JPH02157148A - Production of magnesium carbonate-based building material - Google Patents

Production of magnesium carbonate-based building material

Info

Publication number
JPH02157148A
JPH02157148A JP30988688A JP30988688A JPH02157148A JP H02157148 A JPH02157148 A JP H02157148A JP 30988688 A JP30988688 A JP 30988688A JP 30988688 A JP30988688 A JP 30988688A JP H02157148 A JPH02157148 A JP H02157148A
Authority
JP
Japan
Prior art keywords
magnesium carbonate
calcium
water
calcium compd
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30988688A
Other languages
Japanese (ja)
Inventor
Takashi Daito
大東 隆
Hiroshi Nakano
博司 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30988688A priority Critical patent/JPH02157148A/en
Publication of JPH02157148A publication Critical patent/JPH02157148A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a magnesium carbonate-based building material excellent in dimensional precision by molding a mixture contg. magnesium carbonate, calcium compd. and water into a prescribed shape, heating and curing the molded body. CONSTITUTION:A mixture contg. magnesium carbonate, calcium compd. and water is molded into a prescribed shape and the molded body is heated and cured. Such magnesium carbonate is preferably utilized that neutral magnesium carbonate produced by blowing carbon dioxide into magnesium hydroxide slurry is incorporated as a main component. As the calcium compd., e.g. slaked line, quick line, portland cement, alumina cement, slag and fly ashes, etc., are exemplified. As the blending ratio of magnesium carbonate and calcium compd., 0.1 - 35pts.wt. calcium compd. is preferably utilized for 100pts.wt. magnesium carbonate. Further the amount of water is preferably regulated to 0.37 - 19 times of total amount of magnesium carbonate and calcium compd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は外装あるいは内装用などの炭酸マグネシウム系
建材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnesium carbonate-based building material for exterior or interior use.

[従来の技術] 中性炭酸マグネシウムを温熱養生することによって、こ
れを塩基性炭酸マグネシウムに変化させて、硬化させる
ことによって、無機質の硬化体を得ることは既に知られ
た技術である(例えば特開昭54−78720 )。し
かし、この技術では発生時に起る化学反応によって硬化
体に膨れが生じ、寸法精度の良いものは得られないとい
う課題がある。
[Prior art] It is already known technology to obtain an inorganic hardened product by curing neutral magnesium carbonate under heat to change it into basic magnesium carbonate and hardening it (for example, 1978-78720). However, this technique has the problem that the cured product bulges due to the chemical reaction that occurs during generation, making it impossible to obtain a product with good dimensional accuracy.

[発明の解決しようとする課題] 本発明の目的は従来技術が有する前述の欠点を解決しよ
うとするものであり、寸法精度に優れた炭酸マグネシウ
ム系建材を得ることができる製造法の提供を目的とする
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a manufacturing method that can obtain magnesium carbonate-based building materials with excellent dimensional accuracy. shall be.

[課題を解決するための手段] 本発明は炭酸マグネシウムとカルシウム化合物と水とを
を含有する混合物を所定の形状に成形し、これを加熱し
て硬化する炭酸マグネシウム系建材の製造法を提供する
ものである。本発明における炭酸マグネシウムとしては
、水酸化マグネシウムスラリーに炭酸ガスを吹き込むこ
とによって、生成する中性炭酸マグネシウムを主成分と
するものが好ましいがMg”イオンと003−  イオ
ンを反応させて得られる中性炭酸マグネシウムでも良い
[Means for Solving the Problems] The present invention provides a method for producing a magnesium carbonate-based building material, which involves forming a mixture containing magnesium carbonate, a calcium compound, and water into a predetermined shape, and heating and hardening the mixture. It is something. The magnesium carbonate used in the present invention is preferably one whose main component is neutral magnesium carbonate produced by blowing carbon dioxide gas into magnesium hydroxide slurry. Magnesium carbonate may also be used.

本発明におけるカルシウム化合物は水和によりカルシウ
ムイオンを放出できるものであればよい。かかる化合物
としては消石灰、生石灰。
The calcium compound used in the present invention may be any compound that can release calcium ions upon hydration. Such compounds include slaked lime and quicklime.

ポルトランドセメント、アルミナセメント、スラグ、フ
ライアッシュ更にクリンカ成分であるアリット ベリッ
ト セリットなどや各種カルシウムアルミネート カル
シウムサルファアルミネートクリンカーを用いることも
可能である。かかる化合物は単独で使用してもよく、二
種以上のものを併用してもよい。
It is also possible to use portland cement, alumina cement, slag, fly ash, as well as clinker components such as aritto, beritto, ceritto, and various calcium aluminates and calcium sulfur aluminate clinkers. Such compounds may be used alone or in combination of two or more.

本発明における炭酸マグネシウムとカルシウム化合物の
重量比は前者100重量部に対して後者01〜35重量
部であることが好ましい。後者が0.1重量部以下では
成形体の加熱性の膨れ現象を防止する効果が少なく、3
5重量部を越えると成形体の強度が低下し、好ましくな
い。より好ましい範囲としては、前者100重量部に対
して後者0.5〜20重量部である。
The weight ratio of magnesium carbonate and calcium compound in the present invention is preferably 01 to 35 parts by weight to 100 parts by weight of the former. If the latter is less than 0.1 part by weight, it is less effective in preventing heat-induced blistering of the molded product;
If it exceeds 5 parts by weight, the strength of the molded product will decrease, which is not preferable. A more preferable range is 100 parts by weight of the former and 0.5 to 20 parts by weight of the latter.

また、水の量は炭酸マグネシウムとカルシウム化合物の
含量の0.37〜19倍の範囲で製造することが望まし
い。
Further, it is preferable that the amount of water is 0.37 to 19 times the content of magnesium carbonate and calcium compound.

さらに高い強度を得るためには、補強繊維を使用するこ
とが有効である。補強繊維としては、ガラス繊維、鉱物
繊維9人工鉱物繊維ロックウール、金属繊維、有機天然
繊維、パルプ、ワラストナイト、マイカ、カーボン繊維
有機合成繊維などの1種もしくは2種以上の繊維を適宜
使用することができる。
In order to obtain even higher strength, it is effective to use reinforcing fibers. As reinforcing fibers, one or more types of fibers such as glass fibers, mineral fibers, artificial mineral fibers, rock wool, metal fibers, organic natural fibers, pulp, wollastonite, mica, carbon fibers, and organic synthetic fibers are used as appropriate. can do.

この成形方法としては平プレスや押出成形法を利用する
が、必要に応じて抄造法、鋳込み法なども利用が可能で
ある。また、成形体の養生温度は30°C−120℃が
好ましく、30゛C以下では炭酸マグネシウムの硬化速
度が遅(なり、好ましくない。120°C以上で養生す
ると硬化体の強度が著しく低(なるため好ましくない。
Flat press or extrusion molding methods are used as the molding method, but paper forming methods, casting methods, etc. can also be used if necessary. In addition, the curing temperature of the molded product is preferably 30°C to 120°C; below 30°C, the curing speed of magnesium carbonate becomes slow (which is undesirable). This is not desirable.

以下に発明の具体例を表1の実施例によって説明する。Specific examples of the invention will be explained below using examples shown in Table 1.

さらに高い強度を得るためには、補強繊維を使用するこ
とが有効である。補強繊維としては、ガラス繊維、鉱物
繊維1人工鉱物繊維ロックウール、金属繊維、有機天然
繊維、パルプ ワラストナイl−、マイカ カーボン繊
維有機合成繊維などの1種もしくは2種以上の繊維を適
宜使用することができる。
In order to obtain even higher strength, it is effective to use reinforcing fibers. As reinforcing fibers, one or more types of fibers such as glass fibers, mineral fibers, artificial mineral fibers, rock wool, metal fibers, organic natural fibers, pulp, wollastonium l-, mica carbon fibers, and organic synthetic fibers may be used as appropriate. Can be done.

[実施例] 表1のNo、 1は水酸化マグネシウムの12%スラリ
ーに炭酸ガスを吹き込んで得られた中性炭酸マグネシウ
ムの固形分90重量部に対してスラグ45重量部、ガラ
ス繊維チョツプドストランド(長さ 12 mm) 4
重量部、メチルセルロース1.5重量部加え、水を45
重量部加えて混合した。この混合物を押出圧力40 k
g/ cm2で押出成形して、7 X 80X 100
0 mmの生板を得、これを80℃で24時間温熱養生
した。養生板の膨れ(生板の厚さの養生による増加率%
)は全くなかった。この板の乾燥曲げ強度は80 kg
/ Cm2あり、建材として充分実用化できるものであ
った。
[Example] No. 1 in Table 1 shows 45 parts by weight of slag and chopped glass fiber for 90 parts by weight of solid content of neutral magnesium carbonate obtained by blowing carbon dioxide gas into 12% slurry of magnesium hydroxide. Strand (length 12 mm) 4
parts by weight, add 1.5 parts by weight of methyl cellulose, and add 45 parts by weight of water.
Parts by weight were added and mixed. This mixture was extruded at a pressure of 40 k.
Extruded at g/cm2, 7 x 80 x 100
A 0 mm green plate was obtained and heat cured at 80° C. for 24 hours. Swelling of the curing board (% increase in thickness of raw board due to curing)
) was not present at all. The dry bending strength of this board is 80 kg
/ Cm2, and could be put to practical use as a building material.

No、 2はNo、 1のスラグの代りにフライアッシ
ュ、ガラス繊維の代りに、マイカを使用したものである
。No、 3はスラグの代りにアルミナセメント、ガラ
ス繊維の代りにロックウールを使用したものである。両
者とも養生による膨れは生じず、強度も充分なものがで
きた。
No. 2 uses fly ash instead of the slag of No. 1, and mica instead of glass fiber. No. 3 uses alumina cement instead of slag and rock wool instead of glass fiber. In both cases, no swelling occurred due to curing, and sufficient strength was obtained.

No、 4はガラス繊維の代りにパルプを8重量部用い
、スラグの代りに生石灰を使った例である。No、 5
はNo、 4の生石灰を消石灰に置換したもので、No
、 6はNo、 4の生石灰をポルトランドセメントに
置換したものである。これらはすべて、No、 1と同
様に養生による膨れは生じず、曲げ強度も高い値が得ら
れた。
No. 4 is an example in which 8 parts by weight of pulp was used instead of glass fiber and quicklime was used instead of slag. No, 5
No. 4 is a product in which the quicklime in No. 4 is replaced with slaked lime, and No.
, 6 is the one in which the quicklime in No. 4 was replaced with Portland cement. In all of these, like No. 1, no swelling occurred due to curing, and high values of bending strength were obtained.

No、 7では、中性炭酸マグネシウムを87重量部と
し消石灰を5重量部として、使用原料の全固形分に対し
て4倍の水を用いてこれをスラリーとし、これを型枠に
鋳込んだ後、脱水し、厚さ10 mm 、縦、横、26
0 X 260 mmの生板を得た。
In No. 7, 87 parts by weight of neutral magnesium carbonate and 5 parts by weight of slaked lime were used to make a slurry using 4 times as much water as the total solid content of the raw materials used, and this was cast into a mold. After that, it was dehydrated and made into 10 mm thick, 26 mm long and wide.
A green board of 0 x 260 mm was obtained.

これをNo、 1と同条件で養生したが、板には膨れは
生じなかった。強度も高い値が得られた。
This was cured under the same conditions as No. 1, but no blistering occurred on the board. A high value of strength was also obtained.

No、 8 、 No、 9は比較例で、No、 8は
No、 7の添加剤である消石灰を加えなかった場合で
、養生時には15%の膨れ(厚さの増加)を生じてしま
った例である。No、 9はNo、 6の添加剤である
ボルトランドセメントを加えなかった場合で、養生時に
は]0%の膨れを生じてしまった例である。
No. 8, No. 9, and No. 9 are comparative examples, and No. 8 is an example in which slaked lime, which is the additive of No. 7, was not added, and 15% swelling (increase in thickness) occurred during curing. It is. No. 9 is an example in which Boltland cement, which is the additive in No. 6, was not added, and 0% swelling occurred during curing.

No、10はNo、 4の生石灰の量を減少させ0.5
重量部としたもので0.01%の膨れを生じるが実用上
は全く問題はなく、強度も低下することはなかった。N
o、 11はNo、 3のアルミナセメントを1.0重
1部に減少したものであり、膨れは0.01%で、全(
実用上問題はな(、強度もNo、 3と同等のものが得
られた。
No. 10 reduces the amount of quicklime in No. 4 to 0.5
Although the swelling occurred by 0.01% (based on parts by weight), there was no practical problem at all, and the strength did not decrease. N
No. 11 is the alumina cement of No. 3 reduced to 1.0 weight and 1 part, the swelling is 0.01%, and the total (
There were no practical problems (and the strength was equivalent to No. 3).

No、12はNo、 1のスラグの量を7重量部に増加
したものであり、曲げ強度は若干低下するが膨れは生じ
なかった。
In No. 12, the amount of slag in No. 1 was increased to 7 parts by weight, and although the bending strength was slightly decreased, no blistering occurred.

No、13はNo、 2のフライアッシュを15重量部
に増加したものであり、No、 l 4はNo、 5の
消石灰を23重量部に増加したものである。No、13
. No、14両者とも、やはり膨れはなく、若干曲げ
強度は低下するが、実用上は問題なく商品となり得る強
度のものが得られた。
No. 13 has the fly ash of No. 2 increased to 15 parts by weight, and No. 14 has the slaked lime of No. 5 increased to 23 parts by weight. No. 13
.. In both No. 14 and No. 14, there was no swelling, and although the bending strength was slightly lowered, there was no problem in practical use, and a strength that could be used as a commercial product was obtained.

以上の結果から明らかなように本発明は炭酸マグネシウ
ムとカルシウム化合物と水とからなる特定混合物に必要
に応じて補強繊維およびセメント用各種添加剤を加え、
この混合物を押出成形あるいは脱水プレス成形(鋳込み
成形や抄造成形を含む)することによって、養生時に生
じる膨れを防止することを可能としたものである。
As is clear from the above results, the present invention involves adding reinforcing fibers and various additives for cement as necessary to a specific mixture consisting of magnesium carbonate, a calcium compound, and water.
By extrusion molding or dehydration press molding (including casting molding and paper forming) this mixture, it is possible to prevent blistering that occurs during curing.

[発明の効果] 本発明によれば、特にカルシウムを含んだ化合物を添加
剤に選ぶことにより膨れのない寸法精度の高い炭酸マグ
ネシウム系建材が得られる。
[Effects of the Invention] According to the present invention, a magnesium carbonate-based building material with no swelling and high dimensional accuracy can be obtained by selecting a calcium-containing compound as an additive.

Claims (1)

【特許請求の範囲】[Claims] (1)炭酸マグネシウムとカルシウム化合物と水とを含
有する混合物を所定の形状に成形し、これを加熱して硬
化する炭酸マグネシウム系建材の製造法。
(1) A method for producing a magnesium carbonate-based building material, in which a mixture containing magnesium carbonate, a calcium compound, and water is formed into a predetermined shape, and the mixture is heated and hardened.
JP30988688A 1988-12-09 1988-12-09 Production of magnesium carbonate-based building material Pending JPH02157148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30988688A JPH02157148A (en) 1988-12-09 1988-12-09 Production of magnesium carbonate-based building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30988688A JPH02157148A (en) 1988-12-09 1988-12-09 Production of magnesium carbonate-based building material

Publications (1)

Publication Number Publication Date
JPH02157148A true JPH02157148A (en) 1990-06-15

Family

ID=17998500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30988688A Pending JPH02157148A (en) 1988-12-09 1988-12-09 Production of magnesium carbonate-based building material

Country Status (1)

Country Link
JP (1) JPH02157148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000927A1 (en) * 1990-07-10 1992-01-23 James Hardie & Coy Pty. Limited Fire-resistant fibre cement products
JP2002321964A (en) * 2001-04-26 2002-11-08 Taki Chem Co Ltd Hydraulic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000927A1 (en) * 1990-07-10 1992-01-23 James Hardie & Coy Pty. Limited Fire-resistant fibre cement products
JP2002321964A (en) * 2001-04-26 2002-11-08 Taki Chem Co Ltd Hydraulic composition
JP4693016B2 (en) * 2001-04-26 2011-06-01 多木化学株式会社 Water curable composition

Similar Documents

Publication Publication Date Title
US4509985A (en) Early high-strength mineral polymer
KR101432750B1 (en) Mortar or concrete composition using fly ash and use thereof
EP0115306B1 (en) A process for producing a fire-resistant, light-weight construction material
US3957522A (en) Process for preparing fire-resisting moldings
US4221598A (en) Process for the production of steam-hardened gas concrete
US4655837A (en) Building material and manufacture thereof
GB2040906A (en) Composition for forming inorganic hardened products and process for producing inorganic hardened products therefrom
JPH02157148A (en) Production of magnesium carbonate-based building material
JPH0338966B2 (en)
RU2713192C1 (en) Composite material composition based on organic filler
JPS5925745B2 (en) Manufacturing method for lightweight materials
KR100360115B1 (en) A method for manufacturing solidification brick
JP2003160371A (en) Composition for building material
JPH11292606A (en) Production of inorganic cured article
JPS63195181A (en) Manufacture of gypsum board
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete
JPS6351995B2 (en)
JP4179789B2 (en) Gypsum-based inorganic cured body and method for producing the same
JP2886594B2 (en) Lightweight cement molding
SU867913A1 (en) Mixture for making heat-insulation articles
JPS581070B2 (en) Manufacturing method of slag/magnesium carbonate plate material
JPS6245190B2 (en)
JPS6146404B2 (en)
CN117510174A (en) Novel calcium silicate board for passive fireproof system
JPH0525824B2 (en)