、及び比較例で得た成形品を用いて凍結融解試験を行い、成形品の劣化度を凍結融解サイクル数と動弾性係数に基づく相対動弾性係数比を計測することにより調べた。測定結果は、凍結融解サイクル数1000回での実施例1〜3の動弾性係数を100とすると、比較例では70であった。
【0028】
実施例6
実施例3に記載の配合物を幅100mm×長さ200mmの型枠に40mm厚さまで充填し、続いて、該配合物の硬化前に比較例記載のコンクリートを60cm厚さに充填し、次いで、前置き(20℃)48時間後、90℃で48時間蒸気養生して、部材厚さ100mmで、硬化体(40mm厚)と普通コンクリート(60mm厚)一体型の複合部材を得た。この複合部材の実施例3配合物硬化体を引張側にして曲げ強度試験を行ったところ、普通コンクリートのみの場合と比較して6倍の強度となった。
【0029】
【発明の効果】
この発明により、圧縮強度を200MPa以上とした超緻密な硬化体を引張側、及び/又は、耐久性要求側に配置し、普通コンクリートと一体化し、極めてひび割れ強度の向上した、あるいは耐摩耗、耐表面侵食に極めて優れ、超耐用性のある複合部材とすることができる。また、この発明によれば、その超高強度特性及び耐衝撃特性を有する硬化体との一体化により、部材厚さを薄く、軽量化や大型で長尺寸法化ができるほか、乾燥収縮が小さく、寸法精度も優れ、複合部材使用による構造物の構築に当たって、極めて施工性が優れるものであり、一般の建築・構造物のほか、腐食作用、凍結融解作用、あるいは化学作用が厳しい環境におけるコンクリート構造物において、厳しい環境面側を超緻密な硬化体にした複合部材として好適に適用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite member, particularly a composite member in which ordinary concrete and an ultra-high-strength hardened body are combined to improve crack strength and / or durability.
[0002]
[Prior art]
Conventionally, when a structure is constructed with concrete, there are many cases in which the crack and width of the concrete are the use limit of the concrete member constituting the structure. Further, the concrete member is determined to cover the reinforcing bars due to durability such as neutralization of concrete. In any of the above cases, the current situation is to prevent cracking and improve durability by enlarging the cross section of the member. As a result, the weight of the concrete member becomes large, and the foundation and pillar supporting the concrete member In addition to being very uneconomical such as having a large cross-section of the members such as parts, it has the disadvantage that a large mechanical force must be used for transportation and the like. In addition, although the durability of concrete itself is generally superior to that of steel, it can be used as a concrete member for a concrete structure in an environment where corrosion, freezing and thawing, or chemical action is severe. Durability issues still remain for long-term use, such as erosion due to wear, wear, and delamination due to freezing and thawing.
[0003]
[Problems to be solved by the invention]
Therefore, the present invention provides a cross-section of a member by integrating ordinary concrete, which is inexpensive and easy to handle, with an ultra-high-strength cement-based hardened body having ultra-high strength characteristics, high toughness, impact resistance and high durability. An object of the present invention is to provide a composite member that is extremely improved in crack strength and / or durability and improved in design, while enabling reduction in thickness and weight.
[0004]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, according to the composite member of the present invention, at least 5 to 50 parts by weight of pozzolanic fine powder , 50 to 250 parts by weight of an aggregate having a particle size of 2 mm or less, with respect to 100 parts by weight of cement , water reducing agent (in terms of solid content) 0.5-4.0 parts by weight, a formulation comprising water 10-30 parts by weight, the a pozzolanic substance fine powder is silica fume, and less than 4% of the volume after setting of the formulation A composite member formed by placing a compound containing a certain amount of metal fibers in a mold and placing ordinary concrete before the compound is cured, thereby integrating the cured body of the compound and ordinary concrete. The hardened body is disposed on the tension side and / or the durability demand side of the composite member (Claim 1), and the metal fiber is steel having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm . it is a fiber (claim 2), in the formulation, the mean particle diameter of 3 ~ 20 [mu] m of the inorganic powder Include (Claim 3), in the formulation, comprise an average particle size less than 1mm fibrous particles or flaky particles (claim 4), characterized by. Hereinafter, the present invention will be described in detail.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As the cement used for the hardened body constituting the composite member of the present invention, various types of cement such as Portland cement, mixed cement, and quick-hardening cement can be used. Portland cement can be any of ordinary, early strength, ultra-early strength, medium heat, sulfate resistant, low heat, white, etc., but each medium heat, sulfate resistant, low heat Portland cement is made of aluminum. This is preferable because the content of the nate mineral (C 3 A) is small and the fluidity is good. A mixed cement such as fly ash cement, blast furnace cement, and silica cement is preferable in terms of enhancing fluidity because the amount of Portland cement in the composition is relatively smaller than that of other cements. In addition, when trying to improve the early strength of the hardened body, it is preferable to use early-strength Portland cement, and fast-hardening cement is hardened in a short time and loses its fluidity quickly. It is effective when
[0006]
The amount of cement used is determined together with the amount of pozzolanic fine powder to be described later, but the unit cement amount in the blend is 500 to 1000 kg / m 3 , preferably 700 to 850 kg / m 3. Accordingly, in combination with the action of various blends, it is possible to obtain an extremely high strength cured body having a compressive strength of 150 MPa or more, particularly 200 MPa or more. When the unit cement amount is less than 500 kg / m 3 , it becomes difficult to obtain a desired super-strength hardened body, and when the cement use amount exceeds 1000 kg / m 3 , in combination with the use of pozzolanic fine powder, It becomes difficult to knead the blend, which is not preferable.
[0007]
Next, the pozzolanic fine powder is a fine powder involved in the pozzolanic reaction with cement and has an average particle size of less than 1.5 μm, such as silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica. Is used. Among these, silica fume has an average particle size of 1.0 μm or less and does not need to be pulverized and is suitable for pozzolanic reaction. The pozzolanic fine powder is densified by the micro filler effect and cement dispersing effect, and the compressive strength is improved. On the other hand, since the amount of unit water increases as the amount of fine powder added increases, the pozzolanic fine powder amount is preferably 5 to 50 parts by weight with respect to 100 parts by weight of cement.
[0008]
