JP2002293601A - Production process of lightweight mortar material - Google Patents
Production process of lightweight mortar materialInfo
- Publication number
- JP2002293601A JP2002293601A JP2001102283A JP2001102283A JP2002293601A JP 2002293601 A JP2002293601 A JP 2002293601A JP 2001102283 A JP2001102283 A JP 2001102283A JP 2001102283 A JP2001102283 A JP 2001102283A JP 2002293601 A JP2002293601 A JP 2002293601A
- Authority
- JP
- Japan
- Prior art keywords
- curing
- cement
- lightweight
- fine aggregate
- mortar material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、軽量細骨材を用い
た軽量モルタル材に係り、軽量でありながら高い強度を
発現するものであり、長期間に亘って劣化せずに大きな
強度を保持することのできる耐久性に優れた軽量モルタ
ル材の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight mortar material using a lightweight fine aggregate, which exhibits a high strength while being lightweight, and maintains a large strength without deterioration over a long period of time. The present invention relates to a method for manufacturing a lightweight mortar material having excellent durability.
【0002】[0002]
【従来の技術】従来、炭酸ガス中でセメント硬化体を養
生して、強度の向上を図る技術が知られている。例え
ば、特開平6−263562号公報には、セメントと骨
材と水を混練して得られるセメント硬化体を成形して、
前養生を行ない、脱型した後、所定の期間、炭酸ガス雰
囲気中で養生することによって、高強度セメント硬化体
を得る技術が開示されている。また、本発明者らにおい
ては、特願2000−70677号において、セメント
及び必要に応じて配合される無機質粉末に、有機高分子
系炭酸化促進剤(例えば、エチレン−酢酸ビニル系エマ
ルション)を含む硬化体を成形して、前養生を行なった
後、所定の期間、炭酸ガス中で養生することによって、
養生後に達した曲げ強さの最大値を、ほぼそのまま長期
間に亘って維持することのできる高曲げ強度で耐久性に
優れたセメント系硬化体を得る技術を記載している。従
来の軽量モルタル材並びに軽量コンクリートにおいて
は、その耐久性を向上させるために、硬化後の軽量モル
タル材の空隙率を低減させ、耐久性を向上させる技術が
知られている。例えば、特開平11−131804号公
報には、軽量コンクリートの耐久性向上を目的として、
空隙を生成する水量を低減させるために水セメント比を
45%以下に小さくすることで、また、特開平11−2
78900号公報には、配合する軽量細骨材として吸水
率の低い軽量細骨材を選択して使用することで、硬化後
の軽量モルタル材の空隙を低減することが示されてい
る。2. Description of the Related Art Heretofore, there has been known a technique of curing a hardened cement in carbon dioxide gas to improve the strength. For example, in JP-A-6-263562, a cement hardened body obtained by kneading cement, aggregate and water is molded,
A technique of obtaining a high-strength hardened cement body by performing pre-curing, removing the mold, and curing the resultant in a carbon dioxide atmosphere for a predetermined period of time is disclosed. Further, in the present inventors, in Japanese Patent Application No. 2000-70677, an organic polymer-based carbonation accelerator (for example, an ethylene-vinyl acetate-based emulsion) is contained in cement and an inorganic powder to be blended as required. After forming the cured body and performing pre-curing, by curing for a predetermined period in carbon dioxide gas,
It describes a technique for obtaining a cement-based hardened body having high bending strength and excellent durability, which can maintain the maximum value of the bending strength reached after curing for almost a long period of time. In the conventional lightweight mortar material and lightweight concrete, in order to improve the durability, a technique for reducing the porosity of the cured lightweight mortar material and improving the durability is known. For example, Japanese Unexamined Patent Publication No. 11-131804 discloses a method for improving the durability of lightweight concrete.
By reducing the water-cement ratio to 45% or less in order to reduce the amount of water that generates voids, the method disclosed in
Japanese Patent No. 78900 discloses that the voids of a cured lightweight mortar material are reduced by selecting and using a lightweight fine aggregate having a low water absorption rate as a lightweight fine aggregate to be blended.
【0003】[0003]
【発明が解決しようとする課題】上記公報には、炭酸ガ
ス養生を行なうと、養生しない場合に比べて、セメント
硬化体の曲げ強度が大きくなることが示されている、し
かしながら、本発明者らは、炭酸ガス養生を施すと、一
時的に最大値に達した軽量モルタル材の曲げ強度が、長
期においては時間の経過とともに低下していくことを見
出した。そこで、本発明は、軽量でありながら高強度で
あるとともに、炭酸ガス養生を施した場合に、曲げ強度
の最大値をそのまま長期間保持することのできる耐久性
に優れた軽量モルタル材及びその製造方法を提供するこ
とを目的とする。また、いずれも軽量モルタル材並びに
軽量コンクリート硬化体の空隙を低減するために水セメ
ント比を小さくしたり、吸水性の低い軽量細骨材を使用
する場合、表面層がガラス質状の軽量細骨材を利用する
必要があり、使用状況によってはアルカリ骨材反応によ
る軽量モルタル材の硬化体組織の劣化という危険性が避
けられない。The above publication discloses that the curing strength of a cement hardened body is increased when carbon dioxide gas curing is performed, as compared with the case where curing is not performed. Found that the bending strength of the lightweight mortar material, which temporarily reached the maximum value, decreased with the lapse of time in the long term when carbon dioxide curing was performed. Therefore, the present invention provides a lightweight mortar material having excellent durability that can maintain the maximum value of the bending strength as it is for a long period of time when subjected to carbon dioxide curing while being light in weight and high in strength. The aim is to provide a method. In addition, when the water-cement ratio is reduced in order to reduce the voids in the lightweight mortar material and the lightweight hardened concrete, or when the lightweight fine aggregate having low water absorption is used, the surface layer has a vitreous lightweight fine bone. It is necessary to use a material, and depending on the use situation, there is an unavoidable danger that the hardened structure of the lightweight mortar material is deteriorated due to the alkali-aggregate reaction.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、有機高分子の中
に、セメント系軽量モルタル材の炭酸化を促進するもの
があること、及びセメントを含む軽量モルタル成形体に
促進炭酸化養生を施す前に、成形体の材料として該有機
高分子系炭酸化促進剤を配合しておけば、促進炭酸化養
生によって軽量モルタル成形体の強度が向上して高い曲
げ強度の軽量モルタル硬化体が得られるとともに、最大
強度に達した後においても、その強度が時間の経過とと
もに低下しないことを見出し、本発明を完成した。Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that some organic polymers promote carbonation of a lightweight cement mortar material. Before applying the accelerated carbonation curing to the lightweight mortar molding containing cement and cement, if the organic polymer-based carbonation accelerator is blended as a material of the molding, the strength of the lightweight mortar molding is enhanced by the accelerated carbonation curing. It has been found that a high-strength lightweight mortar cured product with high bending strength is obtained, and that the strength does not decrease over time even after reaching the maximum strength, and the present invention has been completed.
【0005】すなわち、本発明の軽量モルタル材の製造
方法は、セメント及び必要に応じて配合される無機質粉
末と軽量細骨材並びに有機高分子系炭酸化促進剤とを含
有する成形体を炭酸化養生することを特徴とする(請求
項1及び2)。この様にあらかじめセメント等とともに
有機高分子系炭酸化促進剤を配合しておくことで、炭酸
化養生後も長期間に亘って軽量高強度を維持することが
できる。ここで、上記軽量細骨材の粒子径は0.1mm
〜1.2mmであり、比重が0.1〜0.9であり(請
求項3)、その含有量が上記セメント及び必要に応じて
配合される無機質粉末の合計量100重量部に対して5
〜150重量部である(請求項4)。上記有機高分子系
炭酸化促進剤の含有量は、固形分換算にして、上記セメ
ント及び必要に応じて配合される無機質粉末の合計量1
00重量部に対して2〜20重量部である(請求項
5)。上記炭酸化養生は、遅くとも水和材齢10日以内
に開始される必要がある(請求項6)。なお、炭酸化養
生の前に、水中養生または湿空養生による前養生を行な
うと、さらに強度が向上する(請求項7)。上記セメン
ト及び必要に応じて配合される無機質粉末の合計量中の
ビーライトの含有率は、5質量%以上である(請求項
8)。[0005] That is, the method for producing a lightweight mortar material of the present invention is a method for carbonizing a molded product containing cement and an inorganic powder, which is optionally blended, a lightweight fine aggregate, and an organic polymer-based carbonation accelerator. It is cured (Claims 1 and 2). By blending the organic polymer-based carbonation accelerator together with the cement or the like in advance in this way, the lightweight and high strength can be maintained for a long period of time even after the carbonation curing. Here, the particle diameter of the lightweight fine aggregate is 0.1 mm.
And the specific gravity is 0.1 to 0.9 (Claim 3), and the content is 5 to 100 parts by weight of the total amount of the cement and the inorganic powder blended as required.
To 150 parts by weight (claim 4). The content of the organic polymer-based carbonation accelerator was calculated as a solid content, and the total amount of the cement and the inorganic powder to be blended as required was 1
It is 2 to 20 parts by weight based on 00 parts by weight (claim 5). The carbonation curing needs to be started at the latest within 10 days of hydration age (claim 6). If pre-curing by underwater curing or wet-air curing is performed before carbonation curing, the strength is further improved (claim 7). The content of belite in the total amount of the cement and the inorganic powder blended as required is 5% by mass or more (claim 8).
【0006】[0006]
【発明の実施の形態】本発明に用いられるセメントは、
水和に伴い水酸化カルシウム並びにケイ酸カルシウム水
和生成物が生成するセメントであれば特に限定されず、
例えば、低熱ポルトランドセメント(高ビーライト系セ
メント)、中庸熱ポルトランドセメント、普通ポルトラ
ンドセメント、早強ポルトランドセメント、超早強ポル
トランドセメント、耐硫酸塩ポルトランドセメント等の
ポルトランドセメントや、各種低アルカリ形ポルトラン
ドセメント等のポルトランドセメントや、高炉セメン
ト、シリカセメント、フライアッシュセメント等の混合
セメント、白色セメント等が挙げられる。普通ポルトラ
ンドセメントでは、通常、25質量%以上、また、早強
ポルトランドセメントでは、通常、15質量%以上のビ
ーライトを含んでおり本発明の効果は十分に得ることが
可能である。中でも本発明の効果(軽量高強度発現性)
に優れる点で、低熱ポルトランドセメントや中庸熱ポル
トランドセメントが好ましい。低熱ポルトランドセメン
トでは、通常、40質量%以上のビーライトを含む。中
庸熱ポルトランドセメントは、通常、30質量%以上の
ビーライトを含んでいる。BEST MODE FOR CARRYING OUT THE INVENTION The cement used in the present invention is:
It is not particularly limited as long as it is a cement that produces calcium hydroxide and calcium silicate hydration product with hydration,
For example, Portland cements such as low heat Portland cement (high belite cement), medium heat Portland cement, ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, sulfate-resistant Portland cement, etc., and various low alkali type Portland cements And cements such as blast furnace cement, silica cement and fly ash cement, white cement and the like. Ordinary Portland cement usually contains 25% by mass or more, and early-strength Portland cement usually contains 15% by mass or more of belite, so that the effects of the present invention can be sufficiently obtained. Among them, the effect of the present invention (light weight and high strength development)
In view of excellent heat resistance, low heat Portland cement and moderate heat Portland cement are preferred. Low-heat Portland cement usually contains belite in an amount of 40% by mass or more. Moderate heat Portland cement usually contains 30% by weight or more of belite.
【0007】セメントと共に必要に応じて配合される無
機質粉末としては、高炉スラグ粉末、フライアッシュ、
石灰石粉、硅石粉、シリカフューム、ビーライトを多量
に含む天然物や人工物などから選ばれる一種以上からな
るものが用いられる。また、コンクリート微粉やセメン
ト系製品等のケイ酸カルシウム系廃材を粉砕した微紛を
用いることもできる。なお、セメントと必要に応じて配
合される無機質粉末の合計量中のビーライトの含有率は
5質量%以上となるように調整するのが好ましい。該含
有率が5質量%以上であると、炭酸化養生した場合、特
に優れた高曲げ強度の発現がみられる。[0007] Blast furnace slag powder, fly ash,
A material composed of at least one selected from natural products and artificial products containing a large amount of limestone powder, silica stone powder, silica fume, and belite is used. Further, fine powder obtained by pulverizing calcium silicate-based waste materials such as concrete fine powder and cement-based products can also be used. In addition, it is preferable to adjust the content of belite in the total amount of the cement and the inorganic powder to be blended as required to be 5% by mass or more. When the content is 5% by mass or more, particularly excellent high bending strength is exhibited when carbonation curing is performed.
【0008】本発明で用いる軽量細骨材としては、特に
限定されることはなく、パーライト、シラスバルーン、
バーミキュライトや、頁岩、粘土等を焼成・発泡させた
人工軽量細骨材や製紙スラッジを焼却して得られるパル
プスラッジ(PS)灰砂等の無機質軽量細骨材、また、
スチレンビーズ、塩化ビニル、ポリプロピレン、ポリエ
チレン、ポリスチレン等の合成樹脂発泡体及びそれらの
廃材を利用することができる。[0008] The lightweight fine aggregate used in the present invention is not particularly limited, and may be pearlite, shirasu balloon,
Inorganic lightweight fine aggregates such as vermiculite, shale, artificial lightweight fine aggregate made by firing and foaming clay, and pulp sludge (PS) ash sand obtained by burning paper sludge,
Synthetic resin foams such as styrene beads, vinyl chloride, polypropylene, polyethylene, and polystyrene and waste materials thereof can be used.
【0009】軽量細骨材としては、粒子径が0.1mm
〜1.2mmであり、比重0.1〜0.9程度のものが
好ましい。また、本発明における軽量細骨材は、上記2
種類以上の軽量細骨材を組み合わせて配合するようにし
てもよい。粒子径が0.1mm未満の軽量細骨材を用い
ると混練後のモルタルの流動性が低下し成形性が悪化す
る。一方、1.2mmを超える軽量細骨材を用いると軽
量モルタル硬化体の表面性が悪化するため好ましくな
い。また、比重が0.1未満の軽量細骨材を用いるとモ
ルタル中での浮き上がりが顕著となって硬化体の表面性
が悪化し、一方、比重が0.9より大きくなると軽量性
の効果が発現しにくくなるため好ましくない。As a light fine aggregate, the particle diameter is 0.1 mm.
To 1.2 mm, and a specific gravity of about 0.1 to 0.9 is preferable. Further, the lightweight fine aggregate according to the present invention includes
You may mix and mix more than types of lightweight fine aggregates. If a lightweight fine aggregate having a particle diameter of less than 0.1 mm is used, the fluidity of the mortar after kneading is reduced, and the moldability is deteriorated. On the other hand, when a lightweight fine aggregate exceeding 1.2 mm is used, the surface properties of the cured lightweight mortar are deteriorated, which is not preferable. In addition, when a lightweight fine aggregate having a specific gravity of less than 0.1 is used, lifting in a mortar becomes conspicuous, and the surface property of a cured body is deteriorated. It is not preferable because it hardly occurs.
【0010】軽量細骨材の添加量は、セメント並びに必
要に応じて配合される無機質粉末100重量部に対し
て、5〜150重量部で効果がみられるが、実際は、使
用する軽量細骨材の比重並びに必要とする軽量モルタル
材の比重との関係から適宜定めればよい。該添加量が5
重量部未満であると軽量性が得られず、150重量部を
超えると高コストになるとともに硬化体の弾性率が低く
なり、目的の強度性状を得ることができなくなる。軽量
細骨材の添加量を軽量モルタル材中の容積割合でみると
材料全体の20%以上を占めるように適宜配合するのが
好ましい。The effect of adding the lightweight fine aggregate is 5 to 150 parts by weight based on 100 parts by weight of the cement and the inorganic powder to be blended if necessary. And the specific gravity of the required lightweight mortar material. The amount added is 5
If the amount is less than 150 parts by weight, the lightness cannot be obtained. If the amount exceeds 150 parts by weight, the cost becomes high and the elastic modulus of the cured product becomes low, so that the desired strength properties cannot be obtained. When the amount of the light fine aggregate is added in terms of the volume ratio in the lightweight mortar material, it is preferable to appropriately mix the fine aggregate so as to account for 20% or more of the whole material.
【0011】本発明で用いる有機高分子系炭酸化促進剤
としては、例えば、水性ポリマーディスパージョン、再
乳化形粉末樹脂(粉末エマルション)、水溶性ポリマー
等のうちのいくつかが挙げられる。例えば、アクリル酸
エステル、ポリ酢酸ビニル、エチレン−酢酸ビニル共重
合体などの熱可塑性エマルションや、スチレンブタジエ
ンゴムなどの合成ゴムラテックスが挙げられる。再乳化
形粉末樹脂においては、例えば、ポリアクリル酸エステ
ル、エチレン−酢酸ビニル共重合体、酢酸ビニル−ビニ
ルバーサテート(VeoVa)等が挙げられる。水溶性
ポリマーにおいては、メチルセルロースなどのセルロー
ス誘導体、ポリビニルアルコール等が挙げられる。The organic polymer-based carbonation accelerator used in the present invention includes, for example, some of aqueous polymer dispersions, re-emulsified powdered resins (powder emulsions), and water-soluble polymers. For example, thermoplastic emulsions such as acrylates, polyvinyl acetate, and ethylene-vinyl acetate copolymer, and synthetic rubber latex such as styrene-butadiene rubber can be used. Examples of the re-emulsifying type powder resin include polyacrylate, ethylene-vinyl acetate copolymer, vinyl acetate-vinyl versatate (VeoVa), and the like. Examples of the water-soluble polymer include cellulose derivatives such as methylcellulose, and polyvinyl alcohol.
【0012】有機高分子系炭酸化促進剤の添加量は、固
形分に換算して、セメント並びに必要に応じて配合され
る無機質粉末の合計量100重量部に対して、2〜20
重量部で効果がみられ、好ましくは3〜15重量部であ
る。該添加量が2重量部未満であると、長期間に亘って
強度を保持するのが難しくなり、20重量部を超えると
高コストとなるとともに硬化体の弾性率が低くなり、目
的の強度性状を得ることができなくなる。The amount of the organic polymer-based carbonation accelerator is 2 to 20 parts by weight based on 100 parts by weight of the total amount of cement and, if necessary, inorganic powder mixed in terms of solid content.
The effect is seen in parts by weight, preferably 3 to 15 parts by weight. If the amount is less than 2 parts by weight, it is difficult to maintain the strength for a long period of time, and if it exceeds 20 parts by weight, the cost becomes high and the elastic modulus of the cured product becomes low. Can not be obtained.
【0013】セメントや軽量細骨材等と共に配合可能な
他の材料としては、細骨材、補強用繊維質材料、各種混
和剤等が挙げられる。Other materials that can be blended with cement, lightweight fine aggregate, and the like include fine aggregate, reinforcing fibrous materials, and various admixtures.
【0014】細骨材は、粗骨材よりも粒子径の小さな骨
材であって、例えば、川砂、海砂、山砂、砕砂またはこ
れらの混合物が挙げられる。細骨材の配合量は、セメン
ト及び必要に応じて配合される無機質粉末の合計量10
0重量部に対して、通常、30〜400重量部程度であ
るが、必要とする軽量モルタル材の比重によって適宜定
めればよい。The fine aggregate is an aggregate having a smaller particle size than the coarse aggregate, and examples thereof include river sand, sea sand, mountain sand, crushed sand and a mixture thereof. The blending amount of the fine aggregate is the total amount of the cement and the inorganic powder to be blended if necessary.
Usually, it is about 30 to 400 parts by weight with respect to 0 parts by weight, but may be appropriately determined depending on the specific gravity of the required lightweight mortar material.
【0015】補強用繊維としては、Eガラス等のガラス
繊維、スラグ繊維、炭素繊維、ビニロン、ポリプロピレ
ン、アクリル、パルプ等の繊維、シリコーンカーバイト
繊維、石綿などの各種天然繊維及び合成繊維を挙げるこ
とができる。混和剤としては、減水剤、AE減水剤、高
性能減水剤、高性能AE減水剤、水和促進剤、水和遅延
剤、乾燥収縮低減剤、増粘剤等が挙げられる。混和剤の
種類及び配合量は、混和剤以外の材料の種類及び配合量
や、軽量モルタル材の用途を考慮して、適宜定めればよ
い。Examples of reinforcing fibers include glass fibers such as E glass, slag fibers, carbon fibers, fibers such as vinylon, polypropylene, acrylic and pulp, and various natural fibers and synthetic fibers such as silicone carbide fibers and asbestos. Can be. Examples of the admixture include a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a hydration accelerator, a hydration retarder, a drying shrinkage reducing agent, a thickener and the like. The type and amount of the admixture may be appropriately determined in consideration of the type and amount of the material other than the admixture and the use of the lightweight mortar material.
【0016】混練水量は特に限定されるものではない
が、好ましくは水セメント比で0.30〜0.60であ
る。水セメント比が0.30未満であると、炭酸化が進
行しづらくなることで促進炭酸化による軽量モルタル材
の強度増進効果が得られなくなるおそれがあり、0.6
0を超えると、強度の低下や耐久性を損うおそれがある
からである。なお、本明細書中では、「水セメント比」
とは、「水」の質量(W)を「セメント及び必要に応じ
て配合される無機質粉末」の質量(C)で割った比率
(W/C)をいう。The amount of kneading water is not particularly limited, but is preferably 0.30 to 0.60 in terms of a water cement ratio. If the water-cement ratio is less than 0.30, the carbonation becomes difficult to progress, so that the effect of enhancing the strength of the lightweight mortar material by the accelerated carbonation may not be obtained.
If it exceeds 0, the strength may be reduced and durability may be impaired. In this specification, "water cement ratio"
Means a ratio (W / C) obtained by dividing the mass (W) of “water” by the mass (C) of “cement and optionally blended inorganic powder”.
【0017】各種材料の混練に用いるミキサとしては、
特に限定されるものではないが、パンタイプミキサ、二
軸ミキサ、オムニミキサ、ホバートミキサ等の慣用のミ
キサを用いれば良い。混練方法としては、全ての材料を
一括してミキサに投入し混練しても良いし、水、有機高
分子系炭酸化促進剤、混和剤以外の材料をミキサに投入
して空練りした後に、水等を投入して混練しても良い。
混練後、混練物を所定の型枠に投入する。型枠に投入さ
れた混練物に対して、外部振動を加えたり、加圧装置等
を用いて加圧成形しても良い。As a mixer used for kneading various materials,
Although not particularly limited, a conventional mixer such as a pan-type mixer, a two-axis mixer, an omni mixer, and a Hobart mixer may be used. As a kneading method, all the materials may be collectively charged into the mixer and kneaded, or water, an organic polymer-based carbonation accelerator, and materials other than the admixture may be charged into the mixer and kneaded, and then kneaded. Water and the like may be charged and kneaded.
After kneading, the kneaded material is put into a predetermined mold. External kneading may be applied to the kneaded material placed in the mold, or pressure molding may be performed using a pressure device or the like.
【0018】混練物は、通常、型枠に投入後、通常1〜
2日程度で脱型して成形体とし、その後、本発明の養生
を行なう。なお、押出成形等のような、型枠を用いずに
成形体を得る方法を用いても良い。促進炭酸化養生は、
好ましくは、遅くとも成形体の水和材齢10日以内、よ
り好ましくは7日以内に開始する。The kneaded material is usually put into a mold, and usually 1 to
Demolding is performed in about two days to form a molded body, and thereafter, curing is performed according to the present invention. Note that a method of obtaining a molded body without using a mold, such as extrusion molding, may be used. Accelerated carbonation curing
Preferably, it starts at the latest within 10 days, more preferably within 7 days, of the hydration age of the shaped body.
【0019】炭酸化養生は、通常、気中養生として行な
われるが、必要に応じて、湿空あるいは蒸気養生を組み
合わせて行なってもよい。気中養生の場合、成形体は、
炭酸ガス(CO2)濃度が1〜100%、好ましくは3
〜100%の条件下で促進炭酸化がなされる。促進炭酸
化養生時の温度は、特に限定されないが、通常、10〜
80℃程度である。促進炭酸化養生時の湿度(R.H.)
は、特に限定されないが、通常、40〜90%程度であ
る。The carbonation curing is usually performed as air curing, but may be performed in combination with moist air or steam curing as necessary. In the case of air curing, the molded body is
Carbon dioxide (CO 2 ) concentration of 1 to 100%, preferably 3
Accelerated carbonation occurs at ~ 100% conditions. The temperature during accelerated carbonation curing is not particularly limited, but is usually 10 to
It is about 80 ° C. Humidity during accelerated carbonation curing (RH)
Is not particularly limited, but is usually about 40 to 90%.
【0020】気中あるいは湿空で促進炭酸化養生を行な
う場合の養生時間は、炭酸ガス濃度等の諸条件を考慮し
て定められる。例えば、炭酸ガス濃度10%、温度20
℃、湿度(R.H.)60%の場合で、4〜10日程度で
ある。前述のように、促進炭酸化養生を開始する時期
は、遅くとも成形体の水和材齢10日以内であることが
好ましい。これを過ぎると、炭酸化養生の効果が得られ
難くなり強度の発現性が遅くなるおそれがある。The curing time when the accelerated carbonation curing is performed in the air or in humid air is determined in consideration of various conditions such as the concentration of carbon dioxide. For example, a carbon dioxide concentration of 10% and a temperature of 20
It is about 4 to 10 days at 60 ° C. and 60% humidity (RH). As described above, the time when the accelerated carbonation curing is started is preferably at the latest within 10 days of the hydrated material age of the molded body. If this is exceeded, the effect of carbonation curing will be difficult to obtain, and the development of strength may be delayed.
【0021】本発明では、促進炭酸化養生の前に、水中
養生または湿空養生の工程を加えるのが好ましい。水中
養生または湿空養生は、通常、脱型直後または成形直後
から1〜10日程度行なわれる。水中養生や湿空養生等
の前養生を行なうことにより、促進炭酸化養生による軽
量モルタル材の強度をより一層向上させることができ
る。なお、湿空養生は、通常、湿度(R.H.)90%以
上、温度10〜60℃程度の雰囲気下で行なわれる。In the present invention, it is preferable to add a step of underwater curing or wet-air curing before accelerated carbonation curing. Underwater curing or wet-air curing is usually performed for about 1 to 10 days immediately after demolding or immediately after molding. By performing pre-curing such as underwater curing and wet-air curing, the strength of the lightweight mortar material by accelerated carbonation curing can be further improved. The humid curing is usually performed in an atmosphere having a humidity (RH) of 90% or more and a temperature of about 10 to 60 ° C.
【0022】本発明で用いられる炭酸ガスとしては、市
販の二酸化炭素、ドライアイスの他、セメント工場、火
力発電所やゴミ焼却場等の燃焼ガスや廃棄ガス等が使用
できる。As the carbon dioxide used in the present invention, commercially available carbon dioxide and dry ice, as well as combustion gases and waste gases from cement factories, thermal power plants and garbage incineration plants can be used.
【0023】[0023]
【実施例】[実施例1〜11、比較例1〜6]以下のよ
うに4×4×16cmのモルタル硬化体を作製し、所定
の養生を施した後、促進炭酸化養生条件下で、経時的に
比重及び曲げ強さを測定した。また、比重の異なる配合
での強度性状を比較するために比強度(=曲げ強さ/比
重)を求めた。モルタル硬化体の作製方法は、JIS
R5201に準拠した。軽量モルタル硬化体の養生条件
は、型枠内に混練物を投入後、脱型するまでの1日間
を、湿空養生(20℃、湿度(R.H.)90%以上)と
し、その後、水中養生または促進炭酸化養生(20℃、
湿度(R.H.)60%、炭酸ガス濃度10%)またはそ
れらの組み合わせとした。促進中性化試験は、セメント
系軽量モルタル材の強度の耐久性を評価するために実施
したものである。具体的には、高炭酸ガス濃度下(20
℃、湿度(R.H.)60%、炭酸ガス濃度10%)にお
ける曲げ強さの経時変化を測定した。EXAMPLES [Examples 1 to 11, Comparative Examples 1 to 6] A mortar cured product of 4 × 4 × 16 cm was prepared as described below, subjected to a predetermined curing, and then under accelerated carbonation curing conditions. The specific gravity and flexural strength were measured over time. Further, specific strength (= flexural strength / specific gravity) was determined in order to compare the strength properties of the compositions having different specific gravities. The method for producing a mortar cured product is JIS
It conformed to R5201. The curing condition of the lightweight mortar cured body is as follows: the wet kneading (20 ° C., humidity (R.H.) 90% or more) is performed for one day until the mold is released after the kneaded material is put into the mold. Underwater curing or accelerated carbonation curing (20 ° C,
Humidity (RH) 60%, carbon dioxide concentration 10%) or a combination thereof. The accelerated neutralization test was conducted to evaluate the strength durability of the cement-based lightweight mortar material. Specifically, under a high carbon dioxide gas concentration (20
The change with time of the flexural strength at ℃, humidity (RH) 60%, carbon dioxide concentration 10%) was measured.
【0024】(1)材料 セメント系軽量モルタル材を作製するために、以下の材
料を用いた。 セメント (N)普通ポルトランドセメント (L)低熱ポルトランドセメント(ビーライト含有率5
1%) 無機質粉末:石灰石粉(ブレーン比表面積:4,50
0cm2/g) 軽量細骨材:パーライト(アサノパーライト社製、商
品名:「硬質パーライト:KP」)、絶乾比重:0.8
6、粒子径0.4〜1.2mm,吸水率:約15% 骨材(細骨材):JIS R5201標準砂 有機高分子系炭酸化促進剤(ポリマーエマルション) (A)エチレン−酢酸ビニル(EVA)系エマルション
(電気化学工業社製、商品名:「83PLD」) (B)スチレン−アクリル酸エステル(PAE)系エマ
ルション(日本エヌエスシー社製、商品名:「GF1
T」) 混練水:水道水を使用(1) Materials The following materials were used to produce a cement-based lightweight mortar material. Cement (N) Ordinary Portland cement (L) Low heat Portland cement (belite content 5
1%) Inorganic powder: limestone powder (Brain specific surface area: 4.50)
0 cm 2 / g) Lightweight fine aggregate: Perlite (manufactured by Asano Perlite, trade name: “hard perlite: KP”), specific gravity of absolute dryness: 0.8
6. Particle size 0.4 to 1.2 mm, water absorption: about 15% Aggregate (fine aggregate): JIS R5201 standard sand Organic polymer-based carbonation accelerator (polymer emulsion) (A) Ethylene-vinyl acetate (EVA) ) -Based emulsion (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: “83PLD”) (B) Styrene-acrylate (PAE) -based emulsion (manufactured by NSC, trade name: “GF1”)
T ") Mixing water: use tap water
【0025】(2)配合割合及び養生条件 各材料の配合割合(重量部)及び養生条件は、表1の通
りである。なお、表1中の「養生条件」は、型枠内で1
日間湿空養生を施した後、脱型し、その後に行なった養
生方法及び期間を記載したものである。(2) Mixing ratio and curing conditions Table 1 shows the mixing ratio (parts by weight) and curing conditions of each material. Note that “curing conditions” in Table 1 are 1 in the formwork.
It describes the curing method and the period of time after performing wet curing for one day, removing the mold, and then performing the curing.
【0026】[0026]
【表1】 [Table 1]
【0027】(3)実験結果 実施例1〜4、比較例1〜2 実施例1〜4及び比較例1〜2の軽量モルタル材につい
て、曲げ強さ及び比重を測定するとともに、これらの促
進中性化を行なった結果を表2に示す。なお、曲げ強度
比とは、促進中性化試験材齢10週後の供試体の曲げ強
さを養生後の供試体の曲げ強さで除したものである。(3) Experimental Results Examples 1-4, Comparative Examples 1-2 The bending strength and specific gravity of the lightweight mortar materials of Examples 1-4 and Comparative Examples 1-2 were measured, and during the promotion of these. Table 2 shows the results of the development. The flexural strength ratio is obtained by dividing the flexural strength of a test specimen after 10 weeks of accelerated neutralization test material age by the flexural strength of the cured specimen.
【0028】[0028]
【表2】 [Table 2]
【0029】表2から、促進炭酸化養生を行なった軽量
モルタル材においては、水中養生によって得られた軽量
モルタル材に比べて、養生後の曲げ強さが大きく、それ
を比重で除した比強度も大きいことから、促進炭酸化養
生を行なうことで軽量でありながら高い曲げ強さを得る
ことができることがわかる。また、促進中性化試験材齢
10週後の曲げ強さと養生後の曲げ強さとの比である曲
げ強度比においても、促進炭酸化養生を行なった供試体
においては、養生後の曲げ強さを保持していることがわ
かる。From Table 2, it can be seen that the lightweight mortar material subjected to accelerated carbonation curing has a greater flexural strength after curing than the lightweight mortar material obtained by underwater curing, and the specific strength obtained by dividing the flexural strength by the specific gravity. It can be understood from the fact that high flexural strength can be obtained by performing accelerated carbonation curing while being lightweight. Further, in the flexural strength ratio which is the ratio between the flexural strength after 10 weeks of accelerated neutralization test material age and the flexural strength after curing, the flexural strength after curing in the specimen subjected to accelerated carbonation curing It can be seen that is maintained.
【0030】実施例5〜11、比較例3〜6 実施例5〜11及び比較例3〜6の軽量モルタル材につ
いて、曲げ強さ及び比重を測定するとともに、これらの
促進中性化を行なった結果を表2に示す。なお、これら
の配合中には、有機高分子系炭酸化促進剤を添加してい
る。Examples 5 to 11 and Comparative Examples 3 and 6 The bending strength and specific gravity of the lightweight mortar materials of Examples 5 to 11 and Comparative Examples 3 and 6 were measured, and accelerated neutralization was performed. Table 2 shows the results. Note that an organic polymer-based carbonation accelerator is added to these components.
【0031】表2から、有機高分子系炭酸化促進剤を添
加した軽量モルタル材においては、促進炭酸化養生を行
なうことで、大きな比強度が得られることがわかる。ま
た、促進中性化試験材齢10週後の曲げ強さと養生後の
曲げ強さとの比である曲げ強度比においても、促進炭酸
化養生を行なった供試体においては、養生後の曲げ強さ
を維持していることがわかる。From Table 2, it can be seen that in a lightweight mortar material to which an organic polymer-based carbonation accelerator has been added, a large specific strength can be obtained by performing accelerated carbonation curing. Further, in the flexural strength ratio which is the ratio between the flexural strength after 10 weeks of accelerated neutralization test material age and the flexural strength after curing, the flexural strength after curing in the specimen subjected to accelerated carbonation curing It can be seen that is maintained.
【0032】[0032]
【発明の効果】本発明の製造方法により得られる軽量モ
ルタル材は、軽量でありながら高い強度発現性を有し、
その後、長期間に亘ってその強度が低下することなく維
持できるので、軽量高強度で耐久性の優れたセメント系
軽量モルタル製品として有望である。The lightweight mortar material obtained by the production method of the present invention has a high strength development while being lightweight.
Thereafter, since the strength can be maintained for a long period of time without decreasing, it is promising as a lightweight, high-strength, and highly durable cement-based lightweight mortar product.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 外川 祥子 東京都千代田区西神田3−8−1 太平洋 セメント株式会社内 Fターム(参考) 4G012 MC01 PA04 PA07 PA10 PB26 PB30 PB31 PC04 PE07 RA02 RB03 RC01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shoko Togawa 3-8-1 Nishikanda, Chiyoda-ku, Tokyo Pacific Cement Co., Ltd. F-term (reference) 4G012 MC01 PA04 PA07 PA10 PB26 PB30 PB31 PC04 PE07 RA02 RB03 RC01
Claims (8)
機質粉末と軽量細骨材とを含有する成形体を、炭酸化養
生することを特徴とする軽量モルタル材の製造方法。1. A method for producing a lightweight mortar material, which comprises carbonating and curing a molded product containing cement, an inorganic powder, if necessary, and a lightweight fine aggregate.
機質粉末と、軽量細骨材並びに有機高分子系炭酸化促進
剤とを含有する成形体を、炭酸化養生することを特徴と
する軽量モルタル材の製造方法。2. A lightweight mortar characterized in that carbonized curing of a molded product containing cement, an inorganic powder blended as required, a lightweight fine aggregate, and an organic polymer-based carbonation accelerator is performed. The method of manufacturing the material.
〜1.2mmであり、比重が0.1〜0.9である請求
項1または2に記載の軽量モルタル材の製造方法。3. The lightweight fine aggregate has a particle diameter of 0.1 mm.
3. The method for producing a lightweight mortar material according to claim 1, wherein the lightweight mortar material has a specific gravity of 0.1 to 0.9.
ト及び必要に応じて配合される無機質粉末の合計量10
0重量部に対して5〜150重量部である請求項1〜3
のいずれかに記載の軽量モルタル材の製造方法。4. The content of the above-mentioned lightweight fine aggregate depends on the total amount of the above-mentioned cement and inorganic powder to be blended as required.
5 to 150 parts by weight based on 0 parts by weight.
The method for producing a lightweight mortar material according to any one of the above.
が、固形分換算にして、上記セメント及び必要に応じて
配合される無機質粉末の合計量100重量部に対して2
〜20重量部である請求項2〜4のいずれかに記載の軽
量モルタル材の製造方法。5. The content of the organic polymer-based carbonation accelerator in terms of solid content is 2 parts by weight based on 100 parts by weight of the total amount of the cement and the inorganic powder compounded as required.
The method for producing a lightweight mortar material according to any one of claims 2 to 4, wherein the amount is from 20 to 20 parts by weight.
0日以内に開始される請求項1〜5のいずれかに記載の
軽量モルタル材の製造方法。6. The carbonation curing is performed at a hydration age of 1 at the latest.
The method for producing a lightweight mortar material according to any one of claims 1 to 5, which is started within 0 days.
湿空養生による前養生を行なう請求項6に記載の軽量モ
ルタル材の製造方法。7. The method for producing a lightweight mortar material according to claim 6, wherein pre-curing by underwater curing or wet-air curing is performed before the carbonation curing.
る無機質粉末の合計量中のビーライトの含有率が、5質
量%以上である請求項1〜7のいずれかに記載の軽量モ
ルタル材の製造方法。8. The lightweight mortar material according to claim 1, wherein the content of belite in the total amount of the cement and the inorganic powder blended as required is 5% by mass or more. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102283A JP4658362B2 (en) | 2001-03-30 | 2001-03-30 | Manufacturing method for lightweight mortar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102283A JP4658362B2 (en) | 2001-03-30 | 2001-03-30 | Manufacturing method for lightweight mortar |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002293601A true JP2002293601A (en) | 2002-10-09 |
JP4658362B2 JP4658362B2 (en) | 2011-03-23 |
Family
ID=18955500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001102283A Expired - Lifetime JP4658362B2 (en) | 2001-03-30 | 2001-03-30 | Manufacturing method for lightweight mortar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4658362B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004204636A (en) * | 2002-12-26 | 2004-07-22 | Kazumoto Hashizume | Construction method of heat insulator |
JP2009096038A (en) * | 2007-10-16 | 2009-05-07 | Showa Denko Kenzai Kk | Method of producing hydraulic molded article, hydraulic molded article, fire-resistant two-layer pipe, and joint therefor |
JP2009161388A (en) * | 2007-12-29 | 2009-07-23 | Taiheiyo Materials Corp | High flow light weight mortar composition |
JP4822373B1 (en) * | 2010-12-17 | 2011-11-24 | 中国電力株式会社 | Carbonation curing equipment, carbonized concrete manufacturing method and carbon dioxide fixing method |
JP2012131235A (en) * | 2012-04-09 | 2012-07-12 | Showa Denko Kenzai Kk | Method for producing hydraulic molded article, hydraulic molded article, fire-resistant two-layer pipe, and joint therefor |
JP2013203634A (en) * | 2012-03-29 | 2013-10-07 | A & A Material Corp | Method of manufacturing inorganic plate |
JPWO2016175261A1 (en) * | 2015-04-28 | 2018-02-22 | 株式会社クラレ | Fiber-containing carbonated roof tile and method for producing the same |
US11254028B2 (en) | 2019-05-20 | 2022-02-22 | Saudi Arabian Oil Company | Systems and processes for accelerated carbonation curing of pre-cast cementitious structures |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52115828A (en) * | 1976-03-25 | 1977-09-28 | Ibigawa Electric Ind Co Ltd | Production method of curing material through coal carbonation |
JPS54159439A (en) * | 1978-06-07 | 1979-12-17 | Ibigawa Electric Ind Co Ltd | Production of carbonating*curing body |
JPS63210055A (en) * | 1987-02-27 | 1988-08-31 | 太平洋セメント株式会社 | Carbonation curing process for gamma dilime silicate |
JPH06263562A (en) * | 1993-03-15 | 1994-09-20 | Sumitomo Cement Co Ltd | Production of high-strength cured cement material utilizing carbonation reaction |
JPH08143382A (en) * | 1994-11-15 | 1996-06-04 | Ohbayashi Corp | Production of concrete for vegetation and precast concrete for vegetation |
JPH08217560A (en) * | 1995-02-17 | 1996-08-27 | Nkk Corp | Sound absorption concrete, sound absorption concrete unit, sound absorption concrete block, sound absorption concrete wall using them and production of the concrete and block |
JPH08218512A (en) * | 1995-02-17 | 1996-08-27 | Nkk Corp | Lightweight sound-absorbing concrete, lightweight sound-absorbing concrete unit and sound absorption/insulation panel made therefrom, and manufacture of lightweight sound-absorbing concrete and sound absorption/ insulation panel |
JPH10194798A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Carbonated cement, hardened cement and its production |
JPH10194799A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Cement for clay concrete, clay concrete and its production |
JPH11228253A (en) * | 1998-02-03 | 1999-08-24 | Sekisui Chem Co Ltd | High-strength hardened cement body |
-
2001
- 2001-03-30 JP JP2001102283A patent/JP4658362B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52115828A (en) * | 1976-03-25 | 1977-09-28 | Ibigawa Electric Ind Co Ltd | Production method of curing material through coal carbonation |
JPS54159439A (en) * | 1978-06-07 | 1979-12-17 | Ibigawa Electric Ind Co Ltd | Production of carbonating*curing body |
JPS63210055A (en) * | 1987-02-27 | 1988-08-31 | 太平洋セメント株式会社 | Carbonation curing process for gamma dilime silicate |
JPH06263562A (en) * | 1993-03-15 | 1994-09-20 | Sumitomo Cement Co Ltd | Production of high-strength cured cement material utilizing carbonation reaction |
JPH08143382A (en) * | 1994-11-15 | 1996-06-04 | Ohbayashi Corp | Production of concrete for vegetation and precast concrete for vegetation |
JPH08217560A (en) * | 1995-02-17 | 1996-08-27 | Nkk Corp | Sound absorption concrete, sound absorption concrete unit, sound absorption concrete block, sound absorption concrete wall using them and production of the concrete and block |
JPH08218512A (en) * | 1995-02-17 | 1996-08-27 | Nkk Corp | Lightweight sound-absorbing concrete, lightweight sound-absorbing concrete unit and sound absorption/insulation panel made therefrom, and manufacture of lightweight sound-absorbing concrete and sound absorption/ insulation panel |
JPH10194798A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Carbonated cement, hardened cement and its production |
JPH10194799A (en) * | 1996-12-27 | 1998-07-28 | Daiichi Cement Kk | Cement for clay concrete, clay concrete and its production |
JPH11228253A (en) * | 1998-02-03 | 1999-08-24 | Sekisui Chem Co Ltd | High-strength hardened cement body |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004204636A (en) * | 2002-12-26 | 2004-07-22 | Kazumoto Hashizume | Construction method of heat insulator |
JP2009096038A (en) * | 2007-10-16 | 2009-05-07 | Showa Denko Kenzai Kk | Method of producing hydraulic molded article, hydraulic molded article, fire-resistant two-layer pipe, and joint therefor |
JP2009161388A (en) * | 2007-12-29 | 2009-07-23 | Taiheiyo Materials Corp | High flow light weight mortar composition |
JP4822373B1 (en) * | 2010-12-17 | 2011-11-24 | 中国電力株式会社 | Carbonation curing equipment, carbonized concrete manufacturing method and carbon dioxide fixing method |
WO2012081486A1 (en) * | 2010-12-17 | 2012-06-21 | 中国電力株式会社 | Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide |
KR20130137190A (en) * | 2010-12-17 | 2013-12-16 | 쥬코쿠 덴료쿠 가부시키 가이샤 | Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide |
KR101863671B1 (en) * | 2010-12-17 | 2018-06-01 | 쥬코쿠 덴료쿠 가부시키 가이샤 | Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide |
JP2013203634A (en) * | 2012-03-29 | 2013-10-07 | A & A Material Corp | Method of manufacturing inorganic plate |
JP2012131235A (en) * | 2012-04-09 | 2012-07-12 | Showa Denko Kenzai Kk | Method for producing hydraulic molded article, hydraulic molded article, fire-resistant two-layer pipe, and joint therefor |
JPWO2016175261A1 (en) * | 2015-04-28 | 2018-02-22 | 株式会社クラレ | Fiber-containing carbonated roof tile and method for producing the same |
US11254028B2 (en) | 2019-05-20 | 2022-02-22 | Saudi Arabian Oil Company | Systems and processes for accelerated carbonation curing of pre-cast cementitious structures |
Also Published As
Publication number | Publication date |
---|---|
JP4658362B2 (en) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2662741C2 (en) | Insulating mortar composition | |
JP5025872B2 (en) | Fiber cement building materials with low density additives | |
JP7490669B2 (en) | Manufacturing of wet cast slag based concrete products | |
CN110950604A (en) | SAP-based machine-made sand ultra-high-performance concrete and preparation method and application thereof | |
CA3161526A1 (en) | Method for producing supersulphated cement | |
CN112645656A (en) | Decoration waste base high-strength foam concrete and preparation method thereof | |
JP4641117B2 (en) | Manufacturing method of inorganic cement composite board | |
CN115340329A (en) | Recycled fine aggregate-magnesium oxide base expanding agent ultrahigh-performance concrete and preparation method thereof | |
JP4658362B2 (en) | Manufacturing method for lightweight mortar | |
JP2009084092A (en) | Mortar-based restoring material | |
JP2001261414A (en) | Concrete having self-wetting/aging function and its executing method | |
JP2004284873A (en) | Hydraulic complex material | |
JP2001261467A (en) | Production process of cement-based hardened body | |
JP2007131477A (en) | Fly ash cement composition and concrete mold using it | |
JP3158657B2 (en) | Manufacturing method of low shrinkage lightweight concrete | |
JPH10167792A (en) | Fiber-reinforced cement composition and production of cement cured product | |
JP7312385B1 (en) | Method for producing concrete composition and method for producing concrete | |
JP2000063161A (en) | Filler inorganic hydraulic composition and board material | |
JP2004010402A (en) | Fiber-containing gypsum board and its manufacturing process | |
JP2001226162A (en) | Joint filler material for post-tension-prestressed concrete plate | |
JPH1171157A (en) | Hydraulic composition | |
JP2002012465A (en) | Extrusion compact and its manufacturing method | |
JP2006181895A (en) | Box culvert and its manufacturing method | |
JP4865643B2 (en) | Method for producing hardened cementitious body | |
JP2001261392A (en) | Artificial aggregate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4658362 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |