JP6205843B2 - High-strength cement paste composition and method for producing high-strength cement paste hardened body - Google Patents
High-strength cement paste composition and method for producing high-strength cement paste hardened body Download PDFInfo
- Publication number
- JP6205843B2 JP6205843B2 JP2013110310A JP2013110310A JP6205843B2 JP 6205843 B2 JP6205843 B2 JP 6205843B2 JP 2013110310 A JP2013110310 A JP 2013110310A JP 2013110310 A JP2013110310 A JP 2013110310A JP 6205843 B2 JP6205843 B2 JP 6205843B2
- Authority
- JP
- Japan
- Prior art keywords
- cement paste
- curing
- water
- strength
- days
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004568 cement Substances 0.000 title claims description 78
- 239000000203 mixture Substances 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- 239000002245 particle Substances 0.000 claims description 23
- 229910021487 silica fume Inorganic materials 0.000 claims description 20
- 239000003638 chemical reducing agent Substances 0.000 claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 210000002268 wool Anatomy 0.000 claims description 9
- 239000002518 antifoaming agent Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000001723 curing Methods 0.000 description 43
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000013007 heat curing Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000001507 sample dispersion Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、高強度セメントペースト組成物及び高強度セメントペースト硬化体の製造方法に関する。 The present invention relates to a high-strength cement paste composition and a method for producing a cured high-strength cement paste.
近年、構造部材の軽量化、鉄筋使用量の削減などの要求に伴い、200N/mm2程度の圧縮強度が得られるような超高強度材料が提案されている。これらの材料では、セメント、ポゾラン質微粉末、骨材及び高性能減水剤が使用されており、熱養生によって超高強度化が図られている。また、これらに金属繊維や有機繊維を添加することによって、高いじん性やひび割れ抑制機能を付与することが提案されている(特許文献1〜3参照)。
例えば、上記の材料よりもさらに圧縮強度の高い材料が得られれば、柱部材の受け持つ荷重をさらに増大することができるため、構造物における柱の数を減らすことができ、その結果、構造物の居住空間をさらに広げられるとともに、設計や意匠性の自由度がさらに高まることが考えられる。
In recent years, an ultra-high-strength material capable of obtaining a compressive strength of about 200 N / mm 2 has been proposed in accordance with demands for reducing the weight of structural members and reducing the amount of reinforcing bars used. In these materials, cement, pozzolanic fine powder, aggregate, and a high-performance water reducing agent are used, and ultrahigh strength is achieved by heat curing. In addition, it has been proposed to impart high toughness and crack suppression function by adding metal fibers and organic fibers to these (see Patent Documents 1 to 3).
For example, if a material having a higher compressive strength than the above-mentioned material is obtained, the load of the column member can be further increased, so that the number of columns in the structure can be reduced. It is conceivable that the living space can be further expanded and the degree of freedom in design and design is further increased.
セメント組成物の高強度化を図る場合、その水/結合材比をより小さくする方法が一般的に執られるが、結合材の化学反応をより促進するために、蒸気養生などの加熱養生がとられることがある。また、更なる高強度化のため、セメントペースト中の空隙を極力小さくする目的で、遠心成型や加圧成型が行われることもある。また、これらの方法を組み合わせた、オートクレーブ養生やヒートプレス養生をすることで、さらに高い圧縮強度が得られることが分かっている。 In order to increase the strength of a cement composition, a method of reducing the water / binder ratio is generally adopted. However, in order to further promote the chemical reaction of the binder, heat curing such as steam curing is required. May be. In order to further increase the strength, centrifugal molding or pressure molding may be performed for the purpose of reducing the voids in the cement paste as much as possible. It has also been found that higher compressive strength can be obtained by combining these methods with autoclave curing and heat press curing.
しかしながら、これらの製造方法は、大掛かりな設備が必要であるため、容易に実施できるものではない。
そこで、本発明は、従来の技術にくらべて、大掛かりかつ特殊な製造設備を必要とせず、より高強度である高強度セメントペースト組成物を提供することを目的とする。
However, these manufacturing methods are not easy to implement because they require large-scale equipment.
Therefore, an object of the present invention is to provide a high-strength cement paste composition that is higher in strength and does not require large-scale and special manufacturing equipment as compared with the conventional technology.
本発明者らは、上記課題を解決すべく鋭意検討した結果、セメントと、シリカフューム、減水剤及び消泡剤と組み合わせ、さらに、微小な金属粉末をモルタルに混入することと、100℃までの加熱養生を組み合わせることによって、高強度化が実現できることを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have combined cement with silica fume, a water reducing agent and an antifoaming agent, and further mixed a minute metal powder into the mortar and heated to 100 ° C. The inventors have found that high strength can be realized by combining curing, and have reached the present invention.
