JPS6212189B2 - - Google Patents

Info

Publication number
JPS6212189B2
JPS6212189B2 JP12091181A JP12091181A JPS6212189B2 JP S6212189 B2 JPS6212189 B2 JP S6212189B2 JP 12091181 A JP12091181 A JP 12091181A JP 12091181 A JP12091181 A JP 12091181A JP S6212189 B2 JPS6212189 B2 JP S6212189B2
Authority
JP
Japan
Prior art keywords
board
water
boards
blast furnace
furnace slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12091181A
Other languages
Japanese (ja)
Other versions
JPS5826058A (en
Inventor
Akira Matsunaga
Kazuo Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12091181A priority Critical patent/JPS5826058A/en
Publication of JPS5826058A publication Critical patent/JPS5826058A/en
Publication of JPS6212189B2 publication Critical patent/JPS6212189B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐凍害性に優れた建築用板の製造方法
に関し、普通ポルトランドセメント、高炉スラグ
粉末、石膏、無機繊維を含有するスラリーを抄造
して生板を作成し、次いで生板を湿熱養生した後
水中に浸漬し、その後室内で自然養生することを
特徴とする建築用板の製造方法に係るものであ
る。 従来、積雪地用の瓦等に使用される耐凍害性に
優れた建築用板を製造するにあたつて種々検討さ
れている。その1つにセメントや無機繊維を含む
スラリーより抄造した生板を500Kg/cm2以上の高
圧でプレスし、内部の組織を高密度に圧縮して耐
凍害性を高める方法がある。しかし乍ら、この方
法にあつては、高圧プレスするために生産性が低
下し、そのためコスト高になるという欠点があ
る。また、他の方法として生板の成形時において
セメント成分の水和として必要な水を極端に少な
くして加圧成形し、その後オートクレーブ養生に
て水分を補給しつつ硬化させる方法があるが、こ
の方法においては建築用板が凍結融解作用を受け
た場合には機械的強度が著しく低下するという欠
点がある。 本発明は上記の点に鑑みて成されたものであつ
て、耐凍害性に優れると共に機械的強度も高く、
しかも生産性に優れた建築用板の製造方法を提供
することを目的とするものである。 以下本発明を詳述する。スラリーは普通ポルト
ランドセメント、高炉スラグ粉末、石膏、無機繊
維を水中に分散させて形成され、配合される高炉
スラグ粉末は粉末度ブレーン4000〜5000のものを
使用するのが好ましい。また普通ポルトランドセ
メントと高炉スラグ粉末との配合比は普通ポルト
ランドセメント30〜80重量部に対して高炉スラグ
粉末20〜70重量部にするのが好ましい。石膏は2
水石膏を使用するのが好ましく、高炉スラグ粉末
100重量部に対して2〜5重量部添加するもので
ある。無機繊維は石綿等を使用することができ、
上記普通ポルトランドセメント、高炉スラグ粉
末、石膏の混合物100重量部に対して10〜30重量
部配合するのが好ましい。上記配合物を水中に分
散させて得たスラリーを常法に従つて抄造し、生
板を作成する。次にこの生板に50〜100Kg/cm2
圧力を加えて圧縮して脱水し、その後、生板を40
〜70℃、90%RHの雰囲気で6〜12時間放置し
て、湿熱養生を行なう。次に、10〜25℃の水中に
10〜30分間浸漬した後、さらに室内で21〜28日間
放置して自然養生を行なう。養生を終えた後、表
面及び端面を塗装して建築用板を得るものであ
る。 しかして、建築用板を製造するにあたつて、普
通ポルトランドセメントに高炉スラグ粉末を添加
すると普通ポルトランドセメントの水和反応が妨
げられるものであるが、これに石膏を添加するこ
とにより普通ポルトランドセメントの水和を容易
にすることができるものである。また、高炉スラ
グ粉末を配合することにより、得られた建築用板
の機械的強度を高めることができ、建築用板が寒
冷地で使用されて凍結融解を受けた際に建築用板
の内部に浸透した水が氷に変化する際の膨張圧に
対する抵抗力を増すことができるものである。ま
た建築用板を水中浸漬して製造する際にも同様の
効果が得られ、建築用板内部の細孔の径が水中浸
漬によつて小さくなり、建築用板の耐凍害性を高
めることができるものである。 上記のように本発明は普通ポルトランドセメン
ト、高炉スラグ粉末、石膏、無機繊維を含有する
スラリーを抄造して生板を作成し、次いで生板を
湿熱養生した後水中に浸漬し、その後室内で自然
養生したので、高炉スラグ粉末の配合によつて建
築用板の機械的強度を高めることができ、建築用
板内に浸透した水が氷に変化する際の膨張圧に対
する抵抗力を増すことができて建築用板の耐凍害
性を高めることができるものであり、同時に石膏
を配合することにより普通ポルトランドセメント
の水和が高炉スラグ粉末の配合によつて妨げられ
るのを防止し、支障なくまた高圧プレスを用いる
必要もなく耐凍害性に優れた建築用板を製造する
ことができるものである。 以下本発明を実施例に基いて具体的に説明す
る。 <実施例> 普通ポルトランドセメント60重量部に対して高
炉スラグ粉末40重量部を配合し、及び石綿、石膏
を配合して抄造した生板を湿熱養生した後水中浸
漬し、その後室内で自然養生して石綿セメント板
を得た。 <比較例 1> 高炉スラグ粉末を使用しないで高炉スラグ粉末
の代わりに普通ポルトランドセメントを使用した
他は実施例と同様にして石綿セメント板を得た。 <比較例 2> 生板の水中浸漬を行なわないで養生した地は実
施例と同様にして石綿セメント板を得た。 <比較例 3> 生板をその水和に必要な水を極端に少なくして
加圧し、水分を補給しつつオートクレーブ養生を
した他は実施例と同様にして石綿セメント板を得
た。 実施例及び比較例1の石綿セメント板の曲げ強
度を石綿セメント板の材令を変えて測定した結果
は表1の通りであつた。 尚、縦方向の曲げ強度は抄造方向と直角方向に
曲げ強度を加えるものとし、横方向の曲げ強度は
抄造方向と平行に曲げ強度を加えて測定した。
The present invention relates to a method for manufacturing architectural boards with excellent frost resistance, in which a green board is prepared by making a slurry containing ordinary Portland cement, blast furnace slag powder, gypsum, and inorganic fibers, and then the green board is cured under moist heat. The present invention relates to a method for manufacturing a construction board, which is characterized by immersing the board in water and then curing it naturally indoors. BACKGROUND ART Various studies have been made to produce architectural boards with excellent frost resistance for use in roof tiles for snowy areas. One method is to press raw boards made from slurry containing cement and inorganic fibers at high pressures of 500 kg/cm 2 or more to compress the internal structure to a high density and improve frost resistance. However, this method has the disadvantage that productivity is reduced due to high-pressure pressing, resulting in high costs. Another method is to use pressure molding to extremely reduce the amount of water required to hydrate the cement components when forming green boards, and then harden them while replenishing water in an autoclave. This method has the disadvantage that mechanical strength is significantly reduced when the architectural board is subjected to freeze-thaw effects. The present invention has been made in view of the above points, and has excellent frost damage resistance and high mechanical strength.
