JPS6246506B2 - - Google Patents

Info

Publication number
JPS6246506B2
JPS6246506B2 JP10035381A JP10035381A JPS6246506B2 JP S6246506 B2 JPS6246506 B2 JP S6246506B2 JP 10035381 A JP10035381 A JP 10035381A JP 10035381 A JP10035381 A JP 10035381A JP S6246506 B2 JPS6246506 B2 JP S6246506B2
Authority
JP
Japan
Prior art keywords
curing
slurry
inorganic
slag
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10035381A
Other languages
Japanese (ja)
Other versions
JPS582261A (en
Inventor
Yoshiaki Mitsuoka
Kazuo Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10035381A priority Critical patent/JPS582261A/en
Publication of JPS582261A publication Critical patent/JPS582261A/en
Publication of JPS6246506B2 publication Critical patent/JPS6246506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、建材などに使用される無機硬化体
の製法に関するものである。 無機質結合材として水硬性スラグを用い、これ
に補強繊維、充填材等の必要な添加材を加え、水
で混練してスラリーとし、このスラリーを抄造法
などにより、板状など所望の形状に賦形し、養生
硬化させた後乾燥して得られる無機硬化体は、従
来建材などに用いられている。 しかしながら、上記無機硬化体の製造におい
て、賦形体を養生硬化させる場合に、養生温度を
上げてやるだけではなかなかスラグが硬化せず養
生時間がひじように長くかかる。そのため、普通
はアルカリ刺激剤としてCaO(酸化カルシウム)
等を入れるのであるが、それでも養生時間はあま
り短縮されない。他方、養生硬化後に乾燥させた
とき、硬化体の寸法収縮が比較的大きいという欠
点もあつた。 この発明は、このような事情に鑑みなされたも
ので、養生硬化時スラグの硬化がはやく、乾燥時
の寸法収縮が小さくて、しかも曲げ強度の強い無
機硬化体を製造する方法を提供するものである。
これについて以下に説明する。 この発明にかかる無機硬化体の製法は、水硬性
スラグを無機質結合材とするスラリーを賦形し、
促進的に養生して無機硬化体を得る方法であつ
て、前記スラリーにケイ酸カルシウムを添加して
おくことを特徴としている。これについて以下に
詳細に説明する。 ここで用いられる無機質結合材は水硬性スラグ
である。したがつて、マトリクスの主成分はスラ
グとなる。このスラグの水和硬化を促進させるた
め、ケイ酸カルシウムが添加される。ケイ酸カル
シウムは、他の原材料と容易に混練できるように
ケイ酸カルシウムスラリーの形で用いるのがよ
く、その添加時期は、賦形前であればどの段階で
あつてもよい。添加量は配合原材料の固形分基準
で10重量%(以下「%」と略す)以下使用するこ
とが好ましく、0.1%以上8%以下の範囲で用い
るのが最も好ましい。10%以上加えると抄造法で
製造する場合に、水性が悪くなる傾向がある。
さらにケイ酸カルシウムが嵩高いため、製造され
た無機硬化体の比重が小さくなりすぎ、耐凍害性
にも悪影響を及ぼす傾向がある。他方0.1%以下
では添加による効果があらわれにくいからであ
る。このようにケイ酸カルシウムを添加すること
により、スラグの水硬反応が促進され、養生時間
が著しく短縮される。また、ケイ酸カルシウムを
使用しない場合にくらべ、乾燥時の寸法収縮が小
さくなるのである。 配合原材料としては他に、ポルトランドセメン
トや各種の充填材、さらには補強繊維などを加え
てもよい。補強繊維を添加する場合は、パルプ,
ガラス繊維等が用いられ、使用前に解繊しておく
のがよい。さらに、製造上の都合や製品の物性の
向上のため必要に応じて上記以外の添加材を用い
ることもある。 上記のような原材料に水を加え混練しスラリー
とする。つぎに、このスラリーを抄造法などによ
り、板状など所望の形に賦形し、得られた賦形体
を養生硬化させる。養生条件としては促進的に40
〜80℃の範囲で8時間以上放置した後、引き続き
常温で2日以上放置する。つぎにこれを乾燥させ
れば無機硬化体が得られる。 この発明にかかる無機硬化体の製法はこのよう
に構成されるものであつて、スラリー中にケイ酸
カルシウムを添加しているため、養生時間が著し
く短くなり、乾燥時の寸法収縮が小さくなつた。
さらに得られた無機硬化体は曲げ強度が強くなつ
た。 つぎに、実施例について比較例と併せて説明す
る。全実施例はケイ酸カルシウムとしてトバモラ
イトを用いている。このトバモライトはつぎのよ
うにしてつくつた。原料として酸化カルシウム
(CaO)および酸化ケイ素(SiC2)を用い、その配
合比をCaO/SiO2=0.8としている。そしてこれ
らに水を加えて混水比15として、180℃で2時間
オートクレープ中で撹拌することにより合成し
た。 無機硬化体はつぎのようにしてつくつた。下記
第1表で示されるような配合で原材料に水を加え
て混練し、スラリー濃度を8%とした。この場
合、この配合により製造される無機硬化体の嵩比
重が1.00となるように調整されている。またバル
ブはLUKP、ガラス繊維は耐アルカリガラスを使
用した。つぎにスラリーを抄造、プレスして賦形
体を得た。
The present invention relates to a method for producing an inorganic cured product used for building materials and the like. Hydraulic slag is used as an inorganic binder, necessary additives such as reinforcing fibers and fillers are added to it, and the mixture is kneaded with water to form a slurry. This slurry is formed into a desired shape such as a plate using a papermaking method. The inorganic cured product obtained by shaping, curing, and drying has been conventionally used for building materials and the like. However, in the production of the above-mentioned inorganic cured body, when curing and hardening the excipient, the slag does not harden easily just by increasing the curing temperature, and the curing time takes an extremely long time. Therefore, CaO (calcium oxide) is usually used as an alkaline stimulant.
etc., but the curing time is still not shortened much. On the other hand, when dried after curing, the cured product had a relatively large dimensional shrinkage. The present invention was made in view of the above circumstances, and provides a method for producing an inorganic cured product that has quick hardening of slag during curing, small dimensional shrinkage during drying, and high bending strength. be.
This will be explained below. The method for producing an inorganic cured body according to the present invention involves shaping a slurry using hydraulic slag as an inorganic binder,
This is a method for obtaining an inorganic hardened product through accelerated curing, and is characterized by adding calcium silicate to the slurry. This will be explained in detail below. The inorganic binder used here is hydraulic slag. Therefore, the main component of the matrix is slag. Calcium silicate is added to accelerate the hydration hardening of this slag. Calcium silicate is preferably used in the form of a calcium silicate slurry so that it can be easily kneaded with other raw materials, and it may be added at any stage before shaping. The amount added is preferably 10% by weight or less (hereinafter abbreviated as "%") based on the solid content of the blended raw materials, and most preferably in the range of 0.1% or more and 8% or less. If more than 10% is added, the aqueous properties tend to deteriorate when manufactured by the papermaking method.
Furthermore, since calcium silicate is bulky, the specific gravity of the produced inorganic cured product tends to be too low, which also tends to have an adverse effect on frost damage resistance. On the other hand, if it is less than 0.1%, the effect of addition is less likely to appear. By adding calcium silicate in this way, the hydraulic reaction of the slag is promoted and the curing time is significantly shortened. Additionally, dimensional shrinkage during drying is smaller than when calcium silicate is not used. In addition to the raw materials, Portland cement, various fillers, reinforcing fibers, and the like may be added. When adding reinforcing fibers, pulp,
Glass fiber or the like is used, and it is best to defibrate it before use. Furthermore, additives other than those mentioned above may be used as necessary for manufacturing convenience or to improve the physical properties of the product. Water is added to the above raw materials and kneaded to form a slurry. Next, this slurry is shaped into a desired shape, such as a plate, by a papermaking method or the like, and the obtained shaped body is cured and hardened. The curing conditions are 40%
After leaving it in the range of ~80℃ for 8 hours or more, continue to leave it at room temperature for 2 days or more. Next, by drying this, an inorganic cured product can be obtained. The method for producing an inorganic cured product according to the present invention is constructed as described above, and since calcium silicate is added to the slurry, the curing time is significantly shortened and dimensional shrinkage during drying is reduced. .
Furthermore, the obtained inorganic cured product had increased bending strength. Next, examples will be described together with comparative examples. All examples use tobermorite as the calcium silicate. This tobermorite was made as follows. Calcium oxide (CaO) and silicon oxide (SiC 2 ) are used as raw materials, and their blending ratio is CaO/SiO 2 =0.8. Then, water was added to these to give a water mixing ratio of 15, and the mixture was stirred in an autoclave at 180°C for 2 hours to synthesize the mixture. The inorganic cured body was produced as follows. Water was added and kneaded to the raw materials according to the formulation shown in Table 1 below to give a slurry concentration of 8%. In this case, the bulk specific gravity of the inorganic cured body produced by this blending is adjusted to be 1.00. In addition, the bulb was made of LUKP, and the glass fiber was made of alkali-resistant glass. Next, the slurry was made into paper and pressed to obtain a shaped body.

【表】 得られた賦形体につき、下記試験1を行つた。 (試験 1) 80℃で15時間養生したのち、常温で3日間自然
養生を行なつたときの硬化体の嵩比重を測定し
た。その結果を第2表に示す。
[Table] The following Test 1 was conducted on the obtained excipients. (Test 1) After curing at 80°C for 15 hours, the bulk specific gravity of the cured product was measured after natural curing at room temperature for 3 days. The results are shown in Table 2.

【表】 各実施例および比較例においては、いずれも、
スラグの水硬反応の進行に伴つて重量が増加し、
最終的には嵩比重がほぼ1.00となる。しかし、そ
こに至る前の時点、すなわち自然養生3日間の時
点で嵩比重が1に近付いているほどスラグの水硬
反応の進行がはやいことを意味しているので、そ
のように考えると、実施例はいずれも比較例にく
らべスラグの水硬反応の進行がはやいことがわか
る。 先に得られた各賦形体につき、いずれも、80℃
の雰囲気で15時間養生し、さらに常温の雰囲気下
で7日間自然養生を行つたのち、150℃の雰囲気
下で40〜50分乾燥を行つて乾燥板をつくつた。 各乾燥板につき、下記試験2、試験3を行つ
た。 (試験 2) 各乾燥板を60℃の雰囲気で24時間放置したとき
の乾燥にともなう寸法の収縮を測定した。乾燥板
のサイズは4cm×16cmで、測定はトブコン測定器
により行なつた。その結果を第1図に示す。この
図では寸法の収縮を寸法変化率であらわし、乾燥
状態を重量減少率であらわしている。原点は24時
間経過後にとつた。寸法の収縮が大きければ寸法
変化率も大きく、乾燥が進めば重量減少が小さく
なる。すなわち、乾燥の進み具合は重量減少率で
みることができる。同じ重量減少率でみると実施
例はすべて比較例よりも寸法変化率が小さい。し
たがつて、乾燥にともなう寸法収縮が小さいこと
がわかる。 (試験 3) 各乾燥板について、曲げ強度を測定した。乾燥
板の大きさは5cm×12cmであり、スパン長10cm,
H.S.(ヘツドスピード)1m/分でオートグラ
フを用い測定した。結果を第3表に示す。
[Table] In each example and comparative example,
As the hydraulic reaction of the slag progresses, the weight increases,
Eventually, the bulk specific gravity will be approximately 1.00. However, the closer the bulk specific gravity is to 1 before reaching that point, that is, after 3 days of natural curing, the faster the hydraulic reaction of the slag progresses. It can be seen that the hydraulic reaction of the slag progresses faster in all of the examples than in the comparative example. For each excipient obtained previously, the temperature was 80°C.
After curing for 15 hours in an atmosphere of 150°C, natural curing for 7 days in an atmosphere at room temperature, and drying for 40 to 50 minutes in an atmosphere of 150°C to produce a dry board. Test 2 and Test 3 below were conducted for each dry plate. (Test 2) Each dried plate was left in an atmosphere at 60°C for 24 hours, and the dimensional shrinkage due to drying was measured. The size of the drying plate was 4 cm x 16 cm, and the measurement was performed using a Tobucon measuring device. The results are shown in FIG. In this figure, dimensional shrinkage is expressed as a dimensional change rate, and dry state is expressed as a weight loss rate. The origin was reached after 24 hours. If the dimensional shrinkage is large, the dimensional change rate is also large, and the weight loss becomes smaller as drying progresses. In other words, the progress of drying can be seen by the weight loss rate. When looking at the same weight reduction rate, all of the examples have smaller dimensional change rates than the comparative examples. Therefore, it can be seen that the dimensional shrinkage due to drying is small. (Test 3) The bending strength of each dry plate was measured. The size of the drying board is 5cm x 12cm, and the span length is 10cm.
Measurement was made using an autograph at HS (head speed) of 1 m/min. The results are shown in Table 3.

【表】 第3表より、実施例はすべて比較例よりも曲げ
強度が強いことがわかる。 以上のように、実施例はいずれも比較例にくら
べスラグの水硬反応がはやく、寸法安定性および
曲げ強度にすぐれている。
[Table] From Table 3, it can be seen that all of the Examples have higher bending strength than the Comparative Examples. As described above, all of the examples exhibit faster hydraulic reaction of the slag than the comparative examples, and are superior in dimensional stability and bending strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、硬化体の重量減少率と寸法変化率の
関係をあらわしたグラフである。
FIG. 1 is a graph showing the relationship between the weight reduction rate and the dimensional change rate of the cured product.

Claims (1)

【特許請求の範囲】[Claims] 1 水硬性スラグを無機質結合材とするスラリー
を賦形し、養生して無機硬化体を得る方法であつ
て、前記スラリーにケイ酸カルシウムを配合原材
料の固形分基準で0.1〜10.0重量%添加してお
き、養生を、40〜80℃の範囲で8時間以上放置し
た後、常温で2日以上放置することによつて行う
ことを特徴とする無機硬化体の製法。
1 A method of forming a slurry using hydraulic slag as an inorganic binder and curing it to obtain an inorganic hardened body, in which calcium silicate is added to the slurry in an amount of 0.1 to 10.0% by weight based on the solid content of the blended raw materials. 1. A method for producing an inorganic cured product, which comprises curing the product at a temperature of 40 to 80° C. for 8 hours or more, and then leaving it at room temperature for 2 days or more.
JP10035381A 1981-06-26 1981-06-26 Manufacture of inorganic hardened body Granted JPS582261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10035381A JPS582261A (en) 1981-06-26 1981-06-26 Manufacture of inorganic hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10035381A JPS582261A (en) 1981-06-26 1981-06-26 Manufacture of inorganic hardened body

Publications (2)

Publication Number Publication Date
JPS582261A JPS582261A (en) 1983-01-07
JPS6246506B2 true JPS6246506B2 (en) 1987-10-02

Family

ID=14271733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10035381A Granted JPS582261A (en) 1981-06-26 1981-06-26 Manufacture of inorganic hardened body

Country Status (1)

Country Link
JP (1) JPS582261A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644719A (en) * 1983-06-10 1987-02-24 Salazar Edward J Decorative wall panel
US4590726A (en) * 1983-06-10 1986-05-27 Salazar Edward J Decorative facing

Also Published As

Publication number Publication date
JPS582261A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
EP0068741A1 (en) Boards and sheets
JP2663298B2 (en) Heated curing cement composition, its curing method and cured product
JPS60176978A (en) Manufacture of high strength cement product
CN113667061A (en) Water-absorbent resin and preparation method and application thereof
JPS6246506B2 (en)
JPH07291765A (en) Aging method of cement molding
JP3178480B2 (en) Manufacturing method of lightweight cellular concrete
JPS6212189B2 (en)
JP2749257B2 (en) Highly functional mortar / concrete and method for producing the same
JP2000247721A (en) Production of fiber-reinforced cement plate
JPH03193651A (en) Production of calcium silicate product
JPS586706B2 (en) Method for producing calcium silicate hydrate molded body
JP2001335354A (en) Inorganic board and its manufacturing method
JPH11180749A (en) Production of inorganic cement plate
JPS598654A (en) Manufacture of fiber reinforced cement hardened body
JPS6351995B2 (en)
JPH0667794B2 (en) Method for producing crystalline calcium silicate hydrate extrudate
JPS5825059B2 (en) Manufacturing method of inorganic cured body
CN115745470A (en) Cement-based material interface reinforcing agent and preparation method and application thereof
JPS5932418B2 (en) Manufacturing method of extrusion molding material
JPS589853A (en) Manufacture of inorganic hardened body
CN116396042A (en) Light plastering gypsum for building indoor and manufacturing and using methods thereof
JPS63210053A (en) Composition for fiber reinforced cement extrusion forming
JPS5841748A (en) Manufacture of cement product
JPS59203748A (en) Manufacture of alc