すなわち、本発明は、セメントと、シリカフュームと、水と、減水剤と、消泡剤と、金属微粉末とを含む高強度セメントペースト組成物であって、セメントは、C3Sを10.0質量%〜40.0質量%及びC3Sを40.0質量%〜70.0質量%含有する高強度セメントペースト組成物を提供する。このような高強度セメントペースト組成物は、従来にない、非常に高い圧縮強度を発現することができる。
また、本発明は前記高強度セメントペースト組成物を、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜200℃の水中または気中で5日間〜21日間養生を行う二次養生工程とを含む、高強度セメントペースト硬化体の製造方法を提供する。このような高強度セメントペースト組成物の製造方法によれば、従来にない、非常に高い圧縮強度を有す高強度セメントペースト組成物を製造することができる。
That is, the present invention is a high-strength cement paste composition containing cement, silica fume, water, a water reducing agent, an antifoaming agent, and a metal fine powder, and the cement contains C 3 S of 10.0. Provided is a high-strength cement paste composition containing 4% by mass to 40.0% by mass and 40.0% by mass to 70.0% by mass of C 3 S. Such a high-strength cement paste composition can exhibit a very high compressive strength, which has not existed before.
The present invention also includes a primary curing process in which the high-strength cement paste composition is cured in water at 20 to 60 ° C. for 1 to 7 days, and in water or air at 80 to 200 ° C. for 5 to 21 days. A method for producing a hardened high-strength cement paste comprising a secondary curing step for curing. According to such a method for producing a high-strength cement paste composition, an unprecedented high-strength cement paste composition having a very high compressive strength can be produced.
本発明によれば、特殊な養生方法をとらなくとも、高い圧縮強度を持つ高強度セメントペースト組成物を提供することができる。 According to the present invention, a high-strength cement paste composition having high compressive strength can be provided without taking a special curing method.
以下、本発明に係る高強度セメントペースト組成物及びモルタル組成物の好適な実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the high-strength cement paste composition and the mortar composition according to the present invention will be described, but the present invention is not limited to the following embodiments.
(高強度セメントペースト組成物)
本実施形態の高強度セメントペースト組成物は、セメントと、シリカフュームと、水と、減水剤と、消泡剤と、金属微粉末とを含むものである。
(High-strength cement paste composition)
The high-strength cement paste composition of this embodiment contains cement, silica fume, water, a water reducing agent, an antifoaming agent, and metal fine powder.
セメントの鉱物組成は、C3S量が10.0〜40.0質量%、C2S量が40.0〜70.0質量%、C3A量が5.0質量%以下、C4AF量が5.0〜15.0質量%である。C3S量は、好ましくは15.0〜35.0質量%、より好ましくは18.0〜32.0質量%であり、更に好ましくは20.0〜30.0質量%である。C3S量が10.0質量%未満では圧縮強度が低くなる傾向があり、40.0質量%を超えると加熱養生後の圧縮強度が低くなる傾向がある。C2S量は、好ましくは40.0〜65.0質量%、より好ましくは43.0〜62.0質量%であり、更に好ましくは45.0〜60.0質量%である。C2S量が40.0質量%未満では、特に加熱養生後の圧縮強度が低くなる傾向がある。C3A量は好ましくは5.0質量%以下であり、より好ましくは4.5質量%以下であり、更に好ましくは4.0質量%以下である。C3A量が5.0%を超えると、十分な流動性が悪くなる。C4AF量は、好ましくは11.0質量%、より好ましくは10.7質量%であり、更に好ましくは10.5質量%である。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 As for the mineral composition of the cement, the amount of C 3 S is 10.0 to 40.0% by mass, the amount of C 2 S is 40.0 to 70.0% by mass, the amount of C 3 A is 5.0% by mass or less, and C 4 The AF amount is 5.0 to 15.0% by mass. The amount of C 3 S is preferably 15.0 to 35.0% by mass, more preferably 18.0 to 32.0% by mass, and further preferably 20.0 to 30.0% by mass. If the amount of C 3 S is less than 10.0% by mass, the compressive strength tends to be low, and if it exceeds 40.0% by mass, the compressive strength after heat curing tends to be low. The amount of C 2 S is preferably 40.0 to 65.0% by mass, more preferably 43.0 to 62.0% by mass, and further preferably 45.0 to 60.0% by mass. When the amount of C 2 S is less than 40.0% by mass, the compressive strength after heat curing tends to be low. The amount of C 3 A is preferably 5.0% by mass or less, more preferably 4.5% by mass or less, and still more preferably 4.0% by mass or less. When the amount of C 3 A exceeds 5.0%, sufficient fluidity is deteriorated. The amount of C 4 AF is preferably 11.0% by mass, more preferably 10.7% by mass, and still more preferably 10.5% by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
セメントのブレーン比表面積は、好ましくは2500〜4800cm2/g、より好ましくは2800〜4500cm2/g、更に好ましくは3000〜4200cm2/gであり、特に好ましくは3200〜3900cm2/gである。セメントのブレーン比表面積が2500cm2/g未満では高強度セメントペースト組成物の強度が低くなる傾向があり、4800cm2/gを超えると低水セメント比での流動性が低下する傾向にある。 The brane specific surface area of the cement is preferably 2500 to 4800 cm 2 / g, more preferably 2800 to 4500 cm 2 / g, still more preferably 3000 to 4200 cm 2 / g, and particularly preferably 3200 to 3900 cm 2 / g. When the brane specific surface area of the cement is less than 2500 cm 2 / g, the strength of the high-strength cement paste composition tends to be low, and when it exceeds 4800 cm 2 / g, the fluidity at the low water cement ratio tends to decrease.
本実施形態に係るセメントの製造にあたっては、通常のセメントと特に異なる操作を行う必要はない。上記セメントは、石灰石、珪石、スラグ、石炭灰、建設発生土、高炉ダスト等の原料の調合を目標とする鉱物組成に応じて変え、実機キルンで焼成した後、得られたクリンカーに石膏を加えて所定の粒度に粉砕することによって製造することができる。焼成するキルンには、一般的なNSPキルンやSPキルン等を使用することができ、粉砕には一般的なボールミル等の粉砕機が使用可能である。また、必要に応じて、2種以上のセメントを混合することもできる。 In manufacturing the cement according to the present embodiment, it is not necessary to perform an operation different from that of normal cement. The cement is changed according to the target mineral composition such as limestone, silica, slag, coal ash, construction generated soil, blast furnace dust, etc., fired in the actual kiln, gypsum added to the obtained clinker And can be manufactured by pulverizing to a predetermined particle size. A general NSP kiln, SP kiln, or the like can be used for the kiln to be fired, and a general pulverizer such as a ball mill can be used for pulverization. Moreover, 2 or more types of cement can also be mixed as needed.
シリカフュームは、金属シリコン、フェロシリコン、電融ジルコニア等を製造する際に発生する排ガス中のダストを集塵して得られる副産物であり、主成分は、アルカリ溶液中で溶解する非晶質のSiO2である。シリカフュームの平均粒子径は、好ましくは0.05〜2.0μm、より好ましくは0.10〜1.5μm、更に好ましくは0.18〜0.28μm、特に好ましくは0.20〜0.28μmである。このようなシリカフュームを用いることで、高強度セメントペースト組成物の高い圧縮強度及び高い流動性を確保しやすくなる。 Silica fume is a by-product obtained by collecting dust in the exhaust gas generated when producing metal silicon, ferrosilicon, fused zirconia, etc., and the main component is amorphous SiO dissolved in an alkaline solution. 2 . The average particle size of silica fume is preferably 0.05 to 2.0 μm, more preferably 0.10 to 1.5 μm, still more preferably 0.18 to 0.28 μm, and particularly preferably 0.20 to 0.28 μm. is there. By using such silica fume, it becomes easy to ensure high compressive strength and high fluidity of the high-strength cement paste composition.
本実施形態の高強度セメントペースト組成物において、セメント及びシリカフュームの合計量を基準として、シリカフュームを、好ましくは5〜35質量%、より好ましくは7〜30質量%、更に好ましくは8〜27質量%、特に好ましくは9〜23質量%含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 In the high-strength cement paste composition of the present embodiment, the silica fume is preferably 5 to 35% by mass, more preferably 7 to 30% by mass, and still more preferably 8 to 27% by mass, based on the total amount of cement and silica fume. Especially preferably, it contains 9 to 23% by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
減水剤としては、リグニン系、ナフタレンスルホン酸系、アミノスルホン酸系、ポリカルボン酸系の減水剤、高性能減水剤、高性能AE減水剤等を使用することができる。低水セメント比での流動性確保の観点から、減水剤として、ポリカルボン酸系の減水剤、高性能減水剤又は高性能AE減水剤を用いることが好ましく、ポリカルボン酸系の高性能減水剤を用いることがより好ましい。本実施形態に係る高強度セメントペースト組成物は、セメントとシリカフュームの合量100質量部に対して、減水剤を好ましくは1.0〜6.0質量部、より好ましくは1.5〜5.0質量部、更に好ましくは1.8〜4.5質量部、特に好ましくは2.2〜4.0質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 As the water reducing agent, lignin-based, naphthalenesulfonic acid-based, aminosulfonic acid-based, polycarboxylic acid-based water reducing agents, high-performance water reducing agents, high-performance AE water reducing agents, and the like can be used. From the viewpoint of ensuring fluidity at a low water cement ratio, it is preferable to use a polycarboxylic acid-based water reducing agent, a high-performance water reducing agent or a high-performance AE water reducing agent as the water reducing agent, and a polycarboxylic acid-based high-performance water reducing agent. It is more preferable to use In the high-strength cement paste composition according to this embodiment, the water reducing agent is preferably 1.0 to 6.0 parts by mass, and more preferably 1.5 to 5.5 parts with respect to 100 parts by mass of the total amount of cement and silica fume. 0 parts by mass, more preferably 1.8 to 4.5 parts by mass, particularly preferably 2.2 to 4.0 parts by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
また、セメントとシリカフュームの合量100質量部に対して、水を好ましくは9〜20質量部、より好ましくは9.5〜18質量部、更に好ましくは10.0〜16質量部、特に好ましくは10.5〜14.0質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The amount of water is preferably 9 to 20 parts by weight, more preferably 9.5 to 18 parts by weight, still more preferably 10.0 to 16 parts by weight, particularly preferably 100 parts by weight of the total amount of cement and silica fume. Including 10.5 to 14.0 parts by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