Moreover, it is an object of the present invention to provide a method for manufacturing architectural boards with excellent productivity. The present invention will be explained in detail below. The slurry is usually formed by dispersing Portland cement, blast furnace slag powder, gypsum, and inorganic fibers in water, and it is preferable to use blast furnace slag powder with a fineness of 4,000 to 5,000 as the blended blast furnace slag powder. The blending ratio of ordinary Portland cement and blast furnace slag powder is preferably 20 to 70 parts by weight of blast furnace slag powder to 30 to 80 parts by weight of ordinary Portland cement. plaster is 2
It is preferable to use water gypsum, blast furnace slag powder
It is added in an amount of 2 to 5 parts by weight per 100 parts by weight. Inorganic fibers such as asbestos can be used.
It is preferable to mix 10 to 30 parts by weight with respect to 100 parts by weight of the mixture of ordinary Portland cement, blast furnace slag powder, and gypsum. A slurry obtained by dispersing the above compound in water is made into paper according to a conventional method to prepare a green board. Next, a pressure of 50 to 100 kg/cm 2 is applied to this raw board to compress and dehydrate it, and then the raw board is
Leave in an atmosphere of ~70°C and 90% RH for 6 to 12 hours to perform moist heat curing. Then in water at 10-25℃
After soaking for 10 to 30 minutes, it is left indoors for another 21 to 28 days for natural curing. After curing, the surface and edges are painted to obtain a construction board. Therefore, when manufacturing boards for construction, adding blast furnace slag powder to ordinary Portland cement hinders the hydration reaction of ordinary Portland cement, but by adding gypsum to this, ordinary Portland cement can facilitate the hydration of In addition, by blending blast furnace slag powder, the mechanical strength of the obtained construction board can be increased, and when the construction board is used in a cold region and undergoes freezing and thawing, the inside of the construction board This can increase resistance to expansion pressure when infiltrating water turns into ice. A similar effect can also be obtained when building boards are manufactured by immersing them in water, and immersion reduces the diameter of the pores inside the building boards, increasing the frost resistance of the building boards. It is possible. As mentioned above, the present invention involves making raw boards by making a slurry containing ordinary Portland cement, blast furnace slag powder, gypsum, and inorganic fibers, then curing the raw boards with moist heat, immersing them in water, and then leaving them indoors for natural treatment. After curing, the mechanical strength of the building board can be increased by blending blast furnace slag powder, and the resistance to expansion pressure when water that has permeated into the building board turns into ice can be increased. At the same time, the addition of gypsum prevents the hydration of ordinary Portland cement from being hindered by the addition of blast furnace slag powder, allowing it to be used under high pressure without any hindrance. Architectural boards with excellent frost damage resistance can be manufactured without the need to use a press. The present invention will be specifically explained below based on Examples. <Example> A raw board made by mixing 40 parts by weight of blast furnace slag powder with 60 parts by weight of ordinary Portland cement, and asbestos and gypsum was cured under moist heat, then immersed in water, and then naturally cured indoors. An asbestos cement board was obtained. <Comparative Example 1> An asbestos cement board was obtained in the same manner as in Example except that ordinary Portland cement was used instead of blast furnace slag powder. <Comparative Example 2> An asbestos cement board was obtained in the same manner as in the example except that the green board was cured without being immersed in water. <Comparative Example 3> An asbestos cement board was obtained in the same manner as in Example, except that the green board was pressurized with an extremely small amount of water required for hydration, and the board was cured in an autoclave while replenishing water. Table 1 shows the results of measuring the bending strength of the asbestos cement boards of Examples and Comparative Example 1 by changing the material age of the asbestos cement boards. Note that the bending strength in the longitudinal direction was measured by adding the bending strength in a direction perpendicular to the papermaking direction, and the bending strength in the lateral direction was measured by adding the bending strength in parallel to the papermaking direction.

【表】 材令2日での試験結果では、高炉スラグ粉末の
有無によつて曲げ強度に差は生じていないが、材
令の延長に従つて高炉スラグ粉末の配合品である
実施例の石綿セメント板の方が曲げ強度が増大し
た。 次に、実施例及び比較例2の石綿セメント板の
材令を変化させると共に測定前に夫々の石綿セメ
ント板を水中浸漬し、飽水時の石綿セメント板の
曲げ強度を測定した。結果は表2の通りであつ
た。
[Table] According to the test results after 2 days of age, there was no difference in bending strength depending on the presence or absence of blast furnace slag powder. The bending strength of the cement board increased. Next, the age of the asbestos cement boards of Example and Comparative Example 2 was varied, and each asbestos cement board was immersed in water before measurement, and the bending strength of the asbestos cement board when saturated with water was measured. The results were as shown in Table 2.

【表】 生板を水中浸漬して得られた石綿セメント板の
方が強度の増加が早く、凍害に対する抵抗性が大
きいものである。 実施例及び比較例1乃至3の石綿セメント板を
ASTM、C666A法に準じて耐凍害性試験を行なつ
た結果は表3の通りであつた。
[Table] Asbestos-cement boards obtained by soaking raw boards in water have a faster increase in strength and greater resistance to frost damage. Asbestos cement boards of Examples and Comparative Examples 1 to 3
A frost damage resistance test was conducted according to ASTM, C666A method, and the results are shown in Table 3.

【表】 上表のように実施例の石綿セメント板は耐凍害
性試験300サイクル後においても外観の変化は見
られず、強度の低下もなかつた。
[Table] As shown in the table above, the asbestos cement board of the example showed no change in appearance and no decrease in strength even after 300 cycles of the frost damage test.

Claims (1)

【特許請求の範囲】[Claims] 1 普通ポルトランドセメント、高炉スラグ粉
末、石膏、無機繊維を含有するスラリーを抄造し
て生板を作成し、次いで生板を湿熱養生した後水
中に浸漬し、その後室内で自然養生することを特
徴とする建築用板の製造方法。
1 A green board is made by paper-making a slurry containing ordinary Portland cement, blast furnace slag powder, gypsum, and inorganic fibers, and then the green board is cured with moist heat, immersed in water, and then naturally cured indoors. A method for manufacturing architectural boards.
JP12091181A 1981-07-31 1981-07-31 Manufacture of construction board Granted JPS5826058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12091181A JPS5826058A (en) 1981-07-31 1981-07-31 Manufacture of construction board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12091181A JPS5826058A (en) 1981-07-31 1981-07-31 Manufacture of construction board

Publications (2)

Publication Number Publication Date
JPS5826058A JPS5826058A (en) 1983-02-16
JPS6212189B2 true JPS6212189B2 (en) 1987-03-17

Family

ID=14798040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12091181A Granted JPS5826058A (en) 1981-07-31 1981-07-31 Manufacture of construction board

Country Status (1)

Country Link
JP (1) JPS5826058A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223264A (en) * 1983-05-27 1984-12-15 株式会社 ノダ Manufacture of inorganic construction material
JPS61178462A (en) * 1985-02-05 1986-08-11 電気化学工業株式会社 High strength cement composition
JPH0699180B2 (en) * 1985-11-25 1994-12-07 松下電工株式会社 Fiber cement slurry composition
JPH0699179B2 (en) * 1985-11-25 1994-12-07 松下電工株式会社 Asbestos cement slurry-composition
JPH056118A (en) * 1991-06-28 1993-01-14 Ricoh Co Ltd Fixing apparatus

Also Published As

Publication number Publication date
JPS5826058A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
US4268317A (en) Lightweight insulating structural concrete
CN107382248B (en) Modified raw soil, method for preparing raw soil brick by using modified raw soil and raw soil brick prepared by using modified raw soil
Morsy et al. Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay
CN109867460A (en) Modified white cement and its method of modifying of application, white cement
CN111170708A (en) Water-resistant and fireproof gypsum-based flame-retardant board and preparation method thereof
JPH0476943B2 (en)
DE2419562A1 (en) FIRE RESISTANT PLASTER MOLDED BODIES AND METHOD OF MANUFACTURING THEM
JPH0825785B2 (en) Cement board manufacturing method
JP2023528030A (en) Method for manufacturing carbonated precast concrete products with increased durability
JPS6212189B2 (en)
JPS5844622B2 (en) portland type cement
KR20100112800A (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
JPH01172263A (en) Production of pottery article
CN108911676A (en) A kind of preparation method of air-entrained concrete building block
JPS5951504B2 (en) Heat-curing cement composition
JPS6021839A (en) Manufacture of cement moldings
JP2875839B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact
JP2892096B2 (en) Manufacturing method of building materials
JPS6351995B2 (en)
CN116021620A (en) Carbonization maintenance method for prefabricated part concrete
SU1359271A1 (en) Compozition for manufacturing heat-insulating articles
JPS58161984A (en) Manufacture of inorganic hardened body
RU1822399C (en) Mix composition for manufacturing heat-insulating blocks
RU2167129C2 (en) Method of preparing unfired decorative material based on wallastonite
JP2875838B2 (en) Method for producing zonotlite-based lightweight calcium silicate hydrate compact