JP2015024947A - High-strength cement mortar composition and method for producing hardened high-strength cement mortar - Google Patents
High-strength cement mortar composition and method for producing hardened high-strength cement mortar Download PDFInfo
- Publication number
- JP2015024947A JP2015024947A JP2014060105A JP2014060105A JP2015024947A JP 2015024947 A JP2015024947 A JP 2015024947A JP 2014060105 A JP2014060105 A JP 2014060105A JP 2014060105 A JP2014060105 A JP 2014060105A JP 2015024947 A JP2015024947 A JP 2015024947A
- Authority
- JP
- Japan
- Prior art keywords
- cement mortar
- curing
- days
- strength cement
- mortar composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011083 cement mortar Substances 0.000 title claims abstract description 63
- 239000000203 mixture Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000004568 cement Substances 0.000 claims abstract description 37
- 239000000843 powder Substances 0.000 claims abstract description 33
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 20
- 229910021487 silica fume Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 8
- 239000010881 fly ash Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 210000002268 wool Anatomy 0.000 claims description 8
- 238000001723 curing Methods 0.000 description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000013007 heat curing Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000001507 sample dispersion Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
Description
本発明は、高強度セメントモルタル組成物及び高強度セメントモルタル硬化体の製造方法に関する。 The present invention relates to a high-strength cement mortar composition and a method for producing a high-strength cement mortar hardened body.
近年、構造部材の軽量化、鉄筋使用量の削減などの要求に伴い、200N/mm2程度の圧縮強度が得られるような超高強度材料が提案されている。これらの材料では、セメント、ポゾラン質微粉末、骨材及び高性能減水剤が使用されており、熱養生によって超高強度化が図られている。また、これらに金属繊維や有機繊維を添加することによって、高いじん性やひび割れ抑制機能を付与することが提案されている(特許文献1〜3参照)。
例えば、上記の材料よりもさらに圧縮強度の高い材料が得られれば、柱部材の受け持つ荷重をさらに増大することができるため、構造物における柱の数を減らすことができ、その結果、構造物の居住空間をさらに広げられるとともに、設計や意匠性の自由度がさらに高まることが考えられる。
In recent years, an ultra-high-strength material capable of obtaining a compressive strength of about 200 N / mm 2 has been proposed in accordance with demands for reducing the weight of structural members and reducing the amount of reinforcing bars used. In these materials, cement, pozzolanic fine powder, aggregate, and a high-performance water reducing agent are used, and ultrahigh strength is achieved by heat curing. In addition, it has been proposed to impart high toughness and crack suppression function by adding metal fibers and organic fibers to these (see Patent Documents 1 to 3).
For example, if a material having a higher compressive strength than the above-mentioned material is obtained, the load of the column member can be further increased, so that the number of columns in the structure can be reduced. It is conceivable that the living space can be further expanded and the degree of freedom in design and design is further increased.
セメント組成物の高強度化を図る場合、その水/結合材比をより小さくする方法が一般的に執られるが、結合材の化学反応をより促進するために、蒸気養生などの加熱養生がとられることがある。また、更なる高強度化のため、セメントモルタル中の空隙を極力小さくする目的で、遠心成型や加圧成型が行われることもある。また、これらの方法を組み合わせた、オートクレーブ養生やヒートプレス養生をすることで、さらに高い圧縮強度が得られることが分かっている。 In order to increase the strength of a cement composition, a method of reducing the water / binder ratio is generally adopted. However, in order to further promote the chemical reaction of the binder, heat curing such as steam curing is required. May be. In order to further increase the strength, centrifugal molding or pressure molding may be performed for the purpose of reducing the voids in the cement mortar as much as possible. It has also been found that higher compressive strength can be obtained by combining these methods with autoclave curing and heat press curing.
しかしながら、これらの製造方法は、大掛かりな設備が必要であるため、容易に実施できるものではない。
そこで、本発明は、従来の技術にくらべて、大掛かりかつ特殊な製造設備を必要とせず、より高強度である高強度セメントモルタル組成物及び高強度セメントモルタル硬化体の製造方法を提供することを目的とする。
However, these manufacturing methods are not easy to implement because they require large-scale equipment.
Therefore, the present invention provides a high-strength cement mortar composition and a method for producing a hardened high-strength cement mortar body that are higher in strength and do not require large-scale and special manufacturing equipment as compared with the prior art. Objective.
本発明者らは、上記課題を解決すべく鋭意検討した結果、セメントと、無機質微粉末と、細骨材と、減水剤及び消泡剤とを組み合わせ、さらに、微小な金属微粉末を混入することによって、高強度化が実現できることを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors combined cement, an inorganic fine powder, a fine aggregate, a water reducing agent and an antifoaming agent, and further mixed a fine metal fine powder. As a result, it was found that high strength can be realized, and the present invention has been achieved.
すなわち、本発明は、セメントと、無機質微粉末と、水と、細骨材と、減水剤と、消泡剤と、金属微粉末とを含む高強度セメントモルタル組成物であって、前記セメントは、C3Sを10.0質量%〜40.0質量%及びC2Sを40.0質量%〜70.0質量%含有し、前記無機質微粉末はシリカフュームを含有する高強度セメントモルタル組成物を提供する。このような高強度セメントモルタル組成物は、従来にない、非常に高い圧縮強度を発現することができる。
また、前記無機質微粉末は、更に、フライアッシュを含んでも良い。フライアッシュを加えることで、より流動性の高い高強度セメントモルタル組成物が得られる。
また、本発明は前記高強度セメントモルタル組成物を、15〜25℃の気中で1日間〜5日間養生を行う前養生工程と、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜200℃の水中または気中で5日間〜21日間養生を行う二次養生工程とを含む、高強度セメントモルタル硬化体の製造方法を提供する。
また、本発明は前記高強度セメントモルタル組成物を、15〜25℃の気中で1日間〜5日間養生を行う前養生工程と、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜100℃の水中で5日間〜21日間養生を行う二次養生工程と、80℃〜200℃の気中で5〜21日間養生を行う三次養生工程とを含む、高強度セメントモルタル硬化体の製造方法を提供する。
このような高強度セメントモルタル硬化体の製造方法によれば、従来にない、非常に高い圧縮強度を有す高強度セメントモルタル硬化体を製造することができる。
That is, the present invention is a high-strength cement mortar composition comprising cement, inorganic fine powder, water, fine aggregate, water reducing agent, antifoaming agent, and metal fine powder, , C 3 S 10.0% to 40.0% by mass and C 2 S 40.0% to 70.0% by mass, and the inorganic fine powder contains silica fume. I will provide a. Such a high-strength cement mortar composition can exhibit an unprecedented very high compressive strength.
The inorganic fine powder may further contain fly ash. By adding fly ash, a higher strength cement mortar composition with higher fluidity can be obtained.
The present invention also provides a pre-curing step for curing the high-strength cement mortar composition in the air at 15 to 25 ° C. for 1 to 5 days, and curing for 1 to 7 days in water at 20 to 60 ° C. A method for producing a hardened cement mortar hardened body comprising a primary curing step and a secondary curing step of curing for 5 to 21 days in water or air at 80 ° C to 200 ° C.
The present invention also provides a pre-curing step for curing the high-strength cement mortar composition in the air at 15 to 25 ° C. for 1 to 5 days, and curing for 1 to 7 days in water at 20 to 60 ° C. Including a primary curing step, a secondary curing step of curing for 5 to 21 days in water at 80 ° C to 100 ° C, and a tertiary curing step of curing for 5 to 21 days in the air at 80 ° C to 200 ° C. A method for producing a high-strength cement mortar hardened body is provided.
According to such a method for producing a high-strength cement mortar hardened body, it is possible to produce a high-strength cement mortar hardened body that has an unprecedented high compressive strength.
本発明によれば、特殊な養生方法をとらなくとも、高い圧縮強度を持つ高強度セメントモルタル組成物及び高強度セメントモルタル硬化体の製造方法を提供することができる。 According to the present invention, a high-strength cement mortar composition having a high compressive strength and a method for producing a hardened high-strength cement mortar can be provided without taking a special curing method.
以下、本発明に係る高強度セメントモルタル組成物及びの高強度セメントモルタル硬化体の製造方法好適な実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of a method for producing a high-strength cement mortar composition and a cured high-strength cement mortar according to the present invention will be described, but the present invention is not limited to the following embodiments.
(高強度セメントモルタル組成物)
本実施形態の高強度セメントモルタル組成物は、セメントと、無機質微粉末としてシリカフュームと、水と、細骨材と、減水剤と、消泡剤と、金属微粉末とを含むものである。また、無機質微粉末として、更に、フライアッシュを含んでも良い。
(High-strength cement mortar composition)
The high-strength cement mortar composition of the present embodiment includes cement, silica fume as inorganic fine powder, water, fine aggregate, water reducing agent, antifoaming agent, and metal fine powder. Further, fly ash may be further included as the inorganic fine powder.
セメントの鉱物組成は、C3S量が10.0〜70.0質量%、C2S量が10.0〜70.0質量%、C3A量が7.0質量%以下、C4AF量が5.0〜15.0質量%である。C3S量は、好ましくは15.0〜68.0質量%、より好ましくは18.0〜66.0質量%であり、更に好ましくは20.0〜65.0質量%である。C3S量が10.0質量%未満では圧縮強度が低くなる傾向があり、70.0質量%を超えると加熱養生後の圧縮強度が低くなる傾向がある。C2S量は、好ましくは12.0〜65.0質量%、より好ましくは14.0〜62.0質量%であり、更に好ましくは15.0〜60.0質量%である。C2S量が10.0質量%未満では、特に加熱養生後の圧縮強度が低くなる傾向がある。C3A量は好ましくは7.0質量%以下であり、より好ましくは4.5質量%以下であり、更に好ましくは4.0質量%以下である。C3A量が5.0%を超えると、十分な流動性が得られなくなる。C4AF量は、好ましくは6.0〜15.0質量%、より好ましくは7.0〜15.0質量%であり、更に好ましくは8.0〜14.5質量%である。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 As for the mineral composition of the cement, the amount of C 3 S is 10.0 to 70.0% by mass, the amount of C 2 S is 10.0 to 70.0% by mass, the amount of C 3 A is 7.0% by mass or less, C 4 The AF amount is 5.0 to 15.0% by mass. The amount of C 3 S is preferably 15.0 to 68.0% by mass, more preferably 18.0 to 66.0% by mass, and further preferably 20.0 to 65.0% by mass. If the amount of C 3 S is less than 10.0% by mass, the compressive strength tends to be low, and if it exceeds 70.0% by mass, the compressive strength after heat curing tends to be low. The amount of C 2 S is preferably 12.0 to 65.0% by mass, more preferably 14.0 to 62.0% by mass, and further preferably 15.0 to 60.0% by mass. When the amount of C 2 S is less than 10.0% by mass, the compressive strength particularly after heat curing tends to be low. The amount of C 3 A is preferably 7.0% by mass or less, more preferably 4.5% by mass or less, and further preferably 4.0% by mass or less. When the amount of C 3 A exceeds 5.0%, sufficient fluidity cannot be obtained. The amount of C 4 AF is preferably 6.0 to 15.0% by mass, more preferably 7.0 to 15.0% by mass, and still more preferably 8.0 to 14.5% by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
セメントのブレーン比表面積は、好ましくは2500〜4800cm2/g、より好ましくは2800〜4500cm2/g、更に好ましくは3000〜4200cm2/gであり、特に好ましくは3200〜3900cm2/gである。セメントのブレーン比表面積が2500cm2/g未満では高強度セメントモルタル組成物の強度が低くなる傾向があり、4800cm2/gを超えると低水セメント比での流動性が低下する傾向にある。 The brane specific surface area of the cement is preferably 2500 to 4800 cm 2 / g, more preferably 2800 to 4500 cm 2 / g, still more preferably 3000 to 4200 cm 2 / g, and particularly preferably 3200 to 3900 cm 2 / g. When the brane specific surface area of the cement is less than 2500 cm 2 / g, the strength of the high-strength cement mortar composition tends to be low, and when it exceeds 4800 cm 2 / g, the fluidity at the low water cement ratio tends to decrease.
本実施形態に係るセメントの製造にあたっては、通常のセメントと特に異なる操作を行う必要はない。上記セメントは、石灰石、珪石、スラグ、石炭灰、建設発生土、高炉ダスト等の原料の調合を目標とする鉱物組成に応じて変え、実機キルンで焼成した後、得られたクリンカーに石膏を加えて所定の粒度に粉砕することによって製造することができる。焼成するキルンには、一般的なNSPキルンやSPキルン等を使用することができ、粉砕には一般的なボールミル等の粉砕機が使用可能である。また、必要に応じて、2種以上のセメントを混合することもできる。 In manufacturing the cement according to the present embodiment, it is not necessary to perform an operation different from that of normal cement. The cement is changed according to the target mineral composition such as limestone, silica, slag, coal ash, construction generated soil, blast furnace dust, etc., fired in the actual kiln, gypsum added And can be manufactured by pulverizing to a predetermined particle size. A general NSP kiln, SP kiln, or the like can be used for the kiln to be fired, and a general pulverizer such as a ball mill can be used for pulverization. Moreover, 2 or more types of cement can also be mixed as needed.