消泡剤としては、特殊非イオン配合型界面活性剤、ポリアルキレン誘導体、疎水性シリカ、ポリエーテル系等が挙げられる。この場合、セメントとシリカフュームの合量100質量部に対して、消泡剤を好ましくは0.01〜2.0質量部、より好ましくは0.1〜1.0質量部、更に好ましくは0.2〜0.5質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 Examples of antifoaming agents include special nonionic compounding surfactants, polyalkylene derivatives, hydrophobic silica, and polyethers. In this case, the antifoaming agent is preferably 0.01 to 2.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, and still more preferably 0.8. 2 to 0.5 parts by mass are included. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
金属微粉末は、スチールウール及び/又は鉄粉等を使用することができる。
金属微粉末の形状は、直径が好ましくは5μm〜500μm、より好ましくは10μm〜420μm、更に好ましくは15μm〜400μm、特に好ましくは20μm〜380μmである。長さは好ましくは5μm〜5.0mm、より好ましくは20μm〜4.0mm、更に好ましくは30μm〜3.8mm、特に好ましくは50μm〜3.5mmである。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
Steel wool and / or iron powder can be used as the metal fine powder.
The shape of the metal fine powder is preferably 5 μm to 500 μm in diameter, more preferably 10 μm to 420 μm, still more preferably 15 μm to 400 μm, and particularly preferably 20 μm to 380 μm. The length is preferably 5 μm to 5.0 mm, more preferably 20 μm to 4.0 mm, still more preferably 30 μm to 3.8 mm, and particularly preferably 50 μm to 3.5 mm. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
(高強度セメントペースト硬化体の製造方法)
本実施形態の高強度セメントペースト硬化体の製造方法は、上記高強度セメントペースト組成物を、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜200℃の水中または気中で5日間〜21日間養生を行う二次養生工程とを含む。
一次養生工程は、好ましくは23〜55℃、より好ましくは25〜50℃、更に好ましくは28〜48℃、特に好ましくは30〜45℃の水中で、好ましくは1〜7日間、より好ましくは1.5〜6日間、更に好ましくは1.8〜5日間、特に好ましくは2.0〜4.5日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
(Manufacturing method of hardened cement paste)
The method for producing a high-strength cement paste cured body according to the present embodiment includes a primary curing step of curing the high-strength cement paste composition in water at 20 to 60 ° C. for 1 to 7 days, and 80 to 200 ° C. A secondary curing step of curing for 5 to 21 days in water or in the air.
The primary curing step is preferably 23 to 55 ° C, more preferably 25 to 50 ° C, still more preferably 28 to 48 ° C, particularly preferably 30 to 45 ° C in water, preferably 1 to 7 days, more preferably 1 Curing is carried out for 5 to 6 days, more preferably 1.8 to 5 days, particularly preferably 2.0 to 4.5 days. If it is the above range, high compressive strength and high fluidity | liquidity are fully securable.
二次養生工程は、好ましくは80〜200℃、より好ましくは83〜190℃、更に好ましくは85〜185℃、特に好ましくは90〜180℃の水中または気中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。水中の場合、温水、気中の場合、蒸気養生装置、オートクレーブ、乾燥機などが使用出来る。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The secondary curing step is preferably 80 to 200 ° C, more preferably 83 to 190 ° C, still more preferably 85 to 185 ° C, particularly preferably 90 to 180 ° C in water or in the air, preferably 5 to 21 days. More preferably 5 to 19 days, still more preferably 6 to 17 days, particularly preferably 7 to 15 days. In water, warm water, in the air, steam curing devices, autoclaves, dryers, etc. can be used. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
本実施形態の高強度セメントペースト硬化体の製造方法は、上記高強度セメントペースト組成物を、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜100℃の水中で5日間〜21日間養生を行う二次養生工程と、80℃〜200℃の気中で5日間〜21日間養生を行う三次養生工程で行っても良い。
一次養生工程は、好ましくは23〜55℃、より好ましくは25〜50℃、更に好ましくは28〜48℃、特に好ましくは30〜45℃の水中で、好ましくは1〜7日間、より好ましくは1.5〜6日間、更に好ましくは1.8〜5日間、特に好ましくは2.0〜4.5日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
The method for producing a cured high-strength cement paste according to the present embodiment includes a primary curing process in which the high-strength cement paste composition is cured in water at 20 to 60 ° C. for 1 to 7 days, and 80 to 100 ° C. You may perform by the secondary curing process which cures for 5 to 21 days in water, and the tertiary curing process which cures for 5 days to 21 days in the air of 80 to 200 degreeC.
The primary curing step is preferably 23 to 55 ° C, more preferably 25 to 50 ° C, still more preferably 28 to 48 ° C, particularly preferably 30 to 45 ° C in water, preferably 1 to 7 days, more preferably 1 Curing is carried out for 5 to 6 days, more preferably 1.8 to 5 days, particularly preferably 2.0 to 4.5 days. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
二次養生工程は、好ましくは80〜100℃、より好ましくは83〜99℃、更に好ましくは85〜99℃、特に好ましくは90〜98℃の水中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。
三次養生工程は、好ましくは80〜200℃、より好ましくは83〜190℃、更に好ましくは85〜185℃、特に好ましくは90〜180℃の気中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。
水中の場合、温水、気中の場合、蒸気養生装置、オートクレーブ、乾燥機などが使用出来る。三次養生工程では、水中よりも気中養生の方が、強度増進の観点からより好ましい。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
The secondary curing step is preferably 80 to 100 ° C., more preferably 83 to 99 ° C., further preferably 85 to 99 ° C., particularly preferably 90 to 98 ° C., preferably 5 to 21 days, more preferably Curing is performed for 5 to 19 days, more preferably 6 to 17 days, particularly preferably 7 to 15 days.
The tertiary curing step is preferably 80 to 200 ° C, more preferably 83 to 190 ° C, still more preferably 85 to 185 ° C, particularly preferably 90 to 180 ° C, preferably 5 to 21 days, more preferably Curing is performed for 5 to 19 days, more preferably 6 to 17 days, particularly preferably 7 to 15 days.
In water, warm water, in the air, steam curing devices, autoclaves, dryers, etc. can be used. In the tertiary curing process, air curing is more preferable than water from the viewpoint of strength enhancement. If it is the above range, high compressive strength and high fluidity | liquidity are fully securable.
以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
[使用材料の準備]
実施例及び比較例のモルタル組成物を作製するために、以下に示す材料を準備した。
[Preparation of materials used]
In order to prepare the mortar compositions of Examples and Comparative Examples, the following materials were prepared.
(1)セメント:低熱ポルトランドセメント
使用したセメントの化学成分を、JIS R 5202−2010「セメントの化学分析方法」にしたがい測定し、鉱物組成を下記のボーグ式により算出した。得られたセメントの鉱物組成を表1に示す。
(1) Cement: The chemical composition of the cement using low heat Portland cement was measured according to JIS R 5202-2010 “Chemical chemical analysis method”, and the mineral composition was calculated by the following Borg equation. The mineral composition of the obtained cement is shown in Table 1.
C3S量=(4.07×CaO)−(7.60×SiO2)−(6.72×Al2O3)−(1.43×Fe2O3)−(2.85×SO3)
C2S量=(2.87×SiO2)−(0.754×C3S)
C3A量=(2.65×Al2O3)−(1.69×Fe2O3)
C4AF量=3.04×Fe2O3
C 3 S amount = (4.07 × CaO) − (7.60 × SiO 2 ) − (6.72 × Al 2 O 3 ) − (1.43 × Fe 2 O 3 ) − (2.85 × SO 3 )
C 2 S amount = (2.87 × SiO 2 ) − (0.754 × C 3 S)
C 3 A amount = (2.65 × Al 2 O 3 ) − (1.69 × Fe 2 O 3 )
C 4 AF amount = 3.04 × Fe 2 O 3
(2)シリカフューム
シリカフュームの平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、商品名「LA−950V2」)を用いて測定した粒子径分布より、粒子径−通過分積算%曲線を算出し、粒子径−通過分積算%曲線より通過分積算が50体積%となる粒子径を求めた。試料分散媒は0.2%ヘキサメタリン酸ナトリウム水溶液を用い、測定前に出力600Wのホモジナイザーにて10分間分散処理した。粒度分布の演算はMie散乱理論に従った。粒子屈折率は1.45−0.00i、溶媒屈折率は1.333とした。各粒度の通過分積算(体積%)を表2に示す。
(2) Silica fume The average particle diameter of silica fume is calculated from the particle diameter distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus (trade name “LA-950V2” manufactured by Horiba, Ltd.). The% curve was calculated, and the particle diameter at which the accumulated volume was 50% by volume was determined from the particle diameter-% accumulated volume curve. A 0.2% sodium hexametaphosphate aqueous solution was used as a sample dispersion medium, and the sample was dispersed for 10 minutes with a homogenizer with an output of 600 W before measurement. The calculation of the particle size distribution followed Mie scattering theory. The particle refractive index was 1.45-0.00i, and the solvent refractive index was 1.333. Table 2 shows the accumulated amount (volume%) of each particle size.
(3)減水剤:ポリカルボン酸系高性能減水剤(固形分濃度25質量%)
(4)消泡剤:特殊非イオン配合型界面活性剤
(5)金属微紛末
(i)カットスチールウール:日本スチールウール社製、直径20〜30μm、長さ0.1〜3mm、密度7.85g/cm3
( ii )鉄粉:JFEスチール社製、JIP−300R、平均粒径91.1μm
鉄粉の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(島津製作所製、商品名「SALD−2200」)を用いて測定した粒子径分布より、粒子径−通過分積算%曲線を算出し、粒子径−通過分積算%曲線より通過分積算が50体積%となる粒子径を求めた。粒度分布の演算はMie散乱理論に従った。粒子屈折率は4.00−0.00i、溶媒屈折率は1.333とした。各粒度の通過分積算(体積%)を表3に示す。
(6)練混ぜ水(W):上水道水
(3) Water reducing agent: polycarboxylic acid-based high-performance water reducing agent (solid content concentration 25% by mass)
(4) Antifoaming agent: Special non-ionic compounding type surfactant (5) Metal fine powder powder (i) Cut steel wool: Nippon Steel Wool Co., Ltd., diameter 20-30 μm, length 0.1-3 mm, density 7 .85 g / cm 3
(Ii) Iron powder: JFE Steel Corporation, JIP-300R, average particle size 91.1 μm
The average particle size of the iron powder is calculated by calculating the particle size-passage integrated% curve from the particle size distribution measured using a laser diffraction / scattering particle size distribution measuring device (trade name “SALD-2200” manufactured by Shimadzu Corporation). The particle size was calculated and the particle size at which the accumulated amount of the passage was 50% by volume was determined from the particle size-accumulated amount of accumulated% curve. The calculation of the particle size distribution followed Mie scattering theory. The particle refractive index was 4.00-0.00i, and the solvent refractive index was 1.333. Table 3 shows the accumulated amount (volume%) of each particle size.
(6) Mixing water (W): Tap water
[高強度セメントペースト組成物の作製]
高強度セメントペースト組成物の作製を、表4の配合組成に基づき、以下の通りに行った。
[Preparation of high-strength cement paste composition]
A high-strength cement paste composition was produced as follows based on the composition shown in Table 4.
セメント、シリカフューム、消泡剤をモルタルミキサに加え、減水剤を含む練混ぜ水をミキサ内に投入して10分間撹拌し、モルタル組成物を作製した。なお、実施例1〜6では、金属微紛末を更に投入して、高強度セメントペースト組成物を作製した。 Cement, silica fume, and an antifoaming agent were added to the mortar mixer, and mixing water containing a water reducing agent was added into the mixer and stirred for 10 minutes to prepare a mortar composition. In Examples 1 to 6, metal powder was further added to produce a high-strength cement paste composition.
[養生方法]
練り混ぜた高強度セメントペースト組成物は、型枠に充填後、3日程度で脱型し、40℃の水中で3日の一次養生の工程を実施した。その後、二次養生として、98℃の温水中で7日間養生し、その後、さらに7日間水中養生を続ける方法と、7日間、98℃の乾燥機で乾燥させる方法の二通りの方法を実施した。これらの養生を行い、高強度セメントペースト硬化体を作製した。
[Curing method]
The kneaded and mixed high-strength cement paste composition was demolded in about 3 days after filling into the mold and subjected to a primary curing process in 40 ° C. water for 3 days. Then, as a secondary curing, two methods were carried out: curing in 98 ° C. warm water for 7 days, and then continuing for 7 days in water curing, and drying for 7 days in a 98 ° C. dryer. . These curings were carried out to produce a high-strength cement paste hardened body.
[高強度セメントペースト組成物の評価]
(1)フレッシュ性状
(試験方法)
比較例1および実施例1〜6の配合で作製した高強度セメントペースト組成物を用いて、フロー値を測定した。フロー値は、JIS R 5201−1997「セメントの物理試験方法」に準じ、落下無しの条件で測定した。
[Evaluation of high-strength cement paste composition]
(1) Fresh properties (test method)
The flow value was measured using the high-strength cement paste composition produced by the blending of Comparative Example 1 and Examples 1-6. The flow value was measured according to JIS R 5201-1997 “Cement physical test method” under the condition of no drop.
(2)強度試験
JIS A 1132−2006「コンクリートの強度試験用供試体の作り方」に準じて5cm×10cmの円柱供試体を作製し、JIS A 1108−2006「コンクリートの圧縮強度試験方法」に準じて高強度セメントペースト硬化体の圧縮強度試験を実施した。
(2) Strength test According to JIS A 1132-2006 “How to make a specimen for concrete strength test”, a 5 cm × 10 cm cylindrical specimen is prepared and according to JIS A 1108-2006 “Concrete compressive strength test method”. Then, a compressive strength test was conducted on the cured high-strength cement paste.
(評価結果)
表5に、フロー値および圧縮強度試験結果を示す。
(Evaluation results)
Table 5 shows the flow values and the compressive strength test results.
比較例1で、金属微粉末を使用しない場合には、二次養生期間14日の時点で、316N/mm2となった。
実施例1〜3のようにスチールウールを2〜4体積%混入することによって、7日強度が40〜60N/mm2程度、14日強度が30〜60N/mm2程度増大し7日、14日ともに340N/mm2以上の高い圧縮強度が得られた。また、セメントペーストの流動性もスチールウールを混入しない場合に比べ向上した。
実施例4および5のように、鉄粉を使用した場合、スチールウールを使用するよりも、セメントペーストの流動性が増大した。また、添加率が2体積%の場合、スチールウールと同等の圧縮強度がえられた。
実施例6に示すように、二次養生の水中養生後に三次養生の気中養生を施したものは、気中養生期間中における圧縮強度の増進が、温水養生にくらべて増大し、380N/mm2以上の非常に高い圧縮強度が得られた。セメントの養生は、一般的に水中で十分に水和させることが重要とされているが、実施例6の結果からは、寧ろ、ある程度水中養生した後は気中養生した方が良いことが示唆されている。シリカフュームを低水セメント比で使用したセメントペーストの場合、湿潤環境下でシリカフュームのポゾラン反応をある程度促進した後は,気中のように余剰の水分がより移動しやすい環境下で加熱することでより緻密な硬化体が得られると推察される。
In Comparative Example 1, when metal fine powder was not used, it was 316 N / mm 2 at the time of the secondary curing period 14 days.
By incorporating steel wool 2-4 vol% as in Examples 1-3, 7 days strength 40~60N / mm 2 approximately, 14 days strength 30~60N / mm 2 approximately increased 7 days, 14 A high compressive strength of 340 N / mm 2 or more was obtained every day. Also, the fluidity of the cement paste was improved compared to the case where steel wool was not mixed.
As in Examples 4 and 5, when iron powder was used, the fluidity of the cement paste increased more than when steel wool was used. Moreover, when the addition rate was 2% by volume, a compressive strength equivalent to that of steel wool was obtained.
As shown in Example 6, in the case where the air curing of the tertiary curing was performed after the water curing of the secondary curing, the increase in compressive strength during the air curing period was increased as compared with the warm water curing, and 380 N / mm 2 The above very high compressive strength was obtained. Cement curing is generally considered to be sufficiently hydrated in water, but the results of Example 6 suggest that it is better to cure in the air after curing to some extent. Has been. In the case of cement paste using silica fume at a low water cement ratio, after promoting the pozzolanic reaction of silica fume to some extent in a humid environment, it is more effective to heat it in an environment where excess moisture is more likely to move, such as in the air. It is inferred that a dense hardened body can be obtained.
Claims (7)
前記セメントは、C3Sを10.0質量%〜40.0質量%及びC2Sを40.0質量%〜70.0質量%含有し、
前記スチールウール及び/又は前記鉄粉を前記高強度セメントペースト組成物に対して2.0体積%〜5.0体積%含有し、
前記スチールウールは、直径が5μm〜500μm及び長さが5μm〜3.8mmであり、
40℃の水中で3日間養生を行う一次養生、98℃の水中で7日間養生を行う二次養生、及び、98℃の乾燥機で7日間乾燥を行う三次養生によって作製される、前記高強度セメントペースト組成物のセメントペースト硬化体の圧縮強度が340N/mm 2 以上であることを特徴とする高強度セメントペースト組成物。 A high-strength cement paste composition comprising cement, silica fume, water, a water reducing agent, an antifoaming agent, steel wool and / or iron powder ,
The cement is a C 3 S 10.0 wt% 40.0 wt% and C 2 S contained 40.0 wt% 70.0 wt%,
The steel wool and / or the iron powder is contained in an amount of 2.0% by volume to 5.0% by volume with respect to the high-strength cement paste composition,
The steel wool has a diameter of 5 μm to 500 μm and a length of 5 μm to 3.8 mm,
The high strength produced by primary curing for 3 days in 40 ° C. water, secondary curing for 7 days in 98 ° C. water, and tertiary curing for 7 days in a 98 ° C. dryer. A high-strength cement paste composition, wherein the cement paste hardened body of the cement paste composition has a compressive strength of 340 N / mm 2 or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110310A JP6205843B2 (en) | 2013-05-24 | 2013-05-24 | High-strength cement paste composition and method for producing high-strength cement paste hardened body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110310A JP6205843B2 (en) | 2013-05-24 | 2013-05-24 | High-strength cement paste composition and method for producing high-strength cement paste hardened body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014227330A JP2014227330A (en) | 2014-12-08 |
JP6205843B2 true JP6205843B2 (en) | 2017-10-04 |
Family
ID=52127522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013110310A Active JP6205843B2 (en) | 2013-05-24 | 2013-05-24 | High-strength cement paste composition and method for producing high-strength cement paste hardened body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6205843B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2015024947A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2016098141A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2016098140A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109180110B (en) * | 2018-11-07 | 2020-12-22 | 昆山良友新型建材有限公司 | Ready-mixed wet-mixed mortar and preparation method thereof |
CN114660277B (en) * | 2022-04-07 | 2023-08-18 | 葛洲坝石门特种水泥有限公司 | Detection method for rapidly predicting 28-day strength of cement |
CN115073100B (en) * | 2022-07-12 | 2023-07-18 | 江西省萍乡市华东出口电瓷有限公司 | High-strength durable porcelain insulator cement adhesive and preparation method thereof |
CN116496065A (en) * | 2023-05-18 | 2023-07-28 | 中国建筑材料科学研究总院有限公司 | Low-density high-strength shale gas well cementation cement paste |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0625013B2 (en) * | 1986-03-10 | 1994-04-06 | 電気化学工業株式会社 | Low shrinkage, high strength hydraulic composition |
JP4861931B2 (en) * | 2007-08-24 | 2012-01-25 | 住友大阪セメント株式会社 | Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete |
JP2010228953A (en) * | 2009-03-26 | 2010-10-14 | Taiheiyo Cement Corp | Cement composition |
JP5592307B2 (en) * | 2010-05-18 | 2014-09-17 | 大成建設株式会社 | Method for producing high-strength concrete and concrete member |
JP5872165B2 (en) * | 2011-01-21 | 2016-03-01 | 大成建設株式会社 | Explosion-preventing ultra-high-strength precast concrete and method for producing the same |
JP5731848B2 (en) * | 2011-02-17 | 2015-06-10 | 株式会社大林組 | High strength paste composition |
JP2012214330A (en) * | 2011-03-31 | 2012-11-08 | Mitsubishi Materials Corp | High strength cement composition |
-
2013
- 2013-05-24 JP JP2013110310A patent/JP6205843B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2015024947A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2018104287A (en) * | 2013-06-17 | 2018-07-05 | 宇部興産株式会社 | High-strength cement mortar composition |
JP2018162213A (en) * | 2013-06-17 | 2018-10-18 | 宇部興産株式会社 | High strength cement mortar composition and manufacturing method of high strength cement mortar cured body |
JP2016098141A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2016098140A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
Also Published As
Publication number | Publication date |
---|---|
JP2014227330A (en) | 2014-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6575640B2 (en) | High-strength cement mortar composition and method for producing high-strength cement mortar hardened body | |
JP6205843B2 (en) | High-strength cement paste composition and method for producing high-strength cement paste hardened body | |
JP6528880B2 (en) | High strength cement mortar composition | |
KR100893495B1 (en) | The manufacturing method and composition of low-heat, high-strength concrete for self compaction | |
JP5336300B2 (en) | High toughness and high strength mortar composition | |
JP6022747B2 (en) | High strength mortar composition | |
JP5702608B2 (en) | High strength mortar composition | |
KR101390132B1 (en) | high strength concrete composition using rapid hardening type portland cement | |
JP2010150073A (en) | Cement mortar | |
JP6417891B2 (en) | High-strength concrete composition and method for producing high-strength concrete hardened body | |
JP6417890B2 (en) | High-strength concrete composition and method for producing high-strength concrete hardened body | |
JP6031281B2 (en) | Paste composition | |
JP5588612B2 (en) | Reinforcing bar joint filler composition, reinforcing bar joint filler using the same, and reinforcing bar joint filling method | |
JP6023488B2 (en) | Paste composition | |
JP5735288B2 (en) | High strength paste composition | |
JP6012290B2 (en) | High toughness and high strength mortar composition | |
JP5997807B2 (en) | High strength mortar composition | |
JP5731848B2 (en) | High strength paste composition | |
JP6063159B2 (en) | Paste composition | |
JP5592807B2 (en) | High toughness and high strength mortar composition | |
JP2016107422A (en) | Manufacturing method of curable kneaded material | |
JP6300734B2 (en) | Method for producing high-strength cement admixture and concrete product | |
JP5768092B2 (en) | High toughness and high strength mortar composition | |
Kiran et al. | Strengthening of concrete by partial replacement of cement with flyash and metakaoline mix | |
JP2008239403A (en) | Hydraulic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170606 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6205843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |