JP2017137208A - Manufacturing method of fiber contaminated gypsum board - Google Patents

Manufacturing method of fiber contaminated gypsum board Download PDF

Info

Publication number
JP2017137208A
JP2017137208A JP2016018505A JP2016018505A JP2017137208A JP 2017137208 A JP2017137208 A JP 2017137208A JP 2016018505 A JP2016018505 A JP 2016018505A JP 2016018505 A JP2016018505 A JP 2016018505A JP 2017137208 A JP2017137208 A JP 2017137208A
Authority
JP
Japan
Prior art keywords
gypsum
fiber
mass
gypsum board
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018505A
Other languages
Japanese (ja)
Other versions
JP6629615B2 (en
Inventor
孝博 仁平
Takahiro Nihei
孝博 仁平
正章 小田
Masaaki Oda
正章 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2016018505A priority Critical patent/JP6629615B2/en
Publication of JP2017137208A publication Critical patent/JP2017137208A/en
Application granted granted Critical
Publication of JP6629615B2 publication Critical patent/JP6629615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a fiber contaminated gypsum board having good properties by using a recycled anhydrous gypsum derived from gypsum board waste as a raw material.SOLUTION: There is provided a manufacturing method of a fiber contaminated gypsum board by using a recycled anhydrous gypsum with pH of 9.5 or more and less than 12, obtained by burning gypsum dihydrate by pulverizing gypsum board waste at 600°C to 1200°C as a main raw material, adding water to a blended article containing an inorganic filler, a reinforced fiber and a curing promoter and mixing the same, making the same a sheet form by a papermaking method and then pressure molding and curing the same, wherein the inorganic filler is contained at 30 to 150 pts.mass based on 100 pts.mass of the recycled anhydrous gypsum, the reinforced fiber is contained at 5 to 15 pts.mass based on total 100 pts.mass of the powder raw material and the curing promoter is contained at 2 to 12 pts.mass based on 100 pts.mass of the amount of added water.SELECTED DRAWING: None

Description

本発明は、繊維補強された石膏板の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced gypsum board.

従来より建築物の内装に広く用いられている建材として石膏ボードがある。石膏ボードは、反応性が高く硬化が速い半水石膏を主原料としており、これに他の混和材等と水を加えて混練したスラリーを、上下に配した石膏ボード用原紙の間に流し込み成形装置を通して連続的に板状に成形する方法で製造されている。こうした石膏ボードは、芯材である石膏硬化体を両面に貼られた紙で補強した構成のため、剛性が高い反面、靱性に乏しく、曲面への施工には適さない欠点がある。これに対し、多量の補強繊維を内添した繊維混入石膏板は、曲面施工が可能な不燃建材として有用であり、デザイン性の高い建築物の内装材として随所に使用されている。かかる繊維混入石膏板は、多量の水に補強繊維、石膏、その他の混和材等を分散させて抄き上げる抄造法により成形されるが、石膏ボードの主原料である半水石膏は、硬化速度が速すぎるため反応制御が難しく、抄造法には適していない。このため繊維混入石膏板では、反応性の低いII型無水石膏を主原料とし、これに補強繊維及び硬化促進剤を配合して抄造成形後養生硬化することにより製造されている(特許文献1〜4)。   Gypsum board is a building material that has been widely used in the interior of buildings. Gypsum board is made of hemihydrate gypsum, which is highly reactive and fast-setting, and is made by pouring a mixture of other admixtures and water and kneading them between the base paper for gypsum board. It is manufactured by a method of continuously forming a plate shape through an apparatus. Such a gypsum board has a configuration in which a hardened gypsum body, which is a core material, is reinforced with paper pasted on both sides, and thus has high rigidity, but lacks toughness and has a defect that is not suitable for construction on a curved surface. On the other hand, a fiber-mixed gypsum board with a large amount of reinforcing fibers added therein is useful as an incombustible building material capable of curved construction, and is used everywhere as an interior material for buildings with high design. Such a fiber-containing gypsum board is formed by a papermaking method in which reinforcing fibers, gypsum and other admixtures are dispersed in a large amount of water. Is too fast to control reaction and is not suitable for papermaking. For this reason, the fiber-mixed gypsum plate is manufactured by using type II anhydrous gypsum having low reactivity as the main raw material, blending reinforcing fibers and a curing accelerator therein, and curing and curing after papermaking (Patent Documents 1 to 3). 4).

特開昭63−60146号公報JP 63-60146 A 特開昭64−24061号公報JP-A 64-24061 特開昭64−51357号公報Japanese Unexamined Patent Publication No. 64-51357 特開昭64−51358号公報Japanese Unexamined Patent Publication No. 64-51358

これまで繊維混入石膏板の主原料であるII型無水石膏としては、比較的安価で入手が容易であったフッ酸製造時に生じるいわゆるフッ酸石膏が用いられてきた。フッ酸石膏は、蛍石に濃硫酸を作用させてフッ酸を製造する工程で生じるが、濃硫酸の使用と反応温度が高い条件下で反応が進むことから、II型無水石膏として生成する。このため、排煙脱硫石膏などの二水石膏を焼成するのに比べてII型無水石膏の製造コストが低く、しかも副産物であることから取引価格も安価というメリットがあった。しかしながら、近年、フッ酸の工業的製造方式が変更されたのに伴い、フッ酸製造時に得られるII型無水石膏は入手困難となっており、新たなII型無水石膏源が必要となっている。そこで、本発明者は、種々のII型無水石膏源について調査研究を行った結果、建築物の解体等で大量に発生する石膏ボードの廃材を利用し、これを粉砕、焼成した再生無水石膏が最も有望であるとの判断に至った。ところが、繊維混入石膏板のII型無水石膏源として、この石膏ボード廃材由来の再生無水石膏を利用しようとしたところ、フッ酸石膏とは特性が大きく相違しているため、従来と同じ条件では良好な繊維混入石膏板を安定して効率よく得ることができないことが判明した。
従って、本発明の課題は、石膏ボード廃材由来の再生無水石膏を原料とし、良好な特性を有する繊維混入石膏板を安定して効率よく得るための製造方法を提供することにある。
So-called hydrofluoric acid gypsum produced during the production of hydrofluoric acid, which has been relatively inexpensive and easily available, has been used as type II gypsum, which is the main raw material for fiber-mixed gypsum board. Hydrofluoric acid gypsum is produced in the process of producing hydrofluoric acid by allowing concentrated sulfuric acid to act on fluorite. However, since the reaction proceeds under the condition of using concentrated sulfuric acid and the reaction temperature is high, it is produced as type II anhydrous gypsum. For this reason, compared to firing dihydrate gypsum such as flue gas desulfurization gypsum, the production cost of type II anhydrous gypsum is low, and since it is a by-product, there is an advantage that the transaction price is low. However, in recent years, with the change in the industrial production method of hydrofluoric acid, type II anhydrous gypsum obtained at the time of hydrofluoric acid production has become difficult to obtain, and a new source of type II anhydrous gypsum is required. . Therefore, the present inventor conducted research on various types of type II anhydrous gypsum sources, and as a result, reclaimed anhydrous gypsum obtained by pulverizing and firing the waste material of gypsum board generated in large quantities in the dismantling of buildings, etc. It came to the judgment that it was the most promising. However, when we tried to use regenerated anhydrous gypsum derived from this gypsum board waste as the source of type II anhydrous gypsum for fiber-mixed gypsum board, the characteristics were significantly different from fluoric acid gypsum, so it was good under the same conditions as before. It has been found that it is impossible to obtain a stable fiber-containing gypsum board stably and efficiently.
Accordingly, an object of the present invention is to provide a production method for stably and efficiently obtaining a fiber-mixed gypsum board having good characteristics using recycled anhydrite derived from gypsum board waste.

そこで本発明者は、石膏ボード廃材由来の二水石膏を焼成して特定のpHの再生無水石膏を得、これに特定量の無機充填材と補強繊維と硬化促進剤とを配合してスラリーを得、これを抄造成形して養生硬化させることにより、曲面施工性が良好な繊維混入石膏板が安定して効率的に得られることを見出し、本発明を完成した。   Therefore, the present inventor baked dihydrate gypsum derived from gypsum board waste material to obtain a regenerated anhydrous gypsum having a specific pH, which was mixed with a specific amount of an inorganic filler, reinforcing fibers, and a curing accelerator to prepare a slurry. The present invention was completed by finding that a fiber-containing gypsum board having good curved surface workability can be obtained stably and efficiently by paper-making and curing and curing.

すなわち、本発明は、次の〔1〕〜〔4〕を提供するものである。   That is, the present invention provides the following [1] to [4].

〔1〕石膏ボード廃材を粉砕した二水石膏粉を600℃〜1200℃で焼成して得られるpH9.5以上12未満の再生無水石膏を主原料とし、無機充填材、補強繊維及び硬化促進剤を含む配合物に水を加えて混合し、抄造法によりシート状にした後加圧成形し、養生硬化させる繊維混入石膏板の製造方法であって、
前記無機充填材を再生無水石膏100質量部に対して30〜150質量部含み、前記補強繊維を粉体原料の合計100質量部に対して5〜15質量部含み、前記硬化促進剤を添加する水の量100質量部に対して2〜12質量部含むことを特徴とする繊維混入石膏板の製造方法。
〔2〕前記補強繊維の一部または全部として、リファイナー処理した針葉樹パルプを用いる〔1〕に記載の繊維混入石膏板の製造方法。
〔3〕前記硬化促進剤として、アルカリ金属硫酸塩およびアルカリ金属硫酸水素塩から選択される1種又は2種以上を用いる〔1〕又は〔2〕に記載の繊維混入石膏板の製造方法。
〔4〕再生無水石膏が、II型無水石膏を60質量%以上含む、ブレーン比表面積3000〜6000cm2/gの再生無水石膏である〔1〕〜〔3〕のいずれかに記載の繊維混入石膏板の製造方法。
〔5〕加圧成形後、5〜20℃、相対湿度80〜95%の条件で2日〜10日間低温養生する〔1〕〜〔4〕のいずれかに記載の繊維混入石膏板の製造方法。
[1] Regenerated anhydrous gypsum having a pH of 9.5 or more and less than 12 obtained by baking dihydrate gypsum powder obtained by pulverizing gypsum board waste material at 600 ° C. to 1200 ° C., containing inorganic fillers, reinforcing fibers, and curing accelerators A method for producing a fiber-mixed gypsum board that is mixed by adding water to a composition containing, made into a sheet by a papermaking method, press-molded, and cured and cured,
The inorganic filler is included in an amount of 30 to 150 parts by mass with respect to 100 parts by mass of regenerated anhydrous gypsum, the reinforcing fiber is included in an amount of 5 to 15 parts by mass with respect to a total of 100 parts by mass of the powder raw material, and the curing accelerator is added. The manufacturing method of the fiber mixing gypsum board characterized by including 2-12 mass parts with respect to 100 mass parts of quantity of water.
[2] The method for producing a fiber-mixed gypsum board according to [1], wherein refiner-treated softwood pulp is used as part or all of the reinforcing fibers.
[3] The method for producing a fiber-containing gypsum board according to [1] or [2], wherein one or more selected from alkali metal sulfates and alkali metal hydrogen sulfates are used as the curing accelerator.
[4] The fiber-containing gypsum according to any one of [1] to [3], wherein the regenerated anhydrous gypsum is a regenerated anhydrous gypsum having a Blaine specific surface area of 3000 to 6000 cm 2 / g, containing 60% by mass or more of type II anhydrous gypsum. A manufacturing method of a board.
[5] The method for producing a fiber-mixed gypsum plate according to any one of [1] to [4], wherein the low-temperature curing is performed for 2 days to 10 days under conditions of 5 to 20 ° C. and a relative humidity of 80 to 95% after pressure molding. .

本発明の製造方法によれば、入手が容易な石膏ボード廃材から得られる再生無水石膏を用いて、曲面施工性が良好な繊維混入石膏板が安定して効率良く得られる。   According to the manufacturing method of the present invention, a fiber-mixed gypsum plate having good curved surface workability can be stably and efficiently obtained by using recycled anhydrous gypsum obtained from readily available gypsum board waste.

二水石膏の加熱減量率測定結果を示すグラフである。It is a graph which shows the heating weight loss rate measurement result of dihydrate gypsum. 二水石膏を焼成した際のpH測定結果を示すグラフである(いずれも試料10gを各加熱温度で1時間加熱処理後に測定)。It is a graph which shows the pH measurement result at the time of baking dihydrate gypsum (all measure 10g of samples after 1 hour heat processing at each heating temperature).

本発明においては、石膏ボード廃材を粉砕した二水石膏粉(以下、石膏ボード粉砕粉)を600〜1200℃で焼成して得られるpH9.5以上12未満の再生無水石膏を主原料とする。一般に、二水石膏を空気中で300℃以上まで加熱すると無水石膏が生成するとされている。そこで、本発明者は、本発明の目的に適した再生無水石膏を得るための、有用な焼成条件について種々の検討を行った。その結果、加熱減量率の測定では図1に示すとおり試薬二水石膏と石膏ボード粉砕粉の間に大きな差は認められなかったが、それぞれのpHを測定したところ図2に示すような差が生じ、石膏ボード粉砕粉のpH値が急激に高くなる範囲の再生無水石膏を繊維混入石膏板に使用したところ、水和反応の進行が早く、強度発現性が良くなることを見い出した。   In the present invention, regenerated anhydrous gypsum having a pH of 9.5 or more and less than 12 obtained by baking dihydrate gypsum powder (hereinafter, gypsum board pulverized powder) obtained by pulverizing gypsum board waste is used as a main raw material. Generally, it is said that anhydrous gypsum is produced when dihydrate gypsum is heated to 300 ° C. or higher in air. Therefore, the present inventor conducted various studies on useful firing conditions for obtaining regenerated anhydrous gypsum suitable for the purpose of the present invention. As a result, in the measurement of the heat loss rate, as shown in FIG. 1, no significant difference was observed between the reagent dihydrate gypsum and the gypsum board pulverized powder, but when each pH was measured, there was a difference as shown in FIG. When regenerated anhydrous gypsum in the range where the pH value of the gypsum board pulverized powder is rapidly increased is used for the fiber-mixed gypsum plate, it was found that the hydration reaction proceeds rapidly and the strength development is improved.

石膏ボード廃材としては、既に建材として使用された石膏ボードの廃材の他、新築、改修等施工時に発生する石膏ボード端材、石膏ボード製造時の廃材等も含まれる。石膏ボード廃材は、通常ボードの形態又はその断片であるので、表面材の紙と芯材の石膏硬化物とを分離し、芯材を粉砕することで、主成分を二水石膏とする石膏ボード粉砕粉を得る。ここで粉砕の程度は、焼成のし易さを考慮すると、平均粒子径が50μm以下となるように行うのが好ましい。   The gypsum board waste material includes not only gypsum board waste material already used as building materials, but also gypsum board scraps generated during construction such as new construction and renovation, and waste materials during gypsum board production. Since the gypsum board waste is usually in the form of a board or a fragment thereof, the gypsum board whose main component is dihydrate gypsum by separating the paper of the surface material and the hardened gypsum of the core material and crushing the core material Get ground powder. Here, the degree of pulverization is preferably performed so that the average particle diameter is 50 μm or less, considering the ease of firing.

二水石膏粉は、600〜1200℃で焼成して無水石膏にする。ここで、得られる再生無水石膏のpHを9.5以上12未満になるように焼成することが製造時の原料スラリーのpHを適正範囲に安定させる上で重要であり、これにより良好な繊維混入石膏板を安定して得ることができる。より好ましいpHは10.5〜11.5である。より好ましい焼成条件は、800〜1000℃×30分以上である。再生無水石膏のpHが高すぎるあるいは低すぎる場合、抄造する際の原料スラリーが好適なpHの範囲とならず、結果的に養生工程での水和反応が進みにくくなるため良好な品質の繊維混入石膏板を安定して得ることができない。
ここで、再生無水石膏のpHは、再生無水石膏5gを50mlの水に分散させたときのpHである。
The dihydrate gypsum powder is calcined at 600 to 1200 ° C. to make anhydrous gypsum. Here, it is important in order to stabilize the pH of the raw material slurry at the time of production in an appropriate range, so that the regenerated anhydrous gypsum obtained has a pH of 9.5 or more and less than 12. A gypsum board can be obtained stably. A more preferred pH is 10.5 to 11.5. More preferable firing conditions are 800 to 1000 ° C. × 30 minutes or more. If the pH of the regenerated anhydrous gypsum is too high or too low, the raw material slurry at the time of papermaking will not be in the preferred pH range, and as a result, the hydration reaction in the curing process will be difficult to proceed, so good quality fiber mixing A gypsum board cannot be obtained stably.
Here, the pH of the regenerated anhydrous gypsum is the pH when 5 g of regenerated anhydrous gypsum is dispersed in 50 ml of water.

得られる再生無水石膏は、良好な繊維混入石膏板を得る点から、II型無水石膏を60質量%以上含むのが好ましく、70質量%以上含むのがより好ましく、80質量%以上含むのがさらに好ましく、90質量%以上含むのがさらに好ましい。
また、再生無水石膏のブレーン比表面積の値は、十分な強度を得る点及び抄造する際の原料ロスを少なくする点から、2000〜9000cm2/gであるのが好ましく、3000〜6000cm2/gであるのがさらに好ましい。
The obtained regenerated anhydrous gypsum preferably contains 60% by mass or more of type II anhydrous gypsum, more preferably 70% by mass or more, and more preferably 80% by mass or more from the viewpoint of obtaining a good fiber-mixed gypsum plate. Preferably, 90% by mass or more is more preferable.
In addition, the value of the specific surface area of the reclaimed anhydrous gypsum is preferably 2000 to 9000 cm 2 / g, preferably 3000 to 6000 cm 2 / g, from the viewpoint of obtaining sufficient strength and reducing the raw material loss during papermaking. More preferably.

繊維混入石膏板を製造するにあたり、本発明では、原料として、さらに無機充填材、補強繊維及び硬化促進剤を使用する。無機充填材としては、例えば炭酸カルシウム、珪藻土、珪石、ワラストナイト及びパーライトから選ばれる1種又は2種以上が挙げられる。また、繊維混入石膏板製造時の、切断工程で発生する切断屑を粉砕したもの及び研磨工程で発生する研磨粉を、スクラップ原料として有効利用する場合があるが、これも無機充填材の一部に含まれるものとする。無機充填材は、低温養生での硬化反応に寄与しないため、バインダー同士の強固な結合を阻害する一方、養生後の板に柔軟性を与える効果を有する。このため、曲面施工性を向上させる役割を持っているといえる。また、無機充填材は、原料スラリーのpHに大きな影響を及ぼさない粉体が好ましい。無機充填材の使用量は、再生無水石膏100質量部に対して、30〜150質量部が好ましく、50〜100質量部がより好ましい。無機充填材の添加量が30質量部未満では必要な柔軟性を得ることが難しく、150質量部を超えると強度低下の影響が大となる。   In producing a fiber-mixed gypsum board, in the present invention, an inorganic filler, reinforcing fibers, and a curing accelerator are further used as raw materials. Examples of the inorganic filler include one or more selected from calcium carbonate, diatomaceous earth, silica, wollastonite, and perlite. In addition, some of the inorganic fillers may be used effectively as scrap raw material, which is produced by crushing cutting waste generated in the cutting process and polishing powder generated in the polishing process when manufacturing the fiber-containing gypsum board. Shall be included. Since the inorganic filler does not contribute to the curing reaction in the low temperature curing, it inhibits the strong bonding between the binders and has the effect of giving flexibility to the plate after curing. For this reason, it can be said that it has the role which improves curved surface workability. The inorganic filler is preferably a powder that does not greatly affect the pH of the raw slurry. The amount of the inorganic filler used is preferably 30 to 150 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the regenerated anhydrous gypsum. If the added amount of the inorganic filler is less than 30 parts by mass, it is difficult to obtain the required flexibility, and if it exceeds 150 parts by mass, the effect of strength reduction becomes large.

補強繊維としては、例えばパルプ等の天然繊維、ガラス繊維、炭素繊維、セラミック繊維等の無機繊維、ポリアミド、ポリプロピレン、ポリビニルアルコール、ポリエチレン、アクリル等の合成繊維が挙げられ、これらのうち1種又は2種以上を適宜用いる。なかでも針葉樹パルプをリファイナー処理したものが抄造時のプロセスファイバーとして有効であり、かつ補強効果も高いことから好適である。補強繊維の使用量は、曲面施工性を得る点から、粉体原料の合計100質量部に対し5〜15質量部であるが、5〜10質量部がより好ましい。補強繊維の使用量が5質量部未満では十分な補強効果が得られず、15質量部を超えると分散不良や不燃性能低下の原因となる。   Examples of reinforcing fibers include natural fibers such as pulp, inorganic fibers such as glass fibers, carbon fibers, and ceramic fibers, and synthetic fibers such as polyamide, polypropylene, polyvinyl alcohol, polyethylene, and acrylic. Use more than seeds as appropriate. Of these, softener pulp refined is effective as a process fiber at the time of papermaking and is also preferable because of its high reinforcing effect. Although the usage-amount of a reinforcing fiber is 5-15 mass parts with respect to a total of 100 mass parts of a powder raw material from the point which acquires curved surface workability, 5-10 mass parts is more preferable. If the amount of the reinforcing fiber used is less than 5 parts by mass, a sufficient reinforcing effect cannot be obtained, and if it exceeds 15 parts by mass, it causes poor dispersion and a decrease in nonflammability.

硬化促進剤としては、無水石膏の水和反応に対し促進効果を持つものであれば特に限定されるものでは無く、中性〜弱塩基性の硫酸塩及びそれらの複塩、酸水素塩などが挙げられる。中でもアルカリ金属硫酸塩(例えば、硫酸ナトリウム(Na2SO4)、硫酸カリウム(K2SO4)等)及びアルカリ金属硫酸水素塩(例えば硫酸水素ナトリウム(NaHSO4)、硫酸水素カリウム(KHSO4)等)が好適であり、これらのうち1種又は2種以上を用いることができる。なお、従来使用されていたフッ酸無水石膏の場合には、その生成反応過程において主反応後に余剰の硫酸根を処理するための消石灰が添加されていた。このため、消石灰の影響でフッ酸無水石膏はpHが12前後となっており、繊維混入石膏板を製造する際にはアルミニウム硫酸塩などを硬化促進剤として加え、pHをやや下げることが有効とされていた(特許文献4)。しかし、本発明においては再生無水石膏を作る際の焼成条件でpHを調整するため、酸性寄りの硬化促進剤を添加する必要はない。硬化促進剤の使用量は、十分な強度と良好な曲面施工性を有する繊維混入石膏板を得るという点から、添加する水の量100質量部に対して2〜12質量部が好ましく、3〜10質量部とするのがより好ましい。2質量部未満では必要な促進効果が得られず、12質量部を超えて過剰に加えても促進効果の向上は認められない。硬化促進剤は、あらかじめ水に溶解してから使用することもできる。 The curing accelerator is not particularly limited as long as it has an accelerating effect on the hydration reaction of anhydrous gypsum, and neutral to weakly basic sulfates and their double salts, oxyhydrogen salts, and the like. Can be mentioned. Among them, alkali metal sulfates (for example, sodium sulfate (Na 2 SO 4 ), potassium sulfate (K 2 SO 4 ), etc.) and alkali metal hydrogen sulfates (for example, sodium hydrogen sulfate (NaHSO 4 ), potassium hydrogen sulfate (KHSO 4 )) Etc.), and one or more of them can be used. In addition, in the case of the hydrofluoric acid anhydrous gypsum conventionally used, the slaked lime for processing an excess sulfate radical was added after the main reaction in the formation reaction process. For this reason, hydrofluoric anhydride gypsum has a pH of around 12 due to the effect of slaked lime, and it is effective to lower the pH slightly by adding aluminum sulfate or the like as a hardening accelerator when manufacturing a fiber-containing gypsum board. (Patent Document 4). However, in the present invention, since the pH is adjusted under the firing conditions when producing regenerated anhydrous gypsum, it is not necessary to add an acid-based curing accelerator. The amount of the curing accelerator used is preferably 2 to 12 parts by mass with respect to 100 parts by mass of water to be added, from the viewpoint of obtaining a fiber-mixed gypsum board having sufficient strength and good curved surface workability. More preferably, it is 10 parts by mass. If it is less than 2 parts by mass, the necessary promotion effect cannot be obtained, and even if it is added in excess of 12 parts by mass, the improvement of the promotion effect is not recognized. The curing accelerator can be used after being dissolved in water in advance.

前記原料に水を加えて混合して原料スラリーとする。ここで、用いる水の量は、良好な分散性と抄造性を確保する点から、原料固形分全体(硬化促進剤を除く)の質量に対し5〜25倍が好ましく、10〜20倍がより好ましい。スラリーとするにはパルパー等の撹拌機で混合撹拌するのが好ましい。
このとき、原料スラリーの温度は、抄造効率の点から15〜38℃が好ましく、20〜35℃がより好ましい。また、原料スラリーのpHは、低温養生における水和反応を効率よく進ませ、良好な強度発現を得るため、pH10〜12の範囲が好ましく、pH10.5〜11.5の範囲がより好ましい。
Water is added to the raw material and mixed to form a raw material slurry. Here, the amount of water used is preferably 5 to 25 times, more preferably 10 to 20 times the mass of the entire raw material solids (excluding the curing accelerator), from the viewpoint of ensuring good dispersibility and papermaking. preferable. In order to form a slurry, it is preferable to mix and stir with a stirrer such as a pulper.
At this time, the temperature of the raw material slurry is preferably 15 to 38 ° C, more preferably 20 to 35 ° C from the viewpoint of papermaking efficiency. Moreover, the pH of the raw material slurry is preferably in the range of pH 10 to 12 and more preferably in the range of pH 10.5 to 11.5 in order to efficiently promote the hydration reaction in low temperature curing and to obtain good strength expression.

原料スラリーの抄造は、例えば丸網抄造機等を用いて行うことができる。バット内に溜めた原料スラリーをシリンダーで抄き上げ、メーキングロールで所望の厚さに積層してシートとする。
得られたシートは、2〜10MPaで加圧成形し、所望の厚さにする。
The raw slurry can be made using, for example, a round net making machine. The raw material slurry stored in the bat is made up with a cylinder and laminated to a desired thickness with a making roll to form a sheet.
The obtained sheet is pressure-formed at 2 to 10 MPa so as to have a desired thickness.

養生硬化法としては、低温養生が好ましく、5〜20℃、相対湿度80〜95%の条件で2日〜10日間養生硬化するのが好ましい。   As the curing method, low temperature curing is preferable, and curing is preferably performed for 2 to 10 days under conditions of 5 to 20 ° C. and a relative humidity of 80 to 95%.

本発明方法によれば、石膏ボード廃材由来の再生無水石膏を用いているにもかかわらず、建築材料として十分な曲げ強さ及び曲面施工性を有し、良好な寸法安定性、遮音性、加工性等も備える繊維混入石膏板を安定して得ることができる。   According to the method of the present invention, despite using recycled anhydrous gypsum derived from gypsum board waste, it has sufficient bending strength and curved surface workability as a building material, good dimensional stability, sound insulation, processing It is possible to stably obtain a fiber-mixed gypsum board having properties and the like.

次に実施例を挙げて本発明を更に詳細に説明する。
実施例及び比較例に使用した原料は下記のとおりである。
EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
The raw materials used in the examples and comparative examples are as follows.

再生無水石膏:
(1) 焼成温度約800℃,pH11,ブレーン値約5000cm2/g
(2) 焼成温度約1000℃,pH10,ブレーン値約5000cm2/g
(3) 焼成温度約500℃,pH8.2,ブレーン値約5000cm2/g
炭酸カルシウム:ブレーン値約5500cm2/g
パーライト:発泡粉砕パーライト 粒度0.3mm以下
スクラップ:繊維混入石膏板の製造時の切断工程で発生する切断屑を粉砕したもの及び研磨工程で発生する研磨粉
パルプ:針葉樹晒しパルプ カナダ標準ろ水度 約320mL
(ブレーン値はJIS R 5201、カナダ標準ろ水度はJIS P 8121−2による)
Regenerated anhydrous gypsum:
(1) Baking temperature of about 800 ° C., pH of 11, brane value of about 5000 cm 2 / g
(2) Firing temperature of about 1000 ° C., pH of 10, brain value of about 5000 cm 2 / g
(3) Baking temperature of about 500 ° C., pH of 8.2, Blaine value of about 5000 cm 2 / g
Calcium carbonate: Brain value about 5500cm 2 / g
Perlite: Foamed and pulverized pearlite Particle size: 0.3 mm or less Scrap: Grinded cutting waste generated in the cutting process during production of fiber-mixed gypsum board and abrasive powder generated in the polishing process Pulp: Softwood bleached pulp Canadian standard freeness approx. 320 mL
(Brain value is according to JIS R 5201, Canadian standard freeness according to JIS P 8121-2)

以下の表1に記載する配合割合にて原料配合物を得、原料配合物の固形分100質量部に対し1000質量部の水を加えて混合撹拌して原料スラリーを得た。次に原料スラリーを抄造法を模したテーブル試験によりシート状に成形し、更にプレス圧6MPaで脱水プレスすることにより、幅40mm、長さ160mmの生板を得た。得られた生板を、温度10℃、湿度80%に設定した恒温恒湿槽に入れて7日間低温養生することにより、厚さ約10mmの繊維混入石膏板を得た。得られた繊維混入石膏板の諸特性を表1に併記する。   A raw material blend was obtained at the blending ratio shown in Table 1 below, 1000 parts by weight of water was added to 100 parts by weight of the solid content of the raw material blend, and mixed and stirred to obtain a raw material slurry. Next, the raw material slurry was formed into a sheet by a table test simulating a papermaking method, and further dehydrated and pressed at a press pressure of 6 MPa to obtain a green plate having a width of 40 mm and a length of 160 mm. The obtained green plate was put into a thermostatic chamber set at a temperature of 10 ° C. and a humidity of 80% and subjected to low temperature curing for 7 days to obtain a fiber mixed gypsum plate having a thickness of about 10 mm. Various characteristics of the obtained fiber-mixed gypsum board are also shown in Table 1.

Figure 2017137208
Figure 2017137208

諸特性についての試験方法は概略以下のとおりである。
かさ密度:JIS A 5430:9.5による。
石膏の水和率:養生直後に約40mm角の試験片を切り出して40℃×24時間乾燥し、質量(W1)を測定する。次に、180±5℃で30分加熱し、常温まで冷却後、質量(W2)を測定して式1より求めた。
なお、石膏の分子量は、二水石膏(172.1)、無水石膏(136.1)、結晶水(36.0)とし、スクラップ中の二水石膏量は50%とした。
式1 A:無水石膏配合率(%)
B:スクラップ配合率(%)
C:質量減少率(%)=(W1−W2)/W1×100
X:無水石膏が水和した二水石膏の結晶水(%)
=(C−Y)/(100−C)×100
Y:スクラップ中の二水石膏の結晶水(%)
=(B×0.5)×(36.0/172.1)
Z:水和率(%)=X/A×136.1/36.0×100
曲げ強さ:40mm×160mmサイズの試験片を40℃で24時間乾燥後、曲げスパン100mm、クロスヘッドスピード1mm/分による3点曲げ試験法により最大荷重を測定してJIS A 5430:9.3.2より求めた。
The test methods for various characteristics are as follows.
Bulk density: According to JIS A 5430: 9.5.
Hydration rate of gypsum: Immediately after curing, a test piece of about 40 mm square is cut out and dried at 40 ° C. for 24 hours, and the mass (W 1 ) is measured. Next, after heating at 180 ± 5 ° C. for 30 minutes and cooling to room temperature, the mass (W 2 ) was measured and obtained from Equation 1.
The molecular weight of gypsum was dihydrate gypsum (172.1), anhydrous gypsum (136.1), and crystal water (36.0), and the amount of dihydrate gypsum in scrap was 50%.
Formula 1 A: Anhydrous gypsum compounding ratio (%)
B: Scrap content (%)
C: Mass reduction rate (%) = (W 1 −W 2 ) / W 1 × 100
X: Crystal water of dihydrate gypsum hydrated with anhydrous gypsum (%)
= (C−Y) / (100−C) × 100
Y: Crystal water of dihydrate gypsum in scrap (%)
= (B x 0.5) x (36.0 / 172.1)
Z: Hydration rate (%) = X / A × 136.1 / 36.0 × 100
Bending strength: JIS A 5430: 9.3: JIS A 5430: 9.3 after measuring a test piece of 40 mm × 160 mm size at 40 ° C. for 24 hours and measuring the maximum load by a three-point bending test method with a bending span of 100 mm and a crosshead speed of 1 mm / min Obtained from .2.

表1に示した諸特性より、実施例1〜7については、十分な曲げ強さがあり、良好な繊維混入石膏板となっている。これに対し、比較例1〜4は総じて曲げ強さの値が小さい結果となった。比較例1は再生無水石膏のpHが低いため、反応性が悪く、石膏の水和が不十分である。比較例2及び3は硬化促進剤の添加が不足しているため、やはり石膏の水和が不十分である。比較例4については補強繊維が足りないため、石膏の水和が十分に進んで曲げ強さが大きくなってはいるが、硬く脆いため、曲面施工性は確保できていない。   From the various characteristics shown in Table 1, Examples 1 to 7 have sufficient bending strength and are good fiber-mixed gypsum plates. On the other hand, Comparative Examples 1 to 4 generally resulted in small values of bending strength. In Comparative Example 1, since the pH of the regenerated anhydrous gypsum is low, the reactivity is poor and the hydration of the gypsum is insufficient. Since Comparative Examples 2 and 3 lack the addition of a curing accelerator, the hydration of gypsum is still insufficient. In Comparative Example 4, since the reinforcing fibers are insufficient, the hydration of the gypsum is sufficiently advanced and the bending strength is increased. However, since it is hard and brittle, curved surface workability cannot be ensured.

次に、実施例2の配合を用いて、工場実機による繊維混入石膏板の試作を行った。丸網抄造機を用い、厚さを6mmとした以外、プレス条件、養生条件は前記テーブルテストと同様とした。得られた実機試作品の物性を表2に示す。かさ密度、曲げ強さ及び吸水による長さ変化率の測定は、JIS A 5430に準拠して実施した。ただし、試験時の含水状態は40℃×24時間以上静置し恒量となるまで乾燥させた状態とした。   Next, using the formulation of Example 2, trial production of a fiber-mixed gypsum board using an actual factory machine was performed. The press conditions and curing conditions were the same as in the table test except that a round net paper making machine was used and the thickness was 6 mm. Table 2 shows the physical properties of the actual prototype. The bulk density, flexural strength, and length change rate due to water absorption were measured according to JIS A 5430. However, the water-containing state at the time of the test was left to stand at 40 ° C. for 24 hours or more and dried until a constant weight was obtained.

Figure 2017137208
Figure 2017137208

表2に示す評価結果より、曲げ強さが大きく、かつ吸水による寸法変化率が小さく、高品質の繊維混入石膏板を得られたことがわかる。
また、前記実機試作品の定尺試験体(910mm×1820mm)について、曲率半径R=800mmの胴縁下地にビス留めする曲面施工試験を行った結果、破断及びクラック等の発生は認められず、良好な曲面施工性を有していた。
From the evaluation results shown in Table 2, it can be seen that a high-quality fiber-mixed gypsum board was obtained with a high bending strength and a small dimensional change rate due to water absorption.
In addition, as a result of conducting a curved surface construction test to be screwed to the trunk base of the radius of curvature R = 800 mm for the standard test specimen (910 mm × 1820 mm) of the actual machine prototype, the occurrence of breakage, cracks, etc. was not recognized, It had good curved surface workability.

以上より、本発明の製造方法によれば、入手が容易な石膏ボード廃材から得られる再生無水石膏を用いて、曲面施工性が良好な繊維混入石膏板を安定して得ることができる。   As mentioned above, according to the manufacturing method of this invention, the fiber mixed gypsum board with favorable curved construction property can be stably obtained using the reproduction | regeneration anhydrous gypsum obtained from the easily available gypsum board waste material.

Claims (5)

石膏ボード廃材を粉砕した二水石膏粉を600℃〜1200℃で焼成して得られるpH9.5以上12未満の再生無水石膏を主原料とし、無機充填材、補強繊維及び硬化促進剤を含む配合物に水を加えて混合し、抄造法によりシート状にした後加圧成形し、養生硬化させる繊維混入石膏板の製造方法であって、
前記無機充填材を再生無水石膏100質量部に対して30〜150質量部含み、前記補強繊維を粉体原料の合計100質量部に対して5〜15質量部含み、前記硬化促進剤を添加する水の量100質量部に対して2〜12質量部含むことを特徴とする繊維混入石膏板の製造方法。
Recycled anhydrous gypsum with a pH of 9.5 or more and less than 12 obtained by baking dihydrate gypsum powder pulverized from gypsum board waste material at 600 ° C to 1200 ° C, containing inorganic filler, reinforcing fiber and curing accelerator It is a method for producing a fiber-mixed gypsum board that is mixed by adding water to a product, formed into a sheet by a papermaking method, press-molded, and cured and cured.
The inorganic filler is included in an amount of 30 to 150 parts by mass with respect to 100 parts by mass of regenerated anhydrous gypsum, the reinforcing fiber is included in an amount of 5 to 15 parts by mass with respect to a total of 100 parts by mass of the powder raw material, and the curing accelerator is added. The manufacturing method of the fiber mixing gypsum board characterized by including 2-12 mass parts with respect to 100 mass parts of quantity of water.
前記補強繊維の一部または全部として、リファイナー処理した針葉樹パルプを用いる請求項1に記載の繊維混入石膏板の製造方法。   The method for producing a fiber-mixed gypsum board according to claim 1, wherein refiner-treated softwood pulp is used as a part or all of the reinforcing fibers. 前記硬化促進剤として、アルカリ金属硫酸塩およびアルカリ金属硫酸水素塩から選択される1種又は2種以上を用いる請求項1又は2に記載の繊維混入石膏板の製造方法。   The manufacturing method of the fiber mixed gypsum board of Claim 1 or 2 using 1 type, or 2 or more types selected from an alkali metal sulfate and an alkali metal hydrogen sulfate as the said hardening accelerator. 前記再生無水石膏が、II型無水石膏を60質量%以上含む、ブレーン比表面積3000〜6000cm2/gの再生無水石膏である請求項1〜3のいずれか1項に記載の繊維混入石膏板の製造方法。 The fiber-containing gypsum board according to any one of claims 1 to 3, wherein the regenerated anhydrous gypsum is a regenerated anhydrous gypsum having a Blaine specific surface area of 3000 to 6000 cm 2 / g and containing 60% by mass or more of type II anhydrous gypsum. Production method. 加圧成形後、5〜20℃、相対湿度80〜95%の条件で2日〜10日間低温養生する請求項1〜4のいずれか1項に記載の繊維混入石膏板の製造方法。   The method for producing a fiber-mixed gypsum plate according to any one of claims 1 to 4, wherein after the pressure molding, low-temperature curing is performed for 2 to 10 days under conditions of 5 to 20 ° C and a relative humidity of 80 to 95%.
JP2016018505A 2016-02-03 2016-02-03 Method for producing gypsum board with fiber Active JP6629615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018505A JP6629615B2 (en) 2016-02-03 2016-02-03 Method for producing gypsum board with fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018505A JP6629615B2 (en) 2016-02-03 2016-02-03 Method for producing gypsum board with fiber

Publications (2)

Publication Number Publication Date
JP2017137208A true JP2017137208A (en) 2017-08-10
JP6629615B2 JP6629615B2 (en) 2020-01-15

Family

ID=59565493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018505A Active JP6629615B2 (en) 2016-02-03 2016-02-03 Method for producing gypsum board with fiber

Country Status (1)

Country Link
JP (1) JP6629615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3984977B1 (en) 2020-10-19 2022-11-09 Lindner NORIT GmbH & Co. KG Method for recycling gypsum wallboard material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133834B (en) * 2018-11-21 2021-12-21 四川华磷科技有限公司 High-strength gypsum partition board and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360146A (en) * 1986-09-01 1988-03-16 浅野スレ−ト株式会社 Manufacture of anhydrous gypsum paperedboard
JP2001146420A (en) * 1999-11-18 2001-05-29 Taiheiyo Cement Corp Anhydrous gypsum compounds produced from gypsum waste material and method for producing the same
JP2007302488A (en) * 2006-05-09 2007-11-22 Nozawa Corp Composition of inorganic plate material containing high specific gravity aggregate and method of manufacturing the same
JP2013224251A (en) * 2012-03-21 2013-10-31 Tokuyama Corp Gypsum powder, and method for manufacturing gypsum molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360146A (en) * 1986-09-01 1988-03-16 浅野スレ−ト株式会社 Manufacture of anhydrous gypsum paperedboard
JP2001146420A (en) * 1999-11-18 2001-05-29 Taiheiyo Cement Corp Anhydrous gypsum compounds produced from gypsum waste material and method for producing the same
JP2007302488A (en) * 2006-05-09 2007-11-22 Nozawa Corp Composition of inorganic plate material containing high specific gravity aggregate and method of manufacturing the same
JP2013224251A (en) * 2012-03-21 2013-10-31 Tokuyama Corp Gypsum powder, and method for manufacturing gypsum molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3984977B1 (en) 2020-10-19 2022-11-09 Lindner NORIT GmbH & Co. KG Method for recycling gypsum wallboard material

Also Published As

Publication number Publication date
JP6629615B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
CN105272097A (en) Novel magnesian cementing material and preparation method for magnesian cementing plate prepared from novel magnesian cementing material
JP5055250B2 (en) Manufacturing method of inorganic papermaking board
JPH03237051A (en) High strength calcium silicate formed body and its manufacture
JPH0476943B2 (en)
JP2017137208A (en) Manufacturing method of fiber contaminated gypsum board
JP5350060B2 (en) Wood cement board and manufacturing method thereof
JPH11322395A (en) Fiber-reinforced cement molding and its production
JP5350061B2 (en) Wood cement board and manufacturing method thereof
JP5162067B2 (en) Calcium silicate hydrate slurry
JP5596933B2 (en) Method for producing gypsum-based molded body
KR101902616B1 (en) Method for the Manufacturing of Mortar using the Wastepaper
KR101807950B1 (en) Method for the Production of Concrete Brick using the Wastepaper
JP5000902B2 (en) Lightweight inorganic plate and method for producing the same
KR20160105642A (en) Light-weigth hardened material composition using the industrial by-products and preparing method thereof
JP2525187B2 (en) Manufacturing method of calcium silicate plate
JP2004010402A (en) Fiber-containing gypsum board and its manufacturing process
JPS62191455A (en) Anhydrous gypsum papered board and manufacture
CN106927777A (en) A kind of combined wall board calcium silicate board and preparation method thereof
JP2009155134A (en) Method of producing hydraulic material for autoclave-forming and method of producing ceramic-based building material
KR960006229B1 (en) Molding of calcium silicate having high strength and its manufacturing method
KR100885202B1 (en) Preparation method of slag board having no asbestos
JP5856891B2 (en) Manufacturing method of inorganic board
JP2000159560A (en) Production of inorganic board
JP2001335354A (en) Inorganic board and its manufacturing method
JP6052981B2 (en) Calcium silicate molded body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6629615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250