JPH0297444A - Production of inorganic hardened body - Google Patents

Production of inorganic hardened body

Info

Publication number
JPH0297444A
JPH0297444A JP24744788A JP24744788A JPH0297444A JP H0297444 A JPH0297444 A JP H0297444A JP 24744788 A JP24744788 A JP 24744788A JP 24744788 A JP24744788 A JP 24744788A JP H0297444 A JPH0297444 A JP H0297444A
Authority
JP
Japan
Prior art keywords
chloride
pts
starting materials
hardened body
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24744788A
Other languages
Japanese (ja)
Other versions
JPH0723243B2 (en
Inventor
Kenji Morohashi
諸橋 健二
Hideki Tate
秀樹 舘
Seishiro Suzuki
征四郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKU KK
Original Assignee
ASUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKU KK filed Critical ASUKU KK
Priority to JP24744788A priority Critical patent/JPH0723243B2/en
Publication of JPH0297444A publication Critical patent/JPH0297444A/en
Publication of JPH0723243B2 publication Critical patent/JPH0723243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To improve the heat resistance of an inorg. hardened body produced by bringing siliceous and calcic starting materials into a reaction by adding specified amts. of calcium carbonate and an alkali metal or alkaline earth metal chloride to the starting materials. CONSTITUTION:100 pts.wt., in total, of siliceous and calcic starting materials, 5-100 pts.wt. calcium carbonate and 0.2-8 pts.wt. alkali metal or alkaline earth metal chloride are used as principal starting materials. These starting materials are brought into a reaction and cured to obtain an inorg. hardened body. By this method, the hardened body having superior heat resistance is obtd. without requiring heat resistant fibers such as asbestos as aggregate or consuming much energy. In case of <5 pts.wt. CaCO3, a heat resistance improving effect is not produced. In case of >100 pts.wt. CaCO3, the strength of the hardened body is considerably lowered. When the amt. of the chloride is <0.2 pt.wt., the effect is not produced. Even when the chloride is added by >8 pts.wt., the effect is not further enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無機質硬化体の製造に関するものである。さ
らに詳しくは本発明は、耐加熱収縮性に優れた、無機質
硬化体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the production of an inorganic cured body. More specifically, the present invention relates to a method for producing an inorganic cured product having excellent heat shrinkage resistance.

〔従来の技術および課題〕[Conventional technology and issues]

珪酸質原料と石灰質原料との反応により得られる硬化体
には、主として、セメント硬化体、ケイ酸カルシウム硬
化体などが挙げられるが、これらは高温における耐熱性
に問題があり、とくに加熱残存収縮率が大きいので、加
熱により硬化体にクラック、変形などが生じやすい欠点
がある。
Hardened products obtained by the reaction of silicic raw materials and calcareous raw materials mainly include hardened cement products and hardened calcium silicate products, but these have problems in heat resistance at high temperatures, especially in terms of residual shrinkage after heating. Because of the large amount of heat, cracks and deformation easily occur in the cured product due to heating.

そこでこの点を改良するため、現在は、高温における耐
熱性を必要とする部材に使用する硬化体を製造するには
、充分に精遷した原料を使用するとか、高温高圧下にお
ける長時間の養生を行うとか、あるいは石綿、マイカ、
ワラストナイト等の耐熱骨材を添加する等の手段が行わ
れている。しかしながら、このような方法をとる場合に
は、硬化体の製造にエネルギーや原料の面で多くのコス
トが必要とされるばかりでなく、耐熱骨材を多く使用し
た場合には、混合、成形、養生等の製造過程で1〜ラブ
ルが多くなり、また製品表面に不良を生ずることもある
In order to improve this point, currently, in order to manufacture cured products used in parts that require heat resistance at high temperatures, it is necessary to use sufficiently refined raw materials, or to cure them for long periods of time under high temperature and high pressure. or asbestos, mica,
Measures such as adding heat-resistant aggregates such as wollastonite are being used. However, when using such a method, not only is a large amount of cost required in terms of energy and raw materials to manufacture the hardened product, but also when a large amount of heat-resistant aggregate is used, mixing, molding, During the manufacturing process such as curing, 1 to 1 to 10 rubs may increase, and defects may occur on the surface of the product.

したがって本発明は、ケイ酸質原料と石灰質原料の反応
により得られる硬化体を、従来がら行われている方法で
製造し、その耐加熱収縮性を改良しようとするものであ
る。
Therefore, the present invention aims to improve the heat shrinkage resistance of a cured product obtained by the reaction of a siliceous raw material and a calcareous raw material by producing it by a conventional method.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、珪酸質原料と石灰質原料の合計が1
00重量部、炭酸カルシウム5〜100重量部ならびに
アルカリまたはアルカリ土類金属の塩化物0.2〜8重
量部を主要原料とし、成形後養生硬化させることを特徴
とする、無機質硬化体の製造方法ご提供するものである
That is, in the present invention, the total of the siliceous raw material and the calcareous raw material is 1
00 parts by weight, 5 to 100 parts by weight of calcium carbonate, and 0.2 to 8 parts by weight of an alkali or alkaline earth metal chloride as main raw materials, which is characterized by curing and curing after molding. This is what we provide.

本発明に使用される珪酸質原料とカルシウム質原料は、
一般によく使用される珪砂、フライアッシュ、けいそう
土、非晶質シリカ、スラグ、セメント、消石灰、生石灰
などが挙げられ、とくに限定されるものではない。また
珪酸質原料とカルシウム原料の比率も、養生条件、硬化
体の強度などの目的手段により運ばれるものであり、限
定はされない。これら珪酸質原料と、カルシウム質原料
の合計100重量部に炭酸カルシウム5〜100重量部
、アルカリまたはアルカリ土類金属の塩化物0.2〜8
重址部を合わせて添加する。
The siliceous raw materials and calcium raw materials used in the present invention are:
Commonly used materials include silica sand, fly ash, diatomaceous earth, amorphous silica, slag, cement, slaked lime, and quicklime, but are not particularly limited. Furthermore, the ratio of the silicic acid raw material to the calcium raw material is not limited, as it depends on the curing conditions, the strength of the cured product, and other objectives. A total of 100 parts by weight of these silicic raw materials and calcium raw materials, 5 to 100 parts by weight of calcium carbonate, and 0.2 to 8 parts of alkali or alkaline earth metal chloride.
Combine the heavy parts and add.

炭酸カルシウムと塩化物とは、いずれか一方のみでは効
果は少なく、両者を共に添加することにより浸れた耐熱
性を得ることは、驚くべきことである。
Calcium carbonate and chloride have little effect when used alone, and it is surprising that by adding both together, excellent heat resistance can be obtained.

使用する塩化物の種類は、アルカリあるいはアルカリ土
類金属の塩化物が望ましく、さらに好適には、塩化カリ
ウム、塩化ナトリウム、塩化カルシウム、塩化バリウム
等が挙げられる。
The type of chloride used is preferably an alkali or alkaline earth metal chloride, and more preferably potassium chloride, sodium chloride, calcium chloride, barium chloride and the like.

炭酸カルシウム5重量部以下では、耐熱向上効果は得ら
れず、100重量部以上になると、成形体の強度低下が
大きいので好ましくない。また塩化物の添加量が、0.
2重量部以下では効果は認めt)れす、8重量部以上と
添加しても効果のさらなる向上は望めない。両者の好適
な量は、炭酸カルシウム20〜40重量部、塩化物1〜
3重量部である。
If the amount of calcium carbonate is less than 5 parts by weight, no effect of improving heat resistance can be obtained, and if it is more than 100 parts by weight, the strength of the molded product will be greatly reduced, which is not preferable. Further, the amount of chloride added is 0.
No effect is observed when the amount is less than 2 parts by weight, and no further improvement in the effect can be expected even when more than 8 parts by weight is added. Suitable amounts of both include 20 to 40 parts by weight of calcium carbonate and 1 to 40 parts by weight of chloride.
It is 3 parts by weight.

これらの無機質硬化体の製造に際しては、補強用助剤と
して、繊維質原料を添加することも可能であり、その種
類は、ガラス繊維、有機合成繊維、セルロースバルブ繊
維、炭素u1維等が例として挙げられる。さらに必要に
応じ、骨材(パーライト、シラスバルーン、軽石粉砕品
、砂等)の添加により、無機質硬化体の機械的特性およ
び比重調整を図ることができる。
When producing these inorganic cured products, it is also possible to add fibrous raw materials as reinforcing aids, examples of which include glass fiber, organic synthetic fiber, cellulose bulb fiber, carbon U1 fiber, etc. Can be mentioned. Furthermore, if necessary, the mechanical properties and specific gravity of the inorganic cured product can be adjusted by adding aggregate (perlite, shirasu balloons, crushed pumice, sand, etc.).

一方、成形法によっては、必要に応じて成形助剤の添加
が可能である。例として、押出成形法における増粘剤、
キャスティング法における減水剤、流動化剤等が挙げら
れる。
On the other hand, depending on the molding method, a molding aid may be added as necessary. For example, thickeners in extrusion processes,
Examples include water reducing agents and fluidizing agents in the casting method.

硬化体の成形方法としては、抄造法、プレスモールド法
、押出成形法、キャスティング法、スプレーサクション
法等、−ffiに無機質硬化体を成形するのに用いられ
る成形法が適用可能である。
As a method for molding the cured product, a molding method used for molding an inorganic cured product into -ffi, such as a papermaking method, a press molding method, an extrusion method, a casting method, and a spray suction method, can be applied.

殻に抄造法では、原料を多量の水で分散し、スラリー状
にした後、スラリーを網上で沢過し、成形体を得るが、
この際添加した塩化物がP液中に逃げ、本発明の効果を
消失させるおそれがあるように思われるが、本発明では
、このような抄造法であっても、塩化物の添加効果は、
若干間められることあっても、失われることは無い。こ
の理由として、塩化物は共に添加される原も1に吸着あ
るいは反応し、固定されるためP液への逃げは、比鮫的
少ないものと予想される。なお、押出成形法、キャステ
ィング法など濾過水が発生しない成形法では、全く、塩
化物の逃げが生じないため、本発明の効果を充分に発揮
させるのに、好適な成形法である。
In the shell papermaking method, raw materials are dispersed in a large amount of water to form a slurry, and then the slurry is filtered through a mesh to obtain a molded product.
There seems to be a risk that the chloride added at this time escapes into the P solution and loses the effect of the present invention, but in the present invention, even with such a papermaking method, the effect of adding chloride is
Even if it is slightly interrupted, it will never be lost. The reason for this is that chloride also adsorbs or reacts with 1 and is fixed, so the escape to the P solution is expected to be relatively small. Note that molding methods that do not generate filtrate water, such as extrusion molding and casting, do not allow chloride to escape at all, and are therefore suitable molding methods for fully demonstrating the effects of the present invention.

以下実施例により、本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

〔実施例〕〔Example〕

セメント系、珪酸カルシウム系、およびセメント1−非
晶質シリカ系の3系について、それぞれ表1に示すよう
な割合で、原料を配合した。表1中の配合No、1.5
、および9は実施例、その他のNo、は比較例である。
Raw materials were blended in the proportions shown in Table 1 for three systems: cement system, calcium silicate system, and cement 1-amorphous silica system. Blend No. in Table 1: 1.5
, and 9 are examples, and the other Nos. are comparative examples.

(成形方法) 表1の各原料を、総固形分重量の5倍の清水に投入し、
よく撹拌し、スラリー状にした後、濾過し、残ったケー
キをプレス圧100 ky/ cI112で成形し、8
0X150X10zzの板状体とした。次いで各県とも
、表1に示す条件にて養生硬化させた。
(Forming method) Each raw material in Table 1 was poured into clean water with an amount of 5 times the total solid weight,
After stirring well and making a slurry, it was filtered, and the remaining cake was molded at a press pressure of 100 ky/cI112.
It was made into a plate-like body of 0x150x10zz. Next, each prefecture was cured and hardened under the conditions shown in Table 1.

(耐加熱収縮性試験) 得られた試験片を105℃乾燥器で24時間乾焔さぜ、
直径531RX20JFllの円筒状に切断し、加熱膨
張・収縮率の測定を行った。結果を図1、図2および図
3に示す。
(Heat shrinkage resistance test) The obtained test piece was dried in a dryer at 105°C for 24 hours.
It was cut into a cylindrical shape with a diameter of 531RX20JFll, and the thermal expansion and contraction rates were measured. The results are shown in FIGS. 1, 2 and 3.

表1 図1、図2および図3の結果かられかるように、七メン
ト系、珪酸カルシウム系、およびセメント士非晶質シリ
カ系のいずれの系においてら、炭酸カルシウム、塩化カ
リウムの両方を添加しない試[1に比べ、いずれか一方
を添加した試料は、加熱による収縮は若干の収縮率低減
効果な示すものもあるが、その程度は少ないか、あるい
は収縮が大きくなってしまう。一方、本発明により、炭
酸カルシウム、塩化カリウムの両方を添加した試料の場
きは、加熱による!15!縮が大巾に改善される。
Table 1 As can be seen from the results in Figures 1, 2, and 3, both calcium carbonate and potassium chloride were added to the seven-mention system, calcium silicate system, and cementitious amorphous silica system. Compared to the sample [1] without the addition of either of the two, the shrinkage caused by heating shows a slight reduction in the shrinkage rate, but the degree of shrinkage is small or the shrinkage becomes large. On the other hand, according to the present invention, in the case of samples to which both calcium carbonate and potassium chloride are added, heating is performed! 15! Shrinkage is greatly improved.

〔発明の効果〕〔Effect of the invention〕

珪酸質原[1とカルシウム質原料の反応により得られる
無機質硬化体のgJ造において、安価な炭酸カルシウム
と塩化物を添加することにより、耐熱性の優れた成形体
を得ることができる。これにより、従来使用されていた
石綿等の耐熱繊維の骨材を必要とぜず、しかも、多くの
エネルギーも必要としないため、通常の方法で、安価に
耐熱性に優れた硬化体の製造を可能とするものである。
In gJ production of an inorganic hardened body obtained by the reaction of silicate raw material [1] and calcium raw material, a molded body with excellent heat resistance can be obtained by adding inexpensive calcium carbonate and chloride. This eliminates the need for aggregates of heat-resistant fibers such as asbestos, which were conventionally used, and also does not require much energy, making it possible to produce cured products with excellent heat resistance at low cost using normal methods. It is possible.

この無機質硬化体は、建築fit造物進物材をはじめ、
耐熱性を必要とする材料に広く応用することができる。
This inorganic hardened material is used for construction materials, construction materials, etc.
It can be widely applied to materials that require heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、セメント系の無機質硬化物の加熱収縮率を示す
図である。 図2は、珪酸カルシウム系の無機質硬化物の加熱収縮率
を示す図である。 図3は、セメント十非晶質シリカ系の無機質硬化物の加
熱収縮率を示す図である。 各図において、縦軸は加熱膨張・収縮率、横軸は加熱温
度を示す。 代理人弁理士 曽 我 道 照f、jし:’、′、′・
・う
FIG. 1 is a diagram showing the heat shrinkage rate of a cement-based inorganic cured product. FIG. 2 is a diagram showing the heat shrinkage rate of a calcium silicate-based inorganic cured product. FIG. 3 is a diagram showing the heat shrinkage rate of an inorganic cured product of cement and amorphous silica. In each figure, the vertical axis shows the heating expansion/contraction rate, and the horizontal axis shows the heating temperature. Representative Patent Attorney Teru Sogado:',','・
·cormorant

Claims (3)

【特許請求の範囲】[Claims] (1)珪酸質原料と石灰質原料の合計が100重量部、
炭酸カルシウム5〜100重量部ならびにアルカリまた
はアルカリ土類金属の塩化物0.2〜8重量部を主要原
料とし、成形後養生硬化させることを特徴とする、無機
質硬化体の製造方法。
(1) The total amount of siliceous raw material and calcareous raw material is 100 parts by weight,
A method for producing an inorganic cured body, which uses 5 to 100 parts by weight of calcium carbonate and 0.2 to 8 parts by weight of an alkali or alkaline earth metal chloride as main raw materials, and which is characterized by curing and curing after molding.
(2)アルカリまたはアルカリ土類金属が、塩化カリウ
ム、塩化カルシウム、塩化ナトリウム、塩化バリウムで
ある、特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the alkali or alkaline earth metal is potassium chloride, calcium chloride, sodium chloride, or barium chloride.
(3)成形が押出成形法、キャスティング成形法によっ
てなされる、特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the molding is performed by an extrusion molding method or a casting molding method.
JP24744788A 1988-10-03 1988-10-03 Method for producing cured inorganic material Expired - Lifetime JPH0723243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24744788A JPH0723243B2 (en) 1988-10-03 1988-10-03 Method for producing cured inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24744788A JPH0723243B2 (en) 1988-10-03 1988-10-03 Method for producing cured inorganic material

Publications (2)

Publication Number Publication Date
JPH0297444A true JPH0297444A (en) 1990-04-10
JPH0723243B2 JPH0723243B2 (en) 1995-03-15

Family

ID=17163579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24744788A Expired - Lifetime JPH0723243B2 (en) 1988-10-03 1988-10-03 Method for producing cured inorganic material

Country Status (1)

Country Link
JP (1) JPH0723243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028968A1 (en) * 2002-09-27 2004-04-08 Shigetomi Komatsu Inorganic chloride gel and process for producing the same
JP2012116685A (en) * 2010-11-30 2012-06-21 Ube Industries Ltd Cement-based inorganic board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028968A1 (en) * 2002-09-27 2004-04-08 Shigetomi Komatsu Inorganic chloride gel and process for producing the same
JP2012116685A (en) * 2010-11-30 2012-06-21 Ube Industries Ltd Cement-based inorganic board

Also Published As

Publication number Publication date
JPH0723243B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP3783734B2 (en) Calcium silicate plate manufacturing method
CN107056313A (en) A kind of cement rotary kiln stove castable refractory
CN111592289A (en) Mesoporous material composite calcium silicate fireproof plate and preparation method thereof
CN114988784B (en) Calcium silicate board and preparation method thereof
JPH0297444A (en) Production of inorganic hardened body
US3116158A (en) Thermal insulating materials and method of making
RU2154618C2 (en) Method of manufacturing heat-isolation material based on siliceous rock
JPS61232256A (en) Structural material for low melting point metal casting appliance and manufacture
JPS59187700A (en) Production of heat resistant fiber molded article
JPH0976217A (en) Dehydrate press molded form and manufacture thereof
RU2220928C1 (en) Raw meal and a method for manufacturing granulated heat-insulation material
JP2665942B2 (en) Calcium silicate hydrate compact and method for producing the same
JPS5945953A (en) Manufacture of calcium silicate hydrate product
CN107311672A (en) A kind of aluminium chloride combination castable
JP3750950B2 (en) Calcium silicate plate manufacturing method
JPS6351995B2 (en)
JP4633067B2 (en) Composition for building materials
JP3428320B2 (en) Manufacturing method of greening base concrete
SU1474124A1 (en) Initial composition for producing unfired binder
JP4027081B2 (en) Composition for building materials
JPH08253375A (en) Calcium silicate slab and its production
JPH0948653A (en) Production of water repellent calcium silicate-based molding
JP4694708B2 (en) Method for producing calcium silicate molded body
JPS586706B2 (en) Method for producing calcium silicate hydrate molded body
JPH06345529A (en) Production of architectural burnt plate