JPS6351995B2 - - Google Patents

Info

Publication number
JPS6351995B2
JPS6351995B2 JP1014282A JP1014282A JPS6351995B2 JP S6351995 B2 JPS6351995 B2 JP S6351995B2 JP 1014282 A JP1014282 A JP 1014282A JP 1014282 A JP1014282 A JP 1014282A JP S6351995 B2 JPS6351995 B2 JP S6351995B2
Authority
JP
Japan
Prior art keywords
weight
parts
inorganic
cement
bending strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1014282A
Other languages
Japanese (ja)
Other versions
JPS58130150A (en
Inventor
Tokuji Iida
Makio Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1014282A priority Critical patent/JPS58130150A/en
Publication of JPS58130150A publication Critical patent/JPS58130150A/en
Publication of JPS6351995B2 publication Critical patent/JPS6351995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/30Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing magnesium cements or similar cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は、軽量化無機質硬化体に関するもので
ある。さらに詳しくは、繊維状材料を含有させる
ことにより軽量化とともに強度の改良がなされた
無機質材料の硬化体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lightweight inorganic cured product. More specifically, the present invention relates to a cured body of an inorganic material that is lightweight and has improved strength by containing a fibrous material.

建築材料、構造材料、材料などに用いられるセ
メント、石膏などの水和硬化性無機質材料に石綿
繊維、セルロース繊維、チタン酸カリウム繊維な
どの繊維状材料あるいはパーライトなどの粒子状
材料からなる充填材を添加して無機質材料のかさ
比重の低下および強度を向上を図る技術は既に知
られている。これらの目的に用いられる充填材
は、それ自体が低いかさ比重と高い強度を有する
必要があるが、これ以外にも、充填対象の無機質
材料との混和性、密着性などが優れていること、
その無機質材料の内部で腐食、劣化、変質などの
現象が長期間の使用においても発生しにくいこと
などの特性が要求される。
Fillers made of fibrous materials such as asbestos fibers, cellulose fibers, potassium titanate fibers, or particulate materials such as perlite are added to hydration-hardening inorganic materials such as cement and plaster used for building materials, structural materials, materials, etc. Techniques for reducing the bulk specific gravity and improving the strength of inorganic materials by adding them are already known. The filler used for these purposes must itself have a low bulk specific gravity and high strength, but in addition to this, it must also have excellent miscibility and adhesion with the inorganic material to be filled,
The inorganic material is required to have characteristics such that phenomena such as corrosion, deterioration, and alteration do not occur easily even after long-term use.

本発明は、強度、特に曲げ強度が優れ、かつ長
期間の使用においても劣化が現われにくい軽量化
された無機質硬化体を提供することを主な目的と
するものである。上記の目的は、マグネシアセメ
ントを主成分とする無機質硬化体に、平均繊維長
が10ミクロン(μm)以上の繊維状マグネシウム
オキシサルフエートが分散状態で含まれていると
こを特徴とする無機繊維含有軽量化無機質硬化体
からなる本発明により達成することができる。
The main object of the present invention is to provide a lightweight inorganic cured product that has excellent strength, particularly bending strength, and is unlikely to deteriorate even after long-term use. The above purpose is to produce an inorganic fiber-containing material characterized by containing fibrous magnesium oxysulfate having an average fiber length of 10 microns (μm) or more in a dispersed state in an inorganic hardened material whose main component is magnesia cement. This can be achieved by the present invention, which consists of a lightweight inorganic cured body.

次に本発明を詳しく説明する。 Next, the present invention will be explained in detail.

本発明の無機繊維含有軽量化無機質硬化体は、
マグネシアセメントを主成分とする無機質材料
と、平均繊維長が10ミクロン以上の繊維状マグネ
シウムオキシサルフエートとを混和したのち、該
無機質材料の水和硬化を行なわしめて製造した硬
化体である。
The inorganic fiber-containing lightweight inorganic cured product of the present invention is
This is a hardened product produced by mixing an inorganic material whose main component is magnesia cement with fibrous magnesium oxysulfate having an average fiber length of 10 microns or more, and then subjecting the inorganic material to hydration curing.

本発明においてはマグネシアセメントを水和硬
化性無機質材料として用いる。ただし、本発明に
おいては、マグネシアセメントに、他の水和性硬
化材料を、マグネシアセメントの量より少ないこ
とを条件として混合使用することもできる。その
ような他の水和性硬化材料の例としては、ポルト
ランドセメント(普通ポルトランドセメント、早
強ポルトランドセメント、低熱ポルトランドセメ
ントなど)、高炉セメント、シリカセメント、フ
ライアツシユセメント、白色セメント、アルミナ
セメント、急硬性セメント、膨張セメント、無収
縮セメント、耐硫酸塩セメント、油井セメント、
高硫酸塩スラグセメントなどの各種のセメント
類、焼石膏(半水石膏)、無水石膏などの石膏を
主成分とする材料、あるいはそれらの混合物など
を挙げることができるが、これらのものに限られ
るわけではない。また、マグネシアセメントある
いはマグネシアセメントと他の水和性硬化材料
に、例えば硫酸マグネシウムなどの各種の添加剤
を併用する技術は既に知られており、本発明の無
機質材料についても、これらの技術を併せて利用
することが可能である。
In the present invention, magnesia cement is used as a hydration-curable inorganic material. However, in the present invention, it is also possible to mix and use other hydratable hardening materials with magnesia cement, provided that the amount is smaller than the amount of magnesia cement. Examples of such other hydratable hardening materials include portland cement (regular portland cement, early strength portland cement, low heat portland cement, etc.), blast furnace cement, silica cement, flyash cement, white cement, alumina cement, Hard cement, expansion cement, non-shrinkage cement, sulfate resistant cement, oil well cement,
Examples include various cements such as high sulfate slag cement, materials whose main component is gypsum such as calcined gypsum (hemihydrate gypsum), anhydrite, and mixtures thereof, but are limited to these. Do not mean. Furthermore, the technology of using various additives such as magnesium sulfate in combination with magnesia cement or magnesia cement and other hydratable hardening materials is already known, and the inorganic material of the present invention can also be created by combining these technologies. It is possible to use it.

本発明で用いる繊維状マグネシウムオキシサル
フエートは、MgSO4・5MgO・8H2Oまたは
MgSO4・5Mg(OH)2・3H2Oとの化学式で表わす
ことができる合成無機物質で平均繊維長が10ミク
ロン以上のものである。このような繊維状マグネ
シウムオキシサルフエートは、たとえば、酸化マ
グネシウムあるいは水酸化マグネシウムを硫酸マ
グネシウム水溶液中に散させて加熱反応させる方
法、また水酸化マグネシウムを硫酸中に分散させ
て加熱反応させる方法などの方法により製造する
ことができる。その製造法の具体例についてはの
ちに記載する。なお、平均繊維長が10ミクロン以
上の繊維状マグネシウムオキシサルフエートの製
造法の他の態様および具体例については特願昭55
−52364号明細書に詳しく記載されている。なお、
本発明において用いる繊維状マグネシウムオキシ
サルフエートは極めてかさ高い針状結晶構造の繊
維状物質である。そして本発明の目的に用いるた
めには、実質的に、真比重2.0〜2.5、長さ(繊維
長)10〜100ミクロン、直径(繊維径)0.3〜2ミ
クロン、繊維長/繊維径の比30〜50の範囲にある
繊維状マグネシウムオキシサルフエートから構成
される繊維状マグネシウムオキシサルフエートで
あることが望ましい。
The fibrous magnesium oxysulfate used in the present invention is MgSO4.5MgO.8H2O or
MgSO 4.5Mg (OH) 2.3H 2 O A synthetic inorganic substance with an average fiber length of 10 microns or more. Such fibrous magnesium oxysulfate can be produced by, for example, a method in which magnesium oxide or magnesium hydroxide is dispersed in an aqueous magnesium sulfate solution and subjected to a heating reaction, or a method in which magnesium hydroxide is dispersed in sulfuric acid and a heating reaction is carried out. It can be manufactured by a method. A specific example of the manufacturing method will be described later. For other aspects and specific examples of the method for producing fibrous magnesium oxysulfate with an average fiber length of 10 microns or more, please refer to the patent application filed in 1983.
It is described in detail in the specification of No.-52364. In addition,
The fibrous magnesium oxysulfate used in the present invention is a fibrous material with an extremely bulky needle-like crystal structure. In order to be used for the purpose of the present invention, the true specific gravity is 2.0 to 2.5, the length (fiber length) is 10 to 100 microns, the diameter (fiber diameter) is 0.3 to 2 microns, and the fiber length/fiber diameter ratio is 30. Preferably, the fibrous magnesium oxysulfate is comprised of fibrous magnesium oxysulfates in the range of .about.50.

また本発明において繊維状マグネシウムオキシ
サルフエートとともに、従来からセメントなどの
ような水和硬化性の中性もしくはアルカリ性無機
質材料の充填材として用いられているもの、ある
いはそれらの充填材としての利用が提案されてい
るもの、たとえば、石綿繊維、セルロース繊維、
チタン酸カリウム繊維、ガラス繊維などの繊維質
材料あるいはパーライト、マイカなどの粒子状材
料からなる充填材などを併用することもできる。
In addition to fibrous magnesium oxysulfate, the present invention also proposes the use of materials that have been conventionally used as fillers for hydration-hardening neutral or alkaline inorganic materials such as cement, or their use as fillers. For example, asbestos fibers, cellulose fibers,
Fillers made of fibrous materials such as potassium titanate fibers and glass fibers, or particulate materials such as perlite and mica can also be used in combination.

本発明において平均繊維長が10ミクロン以上の
繊維状マグネシウムオキシサルフエートは、マグ
ネシアセメントを主成分とする無機質材料に対し
て通常は、100重量部:20〜500重量部(前者:後
者)、好ましくは100重量部:50〜200重量部(同)
の割合で添加して硬化体を製造する。
In the present invention, the fibrous magnesium oxysulfate having an average fiber length of 10 microns or more is usually 100 parts by weight: 20 to 500 parts by weight (former: latter), preferably, based on the inorganic material whose main component is magnesia cement. is 100 parts by weight: 50 to 200 parts by weight (same)
A cured product is produced by adding the following at a ratio of:

硬化体の製造法の具体例としては、繊維状マグ
ネシウムオキシサルフエート、そして所望により
他の充填材、添加剤などと、無機質材料、そして
水(混練水)を混練し、この混練物をフイルター
を用い、成形圧力5〜100Kg/cm2Gの条件にて抄
造成形することからなる抄造法により板状成形物
を製造し、湿潤養生を1日程度実施したのち、室
内に放置するなどの自然乾燥を行なう方法を挙げ
ることができる。
A specific example of the method for producing the cured product is to knead fibrous magnesium oxysulfate, other fillers, additives, etc. if desired, an inorganic material, and water (kneading water), and pass this kneaded product through a filter. A plate-shaped molded product is produced by a paper-forming method in which paper-forming is performed at a molding pressure of 5 to 100 kg/cm 2 G, and after moist curing for about one day, it is left to dry naturally, such as by leaving it indoors. Here are some ways to do it.

本発明の軽量化無機質硬化体は、従来利用され
ている無機繊維あるいは軽量骨材などの充填材を
用いたポルトランドセメント系の軽量化無機質硬
化体に比較してはるかに高い強度、特に高い曲げ
強度を示す。たとえば、従来利用されている無機
繊維あるい軽量骨材などはを用いて製造したかさ
比重0.7〜0.8g/cm3の無機繊維含有ポルトランド
セメント系軽量化無機質硬化体は、曲げ強度とし
て20〜30Kg/cm2程度の値を示すにすぎないが、本
発明の繊維状マグネシウムオキシサルフエートと
マグネシアセメント系無機質材料を用いた軽量化
無機質硬化体は同程度のかさ比重において、50〜
90Kg/cm2程度の曲げ強度を示す。特に本発明にお
いて、マグネシアセメント100重量部に対して繊
維状マグネシウムオキシサルフエートを50〜200
重量部用いて軽量化無機質硬化体を製造した場合
には、上記と同程度のかさ比重において、70〜90
Kg/cm2という非常に高い曲げ強度を示す。また、
本発明の軽量化無機質硬化体は、長期間の使用に
おいても、従来利用されている各種の軽量化材料
により軽量化された無機質硬化体に比較して、高
い強度を維持することができる。
The lightweight inorganic hardened body of the present invention has much higher strength, especially high bending strength, than the conventionally used lightweight inorganic hardened body of the Portland cement type using fillers such as inorganic fibers or lightweight aggregates. shows. For example, a lightweight inorganic hardened Portland cement material containing inorganic fibers with a bulk specific gravity of 0.7 to 0.8 g/cm 3 manufactured using conventionally used inorganic fibers or lightweight aggregates has a bending strength of 20 to 30 kg. / cm2 , but the lightweight inorganic cured product using the fibrous magnesium oxysulfate and magnesia cement-based inorganic material of the present invention has a bulk specific gravity of about 50 to
Shows bending strength of about 90Kg/cm2. In particular, in the present invention, 50 to 200 parts of fibrous magnesium oxysulfate is added to 100 parts by weight of magnesia cement.
When producing a lightweight inorganic cured body using parts by weight, the bulk specific gravity is 70 to 90 at the same level as above.
Exhibits extremely high bending strength of Kg/cm 2 . Also,
The lightweight inorganic cured body of the present invention can maintain high strength even when used for a long period of time, compared to inorganic cured bodies that have been made lighter by various conventionally used lightweight materials.

本発明の軽量化無機質硬化体は、以上述べたよ
うに従来知られている軽量化無機質硬化体に比較
して顕著に高い強度を有しているため、天井材、
間仕切り用壁材、断熱材などの各種の建築材料を
初めとして種々の分野の構造物の構成材料として
非常に有用である。
As mentioned above, the lightweight inorganic cured product of the present invention has significantly higher strength than the conventionally known lightweight inorganic cured products, so it can be used as a ceiling material,
It is extremely useful as a constituent material of structures in various fields, including various building materials such as partition wall materials and heat insulating materials.

次の本発明の実施例および比較例を示す。な
お、以下の実施例および比較例において用いた繊
維状マグネシウムオキシサルフエートは、次の製
造例により製造したものである。
The following examples and comparative examples of the present invention are shown below. In addition, the fibrous magnesium oxysulfate used in the following examples and comparative examples was manufactured by the following manufacturing example.

〔繊維状マグネシウムオキシサルフエートの製造例〕[Production example of fibrous magnesium oxysulfate]

水酸化マグネシウム(Mg(OH)2)1875g、硫
酸マグネシウム(MgSO4・7H2O)7500g、そし
て水90を、容量120のオートクレーブに入れ
180℃に3時間保持して原料を反応させたのち、
室温にまで冷却した。
Put 1875 g of magnesium hydroxide (Mg(OH) 2 ), 7500 g of magnesium sulfate (MgSO 4 7H 2 O), and 90 g of water into an autoclave with a capacity of 120 g.
After keeping at 180℃ for 3 hours to react the raw materials,
Cooled to room temperature.

次いで、オートクレーブから取り出した反応生
成物のスラリーを充分に水洗し、過剰の硫酸マグ
ネシウムを除去したのち、脱水し、乾燥した。
Next, the reaction product slurry taken out from the autoclave was thoroughly washed with water to remove excess magnesium sulfate, and then dehydrated and dried.

得られた繊維状物の乾燥後の重量は2740gであ
つた。このものは、白色の針状結晶で平均繊維長
が約50ミクロン(ただし、大部分の繊維の繊維長
は10〜100ミクロンの範囲内にあつた)、平均繊維
径が約1.0ミクロン(ただし、大部分の繊維の繊
維径0.3〜2ミクロンの範囲内にあつた)、かさ密
度が0.08g/cm3、そして真比重が2.3g/cm3の繊
維状マグネシウムオキシサルフエートであつた。
The weight of the obtained fibrous material after drying was 2740 g. This material is a white needle-shaped crystal with an average fiber length of approximately 50 microns (however, the fiber length of most fibers was within the range of 10 to 100 microns) and an average fiber diameter of approximately 1.0 microns (however, the fiber length of most fibers was within the range of 10 to 100 microns). Most of the fibers were fibrous magnesium oxysulfate with fiber diameters ranging from 0.3 to 2 microns), a bulk density of 0.08 g/cm 3 , and a true specific gravity of 2.3 g/cm 3 .

実施例 1 繊維状マグネシウムオキシサルフエート40重量
部、マグネシアセメント60重量部、そして混練水
350重量部を充分に混合し、得られたスラリー状
混合物を150mm×150mmの型枠に流し込み、約12〜
13mm厚となるように、フイルタープレスを使用
し、20Kg/cm2Gの圧力にて抄造成形して成形板を
得た。成形板を1日間、湿潤空気雰囲気下で養生
したのち、室内に2週間放置することにより自然
乾燥を行なつた。
Example 1 40 parts by weight of fibrous magnesium oxysulfate, 60 parts by weight of magnesia cement, and kneading water
Thoroughly mix 350 parts by weight, pour the resulting slurry mixture into a 150 mm x 150 mm mold,
A molded plate was obtained by paper forming to a thickness of 13 mm using a filter press at a pressure of 20 kg/cm 2 G. After curing the molded plate in a humid air atmosphere for one day, it was left indoors for two weeks to air dry.

上記の方法により製造した板状硬化体について
常法により、かさ密度と曲げ強度を測定したとこ
ろ、かさ密度0.73g/cm3、曲げ強度86.3Kg/cm2
の結果が得られた。
When the bulk density and bending strength of the plate-shaped cured product produced by the above method were measured by conventional methods, the results were that the bulk density was 0.73 g/cm 3 and the bending strength was 86.3 Kg/cm 2 .

実施例 2 繊維状マグネシウムオキシサルフエート50重量
部、マグネシアセメント50重量部、そして混練水
400重量部を充分に混合して得られたスラリー状
混合物を用い、実施例1と全く同様にして、抄造
成形、養生および自然乾燥を行ない板状硬化体を
得た。この板状硬化体について実施例1の方法と
同一の方法により、かさ密度と曲げ強度を測定し
たところ、かさ密度0.70g/cm3、曲げ強度72.6
Kg/cm2との結果が得られた。
Example 2 50 parts by weight of fibrous magnesium oxysulfate, 50 parts by weight of magnesia cement, and kneading water
Using a slurry mixture obtained by sufficiently mixing 400 parts by weight, paper forming, curing, and air drying were performed in exactly the same manner as in Example 1 to obtain a plate-shaped cured product. The bulk density and bending strength of this plate-shaped cured body were measured by the same method as in Example 1, and the bulk density was 0.70 g/cm 3 and the bending strength was 72.6.
A result of Kg/cm 2 was obtained.

実施例 3 繊維状マグネシウムオキシサルフエート60重量
部、マグネシアセメント440重量部、そして混練
水450重量部を充分に混合して得られたスラリー
状混合物を用い、実施例1と全く同様にして、抄
造成形、養生および自然乾燥を行ない板状硬化体
を得た。この板状硬化体について実施例1の方法
と同一の方法により、かさ密度と曲げ強度を測定
したところ、かさ密度0.80g/cm3、曲げ強度70.1
Kg/cm2の結果が得られた。
Example 3 Using a slurry mixture obtained by thoroughly mixing 60 parts by weight of fibrous magnesium oxysulfate, 440 parts by weight of magnesia cement, and 450 parts by weight of kneading water, papermaking was carried out in exactly the same manner as in Example 1. A plate-shaped cured product was obtained by molding, curing and natural drying. The bulk density and bending strength of this plate-shaped cured body were measured by the same method as in Example 1, and the bulk density was 0.80 g/cm 3 and the bending strength was 70.1.
A result of Kg/cm 2 was obtained.

実施例 4 繊維状マグネシウムオキシサルフエート160重
量部、マグネシアセメント40重量部、そして混練
水1200重量部を充分に混合して得られたスラリー
状混合物を用い、実施例1と全く同様にして、抄
造成形、養生および自然乾燥を行ない板状硬化体
を得た。この板状硬化体について実施例1の方法
と同一の方法により、かさ密度と曲げ強度を測定
したところ、かさ密度0.76g/cm3、曲げ強度52.2
Kg/cm2との結果が得られた。
Example 4 Using a slurry mixture obtained by thoroughly mixing 160 parts by weight of fibrous magnesium oxysulfate, 40 parts by weight of magnesia cement, and 1200 parts by weight of kneading water, papermaking was carried out in exactly the same manner as in Example 1. A plate-shaped cured product was obtained by molding, curing and natural drying. When the bulk density and bending strength of this plate-shaped cured body were measured using the same method as in Example 1, the bulk density was 0.76 g/cm 3 and the bending strength was 52.2.
A result of Kg/cm 2 was obtained.

比較例 1 実施例2において、マグネシアセメントの代り
に普通ポルトランドセメントを用いた以外は全く
同様にして得られたスラリー状混合物を用い、抄
造成形、養生および自然乾燥を行ない板状硬化体
を得た。この板状硬化体について実施例1の方法
と同一の方法により、かさ密度と曲げ強度を測定
したところ、かさ密度0.75g/cm3、曲げ強度49.7
Kg/cm2との結果が得られた。
Comparative Example 1 A slurry mixture obtained in exactly the same manner as in Example 2 except that ordinary Portland cement was used instead of magnesia cement was used to form a sheet, cure and air dry to obtain a hardened plate. . The bulk density and bending strength of this plate-shaped cured body were measured by the same method as in Example 1, and the bulk density was 0.75 g/cm 3 and the bending strength was 49.7.
A result of Kg/cm 2 was obtained.

比較例 2 石綿繊維(T−98、平均繊維長約500μm)50
重量部、普通ポルトランドセメント50重量部、そ
して混練水200重量部を充分に混合して得られた
スラリー状混合物を、実施例1と全く同様にして
抄造成形し、養生および自然乾燥を行ない板状硬
化体を得た。この板状硬化体について実施例1の
方法と同一の方法により、かさ密度と曲げ強度を
測定したところ、かさ密度0.81g/cm3、曲げ強度
24.6Kg/cm2との結果が得られた。
Comparative example 2 Asbestos fiber (T-98, average fiber length approximately 500 μm) 50
A slurry-like mixture obtained by fully mixing 50 parts by weight of ordinary Portland cement, and 200 parts by weight of kneading water was formed into a sheet in exactly the same manner as in Example 1, and then cured and air-dried to form a plate. A cured product was obtained. The bulk density and bending strength of this plate-shaped cured body were measured by the same method as in Example 1, and the bulk density was 0.81 g/cm 3 and the bending strength was
The result was 24.6Kg/cm 2 .

比較例 3 チタン酸カリウム繊維(タイプL、大塚化学(株)
製、平均繊維長約25μm)50重量部、普通ポルト
ランドセメント50重量部、そして混練水210重量
部を充分に混合して得られたスラリー状混合物
を、実施例1と全く同様にして抄造成形し、養生
および自然乾燥を行ない板状硬化体を得た。の板
状硬化体について実施例1の方法と同一の方法に
より、かさ密度と曲げ強度を測定したところ、か
さ密度0.77g/cm3、曲げ強度220Kg/cm2との結果
が得られた。
Comparative example 3 Potassium titanate fiber (type L, Otsuka Chemical Co., Ltd.)
A slurry-like mixture obtained by sufficiently mixing 50 parts by weight of 100% of the average fiber length of 25 μm), 50 parts by weight of ordinary Portland cement, and 210 parts by weight of kneading water was formed into a paper in exactly the same manner as in Example 1. After curing and natural drying, a plate-shaped cured product was obtained. The bulk density and bending strength of the plate-shaped cured product were measured by the same method as in Example 1, and the results were that the bulk density was 0.77 g/cm 3 and the bending strength was 220 Kg/cm 2 .

比較例 4 セルロースフアイバー(ダモパルプ、山装製、
平均繊維長約3mm)50重量部、普通ポルトランド
セメント50重量部、そして混練水400重量部を充
分に混合して得られたスラリー状混合物を、実施
例1と全く同様にして抄造成形し、養生および自
然乾燥を行ない板状硬化体を得た。この板状硬化
体について実施例1の方法と同一の方法により、
かさ密度と曲げ強度を測定したところ、かさ密度
0.70g/cm3、曲げ強度28.0Kg/cm2との結果が得ら
れた。
Comparative Example 4 Cellulose fiber (Damopulp, manufactured by Yamaso,
A slurry mixture obtained by sufficiently mixing 50 parts by weight of average fiber length (approximately 3 mm), 50 parts by weight of ordinary Portland cement, and 400 parts by weight of kneading water was formed into a paper sheet in exactly the same manner as in Example 1, and then cured. And air drying was performed to obtain a plate-shaped cured product. Using the same method as in Example 1 for this plate-shaped cured body,
When bulk density and bending strength were measured, bulk density
The results were 0.70 g/cm 3 and bending strength of 28.0 Kg/cm 2 .

比較例 5 パーライト(I型、宇部興産(株)製、平均粒径約
0.3mm)50重量部、普通ポルトランドセメント50
重量部、そして混練水100重量部を充分に混合し
て得られたスラリー状混合物を、実施例1と全く
同様にして抄造成形し、養生および自然乾燥を行
ない板状硬化体を得た。この板状硬化体について
実施例1の方法と同一の方法により、かさ密度と
曲げ強度を測定したところ、かさ密度0.70g/
cm3、曲げ強度18.6Kg/cm2との結果が得られた。
Comparative Example 5 Pearlite (type I, manufactured by Ube Industries, Ltd., average particle size of approx.
0.3mm) 50 parts by weight, ordinary Portland cement 50
A slurry-like mixture obtained by thoroughly mixing parts by weight and 100 parts by weight of kneading water was formed into a paper in exactly the same manner as in Example 1, and was then cured and air-dried to obtain a plate-shaped cured product. The bulk density and bending strength of this plate-shaped cured body were measured using the same method as in Example 1, and the bulk density was 0.70 g/
cm 3 and bending strength of 18.6 Kg/cm 2 .

Claims (1)

【特許請求の範囲】 1 マグネシアセメントを主成分とする無機質硬
化体に、平均繊維長が10ミクロン以上の繊維状マ
グネシウムオキシサルフエートが分散状態で含ま
れていることを特徴とする無機繊維含有軽量化無
機質硬化体。 2 マグネシアセメント100重量部に対して繊維
状マグネシウムオキシサルフエートが50〜200重
量部含まれていることを特徴とする特許請求の範
囲第1項記載の軽量化無機質硬化体。
[Scope of Claims] 1. A lightweight inorganic fiber-containing product, characterized in that fibrous magnesium oxysulfate with an average fiber length of 10 microns or more is contained in a dispersed state in an inorganic hardened material whose main component is magnesia cement. hardened inorganic material. 2. The lightweight inorganic hardened material according to claim 1, characterized in that 50 to 200 parts by weight of fibrous magnesium oxysulfate is contained per 100 parts by weight of magnesia cement.
JP1014282A 1982-01-27 1982-01-27 Lightweight inorganic hardened body Granted JPS58130150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014282A JPS58130150A (en) 1982-01-27 1982-01-27 Lightweight inorganic hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014282A JPS58130150A (en) 1982-01-27 1982-01-27 Lightweight inorganic hardened body

Publications (2)

Publication Number Publication Date
JPS58130150A JPS58130150A (en) 1983-08-03
JPS6351995B2 true JPS6351995B2 (en) 1988-10-17

Family

ID=11742029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014282A Granted JPS58130150A (en) 1982-01-27 1982-01-27 Lightweight inorganic hardened body

Country Status (1)

Country Link
JP (1) JPS58130150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173400U (en) * 1987-04-30 1988-11-10

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074574A (en) * 2007-09-19 2009-04-09 Fukoku Co Ltd Viscous rubber damper and its manufacturing method
NL2022114B1 (en) * 2018-12-03 2020-06-30 I4F Licensing Nv Decorative panel, and decorative floor covering consisting of said panels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173400U (en) * 1987-04-30 1988-11-10

Also Published As

Publication number Publication date
JPS58130150A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
KR101432750B1 (en) Mortar or concrete composition using fly ash and use thereof
JP2002060264A (en) Fiber-reinforced cement formed body and its production process
JPS58208163A (en) Manufacture of inorganic hardened body
US4655837A (en) Building material and manufacture thereof
JPH02289456A (en) Asbestos-free inorganic hardened body and production thereof
JPH0476943B2 (en)
US4310358A (en) Composition for forming inorganic hardened products and process for producing inorganic hardened products using the same
JPS6351995B2 (en)
JPH0114195B2 (en)
JP2512538B2 (en) Lightweight cement composition and method for producing lightweight cement molded product using the same
JP2758449B2 (en) Fire-resistant hardened asbestos-free gypsum body and method for producing the same
JPH03153554A (en) Production of fiber reinforced lightweight cement plate
JPS6323157B2 (en)
JPS62191455A (en) Anhydrous gypsum papered board and manufacture
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JPH02157148A (en) Production of magnesium carbonate-based building material
JP2001335354A (en) Inorganic board and its manufacturing method
JPS6356892B2 (en)
JPH01219073A (en) Ceramic construction material and its production
JPS6146404B2 (en)
JPH035352A (en) Production of fiber-reinforced slag gypsum cement-based lightweight cured body
JPH0520377B2 (en)
JPS586699B2 (en) Setsukou molded body
JP2003292366A (en) Gypsum-based inorganic set object and method for producing the same
JPH0297444A (en) Production of inorganic hardened body