JP2004010402A - Fiber-containing gypsum board and its manufacturing process - Google Patents

Fiber-containing gypsum board and its manufacturing process Download PDF

Info

Publication number
JP2004010402A
JP2004010402A JP2002164313A JP2002164313A JP2004010402A JP 2004010402 A JP2004010402 A JP 2004010402A JP 2002164313 A JP2002164313 A JP 2002164313A JP 2002164313 A JP2002164313 A JP 2002164313A JP 2004010402 A JP2004010402 A JP 2004010402A
Authority
JP
Japan
Prior art keywords
mass
filler
fiber
gypsum board
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164313A
Other languages
Japanese (ja)
Other versions
JP4213405B2 (en
Inventor
Akira Owada
大和田 彰
Tomoki Iwanaga
岩永 朋来
Yoshikatsu Harada
原田 至克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2002164313A priority Critical patent/JP4213405B2/en
Publication of JP2004010402A publication Critical patent/JP2004010402A/en
Application granted granted Critical
Publication of JP4213405B2 publication Critical patent/JP4213405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight, fiber-containing gypsum board showing an excellent workability and having a nail holding power of ≥5 N/mm, by using gypsum as an essential component and mixing it with calcium silicate hydrate obtained beforehand through hydrothermal synthesis as a weight-reduction material, and its manufacturing process. <P>SOLUTION: The fiber-containing gypsum board comprises, by mass, 5-40% calcium silicate hydrate, 33-80% gypsum dihydrate, 2-12% reinforcement fiber and 10-50% inorganic filler and has a nail holding power of ≥5 N/mm and an apparent density of 0.7-1.2 g/cm<SP>3</SP>. The calcium silicate hydrate is obtained beforehand by performing hydrothermal synthesis of a calcareous raw material and a siliceous raw material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一般建築物及び耐火構造材料等に用いられる繊維含有石膏板及びその製造方法に関する。
【0002】
【従来の技術】
石膏板は、曲げ強度、寸法安定性に優れた不燃性材料であり、内装材として防火、耐火構造材料などに広く利用されている。例えば、特開昭63−195181号公報には、半水石こう、凝結遅延剤および補強繊維を温水中に投入してスラリーとし、このスラリー中の固形分を抄造してなるシートを冷却養生することを特徴とする石こう板の製造方法が開示されている。
【0003】
また、特開昭64−24061号公報には、II型無水石こう40〜96重量%、短繊維2〜30重量%、保水性材料2〜30重量%および石こう硬化促進剤をII型無水石こうに対して0.1〜2.5重量%を主成分とするスラリーを抄造したのち、硬化させることを特徴とする無水石こう抄造板の製造方法が開示されている。上述のように、石膏板の構成原料としてはα、β−半水石膏のような半水石膏やII型無水石膏が使用されるのが一般的である。
【0004】
更に、特開昭62−176949号公報には、水熱合成された珪酸カルシウム水和物、せっこう、合成樹脂、補強繊維の混合物からなることを特徴とする珪酸カルシウム・せっこう複合体が開示されている。この公報に記載されている珪酸カルシウム・せっこう複合体は、酢酸樹脂エマルジョン、アクリル樹脂エマルジョン等の合成樹脂エマルジョンをバインダーとして使用するタイプのものである。該公報に記載されている珪酸カルシウム・せっこう複合体は、密度が0.4〜0.5g/cm程度の低密度品であり、釘保持力は不十分である。
【0005】
また、石膏板は、焼き石膏と水等を主原料としたものを芯としてその表裏面を紙で覆って成形してなる石膏ボードと、焼き石膏等の水和性性と補強繊維等からなる主原料に水を加えて混練して得られた原料スラリーを紙で覆うことなく成形してなる繊維含有石膏板とに分けられており、そのうち、石膏ボードは、安価な防火、耐火構造材として内装下地や被覆材に用いられている。石膏ボードは、比較的軽量で、現場加工性に優れてはいるものの、石膏ボードの強度は7N/mm前後と余り高くはなく、また、釘保持性等の釘特性に欠け、広義での施工性には難があると言わざるを得ない。また、石膏ボードは、その補強効果を担う表面紙及びそれに付着している接着剤が近年廃棄物分別処理の障害となっており、リサイクルの観点から改善の余地があると考えられる。
【0006】
また、繊維含有石膏板は、石膏ボードと比較して高価ではあるが、高強度を有し、曲面を含めた表面化粧材等に利用されている。しかし、汎用品の見掛け密度は比較的高く、釘関連の特性について、特に、釘打ちの際の釘圧入抵抗が高くなり好ましくない。
【0007】
従来では、上記のような石膏ボードや、オートクレーブを用いて高温高圧にて養生硬化せしめるケイ酸カルシウム系材料が比較的軽量であり、多く使用されているが、その殆どが釘保持力が低いか、あるいは釘圧入抵抗が高く、釘打ち性に欠けるなどといった欠点を有している。
【0008】
【発明が解決しようとする課題】
従って、本発明の目的は、石膏を主成分とし、配合する軽量化材として予め水熱合成して得られたケイ酸カルシウム水和物を混合し、さらに無機質充填材を混合することにより、釘保持力が5N/mm以上を有し、軽量で、かつ施工性に優れた繊維含有石膏板及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、石膏を主成分とする材料において、その構成原料に予め石灰質原料とケイ酸質原料を水熱合成してなるケイ酸カルシウム水和物を混入し、その配合物に水を加えスラリーとしたものを所定の形状に成形することにより、軽量かつ優れた施工性を有する繊維含有石膏板を得られることを見出し、本発明を完成させた。
【0010】
即ち、本発明の繊維含有石膏板は、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、二水石膏33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる繊維含有石膏板であって、釘保持力が5N/mm以上で且つ見掛け密度が0.7〜1.2g/cmの範囲内であることを特徴とする。
【0011】
また、本発明の繊維含有石膏板は、無機質充填材が、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材2〜10質量%、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材5〜30質量%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材2〜35質量%、ただし、微細充填材+充填材+粗粒充填材の合計量は10〜50質量%の範囲内である、より構成されることを特徴とする。
【0012】
更に、本発明の繊維含有石膏板の製造方法は、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、水和性石膏を水和後の質量に換算して33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる配合物に水を加えてスラリーとし、該スラリーを脱水成形した後に養生硬化することを特徴とする。
【0013】
また、本発明の繊維含有石膏板の製造方法は、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、水和性石膏を水和後の質量に換算して33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる配合物に水を加えてスラリーとし、該スラリーを流し込み成形した後に養生硬化することを特徴とする。
【0014】
更に、本発明の繊維含有石膏板の製造方法は、無機質充填材が、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材2〜10質量%、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材5〜30質量%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材2〜35質量%、ただし、微細充填材+充填材+粗粒充填材の合計量は10〜50質量%の範囲内である、より構成されることを特徴とする。
【0015】
【発明の実施の形態】
本発明の繊維含有石膏板は、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、二水石膏33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる繊維含有石膏板であって、釘保持力が5N/mm以上で且つ見掛け密度が0.7〜1.2g/cmの範囲内であることを特徴とする。
【0016】
本発明の繊維含有石膏板において、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物は、軽量化材として作用するものであり、その割合は、5〜40質量%、好ましくは7〜35質量%の範囲内である。なお、ケイ酸カルシウム水和物の割合が5質量%未満であると、所望の見掛け密度が得られないばかりか、釘保持力が向上しないため好ましくなく、また、該割合が40質量%を超えると、見掛け密度が低くなり過ぎたり、十分な強度が得られないばかりか、脱水成形の際に水抜けが悪化し、水割れ等の原因となるために好ましくない。
【0017】
ここで、本発明でいうケイ酸カルシウム水和物は、石灰質原料とケイ酸質原料とを水と混合し、高温高圧下での水熱合成にて生成させることができる。石灰質原料としては生石灰、消石灰等が挙げられ、ケイ酸質原料としては、珪石、珪藻土、シリカフューム等が挙げられ、特に珪石が好適である。該ケイ酸カルシウム水和物の合成において、石灰質原料とケイ酸質原料の配合比(CaO/SiOのモル比)は通常0.5〜1.5、好ましくは0.5〜1.1の範囲内であり、これらを質量比で5〜20倍、好ましくは8〜16倍の水に分散混合し、水熱合成することにより得られたものである。なお、水熱合成条件は従来用いられている方法に準じるものであるが、原料スラリーを攪拌することのできる圧力容器内にて150〜230℃、好ましくは170〜210℃の範囲内で温度設定し、1〜20時間、好ましくは5〜15時間程度にわたり行うことができる。なお、ケイ酸カルシウム水和物としては、例えばトバモライト及びゾノトライト等が得られる。
【0018】
次に、本発明の繊維含有石膏板において、二水石膏の割合は、33〜80質量%、好ましくは40〜80質量%の範囲内である。ここで、二水石膏の割合が33質量%未満であると、バインダーとしての強度確保が満足できず、所定の強度及び釘保持力が得られないために好ましくなく、また、該割合が80質量%を超えると、繊維含有石膏板の硬さが過度になり、釘圧入抵抗が増加して釘打ち性が損なわれるために好ましくない。
【0019】
また、本発明の繊維含有石膏板において、補強繊維の割合は、2〜12質量%、好ましくは3〜10質量%の範囲内である。ここで、補強繊維の割合が2質量%未満であると、製品強度の低下や釘保持力が低下するために好ましくなく、また、該割合が12質量%を超えると、製品の表面精度が低下し、美麗で良好な製品表面が得られないために好ましくない。なお、補強繊維としては、例えば木質パルプ、各種麻類等の天然繊維、ガラス繊維、ロックウール、セラミックウール、炭素繊維等の無機繊維、人造パルプ、ポリビニルアルコール、ポリプロピレン、ポリエチレン、ポリエステル、アクリル、レーヨン等の合成繊維が挙げられ、繊維含有石膏板の曲げ強度及び耐衝撃性能の観点から、木質パルプまたは木質パルプと合成繊維を併用することが好適である。
【0020】
更に、本発明の繊維含有石膏板において、無機質充填材の割合は、10〜50質量%、好ましくは10〜40質量%の範囲内である。ここで、無機質充填材の割合が10質量%未満であると、繊維含有石膏板の硬さが過度になり、釘圧入抵抗が増加して釘打ち性が損なわれるために好ましくなく、また、該割合が50質量%を超えると、繊維含有石膏板の強度確保が満足できず、所定の強度及び釘保持力が得られないために好ましくない。
【0021】
なお、本発明の繊維含有石膏板においては、無機質充填材は、粒度を選定することにより、繊維含有石膏板の適度な充填化を図り、繊維含有石膏板の曲げ強度を向上させることができ、また、繊維含有石膏板の持つ強度発現力を十分に引き出すことにより十分な釘保持力を得ることができる。
【0022】
即ち、本発明の繊維含有石膏板においては、無機質充填材を、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材から構成することが好ましい。
【0023】
まず、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材の割合は、2〜10質量%、好ましくは2〜8質量%の範囲内である。微細充填材は、繊維含有石膏板の硬さに影響を与えるものであり、微細充填材の割合が2質量%未満であると、十分な強度を持つ製品が得られないために好ましくなく、また、該割合が10質量%を超えると繊維含有石膏板自体が硬くなり、釘を打ち込む際の抵抗、つまり釘圧入抵抗が高くなり、良好な施工性が得られなくなるために好ましくない。ここで、微細充填材としては例えば、微粉砕した珪石、石灰石、スラグ、フライアッシュ、珪藻土、アタパルジャイト、ベントナイト、セピオライト、カオリン、ゼオライト、粘土類、シリカフューム等を例示することができる。これらは必要に応じて1または2種以上を併用して使用できる。
【0024】
次に、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径が15〜50μmの範囲内を満足する充填材の割合は、5〜30質量%、好ましくは10〜30質量%の範囲内である。この充填材は、微細充填材と粗粒充填材の補完的な役割を果たし、充填材の割合が5質量%未満であったり、30質量%を超えると、製品の強度が低下する原因となるために好ましくない。充填材としては、例えば珪石、珪藻土、石灰石、スラグ、フライアッシュ、タルク、セピオライト、粘土類、鉱物等の粉末を例示することができる。これらは必要に応じて1種または2種以上を併用して使用することができる。
【0025】
また、少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材の割合は、2〜25質量%、好ましくは8〜22質量%の範囲内である。粗粒充填材の割合が2質量%未満であると、ひび割れ等の欠陥が生じ易くなるために好ましくなく、また、該割合が25質量%を超えると繊維含有石膏板自体の強度が低下してしまうため好ましくない。粗粒充填材としては、例えば珪石、石灰石、スラグ、フライアッシュ、ワラストナイト、マイカ、鉱物粉末、無機質板スクラップ等の粉末を例示することができ、これらは必要に応じて1種または2種以上を併用して使用することができる。
【0026】
なお、上述の微細充填材、充填材、及び粗粒充填材の合計量は、10〜50質量%、好ましくは10〜35質量%の範囲内である。上記充填材の合計量が10質量%未満であると、充填材の配合効果が発現しないために好ましくなく、また、該合計量が50質量%を超えると、製品強度が低下し、釘保持力の低下を招くため好ましくない。
【0027】
上述のような割合を有する本発明の繊維含有石膏板は、釘保持力が5N/mm以上、好ましくは7N/mm以上である。ここで、釘保持力が5N/mm未満であると、実施行において十分な釘保持力とは言えず、比較的容易に釘が抜けてしまう危険性が極端に高まるために好ましくない。なお、本明細書に記載の「釘保持力」は下記のようにして求めたものである:
釘保持力は、繊維含有石膏板に打ち込んだ釘を引き抜く際に要した引っ張り荷重(単位:N)の最大値を繊維含有石膏板の厚さ(単位:mm)で除した値である。
【0028】
また、本発明の繊維含有石膏板の見掛け密度は、0.7〜1.2g/cm、好ましくは0.8〜1.1g/cmの範囲内にある。なお、見掛け密度が0.7g/cm未満の場合には、繊維含有石膏板自体発現できる強度が限られ、低強度となってしまうために好ましくなく、また、見掛け密度が1.2g/cmを超えると、釘圧入抵抗が増し、釘打ち性を失ってしまうために好ましくない。
【0029】
上記繊維含有石膏板は、予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、水和性石膏を水和後の質量に換算して33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる配合物に水を加えてスラリーとし、該スラリーを脱水成形するか、または流し込み成形し、養生することを特徴として製造することができる。なお、水和性石膏は水和して二水石膏に変化するが、その際の質量変化は分子量の比から算出することができる。水和性石膏のうち、α−半水石膏及びβ−半水石膏の分子量は145.15であり、II型無水石膏の分子量は136.14である。一方、二水石膏の分子量は172.17であるから、本発明による繊維含有石膏板に含まれる二水石膏の所定量を得るために必要な水和性石膏の量は前記分子量の比に基づいて算出することができる。
【0030】
ここで、本発明の製造方法に使用される水和性石膏は、α−半水石膏、β−半水石膏及びII型無水石膏である。水和性石膏の配合割合は、水和後の質量に換算して33〜80質量%、好ましくは40〜80質量%の範囲内である。ここで、水和性石膏の配合割合が水和後の質量に換算して33質量%未満であると、バインダーとしての強度確保が満足できず、所定の強度及び釘保持力が得られないために好ましくなく、また、該配合割合が水和後の質量に換算して80質量%を超えると、繊維含有石膏板の硬さが過度になり、釘圧入抵抗が増加して釘打ち性が損なわれるために好ましくない。なお、α、β−半水石膏を使用する場合は、少量の硬化遅延剤を使用することができ、該硬化遅延剤には例えばクエン酸、フタル酸、酒石酸等の使用が好適である。II型無水石膏を使用する場合は少量の硬化促進剤を使用することができ、該硬化促進剤には、例えば硫酸ナトリウム等のアルカリ金属硫酸塩が好適である。
【0031】
なお、硬化遅延剤及び該硬化促進剤の添加については、各種原料を混合した配合物に水を加えてスラリーとする際、加える水に当該分量の硬化遅延剤あるいは硬化促進剤を溶解せしめることで、均一な効果を得ることができる。
【0032】
本発明の製造方法において、予め石灰質原料とシリカ質原料を水熱合成することにより得られたケイ酸カルシウム水和物の配合割合は、5〜40質量%、好ましくは7〜35質量%の範囲内である。なお、ケイ酸カルシウム水和物の配合割合が5質量%未満であると、所望の見掛け密度が得られないばかりか、釘保持力が向上しないため好ましくなく、また、該配合割合が40質量%を超えると、見掛け密度が低くなり過ぎたり、十分な強度が得られないばかりか、脱水成形の際水抜けが悪化し、水割れ等の原因となるために好ましくない。なお、ケイ酸カルシウム水和物の配合における形態は、スラリー、湿潤粉体及び乾燥粉体のいかなる形でも良いが、ほとんどの場合、水熱合成後の合成水と混合されたスラリーの形で配合するのが効率が良い。
【0033】
また、本発明の製造方法において、補強繊維の配合割合は、2〜12質量%、好ましくは3〜10質量%の範囲内である。ここで、補強繊維の配合割合が2質量%未満であると、製品強度の低下や釘保持力が低下するために好ましくなく、また、該配合割合が12質量%を超えると、製品の表面精度が低下し、美麗で良好な製品表面が得られないために好ましくない。
【0034】
更に、本発明の製造方法において、無機質充填材の配合割合は、10〜50質量%、好ましくは10〜40質量%の範囲内である。ここで、無機質充填材の配合割合が10質量%未満であると、繊維含有石膏板における骨材効果、柔軟性が失われるといった充填材の配合効果が失われるために好ましくなく、また、該配合割合が50質量%を超えると、成形時の水割れ、ヒビ発生の原因となり、また、繊維含有石膏板として十分な強度が発現できなくなるばかりか、釘打ちの際キレツ等の発生の原因となるために好ましくない。
【0035】
なお、本発明の製造方法においては、無機質充填材は、粒度を選定することにより、繊維含有石膏板の適度な充填化を図り、繊維含有石膏板の曲げ強度を向上させることができ、また、繊維含有石膏板の持つ強度発現力を十分に引き出すことにより十分な釘保持力を得ることができる。
【0036】
即ち、本発明の繊維含有石膏板の製造方法においては、無機質充填材を、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材から構成することが好ましい。
【0037】
まず、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材の配合割合は、2〜10質量%、好ましくは2〜8質量%の範囲内である。微細充填材は、繊維含有石膏板の硬さに影響を与えるものであり、微細充填材の配合割合が2質量%未満であると、十分な強度を持つ製品が得られないために好ましくなく、また、該配合割合が10質量%を超えると繊維含有石膏板自体が硬くなり、釘を打ち込む際の抵抗、つまり釘圧入抵抗が高くなり、良好な施工性が得られなくなるために好ましくない。
【0038】
次に、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径が15〜50μmの範囲内を満足する充填材の配合割合は、5〜30質量%、好ましくは10〜30質量%の範囲内である。この充填材は、微細充填材と粗粒充填材の補完的な役割を果たし、充填材の配合割合が5質量%未満であったり、30質量%を超えると、製品の強度が低下する原因となるために好ましくない。
【0039】
また、少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材の配合割合は、2〜25質量%、好ましくは8〜22質量%の範囲内である。粗粒充填材の配合割合が2質量%未満であると、ひび割れ等の欠陥が生じ易くなるために好ましくなく、また、該配合割合が25質量%を超えると繊維含有石膏板自体の強度が低下してしまうため好ましくない。
【0040】
なお、上述の微細充填材、充填材、及び粗粒充填材の合計量は、10〜50質量%、好ましくは10〜35質量%の範囲内である。上記充填材の合計量が10質量%未満であると、充填材の配合効果が発現しないために好ましくなく、また、該合計量が50質量%を超えると、製品強度が低下し、釘保持力の低下を招くため好ましくない。
【0041】
本発明の繊維含有石膏板の製造方法は、大別して脱水を伴わない成形方法である流し込み成形と、脱水成形とに区別され、上述のような配合割合の原料を有するスラリーを、例えば前者の流し込み成形法、後者としては、例えば丸網式抄造法、長網式抄造法、フローオン式のような抄造法、及びモールドプレス法のような加圧脱水成形法等のような慣用の成形方法にて成形し、その後養生するものである。なお、成形後或いは成形中に必要に応じて加圧することで所望の見掛け密度に調整することもできる。
【0042】
即ち、本発明の製造方法においては、水和性石膏、ケイ酸カルシウム水和物、補強繊維、及び無機質充填材を加えた配合物に、更に、硬化促進剤、硬化遅延剤を必要に応じて加え、それを水と混合してスラリーとし、該スラリーを成形し、養生硬化することにより繊維含有石膏板を得ることができるものである。
【0043】
なお、ケイ酸カルシウム水和物の量が規定範囲内の上限に近い場合は、粉体原料全体の水比を調整する際、ケイ酸カルシウム水和物スラリーの余剰水量を、必要に応じて減じる必要がある。該ケイ酸カルシウム水和物の状態によっては該ケイ酸カルシウム水和物スラリーの粘性が高まり、最終的水比の調整が困難になる場合があるため、流し込み成形法を用いて製造する場合は該ケイ酸カルシウム水和物の配合割合が15質量%以下にするのが好適である。
【0044】
なお、本発明の製造方法において、成形体の養生は、自然養生、湿潤養生及び冷却養生が実施できる。原料となる水和性石膏に半水石膏を使用した場合は、石膏成分のより完全に近い水和が終了する時間内は、乾燥を防ぐため湿潤状態雰囲気を確保しての養生が不可欠となる。ただし、無処置にて湿度が十分に保たれた状態が維持される空間を得られる場合はこの限りではない。なお、原料となる水和性石膏にII型無水石膏を使用した場合は、上記自然養生あるいは湿潤養生でも問題ないが、水和反応をより促進させるため冷却養生を行うことが好ましい。
【0045】
上述のようにして軽量かつ高い釘保持力を有する繊維含有石膏板を得ることができる。特に、従来の石膏ボードと違い、表面紙や接着剤及び有機合成成分等を使用していないため、廃材としての処理も比較的容易となるため、廃棄物処理、リサイクルの観念からも有意義であると考えられる。
【0046】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
実施例
表1に示す割合で、β−半水石膏、II型無水石膏、炭酸カルシウム、微粉珪石、珪石、ワラストナイト、ケイ酸カルシウム水和物及び補強繊維(木質パルプ、ポリビニルアルコール)を水と混合し、原料スラリーとした。ただし、β−半水石膏の硬化遅延剤としては少量の酒石酸を添加した。また、II型無水石膏を使用した場合の硬化促進剤は少量の硫酸ナトリウムを使用した。
【0047】
なお、トバモライト系ケイ酸カルシウム水和物は、石灰質原料として生石灰を35質量%と、ケイ酸質原料として粉末珪石を65質量%(CaO/SiOモル比=0.5)使用し、これに質量比で10倍の水を加えてスラリーを調製し、得られたスラリーをオートクレーブ中180℃で5時間水熱反応させることにより得られたものである。また、ゾノトライト系ケイ酸カルシウム水和物は、石灰質原料として生石灰を52質量%と、ケイ酸質原料として粉末珪石を48質量%(CaO/SiOモル比=1.0)使用し、これに質量比で15倍の水を加えてスラリーを調製し、得られたスラリーをオートクレーブ中200℃で5時間水熱反応させることにより得られたものである。
【0048】
また、使用した充填材は下記の通りである:
微粉末珪石:ブレーン値9000cm/gの微粉珪砂
石灰石粉末:奥多摩工業社製、ブレーン値3500cm/g
珪石:秩父鉱業社製、ブレーン値4000cm/gの粉末珪石
ワラストナイト:インド産ケモリットA−60、ブレーン値2000cm/g
【0049】
これを流し込み成形機にて型枠成形したグリーンシート(本発明品7)、或いはフローオン抄造機にて脱水原料フイィルムとして抄き上げ、グリーンシートを作製した。その後該グリーンシートを必要に応じてプレスにて脱水加圧し、生板を得た。
得られたグリーンシートまたは生板を一定期間養生することによって本発明品及び比較品の繊維含有石膏板を得た。
【0050】
なお、β−半水石膏を使用した場合の硬化遅延剤の添加量は、原料石膏の乾燥質量に対し0.1質量%の割合で添加した。その後作製したグリーンシートを湿潤状態で約24時間〜48時間養生し、所望の硬化体を得た。
また、II型無水石膏を使用した場合の硬化促進剤の添加量は、原料石膏の乾燥質量に対し0.2質量%の割合で添加し、その後作製したグリーンシートを約10℃の湿潤状態で7日間養生した。
得られた繊維含有石膏板について、見掛け密度、曲げ強度及び釘特性の評価を行った。得られた結果を表1に併記する。
【0051】
【表1】

Figure 2004010402
【0052】
【表2】
Figure 2004010402
【0053】
なお、繊維含有石膏板の見掛け密度は、該繊維含有石膏板を40℃±2℃に調整した恒温乾燥機中にて恒量になるまで乾燥した後、乾燥後の材料体積をノギス等により求め、乾燥質量(g)/材料体積(cm)なる式にて算出したものである。また、曲げ強度は、上記方法にて得られた乾燥品を用い、JISA5430に準拠して測定したものである。また、釘圧入抵抗値は、釘を繊維含有石膏板に垂直に圧入した際の最大荷重をその材料の厚さで除した値、であり、その値が高くなれば、釘を打ち込む際の抵抗が大きく、釘の曲がりや材料の破壊を招く原因となることを意味する。なお、釘圧入抵抗値及び釘保持力は、N45鉄丸釘を使用して測定したものである。
【0054】
本発明品1〜8においては、十分な曲げ強度を有し、軽量かつ良好な釘特性を有する材料が得られている。
比較品1〜3では、無機質充填材の比率が発明の範囲と違うため、製造中のグリーンシートにヒビや水割れが若干発生したため、強度が低下しただけでなく、釘保持力も低下した。
比較品4、6については、グリーンシートのヒビ、水割れが著しく、良好な成形体が得られなかった。
比較品5、8については、石膏成分が過多であり、高密度の材料となったため、釘圧入値が高くなった。
比較品7については、無機質充填材が50質量%を超えているため、曲げ強度及び釘保持力が低下した。
比較例9、10については、充填材の比率が違い、プレスによる加圧力が適正でないため、見掛け密度が増加し、またヒビ割れも若干発生したため強度も低く、所望の釘保持力が得られなかった。
比較品11、12については、従来の石膏ボード及び繊維強化石膏板であり、低釘保持力あるは高密度のための高釘圧入抵抗を示すものである。
【0055】
【発明の効果】
本発明によれば、軽量で、且つ良好な釘特性を有する繊維含有石膏板を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber-containing gypsum board used for general buildings and fireproof structural materials, and a method for producing the same.
[0002]
[Prior art]
The gypsum board is a non-combustible material excellent in bending strength and dimensional stability, and is widely used as an interior material for fireproofing, fireproof structural materials, and the like. For example, Japanese Patent Laid-Open No. 63-195181 discloses a method in which hemihydrate gypsum, a setting retarder and a reinforcing fiber are added to warm water to form a slurry, and a sheet obtained by making a solid content in the slurry is cooled and cured. A method for producing a gypsum board characterized by the above is disclosed.
[0003]
JP-A 64-24061 discloses that type II anhydrous gypsum 40 to 96% by weight, short fiber 2 to 30% by weight, water retention material 2 to 30% by weight, and gypsum hardening accelerator in type II anhydrous gypsum. On the other hand, the manufacturing method of the anhydrous gypsum papermaking board characterized by making the slurry which makes 0.1 to 2.5 weight% a main component, and making it harden | cure is disclosed. As described above, as a constituent material of the gypsum plate, it is common to use hemihydrate gypsum such as α, β-hemihydrate gypsum and type II anhydrous gypsum.
[0004]
Further, JP-A-62-176949 discloses a calcium silicate / gypsum composite comprising a hydrothermally synthesized calcium silicate hydrate, gypsum, a synthetic resin, and a mixture of reinforcing fibers. Has been. The calcium silicate / gypsum complex described in this publication is of a type using a synthetic resin emulsion such as an acetic acid resin emulsion or an acrylic resin emulsion as a binder. The calcium silicate / gypsum complex described in the publication has a density of 0.4 to 0.5 g / cm. 3 This is a low-density product with a sufficient nail holding power.
[0005]
The gypsum board is composed of gypsum board formed by covering the front and back surfaces with paper, using baked gypsum and water as the main raw materials, and hydrating properties such as baked gypsum and reinforcing fibers. It is divided into fiber-containing gypsum board that is formed without adding paper to the main raw material and kneading the raw material slurry. Of these, gypsum board is an inexpensive fireproof and fireproof structural material. It is used for interior bases and covering materials. Gypsum board is relatively lightweight and has excellent on-site processability, but the strength of gypsum board is 7 N / mm 2 It is not so high as the front and rear, and lacks nail properties such as nail retention, and it must be said that there is difficulty in workability in a broad sense. In addition, the gypsum board has a surface paper that bears its reinforcing effect and the adhesive adhering to it has recently become an obstacle to waste separation treatment, and there is room for improvement from the viewpoint of recycling.
[0006]
Moreover, the fiber-containing gypsum board is expensive compared with the gypsum board, but has high strength and is used for a surface decorative material including a curved surface. However, the apparent density of the general-purpose product is relatively high, and the nail-related characteristics are not preferable because the nail press-fitting resistance is particularly high when nailing.
[0007]
Conventionally, calcium silicate materials that are cured and cured at high temperature and high pressure using a gypsum board as described above and autoclaves are relatively lightweight and are often used, but most of them have low nail holding power. Or, there are drawbacks such as high nail press-fitting resistance and lack of nailing performance.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to mix a calcium silicate hydrate obtained by hydrothermal synthesis in advance as a lightening material to be blended, with gypsum as a main component, and further mix with an inorganic filler, thereby creating a nail. An object of the present invention is to provide a fiber-containing gypsum board having a holding power of 5 N / mm or more, which is lightweight and excellent in workability, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In the material mainly composed of gypsum, the present inventors mixed calcium silicate hydrate formed by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance into its constituent raw materials, and water was added to the blend. In addition, it was found that a fiber-containing gypsum board having light weight and excellent workability can be obtained by forming the slurry into a predetermined shape, and the present invention has been completed.
[0010]
That is, the fiber-containing gypsum board of the present invention is a calcium silicate hydrate 5 to 40% by mass, dihydrate gypsum 33 to 80% by mass obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance. A fiber-containing gypsum board containing 2 to 12% by mass of reinforcing fibers and 10 to 50% by mass of an inorganic filler, having a nail holding power of 5 N / mm or more and an apparent density of 0.7 to 1.2 g. / Cm 3 It is in the range of.
[0011]
In the fiber-containing gypsum board of the present invention, the inorganic filler has at least a fineness of 8000 cm. 2 2 to 10% by mass of a fine filler satisfying / g or satisfying an average particle size of less than 15 μm, at least a fineness of 8000 to 3000 cm 2 / G or a filler satisfying an average particle diameter of 15 to 50 μm, and a fineness of at least 3000 cm. 2 / G or coarse particle filler satisfying whether the average particle diameter exceeds 50 μm, the total amount of fine filler + filler + coarse filler is in the range of 10 to 50 mass% It is characterized by being comprised.
[0012]
Furthermore, the manufacturing method of the fiber containing gypsum board of this invention is 5-40 mass% of calcium silicate hydrate obtained by carrying out the hydrothermal synthesis | combination of a calcareous raw material and a siliceous raw material beforehand, and water-soluble gypsum is water. Water is added to a composition containing 33 to 80% by mass, 2 to 12% by mass of reinforcing fibers, and 10 to 50% by mass of an inorganic filler in terms of the mass after addition, and the slurry is dehydrated. It is characterized by curing and curing after molding.
[0013]
Moreover, the manufacturing method of the fiber containing gypsum board of this invention is 5-40 mass% of calcium silicate hydrates obtained by carrying out the hydrothermal synthesis | combination of a calcareous raw material and a siliceous raw material beforehand, and water hydrating gypsum. Water is added to a composition containing 33 to 80% by mass, 2 to 12% by mass of reinforcing fibers, and 10 to 50% by mass of an inorganic filler in terms of mass after addition, and the slurry is poured. It is characterized by curing and curing after molding.
[0014]
Furthermore, in the method for producing the fiber-containing gypsum board of the present invention, the inorganic filler has at least a fineness of 8000 cm. 2 2 to 10% by mass of a fine filler satisfying / g or satisfying an average particle size of less than 15 μm, at least a fineness of 8000 to 3000 cm 2 / G or a filler satisfying an average particle diameter of 15 to 50 μm, and a fineness of at least 3000 cm. 2 / G or coarse particle filler satisfying whether the average particle diameter exceeds 50 μm, the total amount of fine filler + filler + coarse filler is in the range of 10 to 50 mass% It is characterized by being comprised.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The fiber-containing gypsum board of the present invention comprises calcium silicate hydrate 5 to 40% by mass, dihydrate gypsum 33 to 80% by mass, reinforcing fiber obtained by hydrothermal synthesis of a calcareous material and a silicate material in advance. A fiber-containing gypsum board containing 2 to 12% by mass and 10 to 50% by mass of an inorganic filler, having a nail holding power of 5 N / mm or more and an apparent density of 0.7 to 1.2 g / cm 2 It is in the range of.
[0016]
In the fiber-containing gypsum board of the present invention, calcium silicate hydrate obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance acts as a weight reducing material, and the proportion thereof is 5 It is in the range of ˜40% by mass, preferably 7 to 35% by mass. In addition, it is not preferable that the ratio of the calcium silicate hydrate is less than 5% by mass, not only the desired apparent density is not obtained, but also the nail holding power is not improved, and the ratio exceeds 40% by mass. This is not preferable because the apparent density becomes too low and sufficient strength cannot be obtained, and water drainage deteriorates during dehydration molding, causing water cracking and the like.
[0017]
Here, the calcium silicate hydrate as referred to in the present invention can be produced by mixing a calcareous raw material and a siliceous raw material with water and hydrothermal synthesis under high temperature and high pressure. Examples of the calcareous raw material include quick lime and slaked lime, and examples of the siliceous raw material include quartzite, diatomaceous earth, silica fume and the like. Silica stone is particularly preferable. In the synthesis of the calcium silicate hydrate, the mixing ratio of the calcareous raw material and the siliceous raw material (CaO / SiO 2 Is in the range of 0.5 to 1.5, preferably 0.5 to 1.1, and these are dispersed and mixed in water at a mass ratio of 5 to 20 times, preferably 8 to 16 times. However, it was obtained by hydrothermal synthesis. The hydrothermal synthesis conditions are in accordance with a conventionally used method, but the temperature is set within a range of 150 to 230 ° C., preferably 170 to 210 ° C. in a pressure vessel capable of stirring the raw slurry. And about 1 to 20 hours, preferably about 5 to 15 hours. As calcium silicate hydrate, for example, tobermorite and zonotrite are obtained.
[0018]
Next, in the fiber-containing gypsum board of the present invention, the proportion of dihydrate gypsum is 33 to 80% by mass, preferably 40 to 80% by mass. Here, when the proportion of dihydrate gypsum is less than 33% by mass, it is not preferable because securing the strength as a binder cannot be satisfied, and a predetermined strength and nail holding force cannot be obtained. If the ratio exceeds 50%, the hardness of the fiber-containing gypsum board becomes excessive, and the nail press-fitting resistance increases and the nailability is impaired.
[0019]
Moreover, in the fiber containing gypsum board of this invention, the ratio of a reinforcing fiber is 2-12 mass%, Preferably it exists in the range of 3-10 mass%. Here, if the ratio of the reinforcing fibers is less than 2% by mass, it is not preferable because the product strength is reduced and the nail holding force is decreased. If the ratio exceeds 12% by mass, the surface accuracy of the product is decreased. However, it is not preferable because a beautiful and good product surface cannot be obtained. Examples of reinforcing fibers include wood fibers, natural fibers such as various hemp, glass fibers, rock wool, ceramic wool, carbon fibers and other inorganic fibers, artificial pulp, polyvinyl alcohol, polypropylene, polyethylene, polyester, acrylic, rayon. From the viewpoint of the bending strength and impact resistance of the fiber-containing gypsum board, it is preferable to use wood pulp or wood pulp and synthetic fiber in combination.
[0020]
Furthermore, in the fiber-containing gypsum board of the present invention, the proportion of the inorganic filler is 10 to 50% by mass, preferably 10 to 40% by mass. Here, when the proportion of the inorganic filler is less than 10% by mass, the hardness of the fiber-containing gypsum board becomes excessive, which is not preferable because nail press-fitting resistance is increased and the nailability is impaired. If the ratio exceeds 50% by mass, it is not preferable because the strength of the fiber-containing gypsum board cannot be ensured and the predetermined strength and nail holding force cannot be obtained.
[0021]
In addition, in the fiber-containing gypsum board of the present invention, the inorganic filler can achieve appropriate filling of the fiber-containing gypsum board by selecting the particle size, and can improve the bending strength of the fiber-containing gypsum board, In addition, a sufficient nail holding force can be obtained by sufficiently drawing out the strength expression force of the fiber-containing gypsum board.
[0022]
That is, in the fiber-containing gypsum board of the present invention, the inorganic filler has at least a fineness of 8000 cm. 2 / G or a fine filler satisfying an average particle size of less than 15 μm, at least a fineness of 8000 to 3000 cm 2 % Of filler satisfying the range of / g or the average particle size of 15 to 50 μm, and at least a fineness of 3000 cm 2 / G or a coarse filler satisfying whether the average particle diameter exceeds 50 μm.
[0023]
First, at least fineness is 8000cm 2 The ratio of the fine filler that exceeds / g or satisfies the average particle diameter of less than 15 μm is in the range of 2 to 10% by mass, preferably 2 to 8% by mass. The fine filler affects the hardness of the fiber-containing gypsum board, and if the proportion of the fine filler is less than 2% by mass, it is not preferable because a product having sufficient strength cannot be obtained. If the ratio exceeds 10% by mass, the fiber-containing gypsum plate itself becomes hard, and the resistance when driving the nail, that is, the nail press-fitting resistance is increased, and good workability cannot be obtained. Here, examples of the fine filler include finely ground silica, limestone, slag, fly ash, diatomaceous earth, attapulgite, bentonite, sepiolite, kaolin, zeolite, clays, silica fume, and the like. These may be used alone or in combination of two or more as required.
[0024]
Next, at least the fineness is 8000 to 3000 cm 2 The ratio of the filler satisfying the range of / g or the average particle diameter of 15 to 50 μm is 5 to 30% by mass, preferably 10 to 30% by mass. This filler plays a complementary role between the fine filler and the coarse filler, and if the proportion of the filler is less than 5% by mass or exceeds 30% by mass, the strength of the product is reduced. Therefore, it is not preferable. Examples of the filler include powders of silica, diatomaceous earth, limestone, slag, fly ash, talc, sepiolite, clays, minerals, and the like. These may be used alone or in combination of two or more as required.
[0025]
Also, at least fineness is 3000cm 2 The ratio of the coarse filler satisfying whether the average particle diameter is less than / g or the average particle diameter exceeds 50 μm is 2 to 25% by mass, preferably 8 to 22% by mass. If the ratio of the coarse filler is less than 2% by mass, defects such as cracks are likely to occur, which is not preferable. If the ratio exceeds 25% by mass, the strength of the fiber-containing gypsum board itself decreases. Therefore, it is not preferable. Examples of the coarse filler include powders such as silica, limestone, slag, fly ash, wollastonite, mica, mineral powder, and inorganic board scrap, and these may be one or two as required. The above can be used in combination.
[0026]
In addition, the total amount of the above-mentioned fine filler, filler, and coarse filler is 10 to 50% by mass, preferably 10 to 35% by mass. When the total amount of the filler is less than 10% by mass, the blending effect of the filler is not manifested, and when the total amount exceeds 50% by mass, the product strength is reduced and the nail holding power is reduced. This is not preferable because it causes a decrease in the temperature.
[0027]
The fiber-containing gypsum board of the present invention having such a ratio has a nail holding power of 5 N / mm or more, preferably 7 N / mm or more. Here, if the nail holding force is less than 5 N / mm, it cannot be said that the nail holding force is sufficient in practice, and the risk that the nail will come off relatively easily increases, which is not preferable. The “nail holding force” described in the present specification was determined as follows:
The nail holding force is a value obtained by dividing the maximum value of the tensile load (unit: N) required for pulling out the nail driven into the fiber-containing gypsum board by the thickness (unit: mm) of the fiber-containing gypsum board.
[0028]
The apparent density of the fiber-containing gypsum board of the present invention is 0.7 to 1.2 g / cm. 3 , Preferably 0.8 to 1.1 g / cm 3 It is in the range. The apparent density is 0.7 g / cm 3 If it is less than 1, the strength that can be expressed by the fiber-containing gypsum board itself is limited, and it is not preferable because it becomes low strength. 3 Exceeding this is not preferable because nail press-fitting resistance increases and nailability is lost.
[0029]
The fiber-containing gypsum board is 5-40% by mass of calcium silicate hydrate obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance, and the hydrated gypsum is converted to the mass after hydration. 33 to 80% by mass, 2 to 12% by mass of reinforcing fibers, and 10 to 50% by mass of an inorganic filler, water is added to form a slurry, and the slurry is dehydrated or cast. And can be manufactured with the characteristic of curing. Hydrated gypsum hydrates and changes to dihydrate gypsum, and the mass change at that time can be calculated from the ratio of molecular weights. Among the hydrating gypsum, the molecular weight of α-hemihydrate gypsum and β-hemihydrate gypsum is 145.15, and the molecular weight of type II anhydrous gypsum is 136.14. On the other hand, since the molecular weight of dihydrate gypsum is 172.17, the amount of hydratable gypsum necessary for obtaining a predetermined amount of dihydrate gypsum contained in the fiber-containing gypsum board according to the present invention is based on the ratio of the molecular weight. Can be calculated.
[0030]
Here, the hydratable gypsum used in the production method of the present invention is α-hemihydrate gypsum, β-hemihydrate gypsum, and type II anhydrous gypsum. The mixing ratio of the hydratable gypsum is 33 to 80% by mass, preferably 40 to 80% by mass in terms of the mass after hydration. Here, if the blending ratio of the hydratable gypsum is less than 33% by mass in terms of the mass after hydration, securing the strength as a binder cannot be satisfied, and the predetermined strength and nail holding power cannot be obtained. In addition, when the blending ratio exceeds 80% by mass in terms of the mass after hydration, the hardness of the fiber-containing gypsum board becomes excessive, the nail press resistance increases, and the nailability is impaired. This is not preferable. When α, β-hemihydrate gypsum is used, a small amount of a curing retardant can be used, and for example, citric acid, phthalic acid, tartaric acid and the like are preferable. When using type II anhydrous gypsum, a small amount of a curing accelerator can be used, and an alkali metal sulfate such as sodium sulfate is suitable for the curing accelerator.
[0031]
In addition, about the addition of a hardening retarder and this hardening accelerator, when adding water to the mixture which mixed various raw materials to make a slurry, the said amount of hardening retarder or a hardening accelerator is dissolved in the added water. A uniform effect can be obtained.
[0032]
In the production method of the present invention, the blending ratio of calcium silicate hydrate obtained by hydrothermal synthesis of a calcareous raw material and a siliceous raw material in advance ranges from 5 to 40% by mass, preferably from 7 to 35% by mass. Is within. In addition, it is not preferable that the blending ratio of the calcium silicate hydrate is less than 5% by mass, not only because the desired apparent density is not obtained, but also the nail holding power is not improved, and the blending ratio is 40% by mass. If it exceeds 1, the apparent density becomes too low, sufficient strength cannot be obtained, water drainage deteriorates during dehydration molding, and it causes water cracking and the like, which is not preferable. The form of calcium silicate hydrate can be any form of slurry, wet powder and dry powder, but in most cases, it is mixed in the form of a slurry mixed with synthetic water after hydrothermal synthesis. It is efficient to do.
[0033]
Moreover, in the manufacturing method of this invention, the mixture ratio of a reinforcing fiber is 2-12 mass%, Preferably it exists in the range of 3-10 mass%. Here, if the blending ratio of the reinforcing fiber is less than 2% by mass, it is not preferable because the strength of the product is reduced and the nail holding power is decreased. If the blending ratio exceeds 12% by mass, the surface accuracy of the product is not preferable. Is unfavorable because the surface is lowered and a beautiful and good product surface cannot be obtained.
[0034]
Furthermore, in the manufacturing method of this invention, the mixture ratio of an inorganic filler is 10-50 mass%, Preferably it exists in the range of 10-40 mass%. Here, when the blending ratio of the inorganic filler is less than 10% by mass, it is not preferable because the blending effect of the filler such as the aggregate effect and flexibility in the fiber-containing gypsum board is lost, and the blending is not preferable. If the ratio exceeds 50% by mass, it will cause water cracking and cracking during molding, and will not be able to exhibit sufficient strength as a fiber-containing gypsum board, and may also cause cracks and the like when nailing. Therefore, it is not preferable.
[0035]
In the production method of the present invention, the inorganic filler can be appropriately filled with the fiber-containing gypsum board by selecting the particle size, and can improve the bending strength of the fiber-containing gypsum board. A sufficient nail holding force can be obtained by sufficiently drawing out the strength expression force of the fiber-containing gypsum board.
[0036]
That is, in the method for producing a fiber-containing gypsum plate of the present invention, the inorganic filler is at least 8000 cm in fineness. 2 / G or a fine filler satisfying an average particle size of less than 15 μm, at least a fineness of 8000 to 3000 cm 2 % Of filler satisfying the range of / g or the average particle size of 15 to 50 μm, and at least a fineness of 3000 cm 2 / G or a coarse filler satisfying whether the average particle diameter exceeds 50 μm.
[0037]
First, at least fineness is 8000cm 2 / G or the blending ratio of the fine filler satisfying an average particle diameter of less than 15 μm is in the range of 2 to 10% by mass, preferably 2 to 8% by mass. The fine filler affects the hardness of the fiber-containing gypsum board, and if the blending ratio of the fine filler is less than 2% by mass, it is not preferable because a product having sufficient strength cannot be obtained. On the other hand, if the blending ratio exceeds 10% by mass, the fiber-containing gypsum board itself becomes hard, and the resistance when driving the nail, that is, the nail press-fitting resistance becomes high, and good workability cannot be obtained.
[0038]
Next, at least the fineness is 8000 to 3000 cm 2 / G or a blending ratio of the filler satisfying an average particle diameter of 15 to 50 μm is 5 to 30% by mass, preferably 10 to 30% by mass. This filler plays a complementary role of fine filler and coarse filler, and if the blending ratio of the filler is less than 5% by mass or exceeds 30% by mass, the strength of the product is reduced. This is not preferable.
[0039]
Also, at least fineness is 3000cm 2 / G or the blending ratio of the coarse filler satisfying whether the average particle diameter exceeds 50 μm is in the range of 2 to 25% by mass, preferably 8 to 22% by mass. If the blending ratio of the coarse filler is less than 2% by mass, defects such as cracks are likely to occur, which is not preferable. If the blending ratio exceeds 25% by mass, the strength of the fiber-containing gypsum board itself decreases. This is not preferable.
[0040]
In addition, the total amount of the above-mentioned fine filler, filler, and coarse filler is 10 to 50% by mass, preferably 10 to 35% by mass. When the total amount of the filler is less than 10% by mass, the blending effect of the filler is not manifested, and when the total amount exceeds 50% by mass, the product strength is reduced and the nail holding power is reduced. This is not preferable because it causes a decrease in the temperature.
[0041]
The manufacturing method of the fiber-containing gypsum board of the present invention is roughly classified into casting molding, which is a molding method not involving dehydration, and dehydration molding. For example, the former casting of a slurry having a raw material with a blending ratio as described above is used. As the molding method, the latter includes, for example, conventional molding methods such as a round mesh papermaking method, a long mesh papermaking method, a papermaking method such as a flow-on method, and a pressure dehydration molding method such as a mold press method. And then cured. In addition, it can also adjust to a desired apparent density by pressurizing as needed after shaping | molding or during shaping | molding.
[0042]
That is, in the production method of the present invention, a curing accelerator and a curing retarder are added as necessary to a formulation in which hydratable gypsum, calcium silicate hydrate, reinforcing fiber, and inorganic filler are added. In addition, the fiber-containing gypsum board can be obtained by mixing it with water to form a slurry, molding the slurry, and curing and curing.
[0043]
In addition, when the amount of calcium silicate hydrate is close to the upper limit within the specified range, when adjusting the water ratio of the whole powder raw material, the excess water amount of the calcium silicate hydrate slurry is reduced as necessary. There is a need. Depending on the state of the calcium silicate hydrate, the viscosity of the calcium silicate hydrate slurry may increase and it may be difficult to adjust the final water ratio. The blending ratio of calcium silicate hydrate is preferably 15% by mass or less.
[0044]
In addition, in the manufacturing method of this invention, the curing of a molded object can implement natural curing, wet curing, and cooling curing. When hemihydrate gypsum is used as the raw hydrating gypsum, it is indispensable to maintain a moist atmosphere to prevent drying during the time when hydration of the gypsum component is more complete. . However, this is not the case when it is possible to obtain a space that maintains a sufficiently maintained humidity without treatment. In addition, when type II anhydrous gypsum is used for the hydrating gypsum used as a raw material, there is no problem with the above-described natural curing or wet curing, but cooling curing is preferably performed to further promote the hydration reaction.
[0045]
As described above, a fiber-containing gypsum board having a light weight and a high nail holding force can be obtained. In particular, unlike conventional gypsum board, because it does not use surface paper, adhesives, organic synthetic components, etc., it is relatively easy to dispose of it as waste material, which is also meaningful from the perspective of waste treatment and recycling. it is conceivable that.
[0046]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example
Β-Hemihydrate gypsum, Type II anhydrous gypsum, calcium carbonate, fine silica, silica, wollastonite, calcium silicate hydrate and reinforcing fiber (wood pulp, polyvinyl alcohol) are mixed with water in the proportions shown in Table 1. The raw material slurry was obtained. However, a small amount of tartaric acid was added as a set retarder for β-hemihydrate gypsum. Further, a small amount of sodium sulfate was used as a curing accelerator when using type II anhydrous gypsum.
[0047]
The tobermorite calcium silicate hydrate is 35% by mass of quicklime as a calcareous material and 65% by mass of powdered silica as a siliceous material (CaO / SiO 2 (Molar ratio = 0.5) was used, and 10 times by mass water was added thereto to prepare a slurry. The resulting slurry was hydrothermally reacted at 180 ° C for 5 hours in an autoclave. is there. The zonotlite-based calcium silicate hydrate is 52% by mass of quick lime as a calcareous material and 48% by mass of powdered silica as a siliceous material (CaO / SiO 2). 2 (Molar ratio = 1.0) was used, and a slurry was prepared by adding water 15 times by mass to this, and the obtained slurry was hydrothermally reacted in an autoclave at 200 ° C. for 5 hours. is there.
[0048]
The fillers used are as follows:
Fine powder silica: Brain value 9000cm 2 / G fine silica sand
Limestone powder: Okutama Kogyo, Brain value 3500cm 2 / G
Silica stone: Chichibu Mining Co., Ltd., Brain value 4000cm 2 / G powdered silica
Wollastonite: Indian Chemolit A-60, Brain value 2000cm 2 / G
[0049]
This was green sheet (invention product 7) which was mold-formed with a casting machine, or made into a dehydrated raw material film with a flow-on paper machine to produce a green sheet. Thereafter, the green sheet was dehydrated and pressurized with a press as necessary to obtain a green plate.
The obtained green sheet or green board was cured for a certain period of time to obtain the fiber-containing gypsum board of the present invention and the comparative product.
[0050]
In addition, the addition amount of the curing retarder when β-hemihydrate gypsum was used was added at a ratio of 0.1 mass% with respect to the dry mass of the raw gypsum. Thereafter, the produced green sheet was cured in a wet state for about 24 to 48 hours to obtain a desired cured product.
Moreover, the addition amount of the hardening accelerator when using type II anhydrous gypsum is added at a ratio of 0.2% by mass with respect to the dry mass of the raw material gypsum, and the green sheet thus prepared is in a wet state at about 10 ° C. Cured for 7 days.
The apparent density, bending strength, and nail characteristics of the obtained fiber-containing gypsum board were evaluated. The obtained results are also shown in Table 1.
[0051]
[Table 1]
Figure 2004010402
[0052]
[Table 2]
Figure 2004010402
[0053]
In addition, the apparent density of the fiber-containing gypsum board is obtained by drying the fiber-containing gypsum board to a constant weight in a thermostatic dryer adjusted to 40 ° C. ± 2 ° C., and then determining the material volume after drying with a caliper or the like, Dry mass (g) / material volume (cm 3 ). Moreover, bending strength is measured based on JISA5430 using the dry product obtained by the said method. The nail press resistance value is a value obtained by dividing the maximum load when the nail is press-fitted vertically into the fiber-containing gypsum board by the thickness of the material. If the value becomes higher, the resistance when driving the nail is increased. Means that it causes bending of nails and destruction of materials. Note that the nail press-fit resistance value and the nail holding force were measured using N45 iron round nails.
[0054]
In the products 1 to 8 of the present invention, materials having sufficient bending strength, light weight and good nail properties are obtained.
In Comparative products 1 to 3, since the ratio of the inorganic filler was different from the scope of the invention, cracks and water cracks were slightly generated in the green sheet being manufactured, so that not only the strength was reduced but also the nail holding power was reduced.
In Comparative Products 4 and 6, cracks and water cracking of the green sheet were remarkable, and good molded articles could not be obtained.
About the comparative products 5 and 8, since the gypsum component was excessive and it became a high-density material, the nail press-fit value became high.
About the comparative product 7, since the inorganic filler exceeded 50 mass%, bending strength and nail holding power fell.
For Comparative Examples 9 and 10, the ratio of the fillers is different and the pressing force by the press is not appropriate, so the apparent density increases and some cracks are generated, so the strength is low and the desired nail holding force cannot be obtained. It was.
Comparative products 11 and 12 are a conventional gypsum board and a fiber reinforced gypsum plate, which show low nail holding power or high nail press-fit resistance for high density.
[0055]
【The invention's effect】
According to the present invention, it is possible to provide a fiber-containing gypsum board that is lightweight and has good nail properties.

Claims (5)

予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、二水石膏33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる繊維含有石膏板であって、釘保持力が5N/mm以上で且つ見掛け密度が0.7〜1.2g/cmの範囲内であることを特徴とする繊維含有石膏板。Calcium silicate hydrate 5 to 40% by mass, dihydrate gypsum 33 to 80% by mass, reinforcing fiber 2 to 12% by mass, and inorganic filling obtained by hydrothermal synthesis of calcareous material and silicate material in advance A fiber-containing gypsum board containing 10 to 50% by mass of a material, having a nail holding power of 5 N / mm or more and an apparent density of 0.7 to 1.2 g / cm 3. A fiber-containing gypsum board. 無機質充填材が、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材2〜10質量%、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材5〜30質量%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材2〜35質量%、ただし、微細充填材+充填材+粗粒充填材の合計量は10〜50質量%の範囲内である、より構成される、請求項1記載の繊維含有石膏板。The inorganic filler has a fineness of at least 8000 cm 2 / g or a fine filler satisfying an average particle size of less than 15 μm, 2 to 10% by mass, and at least a fineness of 8000 to 3000 cm 2 / g. 5 to 30% by mass of filler satisfying the particle diameter in the range of 15 to 50 μm, and 2 to 35% by mass of coarse filler satisfying at least whether the fineness is less than 3000 cm 2 / g or the average particle diameter exceeds 50 μm. However, the fiber-containing gypsum board according to claim 1, wherein the total amount of the fine filler + filler + coarse filler is in the range of 10 to 50 mass%. 予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、水和性石膏を水和後の質量に換算して33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる配合物に水を加えてスラリーとし、該スラリーを脱水成形した後に養生硬化することを特徴とする繊維含有石膏板の製造方法。5-40% by mass of calcium silicate hydrate obtained by hydrothermal synthesis of calcareous raw material and silicic acid raw material in advance, 33-80% by mass in terms of hydrated gypsum after hydration, A fiber-containing gypsum characterized by adding water to a composition comprising 2 to 12% by mass of reinforcing fibers and 10 to 50% by mass of an inorganic filler to form a slurry, which is dehydrated and cured and then cured. A manufacturing method of a board. 予め石灰質原料とケイ酸質原料を水熱合成することにより得られたケイ酸カルシウム水和物5〜40質量%、水和性石膏を水和後の質量に換算して33〜80質量%、補強繊維2〜12質量%、及び無機質充填材10〜50質量%を含有してなる配合物に水を加えてスラリーとし、該スラリーを流し込み成形した後に養生硬化することを特徴とする繊維含有石膏板の製造方法。5-40% by mass of calcium silicate hydrate obtained by hydrothermal synthesis of calcareous raw material and silicic acid raw material in advance, 33-80% by mass in terms of hydrated gypsum after hydration, A fiber-containing gypsum characterized in that water is added to a composition comprising 2 to 12% by mass of reinforcing fibers and 10 to 50% by mass of an inorganic filler to form a slurry, which is cast and molded after being cast. A manufacturing method of a board. 無機質充填材が、少なくとも粉末度が8000cm/gを超えるかまたは平均粒子径が15μm未満を満足する微細充填材2〜10質量%、少なくとも粉末度が8000〜3000cm/gの範囲内または平均粒子径15〜50μmの範囲内を満足する充填材5〜30質量%、及び少なくとも粉末度が3000cm/g未満または平均粒子径が50μmを超えるかを満足する粗粒充填材2〜35質量%、ただし、微細充填材+充填材+粗粒充填材の合計量は10〜50質量%の範囲内である、より構成される、請求項3または4記載の繊維含有石膏板の製造方法。The inorganic filler has a fineness of at least 8000 cm 2 / g or a fine filler satisfying an average particle size of less than 15 μm, 2 to 10% by mass, and at least a fineness of 8000 to 3000 cm 2 / g. 5 to 30% by mass of filler satisfying the particle diameter in the range of 15 to 50 μm, and 2 to 35% by mass of coarse filler satisfying at least whether the fineness is less than 3000 cm 2 / g or the average particle diameter exceeds 50 μm. However, the manufacturing method of the fiber containing gypsum board of Claim 3 or 4 comprised from which the total amount of a fine filler + filler + coarse-grain filler exists in the range of 10-50 mass%.
JP2002164313A 2002-06-05 2002-06-05 Fiber-containing gypsum board and manufacturing method thereof Expired - Lifetime JP4213405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164313A JP4213405B2 (en) 2002-06-05 2002-06-05 Fiber-containing gypsum board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164313A JP4213405B2 (en) 2002-06-05 2002-06-05 Fiber-containing gypsum board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004010402A true JP2004010402A (en) 2004-01-15
JP4213405B2 JP4213405B2 (en) 2009-01-21

Family

ID=30432488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164313A Expired - Lifetime JP4213405B2 (en) 2002-06-05 2002-06-05 Fiber-containing gypsum board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4213405B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226906A (en) * 2008-03-25 2009-10-08 A & A Material Corp Method for manufacturing inorganic plate by papermaking process
JP2010125694A (en) * 2008-11-27 2010-06-10 A & A Material Corp Manufacturing method of inorganic paper-making plate
RU2540175C2 (en) * 2009-08-20 2015-02-10 Юнайтед Стэйтс Джипсум Компани Method to determine structural parameters of composite wall panels
RU2566850C2 (en) * 2011-04-21 2015-10-27 Юнайтед Стэйтс Джипсум Компани Method of determination of structural parameters of composite structural panels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880150B (en) * 2009-05-07 2013-02-20 浙江阿斯克新型保温材料有限公司 Process for manufacturing xonotlite type calcium silicate heat insulation material

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052121A (en) * 1973-10-16 1975-05-09
JPS52121629A (en) * 1976-04-07 1977-10-13 Nippon Synthetic Chem Ind Method of manufacturing composite material of gypsum system
JPS539820A (en) * 1976-07-15 1978-01-28 Matsushita Electric Works Ltd Method of producing solid composition
JPS5595659A (en) * 1978-12-18 1980-07-21 Nippon Asbestos Co Ltd Production of light weight refractory building material
JPS58181750A (en) * 1982-04-16 1983-10-24 セントラル硝子株式会社 Gypsum composite material composition and manufacture of gypsum composite formed body
JPS62176949A (en) * 1986-01-29 1987-08-03 三菱鉱業セメント株式会社 Calcium silicate gypsum composite body
JPS62191455A (en) * 1986-02-19 1987-08-21 浅野スレ−ト株式会社 Anhydrous gypsum papered board and manufacture
JPS6424061A (en) * 1987-07-17 1989-01-26 Asano Slate Co Ltd Production of anhydrous gypsum board
JPH0416538A (en) * 1990-05-10 1992-01-21 Denki Kagaku Kogyo Kk Composition for molding and molding thereof
JPH07144952A (en) * 1993-04-21 1995-06-06 Sofitech Nv Cement slurry for oil well, preparation thereof and method for using it in cementing work
JPH08231257A (en) * 1995-02-24 1996-09-10 Chichibu Onoda Cement Corp Composite inorganic board
JPH09255401A (en) * 1996-03-18 1997-09-30 Nitto Chem Ind Co Ltd Nailable self-smoothing composition and working method therefor
JPH10100308A (en) * 1996-09-25 1998-04-21 Yoshino Sekko Kk Reinforced hard gypsum board and its manufacture
JPH10512842A (en) * 1995-01-25 1998-12-08 ラファルジュ マテリオ ドゥ スペシャリテ Composite concrete
JP2001106563A (en) * 1999-10-04 2001-04-17 Asano Slate Co Ltd Lightweight calcium silicate board and its manufacturing method
JP2001226166A (en) * 2000-02-15 2001-08-21 Nichias Corp Calcium silicate formed plate

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052121A (en) * 1973-10-16 1975-05-09
JPS52121629A (en) * 1976-04-07 1977-10-13 Nippon Synthetic Chem Ind Method of manufacturing composite material of gypsum system
JPS539820A (en) * 1976-07-15 1978-01-28 Matsushita Electric Works Ltd Method of producing solid composition
JPS5595659A (en) * 1978-12-18 1980-07-21 Nippon Asbestos Co Ltd Production of light weight refractory building material
JPS58181750A (en) * 1982-04-16 1983-10-24 セントラル硝子株式会社 Gypsum composite material composition and manufacture of gypsum composite formed body
JPS62176949A (en) * 1986-01-29 1987-08-03 三菱鉱業セメント株式会社 Calcium silicate gypsum composite body
JPS62191455A (en) * 1986-02-19 1987-08-21 浅野スレ−ト株式会社 Anhydrous gypsum papered board and manufacture
JPS6424061A (en) * 1987-07-17 1989-01-26 Asano Slate Co Ltd Production of anhydrous gypsum board
JPH0416538A (en) * 1990-05-10 1992-01-21 Denki Kagaku Kogyo Kk Composition for molding and molding thereof
JPH07144952A (en) * 1993-04-21 1995-06-06 Sofitech Nv Cement slurry for oil well, preparation thereof and method for using it in cementing work
JPH10512842A (en) * 1995-01-25 1998-12-08 ラファルジュ マテリオ ドゥ スペシャリテ Composite concrete
JPH08231257A (en) * 1995-02-24 1996-09-10 Chichibu Onoda Cement Corp Composite inorganic board
JPH09255401A (en) * 1996-03-18 1997-09-30 Nitto Chem Ind Co Ltd Nailable self-smoothing composition and working method therefor
JPH10100308A (en) * 1996-09-25 1998-04-21 Yoshino Sekko Kk Reinforced hard gypsum board and its manufacture
JP2001106563A (en) * 1999-10-04 2001-04-17 Asano Slate Co Ltd Lightweight calcium silicate board and its manufacturing method
JP2001226166A (en) * 2000-02-15 2001-08-21 Nichias Corp Calcium silicate formed plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226906A (en) * 2008-03-25 2009-10-08 A & A Material Corp Method for manufacturing inorganic plate by papermaking process
JP2010125694A (en) * 2008-11-27 2010-06-10 A & A Material Corp Manufacturing method of inorganic paper-making plate
RU2540175C2 (en) * 2009-08-20 2015-02-10 Юнайтед Стэйтс Джипсум Компани Method to determine structural parameters of composite wall panels
RU2566850C2 (en) * 2011-04-21 2015-10-27 Юнайтед Стэйтс Джипсум Компани Method of determination of structural parameters of composite structural panels

Also Published As

Publication number Publication date
JP4213405B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US20060043627A1 (en) Wood cement board and method for the manufacturing thereof
US20050269730A1 (en) Method for manufacturing a wood cement board
JP2005512933A5 (en)
CA2521751C (en) Fire door core
JP4641117B2 (en) Manufacturing method of inorganic cement composite board
JP4213405B2 (en) Fiber-containing gypsum board and manufacturing method thereof
GB2053184A (en) Plaster composition
JP2002293601A (en) Production process of lightweight mortar material
JP4127749B2 (en) Calcium silicate material for inner wall material or ceiling material and method for producing the same
JP2003160371A (en) Composition for building material
JP3376410B2 (en) Natural porous soil wall material and its dry production method
JP2003136514A (en) Mineral plate and its manufacturing method
JP4198868B2 (en) Manufacturing method of fiber reinforced inorganic board
JP4369014B2 (en) Calcium silicate molded body and method for producing the same
JP2666893B2 (en) Composition for lightweight building material and method for producing lightweight building material
CA2174185C (en) Organomineral paste and method of use as construction material
JP2006069806A (en) Inorganic board and its manufacturing method
JP6052981B2 (en) Calcium silicate molded body and method for producing the same
JP4220781B2 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JP4463587B2 (en) Inorganic molded body for recycling and recycling method thereof
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JP4220781B6 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JP4008171B2 (en) Inorganic board and method for producing the same
JPH11180749A (en) Production of inorganic cement plate
AU2011201384B2 (en) Inorganic board and inorganic board production method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4213405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term