In this invention, as the aggregate, sand that is used for ordinary concrete, such as river sand, land sand, sea sand, crushed sand, silica sand, and a mixture thereof can be used. 85% by weight or more, preferably 1.5 mm sieve passing amount is 85% by weight or more, more preferably 1.2 mm sieve passing amount is 85% by weight or more. By using such aggregate particles, it is possible to increase the separation resistance of the blend and increase the degree of filling and strength of the cured body. The amount of the aggregate is 50 to 250 parts, preferably 80 to 180 parts by weight with respect to 100 parts by weight of cement. An economical cured body can be obtained while maintaining the strength and resistance to cracks.
[0009]
Moreover, in this invention, in addition to the said aggregate, the filling density of a hardening body can further be raised by mix | blending inorganic powder with an average particle diameter of 3.0-20 micrometers, Preferably 4-10 micrometers. Examples of the inorganic powder include quartz powder such as quartz, amorphous quartz, opal and cristobalite silica-containing powder, or rock powder, limestone powder, blast furnace slag, volcanic ash, classified fly ash, and Al 2 O 3. An oxide powder such as SiC 2, a carbide powder such as SiC 2 , and a nitride powder such as SiN can be used. Of these, quartz powder is preferable from the viewpoints of cost and quality stability of the cured product. When the inorganic powder is contained in the range of 50 parts by weight or less, preferably in the range of 20 to 35 parts by weight with respect to 100 parts by weight of the cement, it is densely packed with good fluidity and excellent cured body strength. It becomes easy to form a structure.
[0010]
Next, this invention uses a water reducing agent together. As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent. In this invention, it is one of the features that the volume of fine powder in the hardened body is larger than that of conventional concrete, but in this case as well, by appropriately adjusting the amount of water reducing agent added, Predetermined fluidity can be given to concrete. The amount of water-reducing agent added (extra split with respect to cement) is 0.1 to 10 in terms of solid content with respect to cement due to the fluidity and separation resistance of concrete, strength after curing, and cost. % By weight, preferably 0.5 to 4.0% by weight. If the addition amount is less than 0.1% by weight, there is substantially no water reducing effect, and even if it is added in excess of 10% by weight, the effect of improving water reduction and fluidity will reach its peak.
[0011]
In this invention, the water / cement ratio is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, from the fluidity and separation resistance of the concrete, the strength and durability of the cured body, and the like.
[0012]
In this invention, it is preferable to include metal fibers and / or organic fibers in the blend from the viewpoint of increasing the bending strength of the cured body. Examples of the metal fibers include steel fibers and amorphous fibers, among which steel fibers are excellent in strength and are preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. If the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and it is easy to break when subjected to tension. When the diameter exceeds 1.0 mm, the number of the same compounding amount decreases, and the bending strength of the concrete decreases. If the length exceeds 30 mm, fiber balls are likely to occur during kneading. If the length is less than 2 mm, the adhesive strength with the matrix decreases and the bending strength decreases.
The blending amount of the metal fibers is preferably less than 4%, more preferably less than 3.5% of the volume of the cured product after setting. The content of the metal fiber is determined from the viewpoints of fluidity and bending strength of the cured body. In general, when the content of the metal fiber is increased, the bending strength is improved. On the other hand, since the unit water amount is increased in order to ensure fluidity, the content of the metal fiber is preferably the above amount.
[0014]
Examples of organic fibers include vinylon fibers, polypropylene fibers, polyethylene fibers, aramid fibers, acrylic fibers, and carbon fibers. The organic fibers preferably have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm. The content of the organic fiber is preferably less than 10% and more preferably less than 7% of the volume of the cured product after condensation. In the present invention, it is possible to use metal fibers and organic fibers in combination.
[0015]
In the present invention, from the viewpoint of enhancing the toughness of the cured body, it is preferable to include fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle). Examples of fibrous particles include wollastonite, bauxite, mullite, and examples of flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes. The blending amount of the fibrous particles or the flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight with respect to 100 parts by weight of cement in view of the fluidity of concrete, the strength and toughness of the hardened body. In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a length / diameter ratio of 3 or more from the viewpoint of increasing the toughness of the cured body.
[0016]
In addition to the above-described blending components, the present invention can also use various concrete admixtures such as rapid hardening / quick setting materials, high-strength admixtures, hydration accelerators and setting modifiers that are usually used in concrete. .
[0017]
Moreover, there is no restriction | limiting in the mixing and kneading | mixing method of each said component, What is necessary is just to be able to mix and knead | mix uniformly, and various mixers, such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, and a tilting cylinder mixer, can be used. Further, the order of addition of the blending components is not particularly limited.
[0018]
Next, the ordinary concrete constituting the composite member of the present invention is a concrete that is usually used, and has a compressive strength at the time of standard curing on the 28th of 100 MPa or less. Integrated with the super-hardened body. For the integration, a compound constituting the super-strength hardened body may be molded and arranged on the tension side and / or the durability demand side, and ordinary concrete may be placed before the compound is cured, Moreover, you may cast after hardening. When placing ordinary concrete after hardening, it is desirable to provide a solid surface by roughening the surface of the hardened body, providing gibber streaks, or various shear cotters, etc., in order to enhance adhesion to the concrete. .
[0019]
In addition, various molding methods and curing methods for ordinary concrete can be applied to the molding and curing of the super-strength cured body composition, and in addition to casting, centrifugal molding or the like can be applied to tubular bodies. Any method of curing, high-temperature curing, atmospheric steam curing, and high-temperature and high-pressure curing can be adopted, and if necessary, these can be combined to obtain a super-high-strength cured body. It is also possible to arrange the bars in the same way as conventional concrete and introduce prestressed.
[0020]
The composite member of the present invention in which the above-mentioned ordinary concrete and the ultra-high-strength hardened body are integrated can be obtained by arranging the ultra-high-strength hardened body on the tension side and / or the durability demand side. It is possible to make a composite member that fully exhibits the physical properties of the material and has high strength characteristics, high toughness, impact resistance, and high durability, and the cross-sectional thickness of the entire member is reduced. Legalization is possible.
[0021]
【Example】
Hereinafter, the present invention will be described with reference to examples.
(Materials used)
Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
Pozzolanic fine powder: Silica fume (average particle size 0.7μm)
Aggregate: 2: 1 (weight ratio) mixture of silica sand No. 4 and silica sand No. 5 (2 mm sieve passage is 100% by weight)
Metal fiber: Steel fiber (diameter: 0.2 mm, length: 15 mm)
High-performance AE water reducing agent: Polycarboxylic acid-based high-performance AE water reducing agent Water: Water tap water quartz powder (average particle size 7 μm)
Fibrous particles: Wollastonite (average length 0.3 mm, length / diameter ratio 4)
[0022]
Example 1
Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, aggregate 120 parts by weight, high performance AE water reducing agent 1.0% by weight (solid content) with respect to cement, water / cement ratio 22% by weight Each material was put into a biaxial kneader at once and kneaded. Next, after 48 hours of pre-treatment (20 ° C.), steam curing is performed at 90 ° C. for 48 hours, a cylinder having a diameter of 50 mm and a length of 100 mm (for compression test), and a rod shape (bending of 40 mm in width, 160 mm in length and 40 mm in thickness) A molded product (for testing) was obtained. The obtained molded product had a compressive strength of 210 MPa and a bending strength of 25 MPa. The flow value of the kneaded material was 270 mm.
[0023]
Example 2
A molded product was obtained in the same manner as in Example 1 except that 2% of the volume of the steel fiber was added. The compression strength of the obtained molded product was 210 MPa, the bending strength was 47 MPa, and the flow value of the kneaded product was 250 mm.
[0024]
Example 3
A molded product was obtained in the same manner as in Example 1 except that 30 parts by weight of quartz powder and 24 parts by weight of wollastonite were added to the formulation of Example 2. In addition, the compression strength of the obtained molded product was 230 MPa, the bending strength was 47 MPa, and the flow value of the kneaded product was 250 mm.
[0025]
In addition to 100 parts by weight of ordinary Portland cement as comparative cement, 160 parts by weight of fine aggregate (crushed sand from Yamagata) and 300 parts by weight of coarse aggregate (crushed stone from Chichibu) as the aggregate, the water / cement ratio was 40% by weight. Obtained a molded product in the same manner as in Example 1. The compression strength of the obtained molded product was 60 MPa, the bending strength was 7 MPa, and the slump flow value of the kneaded product was 550 mm.
[0026]
Example 4
Abrasion resistance and impact resistance tests were performed using the molded products obtained in Examples 1 to 3 and Comparative Example. In the abrasion resistance test, the wear weight was measured by the pin-on-disk method, and the impact resistance test was performed by the Charpy method. The measurement results were 110 and 110 in Examples 2 and 3 and 60 in the comparative example, assuming that the amount of wear of the molded product in Example 1 was 100. Further, assuming that the energy absorption rate in Example 1 is 1, Examples 2 and 3 are 80 and 100, respectively, and 1/5 in the comparative example.
[0027]
Example 5
The freeze-thaw test was performed using the molded products obtained in Examples 1 to 3 and the comparative example, and the degree of deterioration of the molded product was examined by measuring the relative dynamic elastic modulus ratio based on the number of freeze-thaw cycles and the dynamic elastic modulus. It was. The measurement result was 70 in the comparative example, assuming that the kinematic elastic modulus of Examples 1 to 3 at 1000 freeze-thaw cycles was 100.
[0028]
Example 6
The formulation described in Example 3 was filled into a 100 mm wide by 200 mm long mold to a thickness of 40 mm, followed by filling the concrete described in the comparative example to a thickness of 60 cm before curing the formulation, then After 48 hours from the front (20 ° C.), steam curing was performed at 90 ° C. for 48 hours to obtain a composite member in which the cured body (40 mm thickness) and ordinary concrete (60 mm thickness) were integrated with a member thickness of 100 mm. When the bending strength test was conducted with the cured product of Example 3 blend of this composite member as the tension side, the strength was 6 times that of the case of ordinary concrete alone.
[0029]
【The invention's effect】
According to this invention, a super dense hardened body having a compressive strength of 200 MPa or more is arranged on the tension side and / or the durability demand side, and is integrated with ordinary concrete, and the crack strength is extremely improved, or the wear resistance, A composite member having extremely excellent surface erosion and super durability can be obtained. In addition, according to the present invention, by integrating with a cured body having ultra-high strength characteristics and impact resistance characteristics, the thickness of the member can be reduced, the weight can be reduced, the size can be increased to a longer size, and the drying shrinkage can be reduced. In addition, it has excellent dimensional accuracy and is extremely easy to construct in the construction of structures using composite materials. In addition to ordinary buildings and structures, concrete structures in environments with severe corrosion, freeze-thaw, or chemical action In a product, it can be suitably applied as a composite member in which the severe environmental surface side is an ultra-dense hardened body.

Claims (4)

  1. 少なくとも、セメント 100 重量部に対し、ポゾラン質微粉末 5 50 重量部、粒径 2mm 以下の骨材 50 250 重量部、減水剤(固形分換算) 0.5 4.0 重量部、水 10 30 重量部を含む配合物であって、前記ポゾラン質微粉末がシリカフュームであり、該配合物の凝結後の体積の 4 %未満となる量の金属繊維を含む配合物を型枠に配置し、該配合物が硬化する前に普通コンクリートを打設することにより、該配合物の硬化体と普通コンクリートを一体化してなる複合部材であって、上記硬化体を複合部材の引張側、及び/又は、耐久性要求側に配置してなることを特徴とする複合部材。 At least 100 parts by weight of cement to pozzolan protein powder 5-50 parts by weight, a particle diameter 2mm or less of the aggregate 50-250 parts by weight, water reducing agent (in terms of solid content) 0.5-4.0 parts by weight of water 10 to 30 weight The pozzolanic fine powder is silica fume, and a compound containing metal fibers in an amount that is less than 4 % of the volume after condensation of the compound is placed in a mold, A composite member in which the hardened body of the compound and the normal concrete are integrated by placing normal concrete before the object is hardened, and the hardened body is used as the tension side and / or the durability of the composite member. A composite member arranged on the sex demand side.
  2. 金属繊維が、径Metal fiber diameter 0.010.01 ~ 1.0mm1.0mm 、長さ,length 22 ~ 30mm30mm の鋼繊維である請求項1記載の複合部材。The composite member according to claim 1, which is a steel fiber.
  3. 配合物に、平均粒径Average particle size in the formulation 3Three ~ 2020 μmの無機粉末を含む請求項1又は2に記載の複合部材。The composite member according to claim 1, comprising a μm inorganic powder.
  4. 配合物に、平均粒度Average particle size in the formulation 1mm1mm 以下の繊維状粒子又は薄片状粒子を含む請求項1〜3のいずれかに記載の複合部材。The composite member according to claim 1, comprising the following fibrous particles or flaky particles.
JP2000021381A 2000-01-31 2000-01-31 Composite material Expired - Fee Related JP4167787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021381A JP4167787B2 (en) 2000-01-31 2000-01-31 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021381A JP4167787B2 (en) 2000-01-31 2000-01-31 Composite material

Publications (2)

Publication Number Publication Date
JP2001213661A JP2001213661A (en) 2001-08-07
JP4167787B2 true JP4167787B2 (en) 2008-10-22

Family

ID=18547797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021381A Expired - Fee Related JP4167787B2 (en) 2000-01-31 2000-01-31 Composite material

Country Status (1)

Country Link
JP (1) JP4167787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877026B1 (en) 2001-05-29 2009-01-07 다이헤이요 세멘토 가부시키가이샤 Hydraulic Composition
JP4541259B2 (en) * 2005-08-30 2010-09-08 鹿島建設株式会社 Fiber reinforced mortar composition

Also Published As

Publication number Publication date
JP2001213661A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
US7465350B2 (en) Hydraulic composition
JP4558569B2 (en) Ultra high strength fiber reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, and ultra high strength cement admixture
JP4593412B2 (en) Centrifugal concrete product and manufacturing method thereof
JP3397775B2 (en) Hydraulic composition
JP4374106B2 (en) High strength mortar and high strength concrete
JP5101355B2 (en) Cement composition
JP3888685B2 (en) High-strength concrete board containing organic fibers reinforced with high-strength mesh
JP2002348167A (en) Hydraulic composition
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP4298247B2 (en) High fluidity concrete
JP4167787B2 (en) Composite material
JP2004155623A (en) Prestressed concrete
JP4165992B2 (en) Hydraulic composition
JP4540161B2 (en) Water conduit / pipe
JP4039801B2 (en) Hydraulic composition
JP2004123414A (en) Prestressed hydraulic hardened body
JP4167373B2 (en) Hand hole
JP2001207442A (en) Sheet pile
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP2001220201A (en) Fiber reinforced concrete
JP2001207577A (en) Embedded form
JP2001205581A (en) Surface plate
JP2001226160A (en) Ultrahigh strength cement hardened body
JP2001200576A (en) Side ditch
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees