JP4693016B2 - Water curable composition - Google Patents

Water curable composition Download PDF

Info

Publication number
JP4693016B2
JP4693016B2 JP2001128599A JP2001128599A JP4693016B2 JP 4693016 B2 JP4693016 B2 JP 4693016B2 JP 2001128599 A JP2001128599 A JP 2001128599A JP 2001128599 A JP2001128599 A JP 2001128599A JP 4693016 B2 JP4693016 B2 JP 4693016B2
Authority
JP
Japan
Prior art keywords
aluminum
mass
water
organic acid
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128599A
Other languages
Japanese (ja)
Other versions
JP2002321964A (en
Inventor
松田丞平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2001128599A priority Critical patent/JP4693016B2/en
Publication of JP2002321964A publication Critical patent/JP2002321964A/en
Application granted granted Critical
Publication of JP4693016B2 publication Critical patent/JP4693016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/105Magnesium oxide or magnesium carbonate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0021Compounds of elements having a valency of 3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水硬化性組成物、殊に各種の材料に配合した場合、加水・混練時の流動性、作業性に優れ、混練終了後に於いては短時間で硬化・成型して所望の形状が得られる無機材料を主成分とする水硬化性組成物に関する。
【0002】
【従来の技術】
無機材料系のバインダーとしては、ポルトランドセメント、混合セメント、特殊セメント、アルミナセメントなどのセメント類、各種のケイ酸ソーダ類、粘土、リン酸アルミニウムなどが使用されている。
【0003】
しかし、例えばポルトランドセメントをはじめとするセメント類では、混練時に十分な流動性や作業時間を確保する場合、早強ポルトランドセメントなどを用いても脱型までには約1日を要するし、脱型までの時間を短くしようとすると加水・混練途中からの水和発熱や増粘が避けられない。また、ケイ酸ソーダ類やリン酸アルミニウムをバインダーとして使用する場合、硬化剤として酸性物質やアルカリ性物質を添加すると、添加直後から増粘・硬化が始まり、良好な流動性、作業性を確保することができず、硬化剤を使用しない場合は加熱硬化させる必要がある。
【0004】
混練時は流動性を保ち、混練終了後には直ちに保形性を発現する現象としてチクソトロピー性が知られているが、この現象を発現できる物質としては、無機系の物質では、板状の結晶がカチオンをはさむ層状構造を持った粘土鉱物であるベントナイトや含水マグネシウムシリケート(Si12Mg30(OH)(OH・8HO)であるセピオライトなどが知られ、また、有機系の物質では保護コロイド型高分子に属するものとして、セルロースをメチル化することによって得られるメチルセルロースや、その誘導体カルボキシメチルセルロース(CMC)などが知られている。また選択凝集型高分子に属するものとして、酢酸ビニル/マレイン酸共重合体などが知られている。これらの他にもポリアクリル酸ソーダ、アクリル酸/アクリル酸エステル共重合体、デンプン/アクリル酸/アクリル酸ソーダ系、ポリアクリルアミド、アルキルセルロース、ポリエチレンオキサイドなどが知られている。そして、用途によって単独で、あるいはこれらチクソトロピー性を発現する物質を組み合わせて使用している。
【0005】
しかしながら、これらのチクソトロピー性を発現する各種の物質は、いわば「増粘剤」であり、増粘や凝集効果による保形力の発現であるため、十分な強度が得られない。そこで通常は、各種のセメントや樹脂などの強度発現用硬化剤にこれらのチクソトロピー性を発現する物質を添加して使用するのが一般的である。
【0006】
このために無機系の材料などでは、実用強度を得るために、結局は各種セメントなどの強度発現用硬化剤を使用しなければならず、先にも述べたように混練後短時間で硬化して、十分な作業性を確保することが困難である。
【0007】
そこで本発明者は鋭意検討の結果、マグネシウム化合物をMgOとして7〜60質量%、カルシウム化合物をCaOとして3〜50質量%含有し、且つ、マグネシウム化合物とカルシウム化合物の合量(MgO+Ca0)が80質量%以下であるアルカリ性無機粉末100質量部に対し、塩基性有機酸アルミニウム塩3〜20質量部を配合した水硬化性組成物は、これを各種の材料に配合した場合、加水・混練時の流動性、作業性に優れ、混練終了後に於いては短時間で硬化・成型して所望の形状に仕上げることができることを発見し、かかる知見に基づき本発明を完成するに至ったものである.
【0008】
【課題を解決するための手段】
即ち、本発明は、マグネシウム化合物をMgOとして7〜60質量%、カルシウム化合物をCaOとして3〜50質量%、組成調整材としてボーキサイト又はケイ石を含有し、且つ、マグネシウム化合物とカルシウム化合物の合量(MgO+CaO)がマグネシウム化合物とカルシウム化合物と組成調整材との合量に対し80質量%以下であるアルカリ性無機粉末100質量部に対し、塩基性有機酸アルミニウム塩3〜20質量部を配合した水硬化性組成物に関する。
【0009】
【発明の実施の形態】
本発明水硬化性組成物のマグネシウム化合物源としては、天然マグネサイト(MgCO)、ブルーサイト(Mg(OH))、スピネル(MgO・Al)、フォレストナイト(2MgOSiO)、ドロマイト(MgO・CaO)等を、またカルシウム化合物源としては、炭酸カルシウム、生石灰、ドロマイト等を利用することができる。しかし、これらに限定されるものではない。
【0010】
本発明に於いては、これらの原料を上記の割合になるように、混合もしくは混合粉砕する。更に原料の均一性を必要とするときは、これら原料を電気炉、反射炉、縦型炉などで溶融し、粉砕して使用することが好ましい。また、焼成法で本発明原料を製造する場合は、シャフトキルンやロータリーキルンなどで、1000〜1800℃で焼成あるいは溶融して得られたクリンカーを粉砕して使用することもできる。あるいは上述の原料群の一部を個別に、異なる条件で焼成・粉砕もしくは溶融・粉砕して所定の成分になるように混合し、用途に応じて所望する性質のアルカリ性無機粉末を得ることができる。本発明アルカリ性無機粉末の粒径について言えば、用途、原料種等により異なるが一般的には平均粒径50〜800μmである。
【0011】
次に成分の配合割合について述べれば、マグネシウム化合物がMgOとして60質量%を越えると、本発明水硬化性組成物に加水し、長時間混練を継続すると、増粘する現象が発生する。また7質量%以下になると、理由は定かでないが混練時の流動性は良好でも若干の糸引き現象が見られるようになるために、7質量%以下にすることは望ましくない。カルシウム化合物に関して言えば、CaOとして50質量%以上になると水の添加量にもよるが、水を加えた混練直後から増粘が認められ極めて作業性が悪くなり使用困難となる。逆に3質量%以下になると、硬化速度の調整を主にマグネシウム化合物のみで行うことになり、時間コントロールが非常に難しくなる。また、グネシウム化合物とカルシウム化合物の合量(MgO+Ca0)が80質量%以上になると、水を加えた混練直後から増粘が認められ作業性が悪くなる。さて、上記のように調整された本発明アルカリ性無機粉末の5gをイオン交換水95gと混合・撹拌したときは、概ねpH9以上となる。
【0012】
次に本発明で使用する塩基性有機酸アルミニウム塩について言えば、本出願人の発明、即ち特公昭61−16745号公報に記載されているような、Al/乳酸(モル比)=0.2〜2.0からなる塩基性乳酸アルミニウム塩をはじめとして、塩基性ギ酸アルミニウム塩、塩基性酢酸アルミニウム塩、塩基性グリコール酸アルミニウム塩、塩基性シュウ酸アルミニウム塩、塩基性酒石酸アルミニウム塩、塩基性マレイン酸アルミニウム塩、塩基性コハク酸アルミニウム塩、塩基性マロン酸アルミニウム塩、塩基性フマル酸アルミニウム塩、塩基性クエン酸アルミニウム塩などが挙げられるが、塩基度調整の容易性、製造時の溶液安定性などの点から塩基性乳酸アルミニウム塩が推奨される。
【0013】
これらに加えて、塩基性グリコール酸・乳酸アルミニウム塩のような塩基性有機酸アルミニウム塩も使用することができる。
【0014】
これらの塩基性有機酸アルミニウム塩の製造方法は公知の方法により製造することができる。例えば、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウムあるいは塩基性塩化アルミニウムなどの水溶液とアルカリ金属あるいはアンモニウムの炭酸塩、重炭酸塩あるいはアルカリ金属の水酸化物を反応させ生成沈殿するアルミニウム水和物をギ酸、酢酸、乳酸、グリコール酸、プロピオン酸などのモノカルボン酸や、シュウ酸、酒石酸、マレイン酸、コハク酸、マロン酸、フマル酸などのジカルボン酸あるいはクエン酸などのトリカルボン酸に溶解し、乾燥することにより容易に製造することができる。また、硫酸アルミニウムと有機酸または有機酸アルミニウム正塩の混合液にカルシウム、バリウム化合物等の水不溶性硫酸塩を形成する化合物を添加し、不溶性塩を除去後に乾燥させることによっても製造できる。その塩基度はアルミニウム水和物と有機酸の使用割合を変えることにより調整できる。その範囲は、概ねAl/有機酸の持つカルボキシル基のモル比で0.2〜2.0の範囲である。Al/有機酸の持つカルボキシル基のモル比が0.2を下廻ると、有機酸の割合が多くなり、塩基性有機酸アルミニウム塩粉末の溶解時のpHが低下しすぎるためか、加水し、長時間混練を継続すると増粘し、作業性が極めて悪くなる。逆にモル比が2.0を越えると、塩基性有機酸アルミニウム塩を製造する際の有機酸が少ないため、塩基性有機酸アルミニウムを製造することができないか、極めて困難となる。場合によっては、単に水酸化アルミニウムや水酸化アルミニウム水和物と有機酸の混合物になってしまい、その乾燥物は塩基性有機酸アルミニウム塩特有の効果を発揮しない。
【0015】
このようにして得られた塩基性有機酸アルミニウム塩は、先に述べたマグネシウム化合物をMgOとして7〜60質量%、カルシウム化合物をCaOとして3〜50質量%含有し、且つ、マグネシウム化合物とカルシウム化合物の合量(MgO+Ca0)が80質量%以下であるアルカリ性無機粉末100質量部に対して、3〜20質量部配合すれば良く、1〜10質量部が特に好ましい。即ち、本発明水硬化性組成物は、アルカリ性無機粉末と塩基性有機酸アルミニウム塩とを単に混合するのみで容易に製造することができる。而して、本発明水硬化性組成物中の水分は10質量%以下であるべきである。これ以上になると、保存中に硬化し使用困難となる。
【0016】
本発明水硬化性組成物は単独でも使用できるが、必要に応じてアルミナ質、シリカ質、ジルコン質、マグネシア質、アルミナスピネル質などの耐火骨材や、カオリサイト、ハロサイト、ダイアスポア、セリサイト、パイロファライト、モンモリロナイトなどの粘土質材料等と混用することもできる.
さらに、混練時の流動性や作業性を改善するために、各種の界面活性剤やアルミナなどの超微粉を併用しても良いし、粘度を上げる必要が生じた場合には公知の各種の増粘剤を併用しても良い。本発明水硬化性組成物は前記の通り、加水・混練時の流動性、作業性に優れ、混練終了後に於いては短時間で硬化・成型して所望の形状が得られる特徴を有する。従って、本発明の水硬化性組成物は、例えば、通常のセメント施工の代わりに、短時間で施工体や成形物が必要な場合の水硬化性材料として、あるいはセメント施工体、成型物などを作成する際の補助構造体の急速施工用の材料として、また、短時間で亀裂やへこみなどを補修する補助材料などに好適に使用できる。また、耐火骨材などと併用して製鉄やアルミ精錬用耐火物を短時間施工する際のバインダーとして、各種セラミックス原料や粘土などを仮成型後に焼成して焼成体を製造する際の仮成型材などとしても利用できる。
【0017】
【実施例】
以下に実施例および比較例により本発明をさらに詳しく説明するが、本発明はこれらの実施例によりなんら限定されるものではない。尚、特に断らない限り%は全て質量%を示す。
( 実施例1)
実施例および比較例に示した水硬化性組成物に用いたアルカリ性無機粉末は、MgO45.2%含有の天然マグネサイトとCaO54.9%含有の炭酸カルシウムに、組成調整材としてAl90.4%含有のボーキサイト(ガイアナ産)とSiO99.2%含有のケイ石(三河産)を所定量配合(表1及び表2)し、これを小型ロータリーキルンで1300〜1400℃で2時間焼成し、放冷後、レーザー回折式粒度分布測定機で平均粒子径が100μm以下になるまで粉砕し、アルカリ性無機粉末を製造した。尚、これらのアルカリ性無機粉末5gとイオン交換水95gを混合・攪拌したときのpHは9.5〜11であつた。また、実施例および比較例で使用した塩基性有機酸アルミニウム塩は、塩化アルミニウム塩溶液を炭酸ナトリウム溶液で中和し、沈殿生成したアルミニウム水和物を濾過・水洗した後、イオン交換水で希釈して、これに所定量の有機酸を加え塩基性有機酸アルミニウム塩溶液を得た。このアルミニウム塩溶液を噴霧乾燥し、本発明塩基性有機酸アルミニウム塩を製造した。
【0018】
これらアルカリ性無機粉末および塩基性有機酸アルミニウム塩を用いて以下の試験条件で、流動性、一軸圧縮強度等を測定した。その結果を表1および表2に示す。
【0019】
1.試験条件
(1)混練直後の流動性
表に示した水硬化性組成物を200mlのプラスチックビーカー(直径70mm×高さ80mm)に単独あるいは他の配合材料との合計が100gになるように計量して、これを十分混合した後で加水し、5分間混練した(この時点で混練された材料は容器のほぼ1/3を占める)。混練終了直後にビーカーを90度傾けて材料が少しでもビーカーから流れ出たものを流動性が良好とした。逆に流れ出なかったものを増粘とした。
(2)1時間混練を継続した時の流動性
上記(1)と同様の方法で1時間混練を継続し、混練終了直後の流動性を確認した。
(3)混練終了1時間後の一軸圧縮強度
約100gの試験材料に加水し5分間混練後、直径80mm×深さ50mmのアルミカップに移して1時間室温で放置した。その後、手動圧縮プレス機で圧力を加え(Φ=20mm、加圧面積3.1cm)、1秒間に加圧面が10mmの深さまで侵入するときの圧力を測定した。
【0020】
【表1】

Figure 0004693016
【0021】
注1: AlO、SiO、MgO、CaOの%はアルカリ性無機粉末に含有される
10%以下の不純物を含む
注2: B=((AlO)/(有機酸の持つカルボキシル基)のモル比)
【0022】
【表2】
Figure 0004693016
【0023】
注1: AlO、SiO、MgO、CaOの%はアルカリ性無機粉末に含有される
10%以下の不純物を含む
注2: B=((AlO)/(有機酸の持つカルボキシル基)のモル比)
【0024】
【発明の効果】
本発明の水硬化性組成物は、各種の材料に配合した場合、加水・混練時の流動性、作業性に優れ、混練終了後に於いては短時間で硬化・成型して所望の形状が得られるから、例えばセメントに代えて早急に仮成型体、仮構造体を製造したい場合などに特に有用であり、また補修材等としても有用である..[0001]
[Industrial application fields]
The present invention is excellent in fluidity and workability at the time of water addition and kneading when blended with a water curable composition, particularly various materials, and is cured and molded in a short time after kneading. Relates to a water-curable composition mainly composed of an inorganic material.
[0002]
[Prior art]
As the inorganic material binder, cements such as Portland cement, mixed cement, special cement, alumina cement, various sodium silicates, clay, aluminum phosphate and the like are used.
[0003]
However, for example, in cements such as Portland cement, if sufficient fluidity and working time are secured at the time of kneading, it takes about 1 day to demold even if early-strength Portland cement is used. When trying to shorten the time until hydration and kneading, hydration exotherm and thickening are unavoidable. Also, when using sodium silicates or aluminum phosphate as a binder, adding an acidic or alkaline substance as a curing agent will start thickening and curing immediately after the addition, ensuring good fluidity and workability. In the case where no curing agent is used, it is necessary to cure by heating.
[0004]
Thixotropic properties are known as a phenomenon that maintains fluidity during kneading and immediately develops shape retention properties after kneading, but as a substance that can exhibit this phenomenon, in the case of inorganic substances, plate-like crystals are Bentonite, which is a clay mineral having a layered structure sandwiching cations, and sepiolite, which is hydrous magnesium silicate (Si 12 Mg 8 O 30 (OH) 4 (OH 2 ) 4 · 8H 2 O), are known. Among these substances, methylcellulose obtained by methylating cellulose and its derivative carboxymethylcellulose (CMC) are known as belonging to the protective colloidal polymer. Further, vinyl acetate / maleic acid copolymers are known as belonging to the selective aggregation type polymer. Besides these, polyacrylic acid soda, acrylic acid / acrylic acid ester copolymer, starch / acrylic acid / sodium acrylate system, polyacrylamide, alkyl cellulose, polyethylene oxide, and the like are known. Depending on the application, these are used alone or in combination with substances that express these thixotropic properties.
[0005]
However, these various substances that exhibit thixotropy are so-called “thickening agents”, and because of their shape retention due to thickening and coagulation effects, sufficient strength cannot be obtained. Therefore, it is common to add these substances that express thixotropy to a hardener for strength development such as various cements and resins.
[0006]
For this reason, in order to obtain practical strength in inorganic materials, etc., it is necessary to use a strength-enhancing curing agent such as various cements in the end, and as described above, it hardens in a short time after kneading. Therefore, it is difficult to ensure sufficient workability.
[0007]
Therefore, as a result of intensive studies, the present inventor contains 7 to 60% by mass of the magnesium compound as MgO, 3 to 50% by mass of the calcium compound as CaO, and the total amount of the magnesium compound and the calcium compound (MgO + Ca0) is 80% by mass. %, The water-curable composition containing 3 to 20 parts by weight of the basic organic acid aluminum salt with respect to 100 parts by weight of the alkaline inorganic powder, when blended with various materials, The present invention has been completed on the basis of these findings based on the finding that it is excellent in workability and workability, and that it can be cured and molded in a short time and finished into a desired shape after kneading.
[0008]
[Means for Solving the Problems]
That is, the present invention comprises a magnesium compound as MgO in an amount of 7 to 60% by mass, a calcium compound as CaO in an amount of 3 to 50% by mass , bauxite or silica as a composition adjusting material , and the total amount of the magnesium compound and the calcium compound. Water curing in which 3 to 20 parts by mass of basic organic acid aluminum salt is blended with 100 parts by mass of alkaline inorganic powder in which (MgO + CaO) is 80% by mass or less based on the total amount of magnesium compound, calcium compound and composition adjusting material. The present invention relates to a sex composition.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The magnesium compound source of the present invention water curable composition, natural magnesite (MgCO 3), brucite (Mg (OH) 2), spinel (MgO · Al 2 O 3) , Forest Knight (2MgOSiO 2), dolomite Calcium carbonate, quicklime, dolomite, etc. can be used as (MgO · CaO) or the like and as a calcium compound source. However, it is not limited to these.
[0010]
In the present invention, these raw materials are mixed or mixed and pulverized so as to have the above ratio. Further, when the uniformity of the raw material is required, it is preferable to melt these raw materials in an electric furnace, a reflection furnace, a vertical furnace or the like and use them after pulverization. Moreover, when manufacturing this invention raw material with a baking method, the clinker obtained by baking or melting at 1000-1800 degreeC with a shaft kiln, a rotary kiln, etc. can also be grind | pulverized and used. Alternatively, a part of the above-mentioned raw material group can be individually baked, pulverized or melted / ground under different conditions and mixed to be a predetermined component to obtain an alkaline inorganic powder having desired properties according to the application. . Speaking of the particle diameter of the alkaline inorganic powder of the present invention, the average particle diameter is generally 50 to 800 μm, although it varies depending on the application, raw material type and the like.
[0011]
Next, regarding the blending ratio of the components, when the magnesium compound exceeds 60% by mass as MgO, the water-curable composition of the present invention is hydrated, and when kneading is continued for a long time, a phenomenon of thickening occurs. On the other hand, when it is 7% by mass or less, the reason is not clear, but even if the fluidity at the time of kneading is good, a slight stringing phenomenon can be observed. With regard to the calcium compound, when CaO is 50% by mass or more, although depending on the amount of water added, thickening is observed immediately after kneading with water, and workability becomes extremely poor, making it difficult to use. On the other hand, when the amount is 3% by mass or less, the curing rate is adjusted mainly with the magnesium compound, and the time control becomes very difficult. Moreover, when the total amount (MgO + Ca0) of a gnesium compound and a calcium compound becomes 80 mass% or more, thickening will be recognized immediately after the kneading | mixing which added water, and workability | operativity will worsen. When 5 g of the alkaline inorganic powder of the present invention adjusted as described above is mixed and stirred with 95 g of ion-exchanged water, the pH is approximately 9 or more.
[0012]
Next, regarding the basic organic acid aluminum salt used in the present invention, Al 2 O 3 / lactic acid (molar ratio) = as described in the applicant's invention, ie, Japanese Examined Patent Publication No. 61-16745 Including basic aluminum lactate salt of 0.2 to 2.0, basic aluminum formate salt, basic aluminum acetate salt, basic glycolic acid aluminum salt, basic aluminum oxalate salt, basic aluminum tartrate salt, Basic aluminum maleate, basic aluminum succinate, basic aluminum malonate, basic aluminum fumarate, basic aluminum citrate, etc. Basic aluminum lactate is recommended from the standpoint of solution stability.
[0013]
In addition to these, basic organic acid aluminum salts such as basic glycolic acid / aluminum lactate salts can also be used.
[0014]
These basic organic acid aluminum salts can be produced by known methods. For example, formic acid, an aluminum hydrate formed and precipitated by reacting an aqueous solution of aluminum chloride, aluminum sulfate, aluminum nitrate or basic aluminum chloride with an alkali metal or ammonium carbonate, bicarbonate or alkali metal hydroxide, Dissolve in monocarboxylic acid such as acetic acid, lactic acid, glycolic acid, propionic acid, dicarboxylic acid such as oxalic acid, tartaric acid, maleic acid, succinic acid, malonic acid, fumaric acid or tricarboxylic acid such as citric acid and dry. Can be manufactured more easily. It can also be produced by adding a compound forming a water-insoluble sulfate salt such as calcium or barium compound to a mixed solution of aluminum sulfate and an organic acid or a positive salt of organic acid aluminum salt and removing the insoluble salt and drying it. The basicity can be adjusted by changing the ratio of aluminum hydrate and organic acid used. The range is generally in the range of 0.2 to 2.0 in terms of the molar ratio of the carboxyl group of Al 2 O 3 / organic acid. If the molar ratio of the carboxyl group of Al 2 O 3 / organic acid is less than 0.2, the proportion of the organic acid increases, and the pH during dissolution of the basic organic acid aluminum salt powder is too low. When water is added and kneading is continued for a long time, the viscosity increases and workability becomes extremely poor. On the other hand, if the molar ratio exceeds 2.0, the amount of organic acid in producing the basic organic acid aluminum salt is small, so that the basic organic acid aluminum cannot be produced or becomes extremely difficult. In some cases, it becomes simply a mixture of aluminum hydroxide or aluminum hydroxide hydrate and an organic acid, and the dried product does not exhibit the effects peculiar to basic organic acid aluminum salts.
[0015]
The basic organic acid aluminum salt thus obtained contains 7-60 mass% of the magnesium compound described above as MgO, 3-50 mass% of the calcium compound as CaO, and the magnesium compound and the calcium compound. 3 to 20 parts by mass may be added to 100 parts by mass of the alkaline inorganic powder whose total amount (MgO + Ca0) is 80% by mass or less, and 1 to 10 parts by mass is particularly preferable. That is, the water-curable composition of the present invention can be easily produced by simply mixing the alkaline inorganic powder and the basic organic acid aluminum salt. Therefore, the water content in the water-curable composition of the present invention should be 10% by mass or less. If it exceeds this, it will harden during storage and become difficult to use.
[0016]
The water-curable composition of the present invention can be used alone, but if necessary, refractory aggregates such as alumina, siliceous, zircon, magnesia, alumina spinel, kaorisite, halosite, diaspore, sericite It can also be mixed with clayey materials such as pyrophorite and montmorillonite.
Furthermore, in order to improve fluidity and workability during kneading, various surfactants and ultrafine powders such as alumina may be used in combination. You may use a sticking agent together. As described above, the water curable composition of the present invention is excellent in fluidity and workability at the time of water addition and kneading, and has a characteristic that a desired shape can be obtained by curing and molding in a short time after the kneading is completed. Therefore, the water curable composition of the present invention is used, for example, as a water curable material when a construction body or a molded product is required in a short time instead of normal cement construction, or as a cement construction body, a molded product, etc. It can be suitably used as a material for rapid construction of an auxiliary structure at the time of production, or as an auxiliary material for repairing cracks and dents in a short time. In addition, as a binder for the short-time construction of refractories for iron making and aluminum refining in combination with refractory aggregates, etc. It can also be used as such.
[0017]
【Example】
The present invention will be described in more detail with reference to examples and comparative examples below, but the present invention is not limited to these examples. In addition, unless otherwise indicated, all% shows the mass%.
(Example 1)
The alkaline inorganic powder used in the water curable compositions shown in the Examples and Comparative Examples is composed of natural magnesite containing 45.2% MgO and calcium carbonate containing 54.9% CaO, and Al 2 O 3 90 as a composition adjusting material. .4% containing bauxite (Guyana) and SiO 2 99.2% containing silica (Mikawa) were blended in predetermined amounts (Tables 1 and 2), and these were mixed in a small rotary kiln at 1300-1400 ° C. for 2 hours. After baking and allowing to cool, the mixture was pulverized with a laser diffraction particle size distribution analyzer until the average particle size became 100 μm or less to produce an alkaline inorganic powder. When 5 g of these alkaline inorganic powders and 95 g of ion-exchanged water were mixed and stirred, the pH was 9.5-11. In addition, the basic organic acid aluminum salt used in Examples and Comparative Examples was prepared by neutralizing an aluminum chloride salt solution with a sodium carbonate solution, filtering and washing the precipitated aluminum hydrate, and then diluting with ion-exchanged water. Then, a predetermined amount of organic acid was added thereto to obtain a basic organic acid aluminum salt solution. This aluminum salt solution was spray-dried to produce the basic organic acid aluminum salt of the present invention.
[0018]
Using these alkaline inorganic powder and basic organic acid aluminum salt, fluidity, uniaxial compressive strength and the like were measured under the following test conditions. The results are shown in Tables 1 and 2.
[0019]
1. Test conditions (1) The water curable composition shown in the flowability table immediately after kneading was weighed into a 200 ml plastic beaker (diameter 70 mm × height 80 mm) alone or in total with other compounding materials to 100 g. Then, the mixture was sufficiently mixed and then watered and kneaded for 5 minutes (the material kneaded at this time occupies approximately 1/3 of the container). Immediately after the kneading, the beaker was tilted by 90 degrees, and even a little material flowed out of the beaker was considered to have good fluidity. On the contrary, the thing which did not flow out was made into thickening.
(2) Fluidity when kneading was continued for 1 hour Kneading was continued for 1 hour in the same manner as in (1) above, and the fluidity immediately after completion of kneading was confirmed.
(3) One hour after the completion of kneading, water was added to a test material having a uniaxial compressive strength of about 100 g, kneaded for 5 minutes, transferred to an aluminum cup having a diameter of 80 mm and a depth of 50 mm, and left at room temperature for 1 hour. Then, pressure was applied with a manual compression press (Φ = 20 mm, pressurization area 3.1 cm 2 ), and the pressure when the pressurization surface penetrated to a depth of 10 mm per second was measured.
[0020]
[Table 1]
Figure 0004693016
[0021]
Note 1: Al 2 O 3 , SiO 2 , MgO, CaO% is contained in the alkaline inorganic powder.
Including impurities of 10% or less Note 2: B = ((Al 2 O 3 ) / (molar ratio of organic acid) molar ratio)
[0022]
[Table 2]
Figure 0004693016
[0023]
Note 1: Al 2 O 3 , SiO 2 , MgO, CaO% is contained in the alkaline inorganic powder.
Including impurities of 10% or less Note 2: B = ((Al 2 O 3 ) / (molar ratio of organic acid) molar ratio)
[0024]
【The invention's effect】
The water curable composition of the present invention is excellent in fluidity and workability at the time of addition and kneading when blended with various materials, and after the kneading is completed, it is cured and molded in a short time to obtain a desired shape. Therefore, it is particularly useful when, for example, it is desired to quickly produce a temporary molded body or a temporary structure instead of cement, and it is also useful as a repair material. .

Claims (1)

マグネシウム化合物をMgOとして7〜60質量%、カルシウム化合物をCaOとして3〜50質量%、組成調整材としてボーキサイト又はケイ石を含有し、且つ、マグネシウム化合物とカルシウム化合物の合量(MgO+CaO)がマグネシウム化合物とカルシウム化合物と組成調整材との合量に対し80質量%以下であるアルカリ性無機粉末100質量部に対し、塩基性有機酸アルミニウム塩3〜20質量部を配合した水硬化性組成物。The magnesium compound is 7 to 60% by mass as MgO, the calcium compound is 3 to 50% by mass as CaO, bauxite or silica is included as a composition adjusting material , and the total amount of the magnesium compound and calcium compound (MgO + CaO) is the magnesium compound Water-curable composition which mix | blended 3-20 mass parts of basic organic acid aluminum salt with respect to 100 mass parts of alkaline inorganic powder which is 80 mass% or less with respect to the total amount of a calcium compound and a composition regulator .
JP2001128599A 2001-04-26 2001-04-26 Water curable composition Expired - Fee Related JP4693016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128599A JP4693016B2 (en) 2001-04-26 2001-04-26 Water curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128599A JP4693016B2 (en) 2001-04-26 2001-04-26 Water curable composition

Publications (2)

Publication Number Publication Date
JP2002321964A JP2002321964A (en) 2002-11-08
JP4693016B2 true JP4693016B2 (en) 2011-06-01

Family

ID=18977266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128599A Expired - Fee Related JP4693016B2 (en) 2001-04-26 2001-04-26 Water curable composition

Country Status (1)

Country Link
JP (1) JP4693016B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140371A (en) * 1982-02-09 1983-08-20 多木化学株式会社 Binder
JPS6116745B2 (en) * 1981-10-09 1986-05-01 Taki Chemical
JPH02157148A (en) * 1988-12-09 1990-06-15 Asahi Glass Co Ltd Production of magnesium carbonate-based building material
JPH07223856A (en) * 1994-02-09 1995-08-22 Asahi Denka Kogyo Kk Magnesia cement composition
JP2000502982A (en) * 1995-12-05 2000-03-14 ペリクラセ プロプライエタリー リミテッド Improved dolomite cement
JP2001058878A (en) * 1999-08-18 2001-03-06 Taki Chem Co Ltd Refraction composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116745B2 (en) * 1981-10-09 1986-05-01 Taki Chemical
JPS58140371A (en) * 1982-02-09 1983-08-20 多木化学株式会社 Binder
JPH02157148A (en) * 1988-12-09 1990-06-15 Asahi Glass Co Ltd Production of magnesium carbonate-based building material
JPH07223856A (en) * 1994-02-09 1995-08-22 Asahi Denka Kogyo Kk Magnesia cement composition
JP2000502982A (en) * 1995-12-05 2000-03-14 ペリクラセ プロプライエタリー リミテッド Improved dolomite cement
JP2001058878A (en) * 1999-08-18 2001-03-06 Taki Chem Co Ltd Refraction composition

Also Published As

Publication number Publication date
JP2002321964A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
CN108473376B (en) Refractory magnesium cement
JPS6350301B2 (en)
JPS6060972A (en) Refractories and low temperature baking method
JP4693016B2 (en) Water curable composition
KR101945680B1 (en) Amorphous refractory
JP7374926B2 (en) Ground injection material, its cured product, ground improvement method, and powder material for ground injection
EP4313907A1 (en) Refractory binder
JP2007099545A (en) Alumina cement composition and monolithic refractory using the same
JPH04952B2 (en)
JP4070709B2 (en) Setting / hardening modifier for alumina cement, alumina cement composition, and amorphous refractory using the same
JP4056170B2 (en) Calcium aluminate, alumina cement, alumina cement composition, and amorphous refractory using the same
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP3784448B2 (en) Indefinite refractory
JP2704371B2 (en) Slaking inhibitors
JP2640620B2 (en) Irregular refractories
JP2003147759A (en) Ground improvement method
JPH06157099A (en) Cement composition
JP3460902B2 (en) Water reducer for cement
WO1991019687A1 (en) Rapid curing composition
JPS5863770A (en) Binder
JPS6236070A (en) Castable for spraying and spray operation
JPS6360183A (en) Manufacture of foamed concrete
JPS6350302B2 (en)
JP3531748B2 (en) Cement composition
JP4027487B2 (en) Alumina cement composition and amorphous refractory using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees