JPH0476943B2 - - Google Patents

Info

Publication number
JPH0476943B2
JPH0476943B2 JP59025587A JP2558784A JPH0476943B2 JP H0476943 B2 JPH0476943 B2 JP H0476943B2 JP 59025587 A JP59025587 A JP 59025587A JP 2558784 A JP2558784 A JP 2558784A JP H0476943 B2 JPH0476943 B2 JP H0476943B2
Authority
JP
Japan
Prior art keywords
gypsum
weight
dihydrate
parts
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59025587A
Other languages
Japanese (ja)
Other versions
JPS60171261A (en
Inventor
Takao Take
Katsuaki Kaneko
Mitsusato Kusunoki
Toshinobu Ichiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKU KK
ONODA SEMENTO KK
Original Assignee
ASUKU KK
ONODA SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKU KK, ONODA SEMENTO KK filed Critical ASUKU KK
Priority to JP2558784A priority Critical patent/JPS60171261A/en
Priority to US06/698,674 priority patent/US4645548A/en
Priority to BR8500668A priority patent/BR8500668A/en
Publication of JPS60171261A publication Critical patent/JPS60171261A/en
Publication of JPH0476943B2 publication Critical patent/JPH0476943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • C04B28/146Calcium sulfate hemi-hydrate with a specific crystal form alpha-hemihydrate

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、不燃性石膏板の製造方法に関する。
さらに詳しく述べれば、水和性石膏50〜95重量部
および二水石膏5〜50重量部合計100重量部より
なる粉末状石膏に所定量の繊維、凝結遅延剤およ
び所要の水からなる混合物を成形、硬化および乾
燥させる高品質の該板の製造方法に関する。 石膏板は、無機質不燃性建築材料の中では、経
済的に利用でき、耐火性、遮音性、断熱性、寸法
安定性および被施工性にすぐれているため、特に
内装材として広く使用されている。石膏板製造技
術の基本は、二水石膏を加熱脱水した焼石膏に水
を加えて成形硬化させ、所定形態の板状物を得る
のである。したがつて石膏として硬化性をもたな
い二水石膏は原則として使用できず、若しも焼石
膏中に僅か数%でも二水石膏が混在すると成形品
の強度が著しく低下するのみならず、紙付き石膏
ボードの場合紙との接着性も失われる。その他、
二水石膏は石膏の凝結を促進するのでその作用を
緩和するため凝結遅延剤の配合量が増加するなど
焼石膏と二水石膏の混合使用は否定されていた。
(特公昭57−49004号)。従つて、若しも焼石膏の
中の相当割合を二水石膏に置換した粉末状石膏で
公知の石膏板と同等のものが製造できれば、二水
石膏から焼石膏を製造するための莫大な熱エネル
ギーを節約することが可能になる。 他方、焼石膏を使用せず、二水石膏のまゝ使用
して成形硬化させる石膏板若しくはその製法につ
いてもいくつかの提案がある。しかし、それら
は、例えば、300Kg/cm2以上のような極度の高
圧加圧を要するに拘らず、得られる石膏板の曲げ
強度は10〜35Kg/cm2程度しか得られず(特公昭49
−31012号)若しくは、比較的低い10〜250Kg/
cm2ような圧力でプレス成型できるが、得られる製
品の曲げ強度は、著しく低く5〜30Kg/cm2程度に
止まり(特公昭55−349号)いづれも建材として
の実用に供し得ないものしか得られていない。 本発明者等は、上述の公知技術に係る問題点の
解決すなわち、石膏板の製造に二水石膏を利用す
ることによる原料面での省エネルギーの達成、二
水石膏利用製品の製造条件の緩和及び強度の向上
につき鋭意研究した。その結果、意外にも、繊維
入り石膏板について使用する粉末状石膏の5〜50
重量部の二水石膏を使用し、残部の95〜50重量部
について焼石膏を使用するときは、石膏板の実用
的強度として100%焼石膏を使用したものに劣ら
ず、かつ、製造工程はより円滑能率的に実施し得
ることを知見し、この知見に基づいて本発明を完
成した。 以上の記述から明らかなように本発明の目的
は、新規な石膏板の製造方法を提供することであ
り、より詳しくは、原料石膏粉末として焼石膏と
二水石膏の併用を可能にし、製造法として円滑能
率的で実用可能な製品の強度が得られる該製造方
法を提供することである。 本発明は、下記の主要構成を有する。 水和性石膏50〜95重量部と二水石膏5〜50重量
部よりなる粉末石膏100重量部に対し、0.5〜30重
量部の繊維、該水和石膏に対し0.1〜2.0重量%の
凝結遅延剤および水からなる混合物を該水和性石
膏が水和する前に成形し、硬化乾燥せしめること
を特徴とする不燃性石膏板の製造方法。 本発明の構成と硬化につき以下に詳述する。 本発明の方法に係る原料的特徴は、水和性石膏
と二水石膏を実質的に併用する点にある。使用す
る水和性石膏としては、二水石膏を公知方法で加
熱処理して得られるα型半水石膏、β型半水石膏
若しくは可溶性無水石膏のいづれか1種若しくは
2種以上の混合物である。使用する水和性石膏の
粉末度は、好ましくはブレーン比表面積値で5000
cm2/g以下である。 この値を著しく越えるような細かい粉末度のも
のは、本発明に係る前述の混合物からの成形品の
硬化時間が不都合に短縮される傾向を生じこれを
是正するために凝結遅延剤の添加量が増大し好ま
しくない。 逆に該粉末度が粗すぎる場合は、得られる硬化
体すなわち石膏板の強度が低下する。従つて、該
粉末度は、最大粒径として500μ以下であり、か
つ、ブレーン比表面積値が1000cm2/g以上である
ことが好ましい。なお、本発明に係る成形方法と
して抄造法を採用する場合は、該比表面積値は、
5000cm2/g以下であることが好ましい。何故なら
使用された水和性石膏粉末の瀘水中への逸失を最
小限に止めることが可能となるからである。 他方、二水石膏についてはその粒径が500μ以
下であれば、その出所又は製法の如何を問わな
い。周知のように工業原料として二水石膏には、
天然品の外に多種類の化学工業(的副生)製品が
在る。それらは例えば、排煙脱硫石膏、りん酸石
膏、製塩石膏、チタン石膏およびフツ酸石膏であ
る。塊状品例えば天然石膏は、上述の粒度まで粉
砕する必要があり、その点で他の化学石膏の方が
利用し易い。その反面、該二水石膏は、その粉末
度が過度に細かくなると共存する水和性石膏(半
水石膏および/または可溶性無水石膏)の凝結を
著しく促進する。これを防止するため石膏板製造
用混合物に添加すべき凝結遅延剤の量を増加しな
くてはならないという不利が在る。したがつて、
該二水石膏の粉末度は、ブレーン比表面積値で
5000cm2/g以下であることが好ましい。二水石膏
は、使用にあたり、繊維の離解の際に混合して分
散させておくことが好ましい。 前述の水和性石膏と二水石膏の使用割合は、両
者の合計量100重量部に対し、前者が50〜95重量
部、後者が5〜50重量部である。前者が50重量部
未満では成形品の強度が不十分となり、95重量部
を越えると水和性石膏の節約という本発明の目的
に反する。他方、後者を50重量部以上配合した場
合は、成形品の強度低下が著しく、最終的に得ら
れる石膏板の実用性が失われる。二水石膏の混合
割合と石膏板強度の関係を例示すると下表のとお
りである。
The present invention relates to a method for manufacturing noncombustible gypsum board.
More specifically, a mixture consisting of a predetermined amount of fibers, a set retarder, and the required water is molded into powdered gypsum consisting of 50 to 95 parts by weight of hydratable gypsum and 5 to 50 parts by weight of dihydrate, a total of 100 parts by weight. , relates to a method for producing high quality said boards by curing and drying. Among inorganic noncombustible building materials, gypsum board is widely used as an interior material because it is economically usable and has excellent fire resistance, sound insulation, heat insulation, dimensional stability, and workability. . The basic gypsum board manufacturing technology is to add water to calcined gypsum, which is made by heating and dehydrating dihydrate gypsum, and then forming and hardening it to obtain a plate-like product of a predetermined shape. Therefore, dihydrate gypsum, which does not have hardening properties as plaster, cannot be used in principle, and if even a few percent of dihydrate gypsum is mixed in calcined gypsum, the strength of the molded product will not only decrease significantly, but also In the case of paper-covered gypsum board, the adhesion to the paper is also lost. others,
Since gypsum dihydrate promotes the setting of gypsum, the mixed use of calcined gypsum and gypsum dihydrate was denied, as the amount of setting retardant added was increased to alleviate this effect.
(Special Publication No. 57-49004). Therefore, if a powdered gypsum equivalent to a known gypsum board could be produced by replacing a considerable proportion of the calcined gypsum with gypsum, it would require a huge amount of heat to produce gypsum from the gypsum dihydrate. It becomes possible to save energy. On the other hand, there are several proposals regarding gypsum boards and methods for manufacturing the same, which do not use calcined gypsum but instead use dihydrate gypsum and are molded and hardened. However, even though these methods require extremely high pressure, such as 300 Kg/cm 2 or more, the bending strength of the resulting gypsum board is only about 10 to 35 Kg/cm 2 (Special Publications Publication No. 49 of the Showa era).
-31012) or relatively low 10-250Kg/
Although it can be press-formed at a pressure of 1.2 cm2, the bending strength of the resulting product is extremely low, at around 5 to 30 kg/ cm2 (Special Publication No. 55-349), and can only be used as a practical building material. Not obtained. The present inventors have solved the problems associated with the above-mentioned known technologies, namely, achieved energy savings in terms of raw materials by using dihydrate gypsum in the production of gypsum boards, eased the manufacturing conditions for products using dihydrate, and We conducted extensive research on improving strength. As a result, it was surprisingly found that 5 to 50% of the powdered gypsum used for fiber-filled gypsum board
When using 1 part by weight of gypsum dihydrate and 95 to 50 parts by weight of calcined gypsum, the practical strength of the gypsum board is equal to that of 100% calcined gypsum, and the manufacturing process is It was discovered that the present invention could be carried out more smoothly and efficiently, and the present invention was completed based on this knowledge. As is clear from the above description, an object of the present invention is to provide a new method for manufacturing a gypsum board. More specifically, it is possible to use calcined gypsum and dihydrate gypsum together as raw material gypsum powder, and the manufacturing method The object of the present invention is to provide a manufacturing method that is smooth, efficient, and has a strength that can be used for practical purposes. The present invention has the following main configurations. For 100 parts by weight of powdered gypsum consisting of 50 to 95 parts by weight of hydrated gypsum and 5 to 50 parts by weight of dihydrate, 0.5 to 30 parts by weight of fibers, and 0.1 to 2.0 parts by weight of setting retardation to the hydrated gypsum. 1. A method for producing a non-combustible gypsum board, which comprises forming a mixture of an agent and water before the hydrated gypsum is hydrated, and then hardening and drying the mixture. The structure and curing of the present invention will be explained in detail below. The raw material characteristic of the method of the present invention is that hydrated gypsum and dihydrate gypsum are substantially used together. The hydrated gypsum used is any one of α-type hemihydrate gypsum, β-type hemihydrate gypsum, or soluble anhydrite obtained by heat-treating dihydrate gypsum by a known method, or a mixture of two or more types. The fineness of the wettable gypsum used is preferably 5000 in Blaine specific surface area value.
cm 2 /g or less. A fineness of fineness which significantly exceeds this value tends to disadvantageously shorten the curing time of molded articles from the above-mentioned mixtures according to the invention, and in order to rectify this the addition of set retarder may be necessary. Increased and undesirable. On the other hand, if the fineness is too coarse, the strength of the resulting cured product, that is, the gypsum board, will decrease. Therefore, it is preferable that the particle size is 500 μm or less in maximum particle size and the Blaine specific surface area value is 1000 cm 2 /g or more. In addition, when a papermaking method is adopted as the molding method according to the present invention, the specific surface area value is
It is preferably 5000 cm 2 /g or less. This is because it becomes possible to minimize the loss of the used hydrated gypsum powder into the filtrate. On the other hand, as long as the particle size of gypsum dihydrate is 500μ or less, its source or manufacturing method does not matter. As is well known, gypsum dihydrate is used as an industrial raw material.
In addition to natural products, there are many types of chemical industry (by-product) products. These are, for example, flue gas desulphurization gypsum, phosphate gypsum, salt gypsum, titanium gypsum and fluoric gypsum. Bulky products such as natural gypsum must be ground to the above-mentioned particle size, and other chemical gypsums are easier to use in this respect. On the other hand, if the dihydrate gypsum has an excessively fine powder, it significantly accelerates the setting of coexisting hydrated gypsum (hemihydrate gypsum and/or soluble anhydrite). The disadvantage is that in order to prevent this, the amount of set retarder to be added to the mixture for producing gypsum board must be increased. Therefore,
The fineness of the dihydrate gypsum is expressed by the Blaine specific surface area value.
It is preferably 5000 cm 2 /g or less. When using gypsum dihydrate, it is preferable to mix and disperse it during disintegration of the fibers. The proportions of the above-mentioned hydrated gypsum and dihydrate gypsum are 50 to 95 parts by weight and 5 to 50 parts by weight of the former and 5 to 50 parts by weight, per 100 parts by weight of both. If the former is less than 50 parts by weight, the strength of the molded product will be insufficient, and if it exceeds 95 parts by weight, it will go against the purpose of the present invention, which is to save hydrated gypsum. On the other hand, if the latter is added in an amount of 50 parts by weight or more, the strength of the molded product will be significantly reduced, and the practicality of the final gypsum board will be lost. The table below shows an example of the relationship between the mixing ratio of gypsum dihydrate and the strength of the gypsum board.

【表】 本発明に使用する繊維としては、例えば石綿若
しくはガラス繊維のような無機質繊維または、セ
ルローズ繊維、ビニロン繊維、ポリプロピレン繊
維若しくはポリアミド繊維のような天然又は合成
の有機質繊維の一種若しくは二種以上を組合わせ
て使用できる。これらの中で特に石綿繊維及びセ
ルローズ繊維は、石膏(硬化物)との接着力が強
いので使用する繊維中にこれらのいづれかを使用
し若しくは混合使用することが好ましい。 本発明に係る石膏板製造用の混合物に前述のよ
うな繊維質を配合することは、得られる石膏硬化
体の脆さを改善し、併せて耐衝撃強度、耐曲げ強
度を向上させ柔軟性を良好にする。該混合物にお
いて繊維の使用量は、粉末状石膏100重量部に対
し、好ましくは0.5〜30重量部である。0.5重量部
未満では、上述の諸効果の発現が不十分であり、
30重量部を越えて配合しても該効果は向上せず、
経済的でない。反つて、一部の物性については低
下するおそれがある。 本発明に係る前述の混合物に使用する水量は、
限定されず、また、成形方法によつて異なる。し
かしながら、水以外の該混合物量に対して15〜
2500重量%混合することにより成形し易い該混合
物が得られる。必要な最小限の水量は、水和性石
膏が完全に水和するのに必要な水量である。 本発明に使用する石膏の凝結遅延剤は、グリセ
リン、アルコール、リン酸塩、カルボン酸、オキ
シカルボン酸若しくはそれらの塩類およびアミノ
酸誘導体等公知の物質のいづれも使用できる。し
かしながら、本発明のような粉末状石膏100重量
部中に5〜50重量部のような大量の二水石膏が積
極的に配合されている場合にあつては、特に少
量の添加で凝結遅延効果が大であり、得られる
石膏硬化体の強度を低下させないという条件を満
足させる必要がある。以上の見地から、本発明者
等が見出した最善の遅延剤は、酒石酸若しくはそ
の金属塩またはより好ましくはそれらの一以上と
アミノ酸誘導体の組合せである。該金属塩用の金
属としてはアルカリ金属が好ましい。 凝結遅延剤の使用量は、本発明の方法の目的と
する石膏板の成形方法によつて異なるが標準的に
は、使用する水和性石膏100重量部に対して0.1〜
2重量部を必要とする。0.1重量部未満では、凝
結遅延硬化を発現できず2重量部を越えると石膏
硬化体の強度を低下させる。 本発明にあつては、以上の諸原料を混合して得
られる混合物ないしスラリーのPHを好ましくは7
以上に調整する。調整方法は該混合物に添加剤と
して少量の塩基性物質例えばセメント、消石灰等
を使用する方法でもよい。このようなPHの調整は
硬化遅延剤の硬化を高めると共に、本発明に係る
石膏板製造設備に錆若しくはスケールの発生を防
止するのみでなく、製造石膏板についてその使用
時に釘打ちされた釘の防錆等の効果を有する。 上述のように製造された本発明に係る混合物を
用いて石膏板を製造する成形方法としては、流し
込み、脱水、加圧圧縮若しくは抄造等公知のいづ
れの成形方法も利用できる。しかしながら、いづ
れの成形方法を採用する場合も、前記混合物中の
水和性石膏が水和する以前に成形しなければなら
ない。若しも該混合物中の水和性石膏が水和した
後に成形を行うと得られる石膏硬化体の強度は激
減し、実用的強度を保持する石膏板を得ることが
できない。同様の理由で若し該整形工程の一部に
加圧圧縮工程が含まれる場合は、原料混合物中の
水和性石膏が水和する以前に該工程を終了しなけ
ればならない。該加圧時の圧力は、10〜500Kg/
cm2で実施する必要がある。特に本発明に係る前述
の混合物について50Kg/cm2以上の圧力で圧縮成型
した石膏板は、二水石膏を配合しているに拘ら
ず、粉末石膏として水和性石膏のみを使用して得
られた物に比較して殆ど強度的に劣らないものを
得ることができる。成型した石膏板は、水和が完
了した後、乾燥せしめる。乾燥は公知の方法で適
宜の条件で行なえばよい。 以上にようにして、本発明に拘る石膏板が得ら
れるが、該製造工程中で発生する流出混合物は、
そのまゝの状態で循環して使用することができ
る。また、本発明の方法にかゝる石膏板の形態的
な不良製品若しくは成形時の切断端部等の回収品
は、再度粉砕して原料の二水石膏および繊維の一
部として再使用できる。これらの循環使用若しく
は回収使用が可能な理由は、これらの再使用原料
中の水和性石膏が、水和して二水石膏に変化して
も、これらを原料二水石膏として扱い本発明に係
る原料の配合割合を調整できるためであつて、粉
末石膏として水和性石膏のみを使用する従来法か
らは予測し得ない効果といえる。たゞし、以上の
再使用の場合も全原料中の二水石膏の割合が粉末
石膏の50重量%を越えてはならないことは勿論で
ある。本発明の方法によれば、成形された生板を
複数枚重ね合わせてえ加圧成形することにより、
任意の厚さの一体化された厚物石膏板を製造する
ことができる。 本発明の方法においては、目的とする石膏板の
物性を種々改善するため公知の各種添加材を使用
できる。それらは、例えばウオラストナイト、マ
イカ、バーミキユライト、けいそう土若しくはパ
ーマライト等である。ウオラストナイト、マイカ
等の針状や鱗片状の添加材の添加は、曲げ強度の
向上、寸法変化率の低減、耐熱性の向上等の効果
が見られ、一方、バーミキユライト、けいそう土
若しくはパーライト等の軽量添加材の添加は、か
さ比重の低減、寸法変化率の低減等の効果が見ら
れる。尚、添加材の種類は勿論これ等に限定され
るものではない。これらの鉱物質の添加量は、本
発明に係る原料混合物中の繊維質の使用量の枠内
に決定されることが望ましい。すなわち、該繊維
質と該鉱物質の合計量が粉末状石膏100重量部に
対して0.5〜30重量部の範囲内で使用することが
好結果をもたらす。 本発明の方法は、原料の粉末石膏として高価な
水和性石膏のみを使用する必要がなく、その半量
まで安価な二水石膏を併用できるので経済的であ
る。また、本発明の方法は、次の諸理由で特に抄
造法に適用した場合に有利に実施できる。すなわ
ち、スラリーの濾過性が改善されるので抄造性
が向上し、使用する繊維として必ずしもアスベス
トとパルプを併用しなくてもよい。これは、粉末
石膏として二水石膏を混合使用したことに基づ
く。また、白水および流水石膏を循環使用する
際の安定的連続運転のため配合される凝結遅延剤
を(二水石膏を配合しない場合に較べて)特に増
量する必要がない。さらに該遅延剤として酒石
酸若しくはその金属塩およびアミノ酸誘導体(例
えば、市販商品名パフタード)を併用配合した場
合には、遅延剤の添加量が酒石酸又はその金属塩
単味の場合と比べ少量ですみ、本発明方法に係る
抄造後の加圧成形により、成形前に含まれていた
アミノ酸誘導体の大半が瀘水中に移動するので該
抄造品の水和効果が促進され、短時間に高強度の
石膏板が得られる。 また、本発明の方法になる石膏板は、僅か数%
の二水石膏の混在下に製造した従来法の石膏板
が、該非混在の場合に比較して著しく強度が低下
していたのに対して、石膏原料の半量について二
水石膏を使用してもその強度低下は僅かですむと
いう利点がある。さらに本発明の方法になる石膏
板は、従来品と比較した場合、その耐火性、耐水
性については勿論、内装材としての諸物性すなわ
ち、曲げ強さ、耐衝撃性、寸法安定性、柔軟性、
加工性とよび保釘性等についてもより優れてい
る。 以下、抄造法その他の製造法による実施例、比
較例を示す。これらに関する試験法としては下記
の方法を採用した。 曲げ強度:JISA 5418(石綿セメントけい酸カル
シウム板) 衝撃強度:JISC 2210(電気絶縁用石綿セメント
板) 寸法変化率:JISA 5418(石綿セメントけい酸カ
ルシウム板) 加熱収縮率:JISA 9510(けい酸カルシウム保温
材)に準ずる。但し、加熱条件は850℃2時間
加熱 不燃性:建設省告示1828号 実施例1〜9、比較例1〜6 下記の原料を用い、後述表−1に示す割合で混
合した。 排脱石膏:排煙脱硫法で副生した二水石膏(粒度
は、0.59m/m目篩全通、ブレーン1200cm2
g) リン酸石膏:リン酸二水石膏(粒度は、0.59m/
m目篩全通、ブレーン900cm2/g) β型半水石膏:焼石膏市販品 α型半水石膏:型材用α石膏市販品 石綿:アモイサイト石綿をパン型グラインダーで
解枠 故紙:新聞故紙パルプ ガラス繊維:Eガラス切断品、長さ、1/2インチ 消石灰:市販品 酒石酸:市販品 アミノ酸誘導体:パフタードS−02〔味の素(株)製〕 上記原料の混合方法は、凝結遅延材である酒石
酸およびアミノ酸誘導体のみ、水和性石膏である
β型半水石膏又はα型半水石膏に対して外割重量
%で使用し、その他は、内割り重量部(註重量%
と仝じ)である。 混合順序は、所定量の石綿、故紙若しくはガラ
ス繊維の繊維類、消石灰、二水石膏、酒石酸およ
びアミノ酸誘導体と水とを混合したスラリーに、
所定量のβ型半水石膏若しくはα型半水石膏を加
えて混合し、全固形分の濃度が該スラリー中で10
重量%となるように水量を調整した。 かくして得られたスラリーを回転式丸網シリン
ダーにより抄き上げ、エンドレスのフエルト上に
取り上げて薄いフイルムを形成させたものを−8
〜10mmHgの吸引力を有する脱水装置で脱水し、
メーキングロール上に上がり目標の6mm厚さにな
るまで積層させたものをカツターで切断し、生シ
ートを得た。 かくして得られた生シートは、その中に含有さ
れている焼石膏が水和される以前に、所定の圧力
で加圧・脱水し、該加圧・脱水品を効果乾燥させ
て本発明の方法に係る若しくは比較例の石膏板を
得た。また、比較例としては、二水石膏を添加せ
ず若しくは50重量%以上使用した以外は同様に実
施した。 以上のようにして得られた製品石膏板につき各
種の性能試験を行ない得られた結果を表−2に示
した。
[Table] The fibers used in the present invention include one or more types of inorganic fibers such as asbestos or glass fibers, or natural or synthetic organic fibers such as cellulose fibers, vinylon fibers, polypropylene fibers, or polyamide fibers. Can be used in combination. Among these, asbestos fibers and cellulose fibers have particularly strong adhesion to plaster (hardened material), so it is preferable to use either one or a mixture of these fibers in the fibers to be used. Incorporating the above-mentioned fibers into the mixture for producing gypsum board according to the present invention improves the brittleness of the resulting hardened gypsum body, and also improves impact strength and bending strength, and improves flexibility. make it good The amount of fiber used in the mixture is preferably 0.5 to 30 parts by weight per 100 parts by weight of powdered gypsum. If it is less than 0.5 part by weight, the above-mentioned effects are insufficiently expressed,
Even if it is blended in an amount exceeding 30 parts by weight, the effect does not improve.
Not economical. On the other hand, some physical properties may deteriorate. The amount of water used in the aforementioned mixture according to the invention is:
It is not limited and varies depending on the molding method. However, for the amount of said mixture other than water,
By mixing 2500% by weight, a mixture that is easy to mold can be obtained. The minimum amount of water required is the amount of water required for the hydratable gypsum to be completely hydrated. As the gypsum setting retarder used in the present invention, any of known substances such as glycerin, alcohol, phosphate, carboxylic acid, oxycarboxylic acid or their salts, and amino acid derivatives can be used. However, when a large amount of dihydrate gypsum, such as 5 to 50 parts by weight, is actively blended into 100 parts by weight of powdered gypsum as in the present invention, the setting retarding effect can be obtained even with a small addition. It is necessary to satisfy the condition that the strength of the hardened gypsum product is large and the strength of the obtained gypsum hardened body is not reduced. In view of the above, the best retardant that the inventors have found is tartaric acid or a metal salt thereof, or more preferably a combination of one or more thereof and an amino acid derivative. The metal for the metal salt is preferably an alkali metal. The amount of setting retarder used varies depending on the method of forming the gypsum board that is the object of the method of the present invention, but it is typically 0.1 to 100 parts by weight of the hydrated gypsum used.
Requires 2 parts by weight. If it is less than 0.1 part by weight, delayed setting and hardening cannot be achieved, and if it exceeds 2 parts by weight, the strength of the hardened gypsum product is reduced. In the present invention, the pH of the mixture or slurry obtained by mixing the above raw materials is preferably 7.
Adjust as above. The preparation method may include using a small amount of a basic substance such as cement, slaked lime, etc. as an additive in the mixture. Such PH adjustment not only enhances the curing of the curing retarder and prevents the formation of rust or scale on the gypsum board manufacturing equipment according to the present invention, but also prevents the production of nails from driving into manufactured gypsum boards during use. It has effects such as rust prevention. As a molding method for manufacturing a gypsum board using the mixture according to the present invention manufactured as described above, any known molding method such as pouring, dehydration, pressure compression, or paper forming can be used. However, whichever molding method is employed, the molding must be performed before the hydrated gypsum in the mixture is hydrated. If molding is performed after the hydrated gypsum in the mixture has been hydrated, the strength of the resulting hardened gypsum product will be drastically reduced, making it impossible to obtain a gypsum board that maintains practical strength. For the same reason, if a pressurization process is included as part of the shaping process, the process must be completed before the hydrated gypsum in the raw material mixture is hydrated. The pressure during pressurization is 10 to 500Kg/
Must be carried out in cm 2 . In particular, gypsum boards compression-molded at a pressure of 50 kg/cm 2 or higher with the above-mentioned mixture according to the present invention are obtained by using only hydrated gypsum as powdered gypsum, regardless of the inclusion of dihydrate gypsum. It is possible to obtain a product that is almost as strong as the previous one. After the molded gypsum board is hydrated, it is allowed to dry. Drying may be carried out by a known method under appropriate conditions. As described above, the gypsum board according to the present invention is obtained, but the effluent mixture generated during the manufacturing process is
It can be recycled and used as is. Further, recovered products such as morphologically defective products of the gypsum board or cut ends during molding according to the method of the present invention can be re-pulverized and reused as the raw material dihydrate gypsum and part of the fibers. The reason why these recycled or recovered materials can be used is that even if the hydrated gypsum in these reused raw materials hydrates and turns into dihydrate gypsum, they can be treated as raw material dihydrate gypsum and used in the present invention. This is because the blending ratio of such raw materials can be adjusted, and this can be said to be an effect that cannot be predicted from conventional methods that use only hydrated gypsum as powdered gypsum. However, even in the case of reuse as described above, it goes without saying that the proportion of dihydrate gypsum in the total raw materials must not exceed 50% by weight of the powdered gypsum. According to the method of the present invention, by stacking a plurality of molded raw boards and press-forming them,
Integrated thick gypsum boards of any thickness can be manufactured. In the method of the present invention, various known additives can be used to improve various physical properties of the target gypsum board. These are, for example, wollastonite, mica, vermiculite, diatomaceous earth or permalite. Addition of needle-shaped or scale-shaped additives such as wollastonite and mica has been shown to improve bending strength, reduce dimensional change rate, and improve heat resistance.On the other hand, vermiculite and diatomaceous earth Alternatively, the addition of lightweight additives such as pearlite has effects such as a reduction in bulk specific gravity and a reduction in dimensional change rate. Note that the type of additive is not limited to these, of course. It is desirable that the amount of these minerals added be determined within the framework of the amount of fibrous material used in the raw material mixture according to the present invention. That is, good results are obtained when the total amount of the fiber and the mineral is within the range of 0.5 to 30 parts by weight based on 100 parts by weight of powdered gypsum. The method of the present invention is economical because it is not necessary to use only expensive hydrated gypsum as the raw material powdered gypsum, and up to half of the amount of inexpensive dihydrate gypsum can be used in combination. Further, the method of the present invention can be advantageously implemented particularly when applied to a papermaking method for the following reasons. That is, since the filterability of the slurry is improved, the papermaking properties are improved, and it is not necessary to use asbestos and pulp together as the fibers used. This is based on the mixed use of dihydrate gypsum as powdered gypsum. Furthermore, for stable continuous operation when white water and running gypsum are recycled, there is no need to increase the amount of setting retardant (compared to the case where dihydrate gypsum is not mixed). Furthermore, when tartaric acid or its metal salt and an amino acid derivative (for example, commercially available product name Pufftard) are combined as the retardant, the amount of retardant added is smaller than when tartaric acid or its metal salt is used alone. By pressure forming after papermaking according to the method of the present invention, most of the amino acid derivatives contained before forming move into the filtration water, so the hydration effect of the paper product is promoted, and a high-strength gypsum board can be formed in a short time. is obtained. In addition, the gypsum board processed by the method of the present invention is only a few percent
The strength of conventional gypsum boards manufactured with dihydrate gypsum mixed in was significantly lower than that without dihydrate gypsum, but even if dihydrate gypsum was used for half of the gypsum raw material, It has the advantage that the strength decreases only slightly. Furthermore, when compared with conventional products, the gypsum board produced by the method of the present invention has not only its fire resistance and water resistance, but also its physical properties as an interior material, such as bending strength, impact resistance, dimensional stability, and flexibility. ,
It also has better workability and nail retention properties. Examples and comparative examples using papermaking methods and other manufacturing methods are shown below. The following methods were adopted as testing methods for these. Bending strength: JISA 5418 (asbestos cement calcium silicate board) Impact strength: JISC 2210 (asbestos cement board for electrical insulation) Dimensional change rate: JISA 5418 (asbestos cement calcium silicate board) Heating shrinkage rate: JISA 9510 (calcium silicate board) Insulating material). However, the heating condition was 850°C for 2 hours. Non-flammable: Ministry of Construction Notification No. 1828 Examples 1 to 9, Comparative Examples 1 to 6 The following raw materials were mixed in the proportions shown in Table 1 below. Exhaust gypsum: Dihydrate gypsum produced by flue gas desulfurization method (particle size: 0.59m/m sieve, Blaine 1200cm 2 /
g) Phosphate gypsum: Phosphate dihydrate (particle size is 0.59m/
(Through m-mesh sieve, Blaine 900cm 2 /g) β-type hemihydrate gypsum: Calcined gypsum commercially available α-type hemihydrate gypsum: α-gypsum for molding material commercially available Asbestos: Amoysite asbestos broken up with a pan-shaped grinder Waste paper: Waste newspaper Pulp glass fiber: E glass cut product, length, 1/2 inch Slaked lime: Commercial product Tartaric acid: Commercial product Amino acid derivative: Pufftard S-02 [manufactured by Ajinomoto Co., Inc.] The mixing method of the above raw materials is a setting retarder. Only tartaric acid and amino acid derivatives are used in the external weight percent of β-type hemihydrate gypsum or α-type hemihydrate gypsum, which is hydrated gypsum, and the other parts are used in the internal weight percent (note: weight percent).
The same). The mixing order is as follows: a slurry of a predetermined amount of asbestos, waste paper or glass fiber fibers, slaked lime, dihydrate gypsum, tartaric acid, and an amino acid derivative mixed with water;
A predetermined amount of β-type hemihydrate gypsum or α-type hemihydrate gypsum is added and mixed until the total solid concentration is 10% in the slurry.
The amount of water was adjusted to % by weight. The slurry thus obtained was scooped up using a rotary circular mesh cylinder and placed on an endless felt to form a thin film.
Dehydrated using a dehydrator with suction power of ~10 mmHg,
The material was placed on a making roll and laminated to the target thickness of 6 mm, which was then cut with a cutter to obtain a green sheet. The raw sheet thus obtained is pressurized and dehydrated at a predetermined pressure before the calcined gypsum contained therein is hydrated, and the pressurized and dehydrated product is effectively dried to perform the method of the present invention. A gypsum board according to or a comparative example was obtained. In addition, as a comparative example, the same procedure was carried out except that gypsum dihydrate was not added or 50% by weight or more of gypsum was used. Various performance tests were conducted on the product gypsum board obtained as described above, and the results are shown in Table 2.

【表】【table】

【表】 註. * Kg/cm2
[Table] Note. * Kg/cm 2

【表】 実施例10〜18、比較例7〜12 実施例1〜9で使用したものと同一の原料を用
い、後述表−3の割合で混合し、該混合物すなわ
ち固形分に対し、10重量倍の水を加えてスラリー
とし、該スラリーを口紙上に流して均一の厚さに
ひろげ、吸引脱水させた後同表に示す圧力で加圧
成形し、ひきつづき硬化乾燥させて石膏板を得て
その嵩比重および曲げ強度を測定した。結果を同
表に示す。
[Table] Examples 10 to 18, Comparative Examples 7 to 12 The same raw materials as those used in Examples 1 to 9 were mixed in the proportions shown in Table 3 below, and 10% by weight of the mixture, that is, the solid content, was used. Add twice the amount of water to make a slurry, pour the slurry onto a slip paper, spread it to a uniform thickness, dehydrate it by suction, then press-form it at the pressure shown in the same table, and continue to harden and dry to obtain a gypsum board. Its bulk specific gravity and bending strength were measured. The results are shown in the same table.

【表】【table】

【表】 註. * Kg/cm2、** Kg/cm2
実施例 19 (本発明に関連する混合物の濾過性)木材パル
プ(針葉樹)をデイスク型リアイナーを用い、カ
ナダ標準フリーネス(CSF)値で、50、200、400
および700c.c.の4段階にフイブリル化した。これ
ら4種の試料各5gと焼石膏45gまたは焼石膏
22.5gと排煙脱硫石膏各22.5gの混合物にそれぞ
れ水を加えて全量が1となるように調整し、攪
拌してスラリーとした。 これらのスラリーを個別にCSF測定装置の45m
esh網上に投入し、投入時から30秒間の瀘水を採
取した。この瀘水の容積を測定し、下記表−5に
示した。ひきつづき各の瀘水中の粉体固形分の乾
燥重量を測定し、粉体損失量として表−6に示し
た。
[Table] Note: * Kg/cm 2 , ** Kg/cm 2
Example 19 (Filterability of mixtures related to the present invention) Wood pulp (softwood) was filtered using a disc-type rear liner with Canadian Standard Freeness (CSF) values of 50, 200, and 400.
and 700c.c. 5g each of these four samples and 45g of calcined gypsum or calcined gypsum
Water was added to a mixture of 22.5 g of flue gas desulfurization gypsum and 22.5 g of flue gas desulfurization gypsum to adjust the total amount to 1, and the mixture was stirred to form a slurry. These slurries were measured individually at 45m of the CSF measuring device.
The water was poured onto the esh net, and the filtrate was collected for 30 seconds from the time it was poured. The volume of this filtered water was measured and shown in Table 5 below. Subsequently, the dry weight of the powder solid content in each filtrate was measured and shown in Table 6 as the amount of powder loss.

【表】 表−5に明らかなように同一CSF値の場合、二
水石膏を混用したスラリーの瀘水量が、焼石膏単
用のそれよりも著しく大きい。
[Table] As is clear from Table 5, for the same CSF value, the amount of water filtered by the slurry mixed with dihydrate gypsum is significantly larger than that of the slurry mixed with calcined gypsum alone.

【表】 表−6に明らかなように同一CSF値の場合、二
水石膏を混用したスラリーの瀘水中の粉体ロス量
は、焼石膏単用のそれよりも著しく小さい。
[Table] As is clear from Table 6, for the same CSF value, the amount of powder loss in the filtration water of the slurry mixed with gypsum dihydrate is significantly smaller than that of the slurry mixed with gypsum dihydrate.

Claims (1)

【特許請求の範囲】 1 水和性石膏50〜95重量部と粉末度5000cm2/g
以下の二水石膏5〜50重量部よりなる粉末状石膏
100重量部に対し、0.5〜30重量部の繊維、該水和
性石膏に対し0.1〜2.0重量%の凝結遅延剤および
水からなる混合物であつて該二水石膏は該繊維の
離解の際に混合したものを該水和性石膏が水和す
る前に成形し、硬化乾燥せしめることを特徴とす
る抄造法による不燃性石膏板の製造方法。 2 石綿繊維、セルローズ繊維若しくはこれらの
組合わせを使用する特許請求の範囲第1項に記載
の方法。 3 凝結遅延剤として酒石酸若しくはその金属塩
を使用する特許請求の範囲第1項に記載の方法。 4 水和性石膏、二水石膏、繊維、凝結遅延剤お
よび水からなる混合物のPHを7以上に調整する特
許請求の範囲第1項に記載の方法。 5 成形中の該混合物を10〜500Kg/cm2の圧力で
加圧成形する特許請求の範囲第1項に記載の方
法。 6 抄造後の生シートを10〜500Kg/cm2の圧力で
加圧成形する特許請求の範囲第1項に記載の方
法。
[Claims] 1. 50 to 95 parts by weight of hydrated gypsum and a fineness of 5000 cm 2 /g
Powdered gypsum consisting of 5 to 50 parts by weight of the following dihydrate gypsum:
A mixture consisting of 0.5 to 30 parts by weight of fibers per 100 parts by weight, 0.1 to 2.0% by weight of a setting retarder to the hydrated gypsum, and water, in which the dihydrate gypsum is dissolved during disintegration of the fibers. A method for producing a noncombustible gypsum board by a paper-making method, characterized in that the mixture is molded and hardened and dried before the hydrated gypsum is hydrated. 2. The method according to claim 1, which uses asbestos fibers, cellulose fibers, or a combination thereof. 3. The method according to claim 1, wherein tartaric acid or a metal salt thereof is used as the setting retarder. 4. The method according to claim 1, wherein the pH of the mixture consisting of hydrated gypsum, dihydrate gypsum, fibers, setting retarder, and water is adjusted to 7 or higher. 5. The method according to claim 1, wherein the mixture being molded is pressure molded at a pressure of 10 to 500 kg/cm 2 . 6. The method according to claim 1, wherein the raw sheet after papermaking is pressure-formed at a pressure of 10 to 500 kg/cm 2 .
JP2558784A 1984-02-14 1984-02-14 Manufacture of incombustible gypsum board Granted JPS60171261A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2558784A JPS60171261A (en) 1984-02-14 1984-02-14 Manufacture of incombustible gypsum board
US06/698,674 US4645548A (en) 1984-02-14 1985-02-05 Process for producing non-combustible gypsum board and non-combustible laminated gypsum board
BR8500668A BR8500668A (en) 1984-02-14 1985-02-13 PROCESS FOR THE PRODUCTION OF NON-COMBUSTIBLE PLASTER BOARD AND LAMINATED PLASTER BOARD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2558784A JPS60171261A (en) 1984-02-14 1984-02-14 Manufacture of incombustible gypsum board

Publications (2)

Publication Number Publication Date
JPS60171261A JPS60171261A (en) 1985-09-04
JPH0476943B2 true JPH0476943B2 (en) 1992-12-07

Family

ID=12170044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2558784A Granted JPS60171261A (en) 1984-02-14 1984-02-14 Manufacture of incombustible gypsum board

Country Status (1)

Country Link
JP (1) JPS60171261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026166A1 (en) * 1995-02-24 1996-08-29 Chichibu Onoda Cement Corporation Composite gypsum board

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241747A (en) * 1985-08-13 1987-02-23 太平洋セメント株式会社 Manufacture of incombustible gypsum board
US5155959A (en) * 1989-10-12 1992-10-20 Georgia-Pacific Corporation Firedoor constructions including gypsum building product
US5347780A (en) * 1989-10-12 1994-09-20 Georgia-Pacific Corporation Gypsum fiberboard door frame
US5171366A (en) * 1989-10-12 1992-12-15 Georgia-Pacific Corporation Gypsum building product
US5632848A (en) * 1989-10-12 1997-05-27 Georgia-Pacific Corporation Continuous processing equipment for making fiberboard
US5305577A (en) * 1989-10-12 1994-04-26 Georgia-Pacific Corporation Fire-resistant structure containing gypsum fiberboard
US5482551A (en) * 1993-09-20 1996-01-09 Armstrong World Industries, Inc. Extruded fire resistant construction and building products
US5945182A (en) * 1995-02-14 1999-08-31 G-P Gypsum Corporation Fire-resistant members containing gypsum fiberboard
JP2001327941A (en) * 2000-05-23 2001-11-27 Yoshino Gypsum Co Ltd Gypsum building material
JP2002097058A (en) * 2000-09-19 2002-04-02 Nitto Boseki Co Ltd Method for recycling construction waste material including gypsum board
JP4639454B2 (en) * 2000-10-02 2011-02-23 日東紡績株式会社 Recycling method of building waste including gypsum board
JP7382723B2 (en) * 2013-10-07 2023-11-17 クナウフ ギプス カーゲー Method for producing gypsum plasterboard
JP6207090B2 (en) * 2014-12-25 2017-10-04 チヨダウーテ株式会社 Gypsum member, gypsum board, and method for manufacturing gypsum member
KR102408499B1 (en) * 2017-08-04 2022-06-13 크나우프 깁스 카게 Improvement of stucco properties through aging at high temperature and high humidity level

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509622A (en) * 1973-05-29 1975-01-31
JPS5027823A (en) * 1973-07-12 1975-03-22
JPS5396030A (en) * 1977-02-02 1978-08-22 Okura Industrial Co Ltd Accelerative agent for setting of plaster of paris
JPS55236A (en) * 1978-06-19 1980-01-05 Kanden Hankiyuu Shoji Kk Extruding molding method of dihydric gypsum
JPS57205351A (en) * 1981-06-09 1982-12-16 Nihon Cement Manufacture of gypsum board
JPS589855A (en) * 1981-07-02 1983-01-20 日産自動車株式会社 Formation of high expansion gypsum formed article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509622A (en) * 1973-05-29 1975-01-31
JPS5027823A (en) * 1973-07-12 1975-03-22
JPS5396030A (en) * 1977-02-02 1978-08-22 Okura Industrial Co Ltd Accelerative agent for setting of plaster of paris
JPS55236A (en) * 1978-06-19 1980-01-05 Kanden Hankiyuu Shoji Kk Extruding molding method of dihydric gypsum
JPS57205351A (en) * 1981-06-09 1982-12-16 Nihon Cement Manufacture of gypsum board
JPS589855A (en) * 1981-07-02 1983-01-20 日産自動車株式会社 Formation of high expansion gypsum formed article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026166A1 (en) * 1995-02-24 1996-08-29 Chichibu Onoda Cement Corporation Composite gypsum board

Also Published As

Publication number Publication date
JPS60171261A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
US4645548A (en) Process for producing non-combustible gypsum board and non-combustible laminated gypsum board
CN101439955B (en) Preparation of 06 grade gypsum based autoclave-free aerated concrete building blocks
JPH0476943B2 (en)
JPH0866985A (en) Acoustic tile compound of gypsum and cellulose fiber
KR19990087049A (en) Gypsum wood fiber products with improved water resistance
CN108530009A (en) A kind of inner wall of building lightweight plastering gupsum
US4221598A (en) Process for the production of steam-hardened gas concrete
JPH06316453A (en) Preparation of hydrated calcium silicate bound molded body
JPS6241747A (en) Manufacture of incombustible gypsum board
CN102701616B (en) High-strength magnesian coal ash clinker-free cement
RU2486150C1 (en) Fibre-reinforced cement mixture
KR20010053859A (en) Production of sludge-containing block
CN111018468B (en) Gypsum block preparation method and gypsum block prepared by same
JPH0338966B2 (en)
JP2017137208A (en) Manufacturing method of fiber contaminated gypsum board
JP4213405B2 (en) Fiber-containing gypsum board and manufacturing method thereof
JPH0520377B2 (en)
JPH0438705B2 (en)
JPS6212189B2 (en)
JPS62191455A (en) Anhydrous gypsum papered board and manufacture
HU218719B (en) Method of controlling the hydration behaviour of gipsum in the manufacture of composite materials
JP2666893B2 (en) Composition for lightweight building material and method for producing lightweight building material
JPH035352A (en) Production of fiber-reinforced slag gypsum cement-based lightweight cured body
JP2601781B2 (en) Cement fiberboard
JPS6351995B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees