JPH01219073A - Ceramic construction material and its production - Google Patents

Ceramic construction material and its production

Info

Publication number
JPH01219073A
JPH01219073A JP4532988A JP4532988A JPH01219073A JP H01219073 A JPH01219073 A JP H01219073A JP 4532988 A JP4532988 A JP 4532988A JP 4532988 A JP4532988 A JP 4532988A JP H01219073 A JPH01219073 A JP H01219073A
Authority
JP
Japan
Prior art keywords
ceramic
weight
structural material
aggregate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4532988A
Other languages
Japanese (ja)
Inventor
Ryojiro Taniguchi
良治郎 谷口
Yukiyasu Uchida
幸泰 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETO SEIDO KK
TANAKA SEISHI KOGYO KK
Original Assignee
SETO SEIDO KK
TANAKA SEISHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETO SEIDO KK, TANAKA SEISHI KOGYO KK filed Critical SETO SEIDO KK
Priority to JP4532988A priority Critical patent/JPH01219073A/en
Publication of JPH01219073A publication Critical patent/JPH01219073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To produce easily and inexpensively the subject ceramic construction material having a desired size, light weight, high mechanical strength, high weather resistance, high fire resistance, and high durability by calcining a mixture of an aggregate consisting of amorphous glass fiber and a binder consisting of inorganic powder in a specified proportion, after molding the mixture. CONSTITUTION:A mixture consisting of 15-85wt.% aggregate consisting of amorphous glass fiber obtd. by melting a mixture of a fluororichterite raw material compsn. and at least one kind of material composed of Al2O3, ZrO2, P2O5, and PbO, and 85-35wt.% binder consisting of inorganic powder of a raw material for a ceramic which is transformed to a ceramic by calcining at 900-1,000 deg.C, is molded by, for example, screening a slurry prepd. from 100pts. wt. said mixture and 3-25pts.wt. pulp, etc. Obtd. plate, etc.-shaped molded body is then calcined at 900-1,000 deg.C. Thus, a fibrous structure of crystalline glass having high strength is transformed to ceramic structure, and the title construction body is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、結晶化ガラスの繊維状組織を磁器質に形成
し、格段の機械的強度及び耐火、耐候性に優れた軽量な
セラミックス構造材に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a lightweight ceramic structural material that has a porcelain-like fibrous structure of crystallized glass and has excellent mechanical strength, fire resistance, and weather resistance. It is related to.

(従来の技術) 近年、建築の高層化に伴い軽量で高強度且つ耐火性の構
造材が要求されているが、それらの要求を一挙に満たす
素材は実用化されていなかった。
(Prior Art) In recent years, with the increase in the height of buildings, lightweight, high-strength, and fire-resistant structural materials have been required, but materials that meet all of these requirements have not been put into practical use.

例えば、繊維強化コンクリートは、−a的なコンクリー
トより強度が大きいが軽量とは言い難い。
For example, fiber-reinforced concrete has greater strength than -a concrete, but it cannot be said to be lightweight.

またセラミック繊維やガラスウール及びロックウール等
を接着剤等でブロック状にした軽量の保温材または断熱
材や気泡コンクリートのように成形体内部に気泡を残存
させた軽量壁材等があるが機械的強度が不十分である。
In addition, there are lightweight heat insulating materials or insulation materials made of ceramic fibers, glass wool, rock wool, etc., made into blocks with adhesives, and lightweight wall materials with air bubbles left inside the molded body, such as aerated concrete. Insufficient strength.

一方、結晶化ガラスは耐熱ガラス製品や内装建材等に焼
成加工されるが、重量の大きなものである上、成形方法
の故にその成形寸法にも限度があった。なお、特開昭4
9−107005号にて高強度大面積陶磁器板を製造す
る手段として熱処理した結晶化ガラス繊維を骨材とする
ものや、特開昭56−164070号及び特公昭62−
41182号に示されるように結晶化組成原料ガラス粉
末を用いる方法や製品についての関連する文献がある。
On the other hand, crystallized glass is fired into heat-resistant glass products, interior building materials, etc., but it is heavy and, due to the molding method, there are limits to its molding dimensions. In addition, Japanese Patent Application Publication No. 4
No. 9-107005 uses heat-treated crystallized glass fiber as an aggregate as a means of manufacturing high-strength, large-area ceramic plates, and Japanese Patent Application Laid-open No. 164070/1982 and Japanese Patent Publication No. 1983/1983
As shown in No. 41182, there are related documents regarding methods and products using crystallized raw material glass powder.

(発明が解決しようとする課題) 従来の技術で述べたように、建築の高層化に伴う建築構
造等で要求される軽量で高強度かつ耐火性を有する等の
多様な要求事項を満足する材料はまだ実用化されていな
いという問題点がある。
(Problems to be Solved by the Invention) As described in the prior art, materials that satisfy the various requirements such as being lightweight, having high strength, and having fire resistance, which are required for building structures as buildings become taller. The problem is that it has not yet been put into practical use.

この発明は、上述にかんがみて従来の材料の欠点を補い
、しかも構造上必要な大きな成形品を均一寸法で形成で
きるようなセラミック構造材とその製造方法を提示する
ことを目的とするものである。
In view of the above, it is an object of the present invention to provide a ceramic structural material and a method for manufacturing the same, which can compensate for the drawbacks of conventional materials and also enable the formation of large structurally necessary molded products with uniform dimensions. .

(課題を解決するための手段) 上述の目的を達成するため、この発明のセラミックス構
造材は、結合材35〜85重量%と骨材15〜65重量
%からなる配合物100重量部にバルブ3〜25重量部
を添加し抄造法により成形し900〜1000℃で焼成
してなるものであり、結合材が900〜1000℃の焼
成により磁器化する無機質物質であって骨材がフッ素リ
ヒテライト組成原料にAl2O3,Zro2. P2O
5及びPbO組成原料を少なくとも1種以上添加し溶融
して形成した非晶質ガラス繊維であり、900〜100
0℃の温度範囲で熱処理することにより高強度結晶化ガ
ラスとなるものとその製造方法に関するものである。以
下にこの発明の詳細について説明する。なお、本明細書
において%は特記しない限り重量%を示す。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the ceramic structural material of the present invention contains 100 parts by weight of a mixture consisting of 35 to 85% by weight of binder and 15 to 65% by weight of aggregate, and 3 parts by weight of valves. ~25 parts by weight is added, formed by a papermaking method, and fired at 900 to 1000°C, the binder is an inorganic substance that becomes porcelain by firing at 900 to 1000°C, and the aggregate is a fluorinated richterite composition raw material. Al2O3, Zro2. P2O
It is an amorphous glass fiber formed by adding and melting at least one of 5 and PbO composition raw materials, and
This invention relates to a high-strength crystallized glass that can be obtained by heat treatment in a temperature range of 0° C., and a method for producing the same. The details of this invention will be explained below. In this specification, % indicates weight % unless otherwise specified.

この発明のセラミックス構造材を製造するには、まず、
長石、珪石、カオリン、粘土、石灰石及びフリット等の
一般的な陶磁器原料を用いて900〜1000℃の温度
範囲で焼成して磁器化する配合の無機質粉末粘土を調製
して結合材とし、炭酸ナトリウム、氷晶石、蛍石、タル
ク、ドロマイト、炭酸マグネシウム、アルミナ、珪酸ジ
ルコニウム、鉛白及び骨灰等の原料を用いて、900〜
1000℃で熱処理するとフッ素リヒテライト結晶を主
成分とする結晶化ガラスとなる配合を有し、1350〜
1450℃にて溶融し常法により非晶質ガラス繊維とし
たものを骨材とする。
To manufacture the ceramic structural material of this invention, first,
Using common ceramic raw materials such as feldspar, silica, kaolin, clay, limestone, and frit, we prepare an inorganic powder clay that can be fired at a temperature range of 900 to 1000°C to form porcelain, and use it as a binder, and then add sodium carbonate as a binder. 900~ using raw materials such as cryolite, fluorite, talc, dolomite, magnesium carbonate, alumina, zirconium silicate, white lead, and bone ash.
It has a composition that becomes crystallized glass mainly composed of fluorinated richterite crystals when heat treated at 1000°C, and has a temperature of 1350~
The aggregate is melted at 1450°C and made into amorphous glass fiber by a conventional method.

次に、結合材を35〜85%と骨材を15〜65%とを
配合した混合物100重量部にパルプ3〜25重量部を
添加し、適量の水と必要な薬剤(凝集剤とエマルジョン
タイプの有機物からなるバインダーからなるもの)とを
加えてスラリーと成し、抄造法によって任意の寸法で板
状に成形した後乾燥して900〜1000℃で焼成しセ
ラミックス構造材とする。
Next, add 3 to 25 parts by weight of pulp to 100 parts by weight of a mixture of 35 to 85% binder and 15 to 65% aggregate, add an appropriate amount of water and necessary chemicals (flocculant and emulsion type). (composed of a binder made of an organic substance) to form a slurry, which is formed into a plate shape of arbitrary dimensions by a papermaking method, dried, and fired at 900 to 1000°C to obtain a ceramic structural material.

なお、結合材と骨材の配合割合は骨材の量が15%より
少ないときは抄紙法による成形が難しく嵩比重の大きな
強度の不十分なものとなり、65%を超えると強度が十
分でも成形体の表面が粗となり骨材である繊維の先端が
露出して取扱い上の安全性に不都合を生ずる恐れがある
In addition, when the blending ratio of binder and aggregate is less than 15%, it is difficult to form using the papermaking method, resulting in a large bulk specific gravity and insufficient strength, and when it exceeds 65%, even if the strength is sufficient, it is difficult to form. The surface of the body becomes rough and the tips of the aggregate fibers are exposed, which may cause problems in handling safety.

この発明の成形方法は抄紙法によるが結合材さして骨材
の配合割合によっては抄紙操作をより容易化するために
、パルプを添加するものであり、その添加量は結合材と
骨材との混合物100重量部に対して、3〜25重量部
、25重量部を超えると結合材の焼成密度が低下し強度
を低下させる。
The forming method of this invention is based on the papermaking method, but depending on the blending ratio of binder and aggregate, pulp is added to make the papermaking operation easier. If the amount is 3 to 25 parts by weight relative to 100 parts by weight, and exceeds 25 parts by weight, the firing density of the binder will decrease and the strength will decrease.

一方、抄紙法を用いることにより結合材と骨材の分離が
防止され均質で厚みの揃った大型の板状成形体が得られ
ると同時に成形密度の小さい成形物を得ることができる
On the other hand, by using the papermaking method, separation of the binder and aggregate can be prevented, and a large plate-shaped molded product with uniform thickness and uniform thickness can be obtained, and at the same time, a molded product with a low molding density can be obtained.

なお、パルプの添加量の増減によって成形密度の調節も
可能で焼成体の軽量化も図れる利点がある。
It should be noted that the molding density can be adjusted by increasing or decreasing the amount of pulp added, which has the advantage of reducing the weight of the fired product.

このようにして得られたセラミックス構造材は第1図の
断面組織拡大略図に示すように陶器素地の吸水孔より大
きな残存気孔Hを包含した磁器質素地Pに高強度結晶化
ガラスの繊維状の方向性を有する配列組織Gが形成され
、きわめて高い機械的強度を有し、かつ嵩比重の少ない
セラミックス構造材Sを得ることができる。
As shown in the enlarged cross-sectional structure diagram in Figure 1, the ceramic structural material thus obtained is a porcelain base P containing residual pores H larger than the water absorption pores of the ceramic base, and a fibrous structure of high-strength crystallized glass. A ceramic structural material S can be obtained in which a directional structure G is formed, which has extremely high mechanical strength and has a low bulk specific gravity.

(作 用) この発明のセラミックス構造材は上述の技術的手段のな
かで説明したように結合材の原料が一般の陶磁器原料で
足りる上、骨材としても一般的なガラス原料にて一般的
なガラス繊維同様容易に製造でき、しかも抄紙法によっ
て寸法の大きな板状成形が連続的に行え、且っ1000
 を以下の比較的低い焼成温度で製造が可能であるため
、製造コストの低廉化が期待できる作用効果が大きい。
(Function) As explained in the above-mentioned technical means, the ceramic structural material of the present invention can use general ceramic raw materials as the raw material for the binder, and can also be used as aggregate using general glass raw materials. It can be easily produced like glass fiber, and can be continuously formed into large-sized plates using the papermaking method.
can be manufactured at a relatively low firing temperature as below, and therefore has a great effect of being expected to reduce manufacturing costs.

また、結合材が焼成して磁器化する温度と骨材が結晶化
して高密度となる熱処理温度を一致させることによって
成形密度を調節することができるので、軽量化が可能と
なり、さらに焼成することによって耐候性や耐火性が優
れたものとなる作用効果も大である。
In addition, by matching the temperature at which the binder is fired and turned into porcelain and the heat treatment temperature at which the aggregate crystallizes and becomes dense, the density of the molding can be adjusted, making it possible to reduce weight and make it easier to fire further. It also has a great effect of providing excellent weather resistance and fire resistance.

因みに、この発明のセラミックス構造材は一般的なコン
クリートの平均的な強度の数倍の強度を有し、一方嵩比
重は逆に約半分程度の低いものとなる。
Incidentally, the ceramic structural material of the present invention has an average strength several times that of general concrete, while its bulk specific gravity is on the contrary about half as low.

(実施例) この発明の実施例及び比較例を挙げて以下詳細に説明す
る。なお、この発明はこれに限定されるものではない。
(Example) Examples and comparative examples of the present invention will be described in detail below. Note that this invention is not limited to this.

実施例1〜10及び比較例11,12゜第1表に示す調
合割合によりa、b及びCの3種の例の無機質粉末から
なる結合材と第2表に示す組成のA、B及びCの3種の
例の非晶質ガラス繊維からなる骨材及びパルプとを第3
表に示す重量部によって配合し、実施例1〜1oの原料
を調製し、適量の水と凝集剤及び有機バインダー等を加
えてスラリーとして抄紙法により板状に成形したものを
60〜80℃の温度で乾燥した板状成形物から各性能試
験に応じた寸法の直方体を切り出し、第2図に示す焼成
曲線に示すように経過時間8時間で最高温度950℃に
昇温し15分間保持した後自然冷却することにより試験
片を作成した。
Examples 1 to 10 and Comparative Examples 11 and 12゜Binding materials made of inorganic powders of three examples a, b, and C according to the mixing ratios shown in Table 1 and A, B, and C with the compositions shown in Table 2 aggregate and pulp made of three types of amorphous glass fibers.
The raw materials of Examples 1 to 1o were prepared by blending in the parts by weight shown in the table, and an appropriate amount of water, a flocculant, an organic binder, etc. were added, and the slurry was formed into a plate shape by a papermaking method. A rectangular parallelepiped with dimensions corresponding to each performance test was cut out from the plate-shaped molded product dried at a temperature, and as shown in the firing curve shown in Figure 2, the temperature was raised to a maximum temperature of 950 ° C after 8 hours and held for 15 minutes. A test piece was prepared by cooling naturally.

得られた試験片を以下に示す性能試験条件で嵩比重、曲
げ強度及び圧縮強度と耐熱性、耐火性及び耐寒性を測定
または観察した結果を第4表に示す。
Table 4 shows the results of measuring or observing the bulk specific gravity, bending strength, compressive strength, heat resistance, fire resistance, and cold resistance of the obtained test pieces under the performance test conditions shown below.

本性能試験の条件は下記の通りである。The conditions for this performance test are as follows.

嵩比重 試験片の重量、長さ、幅及び厚さを測定し、体積を計算
し!1)式によって求めた。
Measure the weight, length, width and thickness of bulk specific gravity specimens and calculate the volume! 1) It was calculated using the formula.

嵩比重=重量子体積・・・・・・・・(11曲げ強度 試験片をエツジ間隔d”=100mの3点荷重式抗折試
験器に設置し、約25kg/minの速度でa / 2
の位置の荷重を増加し、破断が生じたときの荷重Pを求
め(2)式によって曲げ強度Sを求めた。
Bulk specific gravity = weight particle volume (11) The bending strength test piece was placed in a three-point loading type bending tester with an edge spacing d" = 100 m, and the test piece was tested at a speed of about 25 kg/min at a / 2
The load at the position was increased, the load P at which breakage occurred was determined, and the bending strength S was determined using equation (2).

5=3aP/2bh・・・・・・・(2)ただしbは試
験片の幅、hは厚さである。
5=3aP/2bh (2) where b is the width of the test piece and h is the thickness.

圧縮強度 一辺が30鶴の立方体の試験片に第3図に示すような骨
材の繊維状組織の方向性配列の方向に直角の矢印りの方
向に加圧し、試験片が破壊したときの荷重を試験片の被
加圧面積で除して求めた。ただし、荷重を加える速度は
毎秒1kg/adとした。
Compressive Strength A cubic test piece with a side of 30 mm is pressurized in the direction of the arrow perpendicular to the direction of the directional arrangement of the fibrous structure of the aggregate as shown in Figure 3, and the load is calculated when the test piece breaks. was calculated by dividing by the pressurized area of the test piece. However, the speed of applying the load was 1 kg/ad per second.

耐熱試験 試験片を恒温乾燥器に入れ、150℃で30分間加熱し
、30℃の水中に投入して、割れ等の損傷を観察する操
作を30回繰り返した。
Heat resistance test The test piece was placed in a constant temperature dryer, heated at 150°C for 30 minutes, placed in water at 30°C, and observed for damage such as cracks. This operation was repeated 30 times.

耐火試験 ガスコンロ上に試験片を置き、着火して30分間加熱し
、放冷後外観変化を観察した。
Fire resistance test A test piece was placed on a gas stove, ignited and heated for 30 minutes, and after cooling, changes in appearance were observed.

耐寒試験 試験片を水中に1時間浸漬後、冷凍庫に凍らせ、取り出
して40℃の乾燥器中で解凍し、外観変化を観察する操
作を10回繰り返した。
Cold resistance test The test piece was immersed in water for 1 hour, frozen in a freezer, taken out and thawed in a dryer at 40°C, and the operation of observing changes in appearance was repeated 10 times.

なお、第4表において表示した比較例11及び12は欄
外に説明したようにそれぞれ普通ポルトランドセメント
及び早強ポルトランドセメントによる構造材の試験結果
である。
As explained in the margins, Comparative Examples 11 and 12 shown in Table 4 are test results of structural materials made of ordinary Portland cement and early-strength Portland cement, respectively.

(以下余白) 第  2  表   (% ) (発明の効果) この発明は上記の構成を有するので下記の効果を奏する
(The following is a margin) Table 2 (%) (Effects of the invention) Since this invention has the above configuration, it has the following effects.

(1)請求項(1)の製造方法によって焼成される磁器
化する無機質粉末からなる結合材と、熱処理して結晶化
するガラス繊維を骨材として配合し成形した上、焼成す
ることによって、硬化したセラミックス構造材の機械的
強度が十分高くしかも耐久性に優れた軽量な構造材が得
られること。
(1) A binder consisting of an inorganic powder that turns into porcelain, which is fired by the manufacturing method of claim (1), and glass fiber, which is crystallized by heat treatment, are blended as an aggregate, shaped, and then hardened by firing. To obtain a lightweight structural material made of ceramics having sufficiently high mechanical strength and excellent durability.

(2)請求項(2)の成形方法によって結合材と骨材が
交絡し分離することが防止され、均質の厚みの揃った成
形材の軽量で大きな寸法のものを比較的簡単に得ること
ができる。なお、パルプの添加量の増減によって成形密
度の調節も可能であるので焼成体の軽量化が計れること
(2) The molding method of claim (2) prevents the binding material and aggregate from intertwining and separating, and makes it possible to relatively easily obtain a lightweight, large-sized molded material with uniform thickness. can. Furthermore, since the compacted density can be adjusted by increasing or decreasing the amount of pulp added, the weight of the fired product can be reduced.

(3)請求項(3)の結晶化ガラス繊維は一般的なガラ
ス原料にて一般的ガラス繊維同様に製造が容易で抄紙法
により寸法の大きな板状成形を連続的に行って比較的低
温度で焼成して製造できるため、低廉でコンクリートの
数倍の強度の軽量構造材を得ることができること。
(3) The crystallized glass fiber of claim (3) is easy to manufacture in the same manner as general glass fiber using general glass raw materials, and is formed continuously into a large plate shape using a papermaking method at a relatively low temperature. Because it can be produced by firing, it is possible to obtain a lightweight structural material that is inexpensive and several times stronger than concrete.

(4)請求項(4)の陶磁器用原料を結合材の組成原料
とすることによって形成される磁器質素地に上述の結晶
ガラスの繊維組成を形成させることによって両者相まっ
て高強度で低廉な構造材を容易に製造できること。
(4) By forming the above-mentioned crystalline glass fiber composition on the porcelain base formed by using the raw material for ceramics according to claim (4) as the raw material for the composition of the binding material, both of them combine to produce a high-strength and inexpensive structural material. can be easily manufactured.

(5)請求項(5)は請求項(1)により製造されたセ
ラミックス構造材であり、軽量で機械的強度が大きい上
に焼成によって耐候性、耐火性にも優れ、寸法の大きな
板状成形体も得ることも容易で価格の低廉化も期待でき
る土木建築等の構造材として有効であること。
(5) Claim (5) is a ceramic structural material produced according to claim (1), which is lightweight and has high mechanical strength, has excellent weather resistance and fire resistance when fired, and is molded into a large plate shape. It is effective as a structural material for civil engineering and construction, which is easy to obtain and can be expected to be inexpensive.

(6)請求項(6)は請求項(1)により製造されたセ
ラミックス構造材よりも骨材を主体とする配合の組成原
料を成形焼成したものであるため、さらに高強度で耐火
性に優れた軽量なセラミックス構造材を得ることができ
るため、特定の用途に有効であること。
(6) Claim (6) is made by molding and firing a raw material with a composition mainly composed of aggregates than the ceramic structural material manufactured according to claim (1), so it has even higher strength and excellent fire resistance. It is effective for specific applications because it allows the production of lightweight ceramic structural materials.

(7)請求項(7)の薬剤を添加して抄造することによ
って組成原料とパルプからなるスラリーの形成を容易化
し、抄紙操作できるため、所要の組成の板状成形材を安
定的に得ることができること。
(7) Adding the agent according to claim (7) to papermaking facilitates the formation of a slurry consisting of raw materials and pulp and allows papermaking operations, thereby stably obtaining a plate-shaped molded material with a desired composition. What you can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のセラミックス構造材の板状成形体の
断面の組織拡大略図、第2図はセラミックス構造材の実
施例の試験片の焼成温度上昇曲線説明図、第3図は骨材
の繊維状組織の方向配列説明略図である。 \S 第1図 第2図 第3図
Fig. 1 is an enlarged diagram of the structure of the cross section of a plate-shaped compact of the ceramic structural material of the present invention, Fig. 2 is an explanatory diagram of the firing temperature rise curve of the test piece of the ceramic structural material of the embodiment, and Fig. 3 is an illustration of the firing temperature rise curve of the test piece of the ceramic structural material of the present invention. It is a schematic diagram explaining the directional arrangement of fibrous tissue. \S Figure 1 Figure 2 Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)非晶質ガラス繊維からなる骨材15〜65重量%
と無機質粉末からなる結合材35〜85重量%を配合し
成形した上、900〜1000℃の温度範囲で焼成し高
強度結晶化ガラスの繊維状組織を磁器質に形成させるこ
とを特徴とするセラミックス構造材の製造方法。
(1) Aggregate consisting of amorphous glass fibers 15-65% by weight
and 35 to 85% by weight of a binder consisting of inorganic powder, which is molded and fired at a temperature range of 900 to 1000°C to form a porcelain-like fibrous structure of high-strength crystallized glass. Method of manufacturing structural materials.
(2)骨材と結合材からなる配合物100重量部にパル
プを3〜25重量部添加してなるスラリーを抄造して板
状に成形することを特徴とする請求項(1)記載のセラ
ミックス構造材の製造方法。
(2) The ceramic according to claim (1), characterized in that a slurry made by adding 3 to 25 parts by weight of pulp to 100 parts by weight of a mixture of aggregate and binder is formed into a plate shape. Method of manufacturing structural materials.
(3)非晶質ガラス繊維をフッ素リヒテライト組成原料
にAl_2O_3、ZrO_2、P_2O_5及びPb
O組成原料を少なくとも1種以上添加し溶融して形成す
ることを特徴とする請求項(1)記載のセラミックス構
造材の製造方法。
(3) Amorphous glass fiber is used as a raw material for fluorinated richterite composition, including Al_2O_3, ZrO_2, P_2O_5 and Pb.
2. The method for manufacturing a ceramic structural material according to claim 1, wherein the ceramic structural material is formed by adding and melting at least one O-composition raw material.
(4)無機質粉末が陶磁器用原料を900〜1000℃
の温度範囲で焼成して磁器化するものであることを特徴
とする請求項(1)記載のセラミックス構造材の製造方
法。
(4) Inorganic powder is heated to 900-1000℃ as a raw material for ceramics.
2. The method of manufacturing a ceramic structural material according to claim 1, wherein the ceramic structural material is made into porcelain by firing in a temperature range of .
(5)高強度結晶化ガラスの繊維状の方向性配列組織を
磁器質素地に交絡して形成した上、多数の残存気孔を包
合せしめた請求項(1)により製造した焼成構造からな
る板状の成形体であることを特徴とするセラミックス構
造材。
(5) A plate having a fired structure manufactured according to claim (1), in which a fibrous directional array structure of high-strength crystallized glass is intertwined with a porcelain base material, and a large number of residual pores are enclosed. A ceramic structural material characterized by being a shaped body.
(6)非晶質ガラス繊維からなる骨材65〜100重量
部と無機質粉末5〜35重量部からなる組成原料にパル
プを3〜25重量部添加してなるスラリーを抄造成形し
た上900〜1000℃に焼成し、高強度結晶化ガラス
の繊維状組織を主体とする板状成形体を形成することを
特徴とするセラミックス構造材の製造方法。
(6) A slurry made by adding 3 to 25 parts by weight of pulp to a composition raw material consisting of 65 to 100 parts by weight of aggregate made of amorphous glass fibers and 5 to 35 parts by weight of inorganic powder is formed into a paper, 1. A method for producing a ceramic structural material, which comprises firing at a temperature of 0.degree.
(7)抄造に添加する薬剤として凝集剤とエマルジョン
タイプの有機物からなるバインダーを使用することを特
徴とする請求項(2)または(6)項に記載するセラミ
ックス構造材の製造方法。
(7) The method for manufacturing a ceramic structural material according to claim (2) or (6), characterized in that a binder consisting of a flocculant and an emulsion type organic substance is used as a chemical added to the papermaking process.
JP4532988A 1988-02-26 1988-02-26 Ceramic construction material and its production Pending JPH01219073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4532988A JPH01219073A (en) 1988-02-26 1988-02-26 Ceramic construction material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4532988A JPH01219073A (en) 1988-02-26 1988-02-26 Ceramic construction material and its production

Publications (1)

Publication Number Publication Date
JPH01219073A true JPH01219073A (en) 1989-09-01

Family

ID=12716274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4532988A Pending JPH01219073A (en) 1988-02-26 1988-02-26 Ceramic construction material and its production

Country Status (1)

Country Link
JP (1) JPH01219073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656905B2 (en) 2011-08-11 2017-05-23 Hoya Corporation Fluorophosphate glass and method for producing the same and near-infrared absorbing filter
CN110894155A (en) * 2018-09-12 2020-03-20 揖斐电株式会社 Method for manufacturing honeycomb structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656905B2 (en) 2011-08-11 2017-05-23 Hoya Corporation Fluorophosphate glass and method for producing the same and near-infrared absorbing filter
CN110894155A (en) * 2018-09-12 2020-03-20 揖斐电株式会社 Method for manufacturing honeycomb structure
US11511458B2 (en) 2018-09-12 2022-11-29 Ibiden Co., Ltd. Method of producing honeycomb structured body

Similar Documents

Publication Publication Date Title
US4824811A (en) Lightweight ceramic material for building purposes, process for the production thereof and the use thereof
Malaiškienė et al. Effectiveness of technogenic waste usage in products of building ceramics and expanded clay concrete
US20030138614A1 (en) Plasterboard composition, preparation of this composition and manufacture of plasterboards
CN103130524A (en) Energy-saving light cordierite-mullite kiln furnace material, kiln furnace and preparation method of material
US3853571A (en) Fire resistant composition containing gypsum and silicate-based material and processs for making same
JP2018035052A (en) Large ceramic sheet and manufacturing method therefor
Suvorov et al. High-temperature heat-insulating materials based on vermiculite
RU2668599C1 (en) Composite ceramic mixture
JPS6116753B2 (en)
US5284712A (en) Cement-containing ceramic articles and method for production thereof
US9957197B1 (en) Porous geopolymers
JPH01219073A (en) Ceramic construction material and its production
US3086898A (en) Light-weight structural unit
US4018964A (en) Method for preparing glassy fiber having protuberances studded on the surface useful for reinforcement and resulting product
JPH0524102B2 (en)
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same
KR20170041980A (en) Extruding panel for building materials with fly ash and bottom ash
US3436238A (en) Lightweight refractory brick and aggregate
CN106045408A (en) High-strength building block and preparation method thereof
Tawfik et al. Lightweight magnesium oxychloride-based building units from Egyptian raw magnesite
US3278660A (en) Light-weight structural units and method for producing the same
EP4071125A1 (en) Composition of heat-insulating lightweight composite material
US1997282A (en) Light weight clay product and process of making
RU2200138C2 (en) Crude mixture for manufacture of building materials
JPH049747B2 (en)