シリカフュームは、金属シリコン、フェロシリコン、電融ジルコニア等を製造する際に発生する排ガス中のダストを集塵して得られる副産物であり、主成分は、アルカリ溶液中で溶解する非晶質のSiO2である。シリカフュームの平均粒子径は、好ましくは0.05〜2.0μm、より好ましくは0.10〜1.5μm、更に好ましくは0.18〜0.28μm、特に好ましくは0.20〜0.28μmである。このようなシリカフュームを用いることで、高強度セメントモルタル組成物の高い圧縮強度及び高い流動性を確保しやすくなる。 Silica fume is a by-product obtained by collecting dust in the exhaust gas generated when producing metal silicon, ferrosilicon, fused zirconia, etc., and the main component is amorphous SiO dissolved in an alkaline solution. 2 . The average particle size of silica fume is preferably 0.05 to 2.0 μm, more preferably 0.10 to 1.5 μm, still more preferably 0.18 to 0.28 μm, and particularly preferably 0.20 to 0.28 μm. is there. By using such silica fume, it becomes easy to ensure high compressive strength and high fluidity of the high-strength cement mortar composition.
本実施形態の高強度セメントモルタル組成物において、セメントと無機質微粉末の合計量を基準として、シリカフュームを、好ましくは5〜35質量%、より好ましくは7〜30質量%、更に好ましくは8〜27質量%、特に好ましくは9〜23質量%含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 In the high-strength cement mortar composition of the present embodiment, the silica fume is preferably 5-35% by mass, more preferably 7-30% by mass, and still more preferably 8-27%, based on the total amount of cement and inorganic fine powder. It is contained by mass%, particularly preferably 9-23 mass%. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
フライアッシュは、石炭火力発電所で、微粉砕した石炭を燃焼し、溶融状態の灰となったものを集塵して得られる副産物である。フライアッシュの主成分は、SiO2とAl2O3である。フライアッシュのブレーン比表面積は、好ましくは、2500〜7000cm2/gであり、より好ましくは3000〜6500cm2/g、さらに好ましくは、3500〜6000cm2/gであり、特に好ましくは、3500〜6000cm2/gである。このようなフライアッシュを用いることで、高強度セメントモルタル組成物の高い圧縮強度及び高い流動性を確保しやすくなる。 Fly ash is a by-product obtained by burning finely pulverized coal in a coal-fired power plant and collecting the molten ash. The main components of fly ash are SiO 2 and Al 2 O 3 . The brain specific surface area of fly ash is preferably 2500 to 7000 cm 2 / g, more preferably 3000 to 6500 cm 2 / g, still more preferably 3500 to 6000 cm 2 / g, and particularly preferably 3500 to 6000 cm. 2 / g. By using such fly ash, it becomes easy to ensure high compressive strength and high fluidity of the high-strength cement mortar composition.
本実施形態の高強度セメントモルタル組成物において、セメントと無機質微粉末の合計量を基準として、フライアッシュを好ましくは5〜45質量%、より好ましくは8〜40質量%、更に好ましくは10〜35質量%、特に好ましくは、12〜33質量%含む。以上の範囲であれば、高い圧縮強度および高い流動性を十分に確保できる。 In the high-strength cement mortar composition of the present embodiment, fly ash is preferably 5 to 45% by mass, more preferably 8 to 40% by mass, and still more preferably 10 to 35%, based on the total amount of cement and inorganic fine powder. Mass%, particularly preferably 12 to 33% by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
細骨材としては、特に制限されないが、川砂、陸砂、海砂、砕砂、珪砂、石灰石骨材、高炉スラグ細骨材、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細
骨材等を使用することができる。なお、細骨材の粒度は、10mmふるいを全部通り、5
mmふるいを85質量%以上通過するものが好ましい。
The fine aggregate is not particularly limited, but river sand, land sand, sea sand, crushed sand, quartz sand, limestone aggregate, blast furnace slag fine aggregate, ferronickel slag fine aggregate, copper slag fine aggregate, electric furnace oxidation slag Fine aggregates can be used. The fine aggregate has a particle size of 5 mm through the 10 mm sieve.
It is preferable to pass through a mm sieve by 85% by mass or more.
減水剤としては、リグニン系、ナフタレンスルホン酸系、アミノスルホン酸系、ポリカルボン酸系の減水剤、高性能減水剤、高性能AE減水剤等を使用することができる。低水セメント比での流動性確保の観点から、減水剤として、ポリカルボン酸系の減水剤、高性能減水剤又は高性能AE減水剤を用いることが好ましく、ポリカルボン酸系の高性能減水剤を用いることがより好ましい。本実施形態に係る高強度セメントモルタル組成物は、セメントと無機質微粉末の合量100質量部に対して、減水剤を好ましくは1.0〜6.0質量部、より好ましくは1.5〜5.0質量部、更に好ましくは1.8〜4.5質量部、特に好ましくは2.2〜4.0質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 As the water reducing agent, lignin-based, naphthalenesulfonic acid-based, aminosulfonic acid-based, polycarboxylic acid-based water reducing agents, high-performance water reducing agents, high-performance AE water reducing agents, and the like can be used. From the viewpoint of ensuring fluidity at a low water cement ratio, it is preferable to use a polycarboxylic acid-based water reducing agent, a high-performance water reducing agent or a high-performance AE water reducing agent as the water reducing agent, and a polycarboxylic acid-based high performance water reducing agent. It is more preferable to use The high-strength cement mortar composition according to the present embodiment is preferably 1.0 to 6.0 parts by mass, more preferably 1.5 to 100 parts by mass of the water reducing agent with respect to 100 parts by mass of the total amount of cement and inorganic fine powder. 5.0 parts by mass, more preferably 1.8 to 4.5 parts by mass, particularly preferably 2.2 to 4.0 parts by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
また、セメントと無機質微粉末の合量100質量部に対して、水を好ましくは9〜20質量部、より好ましくは9.5〜18質量部、更に好ましくは10.0〜16質量部、特に好ましくは10.5〜14.0質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The amount of water is preferably 9 to 20 parts by weight, more preferably 9.5 to 18 parts by weight, still more preferably 10.0 to 16 parts by weight, especially 100 parts by weight of the total amount of cement and inorganic fine powder. Preferably it contains 10.5 to 14.0 parts by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
消泡剤としては、特殊非イオン配合型界面活性剤、ポリアルキレン誘導体、疎水性シリカ、ポリエーテル系等が挙げられる。この場合、セメントと無機質微粉末の合量100質量部に対して、消泡剤を好ましくは0.01〜2.0質量部、より好ましくは0.1〜1.0質量部、更に好ましくは0.2〜0.5質量部含む。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 Examples of antifoaming agents include special nonionic compounding surfactants, polyalkylene derivatives, hydrophobic silica, and polyethers. In this case, the defoamer is preferably 0.01 to 2.0 parts by weight, more preferably 0.1 to 1.0 parts by weight, and still more preferably, with respect to 100 parts by weight of the total amount of cement and inorganic fine powder. Including 0.2 to 0.5 parts by mass. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
金属微粉末は、カットスチールウール及び/又は鉄粉等を使用することができる。カットスチールウールとはスチールウールを短く切断したものを意味する。またスチールウールとは鉄の非常に細い線を綿状に固めた物で、研磨用のたわしとして使用されることがある。
金属微粉末の形状は、直径が好ましくは5μm〜500μm、より好ましくは10μm〜420μm、更に好ましくは15μm〜400μm、特に好ましくは20μm〜380μmである。長さは好ましくは5μm〜5.0mm、より好ましくは20μm〜4.0mm、更に好ましくは30μm〜3.8mm、特に好ましくは50μm〜3.5mmである。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
As the metal fine powder, cut steel wool and / or iron powder or the like can be used. Cut steel wool means steel wool cut into short pieces. Steel wool is a product in which very thin wires of iron are hardened in a cotton form, and is sometimes used as a scrubbing brush.
The shape of the metal fine powder is preferably 5 μm to 500 μm in diameter, more preferably 10 μm to 420 μm, still more preferably 15 μm to 400 μm, and particularly preferably 20 μm to 380 μm. The length is preferably 5 μm to 5.0 mm, more preferably 20 μm to 4.0 mm, still more preferably 30 μm to 3.8 mm, and particularly preferably 50 μm to 3.5 mm. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
(高強度セメントモルタル硬化体の製造方法)
本実施形態の高強度セメントモルタル硬化体の製造方法は、上記高強度セメントモルタル組成物を、15〜25℃の気中で1日間〜5日間養生を行う前養生工程と、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜200℃の水中または気中で5日間〜21日間養生を行う二次養生工程とを含む。
前養生工程は、好ましくは16〜24℃、より好ましくは17〜23℃、更に好ましくは18〜22℃、特に好ましくは19〜21℃の気中で、好ましくは1.5〜4日間、より好ましくは2.0〜3.5日間、更に好ましくは2.5〜3.3日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
(Manufacturing method of hardened cement mortar)
The manufacturing method of the high-strength cement mortar hardened | cured material of this embodiment is the pre-curing process of curing the said high-strength cement mortar composition in the air of 15-25 degreeC for 1 day-5 days, A primary curing step of curing for 1 to 7 days in water and a secondary curing step of curing for 5 to 21 days in water or in the air at 80 ° C to 200 ° C.
The pre-curing step is preferably 16 to 24 ° C., more preferably 17 to 23 ° C., still more preferably 18 to 22 ° C., particularly preferably 19 to 21 ° C., preferably 1.5 to 4 days. The curing is preferably performed for 2.0 to 3.5 days, and more preferably for 2.5 to 3.3 days. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
一次養生工程は、好ましくは23〜55℃、より好ましくは25〜50℃、更に好ましくは28〜48℃、特に好ましくは30〜45℃の水中で、好ましくは1〜7日間、より好ましくは1.5〜6日間、更に好ましくは1.8〜5日間、特に好ましくは2.0〜4.5日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The primary curing step is preferably 23 to 55 ° C, more preferably 25 to 50 ° C, still more preferably 28 to 48 ° C, particularly preferably 30 to 45 ° C in water, preferably 1 to 7 days, more preferably 1 Curing is carried out for 5 to 6 days, more preferably 1.8 to 5 days, particularly preferably 2.0 to 4.5 days. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
二次養生工程は、好ましくは80〜200℃、より好ましくは83〜190℃、更に好ましくは85〜185℃、特に好ましくは90〜180℃の水中または気中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。水中の場合、温水、気中の場合、蒸気養生装置、オートクレーブ、乾燥機などが使用出来る。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The secondary curing step is preferably 80 to 200 ° C, more preferably 83 to 190 ° C, still more preferably 85 to 185 ° C, particularly preferably 90 to 180 ° C in water or in the air, preferably 5 to 21 days. More preferably 5 to 19 days, still more preferably 6 to 17 days, particularly preferably 7 to 15 days. In water, warm water, in the air, steam curing devices, autoclaves, dryers, etc. can be used. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
本実施形態の高強度セメントモルタル硬化体の製造方法は、上記高強度セメントモルタル組成物を、15〜25℃の気中で1日間〜5日間養生を行う前養生工程と、20〜60℃の水中で1日間〜7日間養生を行う一次養生工程と、80℃〜100℃の水中で5日間〜21日間養生を行う二次養生工程と、80℃〜200℃の気中で5日間〜21日間養生を行う三次養生工程で行っても良い。
前養生工程は、好ましくは16〜24℃、より好ましくは17〜23℃、更に好ましくは18〜22℃、特に好ましくは19〜21℃の気中で、好ましくは1.5〜4日間、より好ましくは2.0〜3.5日間、更に好ましくは2.5〜3.3日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
The manufacturing method of the high-strength cement mortar hardened | cured material of this embodiment is the pre-curing process of curing the said high-strength cement mortar composition in the air of 15-25 degreeC for 1 day-5 days, and 20-60 degreeC. Primary curing process for curing for 1 to 7 days in water, secondary curing process for curing for 5 to 21 days in water at 80 ° C. to 100 ° C., and 5 days to 21 in the atmosphere at 80 ° C. to 200 ° C. You may carry out in the tertiary curing process which performs daily curing.
The pre-curing step is preferably 16 to 24 ° C., more preferably 17 to 23 ° C., still more preferably 18 to 22 ° C., particularly preferably 19 to 21 ° C., preferably 1.5 to 4 days. The curing is preferably performed for 2.0 to 3.5 days, and more preferably for 2.5 to 3.3 days. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
一次養生工程は、好ましくは23〜55℃、より好ましくは25〜50℃、更に好ましくは28〜48℃、特に好ましくは30〜45℃の水中で、好ましくは1〜7日間、より好ましくは1.5〜6日間、更に好ましくは1.8〜5日間、特に好ましくは2.0〜4.5日間養生を行う。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。 The primary curing step is preferably 23 to 55 ° C, more preferably 25 to 50 ° C, still more preferably 28 to 48 ° C, particularly preferably 30 to 45 ° C in water, preferably 1 to 7 days, more preferably 1 Curing is carried out for 5 to 6 days, more preferably 1.8 to 5 days, particularly preferably 2.0 to 4.5 days. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
二次養生工程は、好ましくは80〜100℃、より好ましくは83〜99℃、更に好ましくは85〜99℃、特に好ましくは90〜98℃の水中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。
三次養生工程は、好ましくは80〜200℃、より好ましくは83〜190℃、更に好ましくは85〜185℃、特に好ましくは90〜180℃の気中で、好ましくは5〜21日間、より好ましくは5〜19日間、更に好ましくは6〜17日間、特に好ましくは7〜15日間養生を行う。
水中の場合、温水、気中の場合、蒸気養生装置、オートクレーブ、乾燥機などが使用出来る。三次養生工程では、水中よりも気中養生の方が、強度増進の観点からより好ましい。以上の範囲であれば、高い圧縮強度及び高い流動性を十分に確保出来る。
The secondary curing step is preferably 80 to 100 ° C., more preferably 83 to 99 ° C., further preferably 85 to 99 ° C., particularly preferably 90 to 98 ° C., preferably 5 to 21 days, more preferably Curing is performed for 5 to 19 days, more preferably 6 to 17 days, particularly preferably 7 to 15 days.
The tertiary curing step is preferably 80 to 200 ° C, more preferably 83 to 190 ° C, still more preferably 85 to 185 ° C, particularly preferably 90 to 180 ° C, preferably 5 to 21 days, more preferably Curing is performed for 5 to 19 days, more preferably 6 to 17 days, particularly preferably 7 to 15 days.
In water, warm water, in the air, steam curing devices, autoclaves, dryers, etc. can be used. In the tertiary curing process, air curing is more preferable than water from the viewpoint of strength enhancement. If it is the above range, high compressive strength and high fluidity | liquidity can fully be ensured.
以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.
[使用材料の準備]
実施例及び比較例のモルタル組成物を作製するために、以下に示す材料を準備した。
[Preparation of materials used]
In order to prepare the mortar compositions of Examples and Comparative Examples, the following materials were prepared.
(1)セメント:
使用した3種類のセメントの化学成分を、JIS R 5202−2010「セメントの化学分析方法」に従い測定し、鉱物組成を下記のボーグ式により算出した。得られたセメントの鉱物組成を表1に示す。
(1) Cement:
The chemical components of the three types of cement used were measured according to JIS R 5202-2010 “Cement chemical analysis method”, and the mineral composition was calculated by the following Borg equation. The mineral composition of the obtained cement is shown in Table 1.
C3S量=(4.07×CaO)−(7.60×SiO2)−(6.72×Al2O3)−(1.43×Fe2O3)−(2.85×SO3)
C2S量=(2.87×SiO2)−(0.754×C3S)
C3A量=(2.65×Al2O3)−(1.69×Fe2O3)
C4AF量=3.04×Fe2O3
C 3 S amount = (4.07 × CaO) − (7.60 × SiO 2 ) − (6.72 × Al 2 O 3 ) − (1.43 × Fe 2 O 3 ) − (2.85 × SO 3 )
C 2 S amount = (2.87 × SiO 2 ) − (0.754 × C 3 S)
C 3 A amount = (2.65 × Al 2 O 3 ) − (1.69 × Fe 2 O 3 )
C 4 AF amount = 3.04 × Fe 2 O 3
(2)シリカフューム
シリカフュームの平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、商品名「LA−950V2」)を用いて測定した粒子径分布より、粒子径−通過分積算%曲線を算出し、粒子径−通過分積算%曲線より通過分積算が50体積%となる粒子径を求めた。試料分散媒は0.2%ヘキサメタリン酸ナトリウム水溶液を用い、測定前に出力600Wのホモジナイザーにて10分間分散処理した。粒度分布の演算はMie散乱理論に従った。粒子屈折率は1.45−0.00i、溶媒屈折率は1.333とした。各粒度の通過分積算(体積%)を表2に示す。
(2) Silica fume The average particle diameter of silica fume is calculated from the particle diameter distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus (trade name “LA-950V2” manufactured by Horiba, Ltd.). The% curve was calculated, and the particle diameter at which the accumulated volume was 50% by volume was determined from the particle diameter-% accumulated volume curve. A 0.2% sodium hexametaphosphate aqueous solution was used as a sample dispersion medium, and the sample was dispersed for 10 minutes with a homogenizer with an output of 600 W before measurement. The calculation of the particle size distribution followed Mie scattering theory. The particle refractive index was 1.45-0.00i, and the solvent refractive index was 1.333. Table 2 shows the accumulated amount (volume%) of each particle size.
(3)フライアッシュ:常磐火力産業社製、密度:2.27g/cm3、比表面積:4680cm2/g、45μmふるい残分:11.0% (3) Fly ash: manufactured by Joban Thermal Power Industry Co., Ltd., density: 2.27 g / cm 3 , specific surface area: 4680 cm 2 / g, 45 μm sieve residue: 11.0%
(4)細骨材:砕砂:密度2.62g/cm3、粗粒率2.80 (4) Fine aggregate: Crushed sand: Density 2.62 g / cm 3 , coarse particle ratio 2.80
(5)減水剤:ポリカルボン酸系高性能減水剤(固形分濃度25質量%)
(6)消泡剤:特殊非イオン配合型界面活性剤
(7)金属微紛末:
カットスチールウール(A):日本スチールウール社製、直径20〜30μm、長さ0.1〜3mm、密度7.85g/cm3
(8)鋼繊維(B):東京製綱社製、密度:7.87g/cm3、繊維径0.16mm、繊維長13mm、アスペクト比81.25、引張強度2200N/mm2
(9)練混ぜ水(W):上水道水
(5) Water reducing agent: polycarboxylic acid-based high-performance water reducing agent (solid content concentration 25% by mass)
(6) Antifoaming agent: Special nonionic compounding type surfactant (7) Fine metal powder:
Cut steel wool (A): Nippon Steel Wool, diameter 20-30 μm, length 0.1-3 mm, density 7.85 g / cm 3
(8) Steel fiber (B): manufactured by Tokyo Seizuna Co., Ltd., density: 7.87 g / cm 3 , fiber diameter 0.16 mm, fiber length 13 mm, aspect ratio 81.25, tensile strength 2200 N / mm 2
(9) Mixing water (W): Tap water
[高強度セメントモルタル組成物の作製]
高強度セメントモルタル組成物の作製を、表3の配合組成に基づき、以下の通りに行った。
[Preparation of high-strength cement mortar composition]
A high-strength cement mortar composition was prepared as follows based on the composition shown in Table 3.
セメント、シリカフューム、フライアッシュ及び消泡剤をモルタルミキサに加え、減水剤を含む練混ぜ水をミキサ内に投入して10分間撹拌し、モルタル組成物を作製した。なお、実施例1〜2では、金属微紛末を更に投入して、高強度セメントモルタル組成物を作製した。 Cement, silica fume, fly ash, and an antifoaming agent were added to the mortar mixer, and kneading water containing a water reducing agent was put into the mixer and stirred for 10 minutes to prepare a mortar composition. In Examples 1 and 2, the metal fine powder powder was further added to prepare a high-strength cement mortar composition.
[養生方法]
練り混ぜた高強度セメントモルタル組成物は、型枠に充填後、20℃、湿度約70%の気中で3日間養生(前養生工程)後、脱型し、40℃の水中で3日の一次養生の工程を実施した。その後、二次養生として、98℃の温水中で7日間養生し、更に、その後、三次養生として、7日間、98℃の乾燥機で乾燥させた。これらの養生を行い、高強度セメントモルタル硬化体を作製した。
[Curing method]
The high-strength cement mortar composition that has been kneaded is filled in the mold, then cured in the atmosphere of 20 ° C and humidity of about 70% for 3 days (pre-curing step), then demolded, and in water at 40 ° C for 3 days. The primary curing process was carried out. Then, as a secondary curing, curing was performed in 98 ° C. warm water for 7 days, and then as a tertiary curing, drying was performed with a 98 ° C. dryer for 7 days. These curings were carried out to produce a high-strength cement mortar hardened body.
[高強度セメントモルタル組成物の評価]
(1)フレッシュ性状
(試験方法)
比較例1〜2および実施例1〜2の配合で作製した高強度セメントモルタル組成物を用いて、フロー値を測定した。フロー値は、JIS R 5201−1997「セメントの物理試験方法」に準じ、落下無しの条件で測定した。
[Evaluation of high-strength cement mortar composition]
(1) Fresh properties (test method)
The flow value was measured using the high-strength cement mortar compositions prepared by the blending of Comparative Examples 1-2 and Examples 1-2. The flow value was measured according to JIS R 5201-1997 “Cement physical test method” under the condition of no drop.
(2)強度試験
JIS A 1132−2006「コンクリートの強度試験用供試体の作り方」に準じて5cm×10cmの円柱供試体を作製し、JIS A 1108−2006「コンクリートの圧縮強度試験方法」に準じて高強度セメントモルタル硬化体の圧縮強度試験を実施した。
(2) Strength test According to JIS A 1132-2006 “How to make a specimen for concrete strength test”, a 5 cm × 10 cm cylindrical specimen is prepared and according to JIS A 1108-2006 “Concrete compressive strength test method”. The high strength cement mortar hardened body was subjected to a compressive strength test.
(評価結果)
表4に、フロー値および圧縮強度試験結果を示す。
(Evaluation results)
Table 4 shows the flow values and the compressive strength test results.
カットスチールウールを使用しない比較例1および2の場合には、二次養生期間14日の時点で、289N/mm2および308N/mm2となった。
カットスチールウールを2体積%混入した実施例1および2の場合には、7日強度が20〜30N/mm2程度、14日強度が10〜50N/mm2程度増大し、14日で300N/mm2以上の高い圧縮強度が得られた。
実施例1と実施例4を比べると、シリカフューム量の減少により流動性が増大していることが分かる。この場合に強度の低下はなく、むしろ、若干増加する傾向にあった。これは、シリカフューム量の減少により流動性が増大することで、フレッシュモルタルの充填性が向上し、欠陥となるエントラップトエアが減少するためと推察される。
また、比較例3、比較例4、及び実施例4のように、細骨材量を低減することで流動性が改善された。
実施例3及び実施例4のように、シリカフューム量を変えた場合や、細骨材率を変えた場合においても、養生終了時には300N/mm2以上の高い圧縮強度が得られた。
In the case of Comparative Examples 1 and 2 without using cut steel wool, at the time of the secondary curing period 14 days, it became 289N / mm 2 and 308N / mm 2.
In the case of Examples 1 and 2 were mixed with cut steel wool 2% by volume, 7 days strength of 20-30 N / mm 2 approximately, 14 days strength is increased by about 10 to 50 N / mm 2, at 14 days 300N / A high compressive strength of mm 2 or more was obtained.
When Example 1 is compared with Example 4, it turns out that fluidity | liquidity is increasing by the reduction | decrease of the amount of silica fume. In this case, the strength did not decrease, but rather tended to increase slightly. This is presumably because the fluidity increases due to the decrease in the amount of silica fume, which improves the filling properties of fresh mortar and reduces the entrapment air that becomes a defect.
Moreover, fluidity | liquidity was improved by reducing the amount of fine aggregates like the comparative example 3, the comparative example 4, and Example 4. FIG.
Even when the amount of silica fume was changed or the fine aggregate rate was changed as in Example 3 and Example 4, a high compressive strength of 300 N / mm 2 or more was obtained at the end of curing.
実施例5及び実施例6のように、セメントの鉱物組成を変えた場合、C3A量が大きいほど、フロー値が小さくなった。また、養生期間の14日では、300N/mm2程度の高い圧縮強度が得られた。
実施例4に対して、実施例7及び実施例8のようにセメントの一部にフライアッシュを置換すると、若干ながら流動性が改善された。フライアッシュが15質量%程度までであれば、強度の低下は小さかった。
When the mineral composition of the cement was changed as in Example 5 and Example 6, the flow value decreased as the amount of C 3 A increased. Moreover, in the curing period of 14 days, a high compressive strength of about 300 N / mm 2 was obtained.
In contrast to Example 4, when fly ash was substituted for part of the cement as in Example 7 and Example 8, the fluidity was slightly improved. When fly ash was up to about 15% by mass, the decrease in strength was small.
実施例9及び実施例10のように、セメントと無機質微粉末(シリカフューム+フライアッシュ)の合計量に対する水の含有量を13質量%まで増やした場合であっても約300N/mm2の高い圧縮強度が得られた。
また、表4に示すように、二次養生の水中養生後に三次養生の気中養生を施すと、非常に高い圧縮強度が得られた。セメントの養生は、一般的に水中で十分に水和させることが重要とされているが、実施例の結果からは、寧ろ、ある程度水中養生した後は気中養生した方が良いことが示唆されている。シリカフュームを低水セメント比で使用したセメントモルタルでは、シリカフュームの水和を十分に行わせることが重要で、気中養生の場合、硬化体の微細な空隙への蒸気の浸透などが起こり易く水和が進行するような現象が起こっていると推察される。
As in Example 9 and Example 10, high compression of about 300 N / mm 2 even when the water content is increased to 13% by mass with respect to the total amount of cement and fine inorganic powder (silica fume + fly ash). Strength was obtained.
Moreover, as shown in Table 4, when the air curing of the tertiary curing was performed after the water curing of the secondary curing, a very high compressive strength was obtained. Cement curing is generally considered to be sufficiently hydrated in water, but the results of the examples suggest that it is better to cure in air after curing to some extent. ing. In cement mortar using silica fume at a low water cement ratio, it is important that silica fume be sufficiently hydrated. In the case of air curing, hydration is likely to occur due to the penetration of steam into fine voids in the cured product. It is inferred that there is a phenomenon that is going on.
Claims (10)
前記セメントは、C3Sを10.0質量%〜70.0質量%及びC2Sを10.0質量%〜70.0質量%含有し、前記無機質微粉末はシリカフュームを含有することを特徴とする高強度セメントモルタル組成物。 A high-strength cement mortar composition comprising cement, inorganic fine powder, water, fine aggregate, water reducing agent, antifoaming agent, and metal fine powder,
The cement contains 10.0% to 70.0% by mass of C 3 S and 10.0% to 70.0% by mass of C 2 S, and the inorganic fine powder contains silica fume. A high-strength cement mortar composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014060105A JP6516411B2 (en) | 2013-06-17 | 2014-03-24 | High strength cement mortar composition and method of producing hardened high strength cement mortar |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013126507 | 2013-06-17 | ||
JP2013126507 | 2013-06-17 | ||
JP2014060105A JP6516411B2 (en) | 2013-06-17 | 2014-03-24 | High strength cement mortar composition and method of producing hardened high strength cement mortar |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018074109A Division JP6528880B2 (en) | 2013-06-17 | 2018-04-06 | High strength cement mortar composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015024947A true JP2015024947A (en) | 2015-02-05 |
JP6516411B2 JP6516411B2 (en) | 2019-05-22 |
Family
ID=52489920
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014060105A Active JP6516411B2 (en) | 2013-06-17 | 2014-03-24 | High strength cement mortar composition and method of producing hardened high strength cement mortar |
JP2018074109A Active JP6528880B2 (en) | 2013-06-17 | 2018-04-06 | High strength cement mortar composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018074109A Active JP6528880B2 (en) | 2013-06-17 | 2018-04-06 | High strength cement mortar composition |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6516411B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2016098140A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2016098141A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2017007917A (en) * | 2015-06-25 | 2017-01-12 | 太平洋セメント株式会社 | Cementitious hardened body manufacturing process |
JP2017095316A (en) * | 2015-11-26 | 2017-06-01 | 太平洋セメント株式会社 | Machine component and manufacturing method therefor |
JP2017100898A (en) * | 2015-11-30 | 2017-06-08 | 太平洋セメント株式会社 | Concrete member for high speed traffic system structure and manufacturing method therefor |
JP2017226547A (en) * | 2016-06-20 | 2017-12-28 | 太平洋セメント株式会社 | Member for protection work of road or railroad, and method for producing the same |
JP2020023440A (en) * | 2019-11-21 | 2020-02-13 | 太平洋セメント株式会社 | Manufacturing method of cement hardened body |
JP2020070201A (en) * | 2018-10-30 | 2020-05-07 | 太平洋セメント株式会社 | Cement composition and method for producing hardened cementitious materials |
KR102376056B1 (en) * | 2021-07-02 | 2022-03-23 | 정동근 | A Method For Producing UHPC Through Curing In Water And UHPC Manufactured Through Curing In Water |
KR20220152855A (en) * | 2021-05-10 | 2022-11-17 | 한국과학기술원 | Curing method of cementitious materials using alkaline activator aqueous solution |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102849A (en) * | 1982-12-01 | 1984-06-14 | 電気化学工業株式会社 | Super high strength cement hardened body |
JPS62207752A (en) * | 1986-03-10 | 1987-09-12 | 電気化学工業株式会社 | High strength hydraulic composition |
JPS63170252A (en) * | 1986-12-23 | 1988-07-14 | セムコム コーポレーション | Cementite composite material |
JPH07291765A (en) * | 1994-04-21 | 1995-11-07 | Nippon Steel Corp | Aging method of cement molding |
JP2001270762A (en) * | 2000-03-29 | 2001-10-02 | Taiheiyo Cement Corp | Grouting mortar composition for prepacked concrete |
JP2006298679A (en) * | 2005-04-18 | 2006-11-02 | Denki Kagaku Kogyo Kk | Ultra-high strength fiber-reinforced cement composition, ultra-high strength fiber-reinforced mortar or concrete, and ultra-high strength cement admixture |
JP2012001427A (en) * | 2010-05-18 | 2012-01-05 | Taisei Corp | High-strength concrete and method for producing concrete member |
JP2012144406A (en) * | 2011-01-14 | 2012-08-02 | Ohbayashi Corp | High-strength mortar composition |
JP2012144403A (en) * | 2011-01-14 | 2012-08-02 | Ohbayashi Corp | High-strength mortar composition |
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP6205843B2 (en) * | 2013-05-24 | 2017-10-04 | 宇部興産株式会社 | High-strength cement paste composition and method for producing high-strength cement paste hardened body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4312943B2 (en) * | 2000-02-08 | 2009-08-12 | 住友大阪セメント株式会社 | Cement clinker, cement composition, method for producing cement clinker, and method for treating waste containing alkali component |
JPH07102996B2 (en) * | 1986-05-16 | 1995-11-08 | 電気化学工業株式会社 | Method for producing high-strength cement compact |
JPH07144941A (en) * | 1993-11-17 | 1995-06-06 | Chichibu Onoda Cement Corp | Portland cement composition |
JP5783546B2 (en) * | 2010-03-09 | 2015-09-24 | 太平洋セメント株式会社 | White ultra high strength concrete and method for producing the same |
-
2014
- 2014-03-24 JP JP2014060105A patent/JP6516411B2/en active Active
-
2018
- 2018-04-06 JP JP2018074109A patent/JP6528880B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102849A (en) * | 1982-12-01 | 1984-06-14 | 電気化学工業株式会社 | Super high strength cement hardened body |
JPS62207752A (en) * | 1986-03-10 | 1987-09-12 | 電気化学工業株式会社 | High strength hydraulic composition |
JPS63170252A (en) * | 1986-12-23 | 1988-07-14 | セムコム コーポレーション | Cementite composite material |
JPH07291765A (en) * | 1994-04-21 | 1995-11-07 | Nippon Steel Corp | Aging method of cement molding |
JP2001270762A (en) * | 2000-03-29 | 2001-10-02 | Taiheiyo Cement Corp | Grouting mortar composition for prepacked concrete |
JP2006298679A (en) * | 2005-04-18 | 2006-11-02 | Denki Kagaku Kogyo Kk | Ultra-high strength fiber-reinforced cement composition, ultra-high strength fiber-reinforced mortar or concrete, and ultra-high strength cement admixture |
JP2012001427A (en) * | 2010-05-18 | 2012-01-05 | Taisei Corp | High-strength concrete and method for producing concrete member |
JP2012144406A (en) * | 2011-01-14 | 2012-08-02 | Ohbayashi Corp | High-strength mortar composition |
JP2012144403A (en) * | 2011-01-14 | 2012-08-02 | Ohbayashi Corp | High-strength mortar composition |
JP6205843B2 (en) * | 2013-05-24 | 2017-10-04 | 宇部興産株式会社 | High-strength cement paste composition and method for producing high-strength cement paste hardened body |
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018162213A (en) * | 2013-06-17 | 2018-10-18 | 宇部興産株式会社 | High strength cement mortar composition and manufacturing method of high strength cement mortar cured body |
JP2015024948A (en) * | 2013-06-17 | 2015-02-05 | 宇部興産株式会社 | High-strength cement mortar composition and method for producing hardened high-strength cement mortar |
JP2016098140A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2016098141A (en) * | 2014-11-21 | 2016-05-30 | 宇部興産株式会社 | High strength concrete composition and manufacturing method of high strength concrete cured body |
JP2017007917A (en) * | 2015-06-25 | 2017-01-12 | 太平洋セメント株式会社 | Cementitious hardened body manufacturing process |
JP2017095316A (en) * | 2015-11-26 | 2017-06-01 | 太平洋セメント株式会社 | Machine component and manufacturing method therefor |
JP2017100898A (en) * | 2015-11-30 | 2017-06-08 | 太平洋セメント株式会社 | Concrete member for high speed traffic system structure and manufacturing method therefor |
JP2017226547A (en) * | 2016-06-20 | 2017-12-28 | 太平洋セメント株式会社 | Member for protection work of road or railroad, and method for producing the same |
JP2020070201A (en) * | 2018-10-30 | 2020-05-07 | 太平洋セメント株式会社 | Cement composition and method for producing hardened cementitious materials |
JP7120881B2 (en) | 2018-10-30 | 2022-08-17 | 太平洋セメント株式会社 | Method for producing cementitious hardened body |
JP2020023440A (en) * | 2019-11-21 | 2020-02-13 | 太平洋セメント株式会社 | Manufacturing method of cement hardened body |
KR20220152855A (en) * | 2021-05-10 | 2022-11-17 | 한국과학기술원 | Curing method of cementitious materials using alkaline activator aqueous solution |
KR102607272B1 (en) * | 2021-05-10 | 2023-11-29 | 한국과학기술원 | Curing method of cementitious materials using alkaline activator aqueous solution |
KR102376056B1 (en) * | 2021-07-02 | 2022-03-23 | 정동근 | A Method For Producing UHPC Through Curing In Water And UHPC Manufactured Through Curing In Water |
Also Published As
Publication number | Publication date |
---|---|
JP6528880B2 (en) | 2019-06-12 |
JP2018104287A (en) | 2018-07-05 |
JP6516411B2 (en) | 2019-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6575640B2 (en) | High-strength cement mortar composition and method for producing high-strength cement mortar hardened body | |
JP2018104287A (en) | High-strength cement mortar composition | |
JP6205843B2 (en) | High-strength cement paste composition and method for producing high-strength cement paste hardened body | |
KR100893495B1 (en) | The manufacturing method and composition of low-heat, high-strength concrete for self compaction | |
JP6022747B2 (en) | High strength mortar composition | |
JP5702608B2 (en) | High strength mortar composition | |
KR101390132B1 (en) | high strength concrete composition using rapid hardening type portland cement | |
JP2010150073A (en) | Cement mortar | |
JP6417891B2 (en) | High-strength concrete composition and method for producing high-strength concrete hardened body | |
JP5735288B2 (en) | High strength paste composition | |
JP6031281B2 (en) | Paste composition | |
JP6417890B2 (en) | High-strength concrete composition and method for producing high-strength concrete hardened body | |
JP6023488B2 (en) | Paste composition | |
JP6012290B2 (en) | High toughness and high strength mortar composition | |
JP5997807B2 (en) | High strength mortar composition | |
JP5731848B2 (en) | High strength paste composition | |
JP6063159B2 (en) | Paste composition | |
JP5612504B2 (en) | High strength mortar composition | |
JP5592807B2 (en) | High toughness and high strength mortar composition | |
JP5592806B2 (en) | High toughness and high strength mortar composition | |
JP2016107422A (en) | Manufacturing method of curable kneaded material | |
JP6300734B2 (en) | Method for producing high-strength cement admixture and concrete product | |
Kiran et al. | Strengthening of concrete by partial replacement of cement with flyash and metakaoline mix | |
JP2008239403A (en) | Hydraulic composition | |
JP5702199B2 (en) | Cement material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171017 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20171019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180406 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180413 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20180502 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6516411 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |