JP2016107422A - Manufacturing method of curable kneaded material - Google Patents

Manufacturing method of curable kneaded material Download PDF

Info

Publication number
JP2016107422A
JP2016107422A JP2014244190A JP2014244190A JP2016107422A JP 2016107422 A JP2016107422 A JP 2016107422A JP 2014244190 A JP2014244190 A JP 2014244190A JP 2014244190 A JP2014244190 A JP 2014244190A JP 2016107422 A JP2016107422 A JP 2016107422A
Authority
JP
Japan
Prior art keywords
kneaded material
kneading
agent
curable
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014244190A
Other languages
Japanese (ja)
Inventor
裕一 小田部
Yuichi Kotabe
裕一 小田部
直也 神部
Naoya Kanbe
直也 神部
貴彦 武藤
Takahiko Muto
貴彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014244190A priority Critical patent/JP2016107422A/en
Publication of JP2016107422A publication Critical patent/JP2016107422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a curable kneaded material for manufacturing the curable kneaded material which can be widely applied without being affected by compounding of a hydraulic setting composition and composition of admixture of a concentration reduction type and can suppress the deterioration of freeze-thaw resistance while reducing drying contraction strain of a cured body by using the admixture of a contraction reduction type.SOLUTION: A manufacturing method of a curable kneaded material for manufacturing the curable kneaded material made by kneading a hydraulic setting composition and water includes a first kneading process of kneading a hydraulic setting composition, admixture of a contraction reduction type, an antifoaming agent and water to manufacture the kneaded material and a second kneading process of kneading the kneaded material and an AE agent. Therein, in the first kneading process, used amount of the antifoaming agent is adjusted such that air amount of the kneaded material measured by JIS A 1128 (test method-air chamber pressure method using a pressure of air amount of fresh concrete) becomes less than 0.5% and, in the second kneading process, used amount of the AE agent is adjusted such that air amount of the curable kneaded material measured by JIS A 1128 (test method-air chamber pressure method using pressure of air amount of fresh concrete) becomes 5 to 7%.SELECTED DRAWING: None

Description

本発明は、水硬性組成物と水とが混練されてなる硬化性混練物を作製するための硬化性混練物の作製方法に関する。   The present invention relates to a method for producing a curable kneaded material for producing a curable kneaded material obtained by kneading a hydraulic composition and water.

水硬性組成物(例えば、コンクリート等)と水とが混練されてなる硬化性混練物は、経時的に硬化することによって硬化体を形成する。斯かる硬化体は、乾燥にとって収縮するため内部にひずみ(乾燥収縮ひずみ)が生じることになる。このような乾燥収縮ひずみは硬化体の強度低下を引き起こす要因となるため、乾燥収縮ひずみを低減させる方法として、収縮低減剤や収縮低減型の混和剤(例えば、収縮低減型のAE減水剤等)を硬化性混練物に含有させることが知られている。   A curable kneaded material obtained by kneading a hydraulic composition (such as concrete) and water forms a cured product by curing with time. Since such a cured body shrinks upon drying, strain (dry shrinkage strain) is generated inside. Since such drying shrinkage strain causes a decrease in strength of the cured product, methods for reducing the drying shrinkage strain include shrinkage reducing agents and shrinkage reducing type admixtures (for example, shrinkage reducing type AE water reducing agents). Is known to be contained in a curable kneaded product.

しかしながら、収縮低減剤や収縮低減型の混和剤は、一般的に、硬化体の凍結融解抵抗性を低下させることが知られている。このため、収縮低減剤や収縮低減型の混和剤を使用しつつも適度な凍結融解抵抗性を確保する方法が種々提案されている。例えば、特定の収縮低減剤を用いると共に該収縮低減剤の単位量と早強ポルトランドセメントの単位量との関係を所定の範囲に調整した水硬性組成物を用いる方法が提案されている(特許文献1参照)。また、水硬性組成物の一部として高炉スラグ細骨材を用いると共に該高炉スラグ細骨材の単位量とポルトランドセメントの単位量と収縮低減剤の単位量との関係を所定の範囲に調整した水硬性組成物を用いる方法(特許文献2参照)が知られている。   However, it is known that a shrinkage reducing agent or a shrinkage reducing type admixture generally reduces the freeze-thaw resistance of a cured product. For this reason, various methods for ensuring appropriate freeze-thaw resistance while using shrinkage reducing agents and shrinkage reducing type admixtures have been proposed. For example, there has been proposed a method of using a hydraulic composition in which a specific shrinkage reducing agent is used and the relationship between the unit amount of the shrinkage reducing agent and the unit amount of early-strength Portland cement is adjusted to a predetermined range (Patent Literature). 1). In addition, the blast furnace slag fine aggregate was used as a part of the hydraulic composition, and the relationship between the unit amount of the blast furnace slag fine aggregate, the unit amount of Portland cement, and the unit amount of the shrinkage reducing agent was adjusted to a predetermined range. A method using a hydraulic composition (see Patent Document 2) is known.

また、硬化性混練物と水とAE剤(空気連行剤)とを混練して混練物を形成した後、該混練物に収縮低減剤を添加して混練する(つまりは、収縮低減剤を添加するタイミングを調整する)方法も提案されている(特許文献3参照)。加えて、凍結融解抵抗性を低下させない収縮低減剤(特許文献4,5参照)を用いる方法も提案されている。   Moreover, after knead | mixing curable kneaded material, water, and AE agent (air entraining agent) and forming a kneaded material, a shrinkage reducing agent is added and kneaded to this kneaded material (that is, a shrinkage reducing agent is added). A method of adjusting the timing to perform is also proposed (see Patent Document 3). In addition, a method using a shrinkage reducing agent (see Patent Documents 4 and 5) that does not reduce freeze-thaw resistance has been proposed.

特開2013−227179号公報JP2013-227179A 特開2012−116712号公報JP 2012-116712 A 特開平11−349367号公報JP 11-349367 A 特開2012−162436号公報JP 2012-162436 A 特開2010−150085号公報JP 2010-150085 A

しかしながら、特許文献1および2の方法は、水硬性組成物の配合を所定のものに調節する必要があるため、水硬性組成物の種々の配合において汎用的に適用できる方法ではない。また、特許文献3の方法では、硬性材料中の空気量の調整が困難であり適度の凍結融解抵抗性を得ることができない。さらに、引用文献4,5の収縮低減剤は、凍結融解抵抗性を付与するように構成されているため、汎用的な収縮低減剤として種々の水硬性組成物に用いることが困難である。   However, the methods of Patent Documents 1 and 2 are not methods that can be applied universally in various formulations of hydraulic compositions because it is necessary to adjust the formulation of the hydraulic composition to a predetermined one. Further, in the method of Patent Document 3, it is difficult to adjust the amount of air in the hard material, and appropriate freeze-thaw resistance cannot be obtained. Furthermore, since the shrinkage reducing agents of References 4 and 5 are configured to impart freeze-thaw resistance, it is difficult to use them in various hydraulic compositions as a general-purpose shrinkage reducing agent.

そこで、本発明は、水硬性組成物の配合や収縮低減型の混和剤の組成に影響されることなく汎用的に適用することができると共に、収縮低減型の混和剤を用いて硬化体の乾燥収縮ひずみを低減しつつ凍結融解抵抗性の低下を抑制することができる硬化性混練物を作製する硬化性混練物の作製方法を提供することを課題とする。   Therefore, the present invention can be applied universally without being affected by the composition of the hydraulic composition and the composition of the shrinkage-reducing admixture, and the cured product can be dried using the shrinkage-reducing admixture. It is an object of the present invention to provide a method for producing a curable kneaded material for producing a curable kneaded material capable of suppressing a decrease in freeze-thaw resistance while reducing shrinkage strain.

本発明に係る硬化性混練物の作製方法は、水硬性組成物と水とが混練されてなる硬化性混練物を作製するための硬化性混練物の作製方法であって、水硬性組成物と収縮低減型の混和剤と消泡剤と水とを混練して混練物を作製する第一混練工程と、該混練物とAE剤とを混練する第二混練工程とを備え、前記第一混練工程では、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される前記混練物の空気量が0.5%未満となるように消泡剤の使用量が調整され、前記第二混練工程では、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される硬化性混練物の空気量が5〜7%となるようにAE剤の使用量が調整されることを特徴とする。   A method for producing a curable kneaded material according to the present invention is a method for producing a curable kneaded material for producing a curable kneaded material obtained by kneading a hydraulic composition and water, the hydraulic composition and A first kneading step of kneading a shrinkage-reducing admixture, an antifoaming agent, and water to produce a kneaded product; and a second kneading step of kneading the kneaded product and an AE agent. In the process, the amount of the antifoaming agent used is such that the amount of air in the kneaded material measured by JIS A 1128 (test method using air pressure of fresh concrete-air chamber pressure method) is less than 0.5%. In the second kneading step, the air amount of the curable kneaded material measured by JIS A 1128 (test method using air pressure of fresh concrete-air chamber pressure method) is 5 to 7%. The amount of AE agent used must be adjusted And features.

斯かる構成によれば、第一混練工程で収縮低減型の混和剤が使用されることで、硬化性混練物が硬化してなる硬化体に生じる乾燥収縮ひずみを低減することができる。また、収縮低減型の混和剤の使用によって混練物内に気泡(以下、第一気泡とも記す)が連行されることになるが、第一混練工程において消泡剤が使用されることで、混練物中の第一気泡の含有量が上記の範囲に低減される。そして、第二混練工程において斯かる混練物とAE剤とが混練されることで、AE剤によって連行された気泡(以下、第二気泡とも記す)を上記の範囲で含有する硬化性混練物が形成される。つまり、第一混練工程で収縮低減型の混和剤と共に消泡剤が使用されることで、第二気泡に対する第一気泡の割合を低減させた硬化性混練物を得ることができる。   According to such a configuration, by using the shrinkage-reducing admixture in the first kneading step, it is possible to reduce the drying shrinkage strain generated in the cured body obtained by curing the curable kneaded product. In addition, bubbles (hereinafter also referred to as first bubbles) are entrained in the kneaded product by using the shrinkage-reducing admixture. However, the defoaming agent is used in the first kneading step, so that the kneading is performed. The content of the first bubbles in the product is reduced to the above range. In the second kneading step, such a kneaded product and the AE agent are kneaded, so that a curable kneaded product containing bubbles entrained by the AE agent (hereinafter also referred to as second bubbles) in the above range is obtained. It is formed. That is, by using the antifoaming agent together with the shrinkage-reducing admixture in the first kneading step, it is possible to obtain a curable kneaded material in which the ratio of the first bubbles to the second bubbles is reduced.

ここで、硬化体の凍結融解抵抗性は、硬化性混練物中の第一気泡の含有量の増加に伴って低下することになる。しかしながら、上述のように、硬化性混練物における第二気泡に対する第一気泡の割合が低減されることで、収縮低減型の混和剤の使用に起因する(即ち、第一気泡の含有による)凍結融解抵抗性の低下を抑制することができる。   Here, the freeze-thaw resistance of the cured body decreases as the content of the first bubbles in the curable kneaded product increases. However, as described above, the ratio of the first bubbles to the second bubbles in the curable kneaded material is reduced, thereby freezing due to the use of the shrinkage-reducing admixture (that is, due to the inclusion of the first bubbles). A decrease in melting resistance can be suppressed.

以上のように、第一混練工程と第二混練工程とを行うことで、収縮低減型の混和剤の使用によって硬化体の乾燥収縮ひずみを低減しつつ、収縮低減型の混和剤の使用に起因する硬化体の凍結融解抵抗性の低下を抑制することができる。また、水硬性組成物の配合や収縮低減型の混和剤の組成に影響されることなく乾燥収縮ひずみの低減と凍結融解抵抗性の低下抑制とを両立させることができるため、種々の配合の水硬性組成物や種々の組成の収縮低減型混和剤において本願発明の方法を汎用的に適用することができる。   As described above, by performing the first kneading step and the second kneading step, the drying shrinkage strain of the cured product is reduced by using the shrinkage-reducing admixture, while the shrinkage-reducing admixture is used. Decrease in freeze-thaw resistance of the cured product can be suppressed. In addition, since it is possible to achieve both reduction of drying shrinkage strain and suppression of decrease in freeze-thaw resistance without being affected by the composition of the hydraulic composition and the composition of the shrinkage-reducing admixture, The method of the present invention can be applied universally to hard compositions and shrinkage-reducing admixtures of various compositions.

以上のように、本発明によれば、水硬性組成物の配合や収縮低減型の混和剤の組成に影響されることなく汎用的に適用することができると共に、収縮低減型の混和剤を用いて硬化体の乾燥収縮ひずみを低減しつつ凍結融解抵抗性の低下を抑制することができる。   As described above, according to the present invention, the present invention can be applied universally without being affected by the composition of the hydraulic composition and the composition of the shrinkage-reducing admixture, and the shrinkage-reducing admixture is used. Thus, it is possible to suppress a decrease in freeze-thaw resistance while reducing the drying shrinkage strain of the cured product.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明に係る硬化性混練物の作製方法は、水硬性組成物と水とが混練されてなる硬化性混練物を作製するための方法である。具体的には、本発明に係る硬化性混練物の作製方法は、水硬性組成物と収縮低減型の混和剤と消泡剤と水とを混練して混練物を作製する第一混練工程と、該混練物とAE剤とを混練する第二混練工程とを備える。   The method for producing a curable kneaded product according to the present invention is a method for producing a curable kneaded product obtained by kneading a hydraulic composition and water. Specifically, the method for producing a curable kneaded product according to the present invention includes a first kneading step of producing a kneaded product by kneading a hydraulic composition, a shrinkage-reducing admixture, an antifoaming agent, and water. And a second kneading step of kneading the kneaded product and the AE agent.

第一混練工程で使用される水硬性組成物としては、特に限定されるものではなく、水分との接触によって硬化する水硬性材料と粗骨材及び/又は細骨材とから構成されるもの(具体的には、コンクリートやモルタル)等が挙げられる。   The hydraulic composition used in the first kneading step is not particularly limited, and is composed of a hydraulic material that is hardened by contact with moisture and a coarse aggregate and / or fine aggregate ( Specific examples include concrete and mortar.

水硬性材料としては、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、シリカセメント、フライアッシュセメント、エコセメント、アルミナセメント、超速硬セメント、グラウト用セメント、油井セメント等が挙げられる。なお、これらを単体で又は任意に組合せて使用することもできる。   The hydraulic material is not particularly limited. For example, ordinary Portland cement, early-strength Portland cement, ultra-early strength Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate-resistant Portland cement, white Portland cement, etc. Various portland cements, blast furnace cement, silica cement, fly ash cement, eco cement, alumina cement, super-hard cement, grout cement, oil well cement, and the like. These can be used alone or in any combination.

粗骨材としては、特に限定されるものではなく、例えば、山砂利、海砂利、川砂利、砕石、石灰石、高炉スラグ粗骨材、再生粗骨材、軽量粗骨材等が挙げられる。また、細骨材としては、特に限定されるものではなく、例えば、陸砂、山砂、海砂、川砂、砕砂、珪砂、高炉スラグ細骨材、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材、フェロクロム細骨材、再生細骨材、軽量細骨材等が挙げられる。   The coarse aggregate is not particularly limited, and examples thereof include mountain gravel, sea gravel, river gravel, crushed stone, limestone, blast furnace slag coarse aggregate, recycled coarse aggregate, lightweight coarse aggregate, and the like. The fine aggregate is not particularly limited. For example, land sand, mountain sand, sea sand, river sand, crushed sand, quartz sand, blast furnace slag fine aggregate, ferronickel slag fine aggregate, copper slag fine bone. Materials, electric furnace oxidation slag fine aggregates, ferrochrome fine aggregates, recycled fine aggregates, lightweight fine aggregates and the like.

収縮低減型の混和剤としては、特に限定されるものではないが、硬化性混練物が硬化してなる硬化体の強度に著しく悪影響を与えないものが好ましく、例えば、ポリグリコール誘導体、グリコールエーテル系誘導体、ポリエーテル誘導体、ポリアルキレングリコール系誘導体等が挙げられ、これらを含む減水剤・AE減水剤であってもよい。また、収縮低減型の混和剤としては、減水剤としても機能するものであってもよく、減水剤としては機能しないものであってもよい。   The shrinkage-reducing admixture is not particularly limited, but is preferably one that does not significantly adversely affect the strength of the cured product obtained by curing the curable kneaded product. For example, a polyglycol derivative, a glycol ether type Derivatives, polyether derivatives, polyalkylene glycol derivatives and the like may be mentioned, and a water reducing agent / AE water reducing agent containing these may be used. The shrinkage-reducing admixture may function as a water reducing agent or may not function as a water reducing agent.

消泡剤としては、特に限定されるものではないが、硬化体の強度や耐久性に悪影響を与えないものが好ましく、例えば、シリコーン系消泡剤、ノニオン系消泡剤、アルコール系消泡剤、脂肪酸系消泡剤、エーテル系消泡剤、脂肪酸エステル系消泡剤、リン酸エステル系消泡剤、ポリエーテル系消泡剤、フッ素系消泡剤等が挙げられる。   The antifoaming agent is not particularly limited, but is preferably one that does not adversely affect the strength and durability of the cured product, for example, a silicone-based antifoaming agent, a nonionic antifoaming agent, an alcohol-based antifoaming agent. , Fatty acid-based antifoaming agents, ether-based antifoaming agents, fatty acid ester-based antifoaming agents, phosphate ester-based antifoaming agents, polyether-based antifoaming agents, fluorine-based antifoaming agents, and the like.

AE剤としては、特に限定されるものではなく、例えば、第一混練工程で得られる混練物中に微細な独立気泡を連行でき、直径250μm以下、好ましくは200μm以下の独立気泡を連行できる空気連行剤が挙げられる。具体的には、ポリオキシアルキレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルベンゼンスルホン酸塩、ロジン石けん、高級脂肪酸石けん、アルキルリン酸エステル塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩、JIS A 6204に規定するAE剤等が挙げられる。   The AE agent is not particularly limited. For example, air entrainment capable of entraining fine closed cells in the kneaded product obtained in the first kneading step and entraining closed cells having a diameter of 250 μm or less, preferably 200 μm or less. Agents. Specifically, polyoxyalkylene alkyl ether sulfate, alkylbenzene sulfonate, polyoxyethylene alkylbenzene sulfonate, rosin soap, higher fatty acid soap, alkyl phosphate ester salt, polyoxyalkylene alkyl ether phosphate salt, JIS AE agent prescribed | regulated to A6204 etc. are mentioned.

水としては、上水道水、工業用水、地下水、河川水、雨水、蒸留水、化学分析用の高純度水(超純水、純水、イオン交換水)等が挙げられる。なお、水には、水硬性材料の水和反応に悪影響を及ぼす有機物、塩化物イオン、ナトリウムイオン、カリウムイオン等の不純物を含有しないことが好ましい。   Examples of water include tap water, industrial water, ground water, river water, rain water, distilled water, and high-purity water for chemical analysis (ultra pure water, pure water, ion exchange water), and the like. In addition, it is preferable that water does not contain impurities, such as an organic substance, a chloride ion, a sodium ion, a potassium ion, which have a bad influence on the hydration reaction of a hydraulic material.

なお、硬化性混練物には、種々の混和剤が含有されてもよく、例えば、JIS A 6204「コンクリート用化学混和剤」に適合する高性能減水剤、硬化促進剤、減水剤、AE減水剤、高性能AE減水剤および流動化剤等が挙げられる。   The curable kneaded material may contain various admixtures. For example, a high-performance water reducing agent, a curing accelerator, a water reducing agent, an AE water reducing agent compatible with JIS A 6204 “Chemical admixture for concrete”. And high performance AE water reducing agent and fluidizing agent.

また、第一混練工程及び第二混練工程における混練作業で使用される混練装置としては、特に限定されるものではなく、二軸式ミキサー、一軸式ミキサー、パン型ミキサー等や、傾胴式ミキサー等の重力式ミキサー等の公知のミキサーを用いることができる。   In addition, the kneading apparatus used in the kneading operation in the first kneading step and the second kneading step is not particularly limited, and a biaxial mixer, a uniaxial mixer, a pan mixer, etc. A known mixer such as a gravitational mixer can be used.

以上のように、本願発明に係る硬化性混練物の作製方法によれば、水硬性組成物の配合や収縮低減型の混和剤の組成に影響されることなく汎用的に適用することができると共に、収縮低減型の混和剤を用いて硬化体の乾燥収縮ひずみを低減しつつ凍結融解抵抗性の低下を抑制することができる。   As described above, according to the method for producing a curable kneaded product according to the present invention, it can be applied universally without being influenced by the composition of the hydraulic composition and the composition of the shrinkage-reducing admixture. The decrease in freeze-thaw resistance can be suppressed while reducing the drying shrinkage strain of the cured product using a shrinkage-reducing admixture.

具体的には、第一混練工程で収縮低減型の混和剤が使用されることで、硬化性混練物が硬化してなる硬化体に生じる乾燥収縮ひずみを低減することができる。また、収縮低減型の混和剤の使用によって混練物内に気泡(以下、第一気泡とも記す)が連行されることになるが、第一混練工程において消泡剤が使用されることで、混練物中の第一気泡の含有量が低減される。そして、第二混練工程において斯かる混練物とAE剤とが混練されることで、AE剤によって連行された気泡(以下、第二気泡とも記す)を含有する硬化性混練物が形成される。つまり、第一混練工程で収縮低減型の混和剤と共に消泡剤が使用されることで、第二気泡に対する第一気泡の割合を低減させた硬化性混練物を得ることができる。   Specifically, by using a shrinkage-reducing admixture in the first kneading step, it is possible to reduce drying shrinkage strain generated in a cured product obtained by curing the curable kneaded product. In addition, bubbles (hereinafter also referred to as first bubbles) are entrained in the kneaded product by using the shrinkage-reducing admixture. However, the defoaming agent is used in the first kneading step, so that the kneading is performed. The content of the first bubbles in the object is reduced. In the second kneading step, such a kneaded product and the AE agent are kneaded, so that a curable kneaded product containing bubbles entrained by the AE agent (hereinafter also referred to as second bubbles) is formed. That is, by using the antifoaming agent together with the shrinkage-reducing admixture in the first kneading step, it is possible to obtain a curable kneaded material in which the ratio of the first bubbles to the second bubbles is reduced.

ここで、硬化体の凍結融解抵抗性は、硬化性混練物中の第一気泡(第二気泡よりも粗大な気泡)の含有量の増加に伴って低下することになる。しかしながら、上述のように、硬化性混練物における第二気泡(第一気泡よりも微細な気泡)に対する第一気泡の割合が低減されることで、収縮低減型の混和剤の使用に起因する(即ち、第一気泡の含有による)凍結融解抵抗性の低下を抑制することができる。   Here, the freeze-thaw resistance of the cured body decreases with an increase in the content of the first bubbles (bubbles coarser than the second bubbles) in the curable kneaded product. However, as described above, the ratio of the first bubbles to the second bubbles (bubbles finer than the first bubbles) in the curable kneaded material is reduced, which results from the use of the shrinkage-reducing admixture ( That is, it is possible to suppress a decrease in freeze-thaw resistance (due to the inclusion of the first bubbles).

以上のように、第一混練工程と第二混練工程とを行うことで、収縮低減型の混和剤の使用によって硬化体の乾燥収縮ひずみを低減しつつ、収縮低減型の混和剤の使用に起因する硬化体の凍結融解抵抗性の低下を抑制することができる。また、水硬性組成物の配合や収縮低減型の混和剤の組成に影響されることなく乾燥収縮ひずみの低減と凍結融解抵抗性の低下抑制とを両立させることができるため、種々の配合の水硬性組成物や種々の組成の収縮低減型混和剤において本願発明の方法を汎用的に適用することができる。   As described above, by performing the first kneading step and the second kneading step, the drying shrinkage strain of the cured product is reduced by using the shrinkage-reducing admixture, while the shrinkage-reducing admixture is used. Decrease in freeze-thaw resistance of the cured product can be suppressed. In addition, since it is possible to achieve both reduction of drying shrinkage strain and suppression of decrease in freeze-thaw resistance without being affected by the composition of the hydraulic composition and the composition of the shrinkage-reducing admixture, The method of the present invention can be applied universally to hard compositions and shrinkage-reducing admixtures of various compositions.

また、第一混練工程では、JIS A 1128:2005(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される前記混練物の空気量(第一気泡の量)が0.5%未満(好ましくは、0.1%未満、より好ましくは、0%)となるように消泡剤の使用量が調整される。更に、第二混練工程では、JIS A 1128:2005(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される硬化性混練物の空気量(第二気泡の量)が5〜7%(好ましくは、5〜6%)となるようにAE剤の使用量が調整される。これにより、得られる硬化性混練物が硬化して形成される硬化体の凍結融解抵抗性を得ることができる。   In the first kneading step, the amount of air (the amount of first bubbles) in the kneaded material measured by JIS A 1128: 2005 (test method using air pressure of fresh concrete-air chamber pressure method) is 0.00. The amount of antifoaming agent used is adjusted to be less than 5% (preferably less than 0.1%, more preferably 0%). Further, in the second kneading step, the air amount (second bubble amount) of the curable kneaded material measured by JIS A 1128: 2005 (test method using air pressure of fresh concrete-air chamber pressure method) is 5 The amount of the AE agent used is adjusted to be -7% (preferably 5-6%). Thereby, the freeze-thaw resistance of the hardening body formed by hardening | curing the curable kneaded material obtained can be obtained.

以下、実施例および比較例を用いて本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<使用材料>
1.水硬性材料
・普通ポルドランドセメント:
(住友大阪セメント社製、JIS R 5210適合品、密度=3.15g/cm、CS含有量=56質量%、CS含有量=17質量%、Al含有量=5.2質量%、SO含有量=1.9質量%、ブレーン比表面積=3400cm/g、最大粒径=45μm以下)

2.水
・上水道水:
(千葉県船橋市産)

3.化学混和剤
・AE減水剤:
(BASFジャパン社製、製品名:ポゾリス15S、リグニンスルホン酸化合物とポリカルボン酸エーテルの複合体、JIS A 6204適合品)

・収縮低減型の混和剤:
収縮低減型AE減水剤(BASFジャパン社製、製品名:ポリヒード15DS、ポリカルボン酸エーテル系化合物とポリグリコール誘導体の複合体、JIS A 6204適合品)

・AE剤:
(BASFジャパン社製、製品名:マイクロエア202、変性ロジン酸化合物陰イオン界面活性剤、JIS A 6204適合品)

・消泡剤:
(BASFジャパン社製、製品名:マイクロエア404、ポリアルキレングリコール誘導体)

4.粗骨材1
・山形県上山産砕石1505:
(表乾密度=2.68g/cm、吸水率=2.57%、JIS A 5005の砕石1505適合品)

5.粗骨材2
・山形県上山産砕石2010:
(表乾密度=2.65g/cm、吸水率=2.17%、JIS A 5005の砕石2010適合品)

6.細骨材1
・山形県長井産荒砂:
(表乾密度=2.54g/cm、吸水率=1.91%、JIS A 5308の附属書Aの砂利及び砂に適合)

7.細骨材2
・山形県酒田産細砂:
(表乾密度=2.58g/cm、吸水率=2.31%、JIS A 5308の付属書Aの砂利及び砂に適合)
<Materials used>
1. Hydraulic materials / ordinary pordoland cement:
(Sumitomo Osaka Cement, JIS R 5210 compliant product, density = 3.15 g / cm 3 , C 3 S content = 56 mass%, C 2 S content = 17 mass%, Al 2 O 3 content = 5 2% by mass, SO 3 content = 1.9% by mass, Blaine specific surface area = 3400 cm 2 / g, maximum particle size = 45 μm or less)

2. Water and tap water:
(Funabashi, Chiba)

3. Chemical admixture / AE water reducing agent:
(Manufactured by BASF Japan, product name: Pozzolith 15S, complex of lignin sulfonic acid compound and polycarboxylic acid ether, conforming to JIS A 6204)

・ Shrinkage-reducing admixture:
Shrinkage-reducing AE water reducing agent (manufactured by BASF Japan, product name: polyhide 15DS, complex of polycarboxylic acid ether compound and polyglycol derivative, JIS A 6204 compliant product)

・ AE agent:
(Manufactured by BASF Japan, product name: micro air 202, modified rosin acid compound anionic surfactant, JIS A 6204 compliant product)

・ Antifoaming agent:
(Manufactured by BASF Japan, product name: micro air 404, polyalkylene glycol derivative)

4). Coarse aggregate 1
・ Crushed stone 1505 from Kamiyama, Yamagata Prefecture:
(Table dry density = 2.68 g / cm 3 , water absorption = 2.57%, JIS A 5005 crushed stone 1505 compliant product)

5. Coarse aggregate 2
・ Crushed stones from Kamiyama, Yamagata Prefecture 2010:
(Table dry density = 2.65 g / cm 3 , water absorption = 2.17%, JIS A 5005 crushed stone 2010 compliant product)

6). Fine aggregate 1
・ Rough sand from Nagai, Yamagata Prefecture:
(Table dry density = 2.54 g / cm 3 , water absorption = 1.91%, conforms to gravel and sand in Annex A of JIS A 5308)

7). Fine aggregate 2
・ Fine sand from Sakata, Yamagata Prefecture:
(Surface dry density = 2.58 g / cm 3 , water absorption = 2.31%, suitable for gravel and sand in Annex A of JIS A 5308)

<実施例1〜3>
1.供試体の作製
下記の各測定及び試験に用いる供試体を作製した。具体的には、上記の各材料から構成される水硬性組成物と、上記の水と、上記の収縮低減型のAE減水剤と、上記の消泡剤とを混練して混練物を形成した(第一混練工程)。そして、該混練物に上記のAE剤を添加して混練することで硬化性混練物を作製し(第二混練工程)、該硬化性混練物を用いてJIS A 1132に基づく方法で供試体(具体的には、コンクリートの供試体)を作製した。
<Examples 1-3>
1. Preparation of Specimens Specimens used for the following measurements and tests were prepared. Specifically, a hydraulic composition composed of each of the above materials, the above water, the above-mentioned shrinkage-reducing AE water reducing agent, and the above antifoaming agent were kneaded to form a kneaded product. (First kneading step). Then, a curable kneaded material is prepared by adding the AE agent to the kneaded material and kneading (second kneading step), and using the curable kneaded material, a test specimen (in accordance with JIS A 1132) Specifically, a concrete specimen was prepared.

水硬性組成物を構成する各材料の配合は、下記表1に示す通りである。また、水硬性組成物を構成する各材料に対する水の配合は、下記表1に示す通りである。また、収縮低減型のAE減水剤、消泡剤及びAE剤のそれぞれにおける水硬性材料に対する割合(C×%)は、下記表2に示す通りである。なお、下記表1の「W/C」は、水硬性材料に対する水の割合であり、「s/a」は、粗骨材と細骨材との合計量に対する細骨材の割合である。また、第一混練工程及び第二混練工程における混練は、太平洋機工社製の二軸式強制練りミキサーを用いて行った。   The composition of each material constituting the hydraulic composition is as shown in Table 1 below. Moreover, the mixing | blending of the water with respect to each material which comprises a hydraulic composition is as showing in following Table 1. Further, the ratio (C ×%) to the hydraulic material in each of the shrinkage-reducing type AE water reducing agent, antifoaming agent and AE agent is as shown in Table 2 below. “W / C” in Table 1 below is the ratio of water to the hydraulic material, and “s / a” is the ratio of fine aggregate to the total amount of coarse aggregate and fine aggregate. The kneading in the first kneading step and the second kneading step was performed using a biaxial forced kneading mixer manufactured by Taiheiyo Kiko Co., Ltd.

Figure 2016107422
Figure 2016107422

2.空気量の測定
第一混練工程で形成される混練物の空気量および第二混練工程で形成される硬化性混練物の空気量をJIS A 1128:2005(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)に基づいて測定した。測定結果については下記表2に示す。
2. Measurement of air amount JIS A 1128: 2005 (Test method by pressure of air amount of fresh concrete) The air amount of the kneaded material formed in the first kneading step and the air amount of the curable kneaded material formed in the second kneading step -Measured based on air chamber pressure method). The measurement results are shown in Table 2 below.

3.耐久性指数
上記の各供試体に対してJIS A 1148「コンクリートの凍結融解試験」(A法)に基づく凍結融解試験を行い、各供試体の耐久性指数を算出した。各供試体の耐久性指数は下記表3に示す。
3. Durability Index A freezing and thawing test based on JIS A 1148 “Concrete Freezing and Thawing Test” (Method A) was performed on each of the above specimens, and the durability index of each specimen was calculated. The durability index of each specimen is shown in Table 3 below.

4.乾燥収縮ひずみ
上記の各供試体に対してJIS A 1129−2「モルタル及びコンクリートの長さ変化測定方法−第2部」に基づく試験を行い、各供試体の乾燥収縮ひずみを算出した。各供試体の乾燥収縮ひずみは下記表3に示す。
4). Drying Shrinkage Strain Tests based on JIS A 1129-2 “Measurement method for mortar and concrete length change—Part 2” were performed on each of the above specimens, and the dry shrinkage strain of each specimen was calculated. The drying shrinkage strain of each specimen is shown in Table 3 below.

5.圧縮強度
上記の各供試体に対してJIS A 1108「コンクリートの圧縮強度試験方法」に基づく試験を行い、各供試体の圧縮強度を得た。各供試体の圧縮強度は下記表3に示す。なお、表3に示す圧縮強度比は、比較例1に対する各実施例及び各比較例の圧縮強度の割合である。
5. Compressive strength A test based on JIS A 1108 “Method for testing compressive strength of concrete” was performed on each of the above specimens, and the compressive strength of each specimen was obtained. The compressive strength of each specimen is shown in Table 3 below. In addition, the compression strength ratio shown in Table 3 is a ratio of the compression strength of each Example and each Comparative Example to Comparative Example 1.

6.気泡間係数
上記の各供試体に対してASTM C 457(リニアトラバース法)に基づき気泡間隔係数を算出した。各供試体の気泡間隔係数は下記表3に示す。
6). Inter-bubble coefficient The inter-bubble coefficient was calculated based on ASTM C 457 (linear traverse method) for each of the above specimens. The bubble spacing coefficient of each specimen is shown in Table 3 below.

<比較例1>
水硬性組成物と水とAE減水剤とAE剤とを同時に混練して硬化性混練物を作製したこと以外は、上位の各実施例と同一の方法で供試体を作製し、各測定及び試験を行った。
<Comparative Example 1>
Except that a curable kneaded material was prepared by kneading a hydraulic composition, water, an AE water reducing agent, and an AE agent at the same time, a specimen was prepared in the same manner as each of the upper examples, and each measurement and test was performed. Went.

<比較例2,3>
消泡剤を使用しなかったこと以外は、上位の各実施例と同一の方法で供試体を作製し、各測定及び試験を行った。
<Comparative Examples 2 and 3>
Except not having used an antifoamer, the test body was produced by the same method as each Example of the high-order, and each measurement and test were performed.

<比較例4〜6>
第一混練工程及び第二混練工程の空気量を下記表2に記載の通りとしたこと以外は、上位の各実施例と同一の方法で供試体を作製し、各測定及び試験を行った。
<Comparative Examples 4-6>
Specimens were prepared in the same manner as in the upper examples, except that the amount of air in the first kneading step and the second kneading step was as described in Table 2 below, and each measurement and test was performed.

<比較例7,8>
水硬性組成物と水と収縮低減型のAE減水剤とAE剤とを同時に混練して硬化性混練物を作製したこと以外は、上位の各実施例と同一の方法で供試体を作製し、各測定及び試験を行った。
<Comparative Examples 7 and 8>
Except that a curable kneaded material was prepared by simultaneously kneading a hydraulic composition, water, a shrinkage-reducing AE water reducing agent and an AE agent, a specimen was prepared in the same manner as in each of the upper examples, Each measurement and test was performed.

<比較例9〜11>
水硬性組成物と水と収縮低減型のAE減水剤と消泡剤とAE剤とを同時に混練して硬化性混練物を作製したこと以外は、上位の各実施例と同一の方法で供試体を作製し、各測定及び試験を行った。
<Comparative Examples 9-11>
Specimens in the same manner as in the upper examples, except that a curable kneaded material was prepared by simultaneously kneading a hydraulic composition, water, a shrinkage-reducing AE water reducing agent, an antifoaming agent, and an AE agent. Were prepared, and each measurement and test were performed.

Figure 2016107422
Figure 2016107422

Figure 2016107422
Figure 2016107422

<まとめ>
表3に示すように、比較例1と各実施例及び他の比較例とを比較すると、各実施例及び他の比較例の方が乾燥収縮ひずみが少ないことが認められる。つまり、各実施例及び他の比較例の方法で作製される硬化性混練物のように、収縮低減型AE減水剤が使用されてなることで、形成される硬化体の乾燥収縮ひずみが低減されることが認められる。
<Summary>
As shown in Table 3, when Comparative Example 1 is compared with each example and other comparative examples, it is recognized that each example and other comparative examples have less drying shrinkage strain. That is, the shrinkage-reducing AE water reducing agent is used like the curable kneaded material produced by the methods of the examples and other comparative examples, thereby reducing the drying shrinkage strain of the formed cured product. It is recognized that

また、表3に示すように、比較例2,3,7,8と各実施例とを比較すると、各実施例の方が比較例2,3,7,8よりも気泡間隔係数が小さく、耐久性指数が高くなることが認められる。ここで、気泡間隔係数は小さい方が凍結融解抵抗性が高いことを意味し、耐久性指数は高い方が凍結融解抵抗性が高いことを意味する。つまり、各実施例のように第一混練工程において消泡剤を使用して混練物を形成し第二混練工程において該混練物にAE剤を添加して混練することで、比較例2,3,7,8のように消泡剤を使用しない場合よりも硬化体の凍結融解抵抗性を向上させ得る硬化性混練物を得ることができる。   Moreover, as shown in Table 3, when Comparative Examples 2, 3, 7, and 8 were compared with each Example, each Example had a smaller bubble spacing coefficient than Comparative Examples 2, 3, 7, and 8, It can be seen that the durability index is high. Here, a smaller bubble spacing coefficient means higher freeze-thaw resistance, and a higher durability index means higher freeze-thaw resistance. That is, in each of the first kneading steps, a defoamed material was formed in the first kneading step as in each example, and in the second kneading step, the AE agent was added to the kneaded material and kneaded. Thus, a curable kneaded material that can improve the freeze-thaw resistance of the cured product can be obtained as compared to the case where no antifoaming agent is used.

また、表3に示すように、比較例9〜11と各実施例とを比較すると、各実施例の方が比較例9〜11よりも気泡間隔係数が小さく、耐久性指数が高くなることが認められる。つまり、各実施例のように第一混練工程において消泡剤を使用して混練物を形成し第二混練工程において該混練物にAE剤を添加して混練することで、比較例9〜11のように消泡剤とAE剤とを同時に混練して硬化性混練物を形成する場合よりも硬化体の凍結融解抵抗性を向上させ得る硬化性混練物を得ることができる。   Moreover, as shown in Table 3, when Comparative Examples 9-11 are compared with each Example, each Example has a smaller bubble spacing coefficient and a higher durability index than Comparative Examples 9-11. Is recognized. That is, in each of the first kneading steps as in each example, a defoamed material was formed to form a kneaded product, and in the second kneading step, the AE agent was added to the kneaded material and kneaded. Thus, a curable kneaded material that can improve the freeze-thaw resistance of the cured product can be obtained as compared with the case where a defoaming agent and an AE agent are simultaneously kneaded to form a curable kneaded material.

また、表3に示すように、比較例4〜6と各実施例とを比較すると、各実施例の方が耐久性指数が60を超えるものとなっている。つまり、各実施例のように、第一混練工程及び第二混練工程の空気量を本発明の範囲とすることで、凍結融解抵抗性を示す硬化体を形成し得る硬化性混練物を得ることができる。   Moreover, as shown in Table 3, when Comparative Examples 4 to 6 and each Example are compared, the durability index of each Example exceeds 60. That is, as in each example, by setting the amount of air in the first kneading step and the second kneading step within the scope of the present invention, a curable kneaded material that can form a cured body exhibiting freeze-thaw resistance is obtained. Can do.

Claims (1)

水硬性組成物と水とが混練されてなる硬化性混練物を作製するための硬化性混練物の作製方法であって、
水硬性組成物と収縮低減型の混和剤と消泡剤と水とを混練して混練物を作製する第一混練工程と、該混練物とAE剤とを混練する第二混練工程とを備え、
前記第一混練工程では、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される前記混練物の空気量が0.5%未満となるように消泡剤の使用量が調整され、
前記第二混練工程では、JIS A 1128(フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法)により測定される硬化性混練物の空気量が5〜7%となるようにAE剤の使用量が調整されることを特徴とする硬化性混練物の製造方法。
A method for producing a curable kneaded material for producing a curable kneaded material obtained by kneading a hydraulic composition and water,
A first kneading step of kneading a hydraulic composition, a shrinkage-reducing admixture, an antifoaming agent and water, and a second kneading step of kneading the kneaded material and an AE agent. ,
In the first kneading step, an antifoaming agent is used so that the amount of air in the kneaded product measured by JIS A 1128 (test method using air pressure of fresh concrete-air chamber pressure method) is less than 0.5%. Usage is adjusted,
In the second kneading step, the air content of the AE agent is adjusted so that the air amount of the curable kneaded material measured by JIS A 1128 (test method using air pressure of fresh concrete-air chamber pressure method) is 5 to 7%. A method for producing a curable kneaded product, characterized in that the amount used is adjusted.
JP2014244190A 2014-12-02 2014-12-02 Manufacturing method of curable kneaded material Pending JP2016107422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014244190A JP2016107422A (en) 2014-12-02 2014-12-02 Manufacturing method of curable kneaded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014244190A JP2016107422A (en) 2014-12-02 2014-12-02 Manufacturing method of curable kneaded material

Publications (1)

Publication Number Publication Date
JP2016107422A true JP2016107422A (en) 2016-06-20

Family

ID=56122660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014244190A Pending JP2016107422A (en) 2014-12-02 2014-12-02 Manufacturing method of curable kneaded material

Country Status (1)

Country Link
JP (1) JP2016107422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208785A1 (en) 2016-05-30 2017-11-30 Yazaki Corporation Connectors
JP2018027867A (en) * 2016-08-18 2018-02-22 太平洋セメント株式会社 Method for inhibiting the blackening of the surface of mortar or concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208785A1 (en) 2016-05-30 2017-11-30 Yazaki Corporation Connectors
JP2018027867A (en) * 2016-08-18 2018-02-22 太平洋セメント株式会社 Method for inhibiting the blackening of the surface of mortar or concrete

Similar Documents

Publication Publication Date Title
JP6528880B2 (en) High strength cement mortar composition
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP6530890B2 (en) High strength cement mortar composition and method of producing hardened high strength cement mortar
JP6639608B2 (en) Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar
JP2008094674A (en) Filler for reinforcement and method of filling reinforcement using the same
JP2006248828A (en) Admixture for high strength mortar/concrete, and mortar/concrete composition
JP6205843B2 (en) High-strength cement paste composition and method for producing high-strength cement paste hardened body
JP5588613B2 (en) Cement mortar
JP6521608B2 (en) High durability concrete
JP4585905B2 (en) Mortar or concrete
JP6411083B2 (en) Cement concrete manufacturing method
JP6295085B2 (en) Cement composition
JP2016107422A (en) Manufacturing method of curable kneaded material
JP6417891B2 (en) High-strength concrete composition and method for producing high-strength concrete hardened body
JP5160762B2 (en) Cement mortar composition for grout
JP2011068546A (en) High strength cement composition and high strength cementitious hardened body
KR101217059B1 (en) Concrete Composition Containing Large Amounts Of Admixture
JP6417890B2 (en) High-strength concrete composition and method for producing high-strength concrete hardened body
JP2004284873A (en) Hydraulic complex material
JP6163317B2 (en) Concrete containing blast furnace slag
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
JP5160763B2 (en) Cement mortar composition
JP2013018663A (en) Method of producing ultra-high strength cement-based cured body
JP2011132106A (en) Hydraulic composition and cured product
JP5812836B2 (en) Grout material composition and grout material using the same