JPH07291765A - Aging method of cement molding - Google Patents

Aging method of cement molding

Info

Publication number
JPH07291765A
JPH07291765A JP10592294A JP10592294A JPH07291765A JP H07291765 A JPH07291765 A JP H07291765A JP 10592294 A JP10592294 A JP 10592294A JP 10592294 A JP10592294 A JP 10592294A JP H07291765 A JPH07291765 A JP H07291765A
Authority
JP
Japan
Prior art keywords
curing
strength
cement
post
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10592294A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hirato
靖浩 平戸
Kanji Yamada
寛次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP10592294A priority Critical patent/JPH07291765A/en
Publication of JPH07291765A publication Critical patent/JPH07291765A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature

Abstract

PURPOSE:To provide an aging method of a cement molding capable of greatly improving the mechanical strength of a cement hardened body economically without changing a material, forming method or the like conventionally used. CONSTITUTION:The cement molding after autoclave aged is post aged in an air at 60-120 deg.C for 60-200hr. As a result, the cement molding more excellent in mechanical strength than a cement molding only autoclave aged is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オートクレーブ養生後
に後養生を行うことで、機械的強度を向上させ得る、コ
ンクリート成形体の養生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for curing a concrete molding which can improve mechanical strength by performing post-curing after autoclave curing.

【0002】[0002]

【従来の技術】セメント材料における強度の向上は、あ
らゆる方向から取り組まれており、数々の論文等が出さ
れている。これらを大きく分けると、材料・製造方法・
養生方法の3つに分けられる。
2. Description of the Related Art Improvements in strength of cement materials have been tackled from all directions, and numerous papers have been published. These are roughly divided into materials, manufacturing methods,
There are three types of curing methods.

【0003】材料に関しては、反応性の早い材料として
粉末度の高いシリカヒュームや微粉末スラグを使用する
方法や、繊維強度を利用した繊維補強、樹脂を混入した
樹脂補強などが知られている。製造方法では、プレス成
形・押出成形などでセメント硬化体をより緻密な状態に
し、強度の向上を計る方法が知られている。
Regarding materials, there are known a method of using silica fume or fine powder slag having a high degree of fineness as a material having a high reactivity, a fiber reinforcement utilizing fiber strength, a resin reinforcement containing a resin and the like. As a manufacturing method, a method is known in which a hardened cement product is made more dense by press molding, extrusion molding or the like to improve the strength.

【0004】養生方法では、一般的に、水中養生・気中
養生・蒸気養生などが知られているが、丸山武彦らの
「シリカヒュームコンクリートの諸物性に関する実験的
研究」(コンクリート工学年次論文報告集12巻第1号
pp.105〜110)に見られるように、養生方法にオートクレ
ーブ養生を用いることで、早期に水和反応を終了させ、
強度を発揮させる方法が知られ、早期的に強度向上に関
与する養生方法として、オートクレーブ養生が広く用い
られている。しかし、材料や製造方法から強度向上を図
る方法に比べ、養生方法に関する研究は、オートクレー
ブ養生以外にはあまり研究が進められていないが、いく
つかの報告がある。例えば、特開平3−33079号公
報には、オートクレーブ養生後の水中養生により、強
度、たわみ性を向上させることが、特開平5−2495
2号公報には、オートクレーブ養生後に、CO2 ガス雰
囲気中で養生することにより強度を向上させることが記
載されている。その他、軽量コンクリートに関しては特
公昭48−37965号公報に見られるように、オート
クレーブ養生後、加圧水蒸気中で再水蒸気養生を行うこ
とで試験体の亀裂を抑制し、強度を向上させる方法が知
られている。
Underwater curing, air curing, steam curing, etc. are generally known as curing methods. Takehiko Maruyama et al., "Experimental Research on Various Properties of Silica Fume Concrete" (Concrete Engineering Annual Papers) Vol.12, No.1
pp.105-110), by using autoclave curing as a curing method, the hydration reaction is terminated early,
A method of exerting strength is known, and autoclave curing is widely used as a curing method involved in early strength improvement. However, compared with the method of improving the strength from the material and the manufacturing method, the research on the curing method has not been much researched except the autoclave curing, but there are some reports. For example, in JP-A-3-33079, it is disclosed in JP-A-5-2495 that strength and flexibility are improved by underwater curing after autoclave curing.
Japanese Patent Publication No. 2 describes that the strength is improved by curing in an atmosphere of CO 2 gas after curing in an autoclave. In addition, as for lightweight concrete, as seen in Japanese Patent Publication No. 48-37965, there is known a method of suppressing cracking of a test body by performing steam re-curing in pressurized steam after autoclave curing to improve strength. ing.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平3−3
3079号の方法は、乾式法で成形体を作成することが
第一条件であるため特殊な成形体のみしか強度向上効果
が得られず、一般的に普及している湿式法で成形するも
のについては効果がない。また、特開平5−24952
号の方法は、CO2 ガスを密室で5日間流し続けるた
め、設備やCO2 ガス等へのコストがかかりすぎる。特
公昭48−3796号の方法は、ALC等の発泡コンク
リートのようにマトリックス強度が弱いものについて
は、急激に炭酸化する際にマトリックス中に亀裂が入り
強度が低下するため、再水蒸気養生により亀裂を抑制し
強度を向上することができるが、通常の流し込み・プレ
ス・押出等で成形した物のように、マトリックス強度の
強いものにはあまり効果を発揮しない。
However, Japanese Unexamined Patent Publication No. 3-3.
Regarding the method of No. 3079, since the first condition is to prepare a molded body by a dry method, only a special molded body can obtain the strength improving effect, and the method of molding by a generally popular wet method is used. Has no effect. In addition, JP-A-5-24952
In the method of No. 3, since CO 2 gas is kept flowing in a closed room for 5 days, the cost for equipment and CO 2 gas is too high. According to the method of Japanese Patent Publication No. 48-3796, for foamed concrete such as ALC, which has a weak matrix strength, cracks are formed in the matrix during rapid carbonation, and the strength is reduced. Can be suppressed and the strength can be improved, but it is not so effective for a material having a strong matrix strength such as a product molded by ordinary casting, pressing, extrusion or the like.

【0006】本発明の目的は、上記問題点に鑑み、従来
使用していた材料・成形方法等を変えることなく、経済
的にセメント硬化体の機械的強度を著しく向上させる養
生方法を提供するものである。
In view of the above-mentioned problems, an object of the present invention is to provide a curing method which significantly improves the mechanical strength of a hardened cement body economically without changing the conventionally used materials and molding methods. Is.

【0007】[0007]

【課題を解決するための手段】本発明は、オートクレー
ブ養生を終えたセメント成形体を、空気中で、60〜1
20℃の温度を60〜200時間与えることからなる後
養生を行うことを特徴とするものである。本発明は、オ
ートクレーブ養生後に、上記後養生を行うことで、セメ
ント硬化体の機械的強度を向上させるものであるが、特
に、セメント成形体が繊維強化セメント成形体の場合、
この養生による強度向上の効果が大きい。
According to the present invention, a cement molded product which has been subjected to autoclave curing is subjected to 60 to 1 in air.
The post-curing is performed by applying a temperature of 20 ° C. for 60 to 200 hours. The present invention, after curing the autoclave, by performing the post-curing, to improve the mechanical strength of the cement hardened body, especially when the cement molded body is a fiber-reinforced cement molded body,
This curing has a great effect of improving strength.

【0008】セメントの成形体のオートクレーブ養生
は、公知の方法を採用できるが、例えば130〜180
℃の温度、2.5〜11kg/cm2 の圧力で、3〜12時
間オートクレーブ養生する。オートクレーブ養生後、空
気中で、60〜120℃の温度で、好ましくは90〜1
15℃の温度で、60〜200時間、好ましくは100
〜180時間、後養生する。ここで、空気中ではなく、
水蒸気が飽和した雰囲気中で後養生を行うと、前記の問
題が生じる。また、60℃未満では硬化体の強度向上に
時間がかかり過ぎることと、強度向上の効果が減少する
ため好ましくなく、120℃を越える高温で長時間熱を
加えると、セメント硬化体が熱による劣化を受け、機械
的強度が低下するため好ましくない。60時間未満では
強度向上にほとんど効果がなく、200時間を越えても
強度向上の効果は飽和するため、経済的でない。
A known method can be used for autoclave curing of the cement molded product, and for example, 130 to 180 is possible.
Autoclave aged for 3 to 12 hours at a temperature of ℃ and a pressure of 2.5 to 11 kg / cm 2 . After curing in an autoclave, in air, at a temperature of 60 to 120 ° C., preferably 90 to 1
60-200 hours at a temperature of 15 ° C, preferably 100
Post cure for ~ 180 hours. Here, not in the air,
If the post-curing is performed in an atmosphere saturated with water vapor, the above-mentioned problem occurs. Further, if the temperature is lower than 60 ° C, it takes too much time to improve the strength of the hardened product and the effect of improving the strength is reduced, which is not preferable. When heat is applied at a temperature higher than 120 ° C for a long time, the hardened cement product deteriorates due to heat. Therefore, the mechanical strength is lowered, which is not preferable. If it is less than 60 hours, there is almost no effect on the strength improvement, and if it exceeds 200 hours, the strength improving effect is saturated, so that it is not economical.

【0009】本発明に用いるセメント成形体は、通常の
セメントと珪石等の細骨材からなるモルタル等であり、
これに繊維分・押出助剤等の混和材を加えたものでもよ
い。但し、発泡コンクリートのような、比重1.0に満
たない物は除く。また、珪石等の細骨材は10〜500
μm程度の粉末であることが好ましい。
The cement molded product used in the present invention is a mortar or the like composed of ordinary cement and fine aggregate such as silica stone,
What added the admixture, such as a fiber component and an extrusion aid, may be added to this. However, excluding concrete with a specific gravity of less than 1.0, such as foam concrete. In addition, fine aggregate such as silica stone is 10 to 500
It is preferable that the powder is about μm.

【0010】後養生に用いる装置は、温度制御ができ、
セメント硬化体中の水分を取り除く乾燥状態となるもの
であればよく、一般に用いられている乾燥器等でよい。
また、湿度は5%以下に制御することがよい。
The device used for post-curing can control the temperature,
Any material can be used as long as it is in a dry state to remove water in the hardened cement material, and a commonly used dryer or the like may be used.
Also, the humidity is preferably controlled to 5% or less.

【0011】[0011]

【作用】後養生を行うことで、セメント硬化体は乾燥収
縮し、より緻密なものとなる。さらに、繊維強化セメン
ト成形体においては、セメント硬化体の乾燥収縮によ
り、マトリックスと繊維との空隙部を埋め、補強に用い
ている繊維分との付着性を向上させるため、繊維の強度
を十分に発揮でき、機械的強度が向上する。また、オー
トクレーブ養生後に残った未水和セメント分の水和も進
行するため、セメント硬化体としての機械的強度向上は
著しいものである。
[Function] By carrying out the post-curing, the hardened cement product is dried and shrunk, and becomes denser. Furthermore, in the fiber-reinforced cement molded product, the dry shrinkage of the hardened cement product fills the voids between the matrix and the fiber, and improves the adhesiveness with the fiber component used for reinforcement, so that the strength of the fiber is sufficient. It can be demonstrated and the mechanical strength is improved. Further, since the hydration of the unhydrated cement remaining after curing in the autoclave also progresses, the mechanical strength of the hardened cement product is significantly improved.

【0012】特に、押出成形などでよく用いられている
パルプ繊維等を用いた場合、セメント硬化体の吸水率が
高く、完全に乾燥させなければ強度が低いため、この後
養生を行うことで、セメント硬化体の機械的強度向上は
著しいものとなる。
In particular, when pulp fibers or the like which are often used in extrusion molding are used, the cement hardened product has a high water absorption rate and the strength is low unless it is completely dried. The mechanical strength of the hardened cement material is significantly improved.

【0013】なお、繊維強化セメント成形体に用いる補
強繊維はパルプ繊維の他に、炭素繊維、ガラス繊維、セ
ラミック繊維等の無機繊維、レーヨン、ビニロン、ポリ
プロピレン等の有機繊維などが挙げられる。これらの補
強繊維は、単独で用いてもよいし、2種以上組み合わせ
て用いてもよい。総粉体100重量部に対し、パルプ繊
維0.1〜3.0重量部、その他の繊維を0.1〜5.
0重量部配合することが、繊維強化セメント成形体の場
合には、繊維の分散性・強度から最も好ましい。上記の
ような養生を行うことで、オートクレーブ養生のみのを
行ったものよりも、はるかに高い機械的強度を有するセ
メント硬化体が得られる。
The reinforcing fibers used in the fiber reinforced cement molding include pulp fibers, inorganic fibers such as carbon fibers, glass fibers and ceramic fibers, and organic fibers such as rayon, vinylon and polypropylene. These reinforcing fibers may be used alone or in combination of two or more. 0.1 to 3.0 parts by weight of pulp fibers and 0.1 to 5 parts by weight of other fibers based on 100 parts by weight of the total powder.
In the case of a fiber-reinforced cement molded product, it is most preferable to mix 0 part by weight from the viewpoint of dispersibility and strength of the fiber. By carrying out the above-mentioned curing, a hardened cement product having much higher mechanical strength than that obtained by carrying out only the autoclave curing can be obtained.

【0014】[0014]

【実施例】以下、実施例および比較例に基づき本発明を
更に詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0015】表1に示す配合1〜3は、セメント、10
〜200μmに粉砕した珪石の粉体合計量を100重量
部(水、繊維分、混和材は除く)としたときの、全体配
合を示している。ここで表1に示す有機繊維分は、パル
プ繊維とポリプロピレン繊維を2:1の割合で混合して
用いた。これらの配合を、ミキサーで3分間乾式混練し
た後、3分間湿式混練し、混練機(ニーダ)により3分
間混練し、小型の押出成形機にて押出成形したものを試
験体とした。次に、この試験体を20℃、湿度60%で
24時間静置した後に、150℃で6時間オートクレー
ブ養生して硬化させた。尚、24時間静置したのは、成
形体の運搬等の作業可能な最低強度を持たせるためであ
る。
Formulas 1 to 3 shown in Table 1 are cement and 10
The total composition is shown when the total amount of powder of silica stone pulverized to ˜200 μm is 100 parts by weight (excluding water, fiber content and admixture). The organic fiber components shown in Table 1 were used by mixing pulp fibers and polypropylene fibers at a ratio of 2: 1. These compounds were dry-kneaded with a mixer for 3 minutes, then wet-kneaded for 3 minutes, kneaded with a kneader (kneader) for 3 minutes, and extruded with a small extruder to give a test sample. Next, this test body was allowed to stand at 20 ° C. and a humidity of 60% for 24 hours, and then cured by autoclave curing at 150 ° C. for 6 hours. In addition, it was left to stand for 24 hours in order to have a minimum strength at which work such as transportation of the molded product can be performed.

【0016】[0016]

【表1】 表1中、各成分の配合料は重量部である。[Table 1] In Table 1, the ingredients of each component are parts by weight.

【0017】実施例1〜3は上記の方法で硬化させた配
合1〜3を110℃で168時間、実施例4、5は配合
2を60℃、120℃で168時間、後養生したもので
ある。比較例1〜3は配合1〜3を110℃で48時
間、比較例4、5は配合2を40℃、140℃で168
時間、後養生したものである。比較例6〜8は配合1〜
3をオートクレーブ養生しただけの、後養生なしのもの
である。
Examples 1 to 3 are obtained by post-curing Formulations 1 to 3 cured by the above method at 110 ° C. for 168 hours, and Examples 4 and 5 were Formulation 2 post-curing at 60 ° C. and 120 ° C. for 168 hours. is there. Comparative Examples 1 to 3 were Formulations 1 to 3 at 110 ° C. for 48 hours, and Comparative Examples 4 and 5 were Formulation 2 at 40 ° C. and 140 ° C. for 168.
It was cured after a while. Comparative Examples 6 to 8 are Formulation 1
3 was autoclaved, but not post-cured.

【0018】こうして得られた試験体を厚さ15mm、
幅40mm、長さ200mmに切断し、図1に示す4点
曲げ試験により、曲げ強度の測定を行った。結果を表2
に示す。図2は実施例と比較例の曲げ強度の関係を示し
たものである。図2からわかるように、同一配合におい
て、後養生を110℃で168時間行った実施例1〜3
は、比較例1〜3、6〜8に比べ優れた強度を有するこ
とがわかる。後養生を110℃で48時間行った比較例
1〜3は、比較例6〜8よりも若干の強度向上が見られ
るが、実施例の効果に比べると強度向上率は大幅に低下
している。図2の実施例1、2が、実施例3の効果より
大きいことから、この後養生による強度向上は、繊維で
補強したものの方が大きいことがわかる。図3は、実施
例2、4、5および比較例4、5の、後養生温度と、曲
げ強度とをプロットしたものである。図3から後養生の
温度を60〜120℃にしたときの強度の向上が、他の
ものに比べ優れていることがわかる。
The test piece thus obtained is 15 mm thick,
It was cut into a width of 40 mm and a length of 200 mm, and the bending strength was measured by the 4-point bending test shown in FIG. The results are shown in Table 2.
Shown in. FIG. 2 shows the relationship between the bending strengths of Examples and Comparative Examples. As can be seen from FIG. 2, Examples 1-3 in which post-curing was performed at 110 ° C. for 168 hours in the same formulation.
It can be seen that has excellent strength as compared with Comparative Examples 1 to 3 and 6 to 8. In Comparative Examples 1 to 3 in which the post-curing was performed at 110 ° C. for 48 hours, the strength was slightly improved as compared with Comparative Examples 6 to 8, but the strength improvement rate was significantly reduced as compared with the effects of the Examples. . Since Examples 1 and 2 in FIG. 2 are larger than the effect of Example 3, it is understood that the strength improvement by the post-curing is greater with the fiber-reinforced one. FIG. 3 is a plot of the post-curing temperature and the bending strength of Examples 2, 4, 5 and Comparative Examples 4, 5. It can be seen from FIG. 3 that the improvement in strength when the temperature for post-curing is set to 60 to 120 ° C. is superior to the others.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上のごとく、本発明によれば、オート
クレーブ養生だけのセメント成形体よりも機械的強度に
優れた、セメント成形体の製造を可能とした。
As described above, according to the present invention, it is possible to manufacture a cement molded product having a mechanical strength superior to that of a cement molded product only by autoclave curing.

【図面の簡単な説明】[Brief description of drawings]

【図1】曲げ試験方法の説明図である。FIG. 1 is an explanatory diagram of a bending test method.

【図2】実施例1〜3および比較例1〜3、6〜8の曲
げ強度を示した図である。
FIG. 2 is a diagram showing bending strengths of Examples 1 to 3 and Comparative Examples 1 to 3 and 6 to 8.

【図3】後養生温度と曲げ強度の関係を示した図であ
る。
FIG. 3 is a diagram showing a relationship between a post-curing temperature and bending strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 16:02 Z 16:06) A 111:20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area C04B 16:02 Z 16:06) A 111: 20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オートクレーブ養生を終えたセメント成
形体を、空気中で、60〜120℃の温度で60〜20
0時間、後養生することを特徴とするセメント成形体の
養生方法。
1. A cement molded product which has been cured by autoclave treatment in air at a temperature of 60 to 120 ° C. for 60 to 20.
A method for curing a cement molded product, which comprises a post-curing for 0 hours.
【請求項2】 セメント成形体が繊維強化セメント成形
体である請求項1記載のセメント成形体の養生方法。
2. The method for curing a cement molded product according to claim 1, wherein the cement molded product is a fiber-reinforced cement molded product.
JP10592294A 1994-04-21 1994-04-21 Aging method of cement molding Withdrawn JPH07291765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10592294A JPH07291765A (en) 1994-04-21 1994-04-21 Aging method of cement molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10592294A JPH07291765A (en) 1994-04-21 1994-04-21 Aging method of cement molding

Publications (1)

Publication Number Publication Date
JPH07291765A true JPH07291765A (en) 1995-11-07

Family

ID=14420363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10592294A Withdrawn JPH07291765A (en) 1994-04-21 1994-04-21 Aging method of cement molding

Country Status (1)

Country Link
JP (1) JPH07291765A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2015024947A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2016515174A (en) * 2013-03-13 2016-05-26 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. Composite sleeper and its manufacturing method and its use
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2016098140A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
CN114213099A (en) * 2022-01-05 2022-03-22 中国建筑科学研究院有限公司 Ceramic building block and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515174A (en) * 2013-03-13 2016-05-26 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. Composite sleeper and its manufacturing method and its use
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2015024947A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2018104287A (en) * 2013-06-17 2018-07-05 宇部興産株式会社 High-strength cement mortar composition
JP2018162213A (en) * 2013-06-17 2018-10-18 宇部興産株式会社 High strength cement mortar composition and manufacturing method of high strength cement mortar cured body
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2016098140A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
CN114213099A (en) * 2022-01-05 2022-03-22 中国建筑科学研究院有限公司 Ceramic building block and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110218069A (en) A kind of water-fast 3D printing gypsum mortar and preparation method thereof
JPH07291765A (en) Aging method of cement molding
JPS59102849A (en) Super high strength cement hardened body
JP2524583B2 (en) Carbonation curing method of γ-type dicalcium silicate
JP2688155B2 (en) Extrusion molding method for fiber reinforced inorganic products
JP3290171B2 (en) Manufacturing method of porous concrete
JP2001261467A (en) Production process of cement-based hardened body
JPH05294701A (en) Quick hardening cement compound
JP3290069B2 (en) Manufacturing method of inorganic plate
JP2002012465A (en) Extrusion compact and its manufacturing method
JP3378610B2 (en) Manufacturing method of lightweight inorganic products
JP2749257B2 (en) Highly functional mortar / concrete and method for producing the same
JPH06278116A (en) Permanent form for concrete construction
JPH01145357A (en) Low shrinkage cement composition
JPH0580422B2 (en)
JP2511437B2 (en) Lightweight cement products
JP2000044320A (en) Inorganic hardened body and its production
JPS61106447A (en) Manufacture of polyacrylonitrile fiber-reinforced cement
JPS61183155A (en) Manufacture of fiber reinforced cement concrete products
JPS6246506B2 (en)
JP2788159B2 (en) Manufacturing method of ceramic products
JPS6317244A (en) Material for manufacturing carbon fiber reinforced cement set body
JPH035351A (en) Production of mortar
JPH07291764A (en) Production of fiber reinforced cement plate
JPH07126057A (en) Extrusion molded article of hydraulic composition and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703