JP2524583B2 - Carbonation curing method of γ-type dicalcium silicate - Google Patents

Carbonation curing method of γ-type dicalcium silicate

Info

Publication number
JP2524583B2
JP2524583B2 JP61247000A JP24700086A JP2524583B2 JP 2524583 B2 JP2524583 B2 JP 2524583B2 JP 61247000 A JP61247000 A JP 61247000A JP 24700086 A JP24700086 A JP 24700086A JP 2524583 B2 JP2524583 B2 JP 2524583B2
Authority
JP
Japan
Prior art keywords
water
curing
molded
carbonation
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61247000A
Other languages
Japanese (ja)
Other versions
JPS63103878A (en
Inventor
明 大塩
優 白坂
剛 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP61247000A priority Critical patent/JP2524583B2/en
Publication of JPS63103878A publication Critical patent/JPS63103878A/en
Application granted granted Critical
Publication of JP2524583B2 publication Critical patent/JP2524583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、建築用あるいは土木用資材として有用な
低アルカリ濃度のコンクリート硬化体の製造に関し、さ
らに詳しくはいえばγ型珪酸二石灰の一層改良された炭
酸化養生方法に係わるものである。
TECHNICAL FIELD The present invention relates to the production of a hardened concrete having a low alkali concentration, which is useful as a building or civil engineering material. More specifically, it is a further improvement of γ-type dicalcium silicate. The present invention relates to the carbonation curing method.

(従来の技術) 従来から、多量に使用されているコクリート製品は、
ポルトランドセメントまたは混合セメントの水和物であ
るため硬化体中のアルカリ濃度が著しく高くなり、この
ためガラス繊維補強コンクリートの場合はガラス繊維が
耐用中劣化することが避けられず、このためコンクリー
トの強度が著しく低下するという欠点を有していた。
(Prior Art) Cocrete products, which have been used in large quantities, are
Since it is a hydrate of Portland cement or mixed cement, the alkali concentration in the hardened body becomes extremely high, and in the case of glass fiber reinforced concrete, it is unavoidable that the glass fiber deteriorates during service, and therefore the strength of the concrete Has a drawback that it significantly decreases.

γ型珪酸二石灰(以下「γ−C2S」という)は、γ−2
CaO・SiO2の化学式で示される鉱物であり、これを水の
存在下で炭酸化させると次式に従って反応し硬化する。
γ-type dicalcium silicate (hereinafter referred to as “γ-C 2 S”) is γ-2
It is a mineral represented by the chemical formula CaO · SiO 2 , and when it is carbonated in the presence of water, it reacts and hardens according to the following formula.

γ−2CaO・SiO2+2CO2+2H2O→ 2CaCO3+SiO2+2H2O ……(1) このγ−C2Sの硬化体は、アルカリ濃度が従来のコン
クリートよりも著しく低いため、ポルトランドセメント
硬化体のような欠点がなく、以前から工業材料として注
目されていたが、その量産技術が従来確立されていなか
ったので、これを用いる応用技術の研究も従来ほとんど
なされていなかったというのが実状であった。
γ-2CaO ・ SiO 2 + 2CO 2 + 2H 2 O → 2CaCO 3 + SiO 2 + 2H 2 O …… (1) This γ-C 2 S hardened material has a significantly lower alkali concentration than conventional concrete, so Portland cement hardening It had no drawbacks like the body, and it has been attracting attention as an industrial material for a long time, but since its mass production technology has not been established in the past, research on applied technology using this has not been done so far. there were.

ところが本出願人は、先にγ−C2S粉末を低廉な顔料
から安価に製造する量産技術を開発し、これを特願昭60
−153154号として提案した。そこで今後はこのようにし
て量産可能となったγ−C2Sを使用した各種の応用技術
を開発することが要請されるところとなってきた。本出
願人も、すでにこれに関連したいくつかの提案をしてい
るが、更にγ−C2Sに関する応用技術の開発が望まれて
いる実状にある。
However, the present applicant has previously developed a mass production technique for producing γ-C 2 S powder from an inexpensive pigment at a low cost, which is disclosed in Japanese Patent Application No.
-153154 was proposed. Therefore, in the future, it will be required to develop various applied technologies using γ-C 2 S that can be mass-produced in this way. The present applicant has already made some proposals related to this, but in the actual situation, further development of an application technique relating to γ-C 2 S is desired.

(発明が解決しようとする問題点) γ−C2S粉末を水で混練して成形物を得これを炭酸化
養生して硬化体を製造する際に、高い水分飽和度で充分
に時間をかけて炭酸化養生すれば肉薄の成形体では相当
に均質な硬化体を得ることが出来るが経済性に問題があ
る。特にある程度の厚みがある部材では内部に未硬化部
分が残り均一な部材が得られない。また適度な水分飽和
度で炭酸化養生を行なっても隅確部、稜部が乾き過ぎて
硬化不充分となりなど均一で高強度な硬化体を得るには
困難を極める。本発明者はこのような問題点を解決して
成形体の内部も外表面と同様に均一に炭酸化し、かつそ
の炭酸化に要する時間も短縮出来ようにし、もって全体
が均一に硬化した高強度の硬化体を得ようとするもので
ある。
(Problems to be Solved by the Invention) When a γ-C 2 S powder is kneaded with water to obtain a molded product, which is carbonized and cured to produce a cured product, sufficient time is taken at a high water saturation. If it is carbonized and cured over time, it is possible to obtain a considerably homogeneous cured product in the case of a thin molded product, but there is a problem in economic efficiency. Particularly in a member having a certain thickness, an uncured portion remains inside and a uniform member cannot be obtained. Even if carbonation curing is carried out at an appropriate water saturation, the corners and ridges become too dry, resulting in insufficient curing, making it extremely difficult to obtain a uniform and high-strength cured product. The present inventor has solved such problems and made it possible to uniformly carbonate the inside of the molded body as well as the outer surface, and to shorten the time required for the carbonation. It is intended to obtain a cured product of.

(問題点を解決するための手段) この発明は、γ型珪酸二石灰粉末と砂との混合物又は
これらにさらに混和剤あるいは補強材としての繊維を加
えた混合物に水を加えて成形物を成形し、この成形物の
γ型珪酸二石灰を炭酸化させて硬化体を製造するにあた
り、原料混合物から成形される成形物の含水量を下記式
で定義する水分飽和度で0.4〜0.8に水分調整した後炭酸
化養生し、養生途中でこの硬化体の表面を吸湿処理し、
さらに炭酸化養生することを特徴とするγ型珪酸二石灰
の炭酸化養生方法である。以下にこの発明をさらに説明
する。
(Means for Solving Problems) The present invention is to form a molded product by adding water to a mixture of γ-type dicalcium silicate powder and sand or a mixture of these and fibers as an admixture or a reinforcing material. Then, in producing a cured product by carbonizing the γ-type dicalcium silicate of this molded product, the water content of the molded product molded from the raw material mixture is adjusted to 0.4 to 0.8 by the water saturation defined by the following formula. After that, it is subjected to carbonation curing, and the surface of this cured body is subjected to moisture absorption treatment during curing,
Further, it is a method for carbonation curing of γ-type dicalcium silicate, which is characterized by performing carbonation curing. The present invention will be further described below.

本発明で使用するγ−C2Sは、次式に示す反応に従っ
てCO2と反応し硬化する。この場合水は触媒として作用
し、この炭酸化反応を円滑に進行させるためには、所定
量の水はどうしても存在させなければならない。
The γ-C 2 S used in the present invention reacts with CO 2 and hardens according to the reaction shown by the following formula. In this case, water acts as a catalyst, and a certain amount of water must be present in order for the carbonation reaction to proceed smoothly.

CO2+H2O→H2CO3 ……(2) 2CaO・SiO2+2H2CO3→ 2CaCO3+SiO2+2H2O ……(3) 本発明者はγ−C2Sの炭酸化反応について各種の実験
をしていった結果、ここに存在する水の量が多すぎても
或は少なすぎても上記の(3)式の炭酸化反応が円滑に
進行せず、高強度の硬化体の得られないことを確認し
た。そしてさらに実験をすすめられたところ、成形体の
水分量が、上記式で示す水分飽和度で0.25〜0.95、好ま
しくは0.4〜0.8のとき炭酸化反応が円滑に進行し、短時
間で高強度を発現することを見い出した。
CO 2 + H 2 O → H 2 CO 3 …… (2) 2CaO ・ SiO 2 + 2H 2 CO 3 → 2CaCO 3 + SiO 2 + 2H 2 O …… (3) The present inventor has studied the carbonation reaction of γ-C 2 S. As a result of various experiments, even if the amount of water present here is too large or too small, the carbonation reaction of the above formula (3) does not proceed smoothly, and a high strength cured product is obtained. I confirmed that I could not get it. When further experiments were carried out, the water content of the molded body was 0.25 to 0.95 at the water saturation shown by the above formula, preferably the carbonation reaction proceeded smoothly when it was 0.4 to 0.8, and high strength was achieved in a short time. It was found to be expressed.

常法に従って、γ−C2S粉末を砂、必要によりその他
の混和材及び/又は補強材を含む配合物に水を混合して
成形体とする場合、その成形体の水分飽和度が0.4〜0.8
のものは、使用した材料の粒度分布によっても異なる
が、通常成形時に5〜1重量%の水を添加したときに得
られるものである。しかしながら成形技術の面からする
と、成形時の水の添加量が5〜10重量%といった少量で
は、混練物に流動性がほとんどなく通常の流し込み成形
は出来ず、加圧成形しなければ製品とすることが出来な
いという問題がある。成形技術からすると、成形性がよ
く且つ表面が平滑な成形体を得るには、混練水を上記の
水分飽和度を大きく超えて過剰に添加し混練物の流動性
を増し、流し込み成形とすることが好ましい。しかし仮
に流し込み成形を採用した場合、この成形体はその後水
分飽和度が0.4〜0.8となるように乾燥等で水分調整を
し、それから炭酸化養生に供する必要がある。そうしな
いと上記の通り良好な硬化体を得ることが出来ないから
である。しかしこの場合、過剰な水を含む成形体の内部
と表層部を均一に乾燥して成形体の全体を上記範囲の水
分飽和度に水分調整をすることは簡単ではなく、しばし
ば成形体の表層部、角部、端部といったところでは乾燥
し過ぎとなっていた。特に、成形体が厚板の場合にはこ
の傾向は避けられない。従ってこの状態で炭酸化養生す
ると、水分飽和度が著しく小さくなった成形体の表層部
では充分な養生が出来ないという問題があった。
According to a conventional method, when the γ-C 2 S powder is mixed with water and optionally a mixture containing other admixtures and / or reinforcing materials to form a molded body, the water saturation of the molded body is 0.4 to 0.8
Although it varies depending on the particle size distribution of the material used, it is usually obtained when 5 to 1% by weight of water is added at the time of molding. However, from the viewpoint of molding technology, when the amount of water added at the time of molding is as small as 5 to 10% by weight, the kneaded product has almost no fluidity and ordinary cast molding cannot be performed. There is a problem that you cannot do it. From the viewpoint of molding technology, in order to obtain a molded product having good moldability and a smooth surface, kneading water should be added in excess of the above-mentioned water saturation to increase the fluidity of the kneaded product, and to be cast. Is preferred. However, if the casting method is adopted, it is necessary to adjust the water content of the molded article by drying or the like so that the water saturation degree becomes 0.4 to 0.8, and then subject it to carbonation curing. Otherwise, a good cured product cannot be obtained as described above. However, in this case, it is not easy to uniformly dry the inside and the surface layer part of the molded body containing excess water to adjust the water content of the entire molded body to a water saturation of the above range, and often the surface layer part of the molded body is used. , Corners and edges were too dry. This tendency is unavoidable especially when the molded body is a thick plate. Therefore, if carbonation curing is carried out in this state, there is a problem that sufficient curing cannot be carried out in the surface layer portion of the molded body having a significantly reduced water saturation.

こうした現象を避けるために、これまでは炭酸化養生
に供される成形体の水分飽和度を予め適正値よりも若干
多くしておき、長時間をかけて養生を行ってきたが、し
かしこれでは生産性が上がらずこの面からコストを引上
げる結果となっていた。これについて更に実験例を示し
て説明する。
In order to avoid such a phenomenon, until now the water saturation of the molded body to be subjected to carbonation curing has been made slightly higher than an appropriate value in advance, and curing has been carried out for a long time, but with this, Productivity did not rise, and this resulted in higher costs. This will be further described with reference to experimental examples.

実施例 第1表に示すγ−C2S粉末100gr、豊浦標準砂100gr及
びEガラス繊維(13mmのチョップドスツランド)4grの
混合物に水60mlを添加して混練し、これを吸引装置の付
いた型枠に流し込み、型枠の下部を減圧吸引して10×10
×1(cm)の板状に成形した。この成形物をその後20℃
の気密型恒温箱に入れ濃度99%以上の炭酸ガスを流しな
がら種々の時間養生した。その後養生した硬化体につい
て、4×9×1(cm)の供試体を作成し、3点曲げ強さ
(7cmスパン)及び曲げ強さ測定後サンプルの炭酸化率
を測定した。別に、上記と同様にして成形した成形直後
の成形体について測定したところ、その水分飽和度は1.
02であった。
Example 60 ml of water was added to a mixture of 100 gr of γ-C 2 S powder shown in Table 1, 100 gr of Toyoura standard sand and 4 gr of E glass fiber (13 mm chopped studland), and kneaded. Pour into the formwork and vacuum the bottom of the formwork to 10 x 10
It was molded into a plate shape of × 1 (cm). This molding is then placed at 20 ° C
It was put in the airtight type constant temperature box and was cured for various times while flowing carbon dioxide gas with a concentration of 99% or more. Thereafter, a 4 × 9 × 1 (cm) specimen was prepared for the cured body, and the three-point bending strength (7 cm span) and the bending strength were measured, and the carbonation rate of the sample was measured. Separately, when measured on a molded body immediately after molding which was molded in the same manner as above, the water saturation was 1.
It was 02.

硬化体についての3点曲げ強さ及び炭酸化率の測定結
果は添附図の通りであった。この図からも明らかなよう
に、炭酸化率が50%を超えかつ曲げ強さが150kg/cm2
越すには15時間以上の長時間養生が必要となる。しか
も、養生初期の5時間余は成形体の水分量が多過ぎてほ
とんど養生がなされていないことが分る。
The measurement results of the three-point bending strength and the carbonation rate of the cured product are shown in the attached figure. As is clear from this figure, long-term curing of 15 hours or more is required for the carbonation rate to exceed 50% and the bending strength to exceed 150 kg / cm 2 . Moreover, it can be seen that the moisture content of the molded body is too large for almost 5 hours in the initial stage of curing so that curing is hardly performed.

こうした問題点を解消するために、本発明では成形物
の水分飽和度を予め調整しておいて炭酸化養生の開始時
期を早めるようにするとともに、養生の途中で成形体の
表面や隅角部といった水分が早期に逸散しやすい部分
に、養生途中水を噴霧して硬化体の表面を吸湿処理し、
この部分の乾燥し過ぎによる炭酸化養生の不充分を回避
しようとするものである。
In order to solve such a problem, in the present invention, the moisture saturation of the molded product is adjusted in advance so as to accelerate the start time of carbonation curing, and the surface of the molded product or the corner portion of the molded product is cured during curing. For example, water during the curing is sprayed on the part where the water easily dissipates at an early stage to absorb the moisture on the surface of the cured product,
It is intended to avoid insufficient carbonation and curing due to overdrying of this portion.

本発明で炭酸化養生されるγ−C2S成形体は、γ型珪
酸二石灰粉末との混合物又はこれらにさらに混和剤ある
いは補強材としての繊維を加えた混合物に水を加えて常
法によって成形される。なお、ここに使用される補強材
としての繊維は、カーボン繊維、ガラス繊維、合成無機
繊維、有機質繊維を使用することが出来る。また、成形
法としてはプレミックス法、スプレーサクション法、ダ
イレクトスプレー法といったものがいづれも採用するこ
とが出来る。次に、この成形体を乾燥、減圧吸引等公知
の手段でその水分量を水分飽和度で0.4〜0.8となるよう
に水分調整する。水分飽和度が0.4未満であると炭酸化
養生後の硬化体の強度が充分でなく、またこれが0.8を
超えると炭酸化養生時間が長くなるため好ましくない。
上記のように水分調整された成形体は、その後炭酸ガス
雰囲気中で炭酸化養生される。このときCO2含有ガスのC
O2濃度は30vol%以上が好ましい。この炭酸ガス養生を
つづけていくと成形体の表面や角部といった成形体の表
層部分が、その内部よりも早く乾燥してくるので、乾燥
した成形体の表層部分に水を噴霧して成形体を湿らす処
理を施す。ここで噴霧する水量は、一般に成形体の0.25
〜3.0重量%が好ましい。これが0.25重量%未満のとき
は吸湿効果が小さく、また3.0%を超えると今度は逆に
吸湿し過ぎて次の炭酸化養生の時間が長くなるため好ま
しくない。上記の吸湿処理の施された成形体はつづいて
炭酸化養生されて最終的な硬化体とされる。
The γ-C 2 S molded body that is carbonized and cured in the present invention is prepared by adding water to a mixture with γ-type dicalcium silicate powder or a mixture of these and fibers as an admixture or a reinforcing material, and adding water by a conventional method. Molded. The fiber as the reinforcing material used here may be carbon fiber, glass fiber, synthetic inorganic fiber, or organic fiber. As the molding method, any of a premix method, a spray suction method, and a direct spray method can be adopted. Next, the formed body is adjusted by a known means such as drying or vacuum suction so that the water content becomes 0.4 to 0.8 in terms of water saturation. If the water saturation is less than 0.4, the strength of the cured product after carbonization curing is insufficient, and if it exceeds 0.8, the carbonation curing time becomes long, which is not preferable.
The molded body whose water content has been adjusted as described above is then subjected to carbonation curing in a carbon dioxide gas atmosphere. At this time, C in the gas containing CO 2
The O 2 concentration is preferably 30 vol% or more. If this carbon dioxide curing is continued, the surface layer of the molded body, such as the surface and corners of the molded body, will dry faster than the inside of the molded body. Is subjected to a moistening treatment. The amount of water sprayed here is generally 0.25
~ 3.0 wt% is preferred. If it is less than 0.25% by weight, the moisture absorption effect is small, and if it exceeds 3.0%, it absorbs too much moisture and the time for the next carbonation and curing is prolonged, which is not preferable. The molded body that has been subjected to the moisture absorption treatment is subsequently carbonized and cured to obtain a final cured body.

このようにすることによって、炭酸化養生の全期間を
通じ成形体の内部の表層部を略均一な水分飽和度に保ち
つつ養生することが出来る。
By doing so, it is possible to carry out curing while maintaining the surface layer portion inside the molded body at a substantially uniform water saturation throughout the entire period of carbonation curing.

以下に実施例をあげてこの発明をさらに説明する。 The present invention will be further described with reference to examples.

実施例1. 第1表に示すγ−C2S粉末50gr、豊浦標準砂50gr及び
Eガラス繊維(13mmチョップストランド)2grの混合物
に水30mlを添加して混練し、その後成形圧100kg/cm2で1
0×5×1(cm)の板状に成形した。この成形体をその
後20℃、相対湿度50%の室に各種の時間放置して水分調
整した。この結果種々の含水量をもった成形体を得た。
Example 1. 30 ml of water was added to a mixture of 50 gr of γ-C 2 S powder shown in Table 1, 50 gr of Toyoura standard sand and 2 gr of E glass fiber (13 mm chop strand), and then the molding pressure was 100 kg / cm 2. In 1
It was molded into a plate shape of 0 × 5 × 1 (cm). The molded body was then left in a room at 20 ° C. and a relative humidity of 50% for various times to adjust the water content. As a result, molded articles having various water contents were obtained.

これとは別に、上記と同様にして成形した成形体につ
いて、含水量、見掛気孔率及び見掛比重を測定し、これ
により成形体の水分飽和度を測定した。また、含水量の
異なる種々の成形体についてもその乾燥原料から水分飽
和度を計算して求めた。
Separately, the water content, the apparent porosity and the apparent specific gravity of the molded product molded in the same manner as above were measured, and thereby the water saturation of the molded product was measured. Also, the water saturation was calculated from the dry raw materials of various molded products having different water contents.

上記のようにして水分調整した種々の成形体を20℃の
気密型恒温箱に入れ、濃度99%以上の炭酸ガスをこの中
に流しながら種々の時間炭酸化養生した。こうした養生
を2時間及び4時間したのち、成形体の表面に水を1重
量%噴霧して吸湿させその後つづけて炭酸ガス養生を2
時間行った。養生の終了した各々の硬化体について、硬
化体の稜部からサイズ、10×1×0.3(cm)で切出し
た。この切り出し片についてカーボン含有量を分析し、
これによってγ−C2S粉末成形体稜部の炭酸化率を測定
した。また各硬化体については3点曲げ強さ(7cmスパ
ン)を測定した。これらを第2表に示す。なお、表中に
は中間に吸湿処理を行なわないもの及び水分飽和度が本
発明で規定する範囲外のものを比較例として併せて示し
た。
The various molded bodies whose water contents were adjusted as described above were placed in an airtight thermostat box at 20 ° C., and carbonation was carried out for various times while flowing carbon dioxide gas having a concentration of 99% or more into the box. After such curing for 2 hours and 4 hours, 1% by weight of water is sprayed on the surface of the molded body to absorb moisture, and then carbon dioxide is cured for 2 hours.
I went on time. Each cured body after curing was cut into a size of 10 × 1 × 0.3 (cm) from the edge of the cured body. Analyze the carbon content of this cut piece,
Thereby, the carbonation rate of the ridge portion of the γ-C 2 S powder compact was measured. The three-point bending strength (7 cm span) of each cured product was measured. These are shown in Table 2. In the table, those without moisture absorption treatment and those with moisture saturation outside the range specified in the present invention are also shown as comparative examples.

第2表の結果から明らかなように、成形体の水分調整
は水分飽和度で0.4〜0.8になるように調整するのが好ま
しい。水分飽和度が0.4未満であると炭酸化養生後の硬
化体の強度が小さく、養生途中で吸湿処理を行っても強
度向上の効果が少ない。また、水分飽和度が0.8を超え
ると養生時間が長くなり好ましくない。表のNo.6、7、
9及び11(いずれも比較例)の効果体の表面、隅角部及
び稜部には、炭酸化反応が不十分と考えられる脆い部分
がみられたが、本発明によるもの(No.4、5、8及び1
0)の硬化体についてはそのような脆い部分はみられな
かった。
As is clear from the results shown in Table 2, it is preferable that the water content of the molded product is adjusted to 0.4 to 0.8 in terms of water saturation. When the water saturation is less than 0.4, the strength of the cured product after carbonation curing is low, and even if moisture absorption treatment is performed during curing, the effect of improving strength is small. Further, if the water saturation exceeds 0.8, the curing time becomes long, which is not preferable. Table No.6, 7,
On the surface, corners and ridges of the effect bodies of Nos. 9 and 11 (comparative examples), brittle portions thought to have an insufficient carbonation reaction were observed. However, according to the present invention (No. 4, 5, 8 and 1
No such brittle portion was observed in the cured product of (0).

実施例2. 実施例1と同様にして水分飽和度が0.45で形状が実施
例1と同じ成形体を得た。これを実施例1と同様にして
4時間炭酸化養生し、その後この硬化体表面に水を第3
表記載の通り種々の量噴霧した。つづいてこれを更に2
時間炭酸化養生した。ここに得られたものについて実施
例1と同様に3点曲げ強さ試験を実施し、またその稜部
の炭酸化率を測定した。結果は第3表に示す通りであ
る。
Example 2 In the same manner as in Example 1, a molded body having a moisture saturation of 0.45 and the same shape as in Example 1 was obtained. This was carbonized and aged for 4 hours in the same manner as in Example 1, and then the surface of the cured body was treated with water for a third time.
Various amounts were sprayed as described in the table. Continue to 2 more
Carbonated for an hour. A three-point bending strength test was carried out on the obtained material in the same manner as in Example 1, and the carbonation rate of the ridge was measured. The results are shown in Table 3.

第3表から明らかなように、本発明で硬化体に吸湿さ
せる水分の量は0.25〜3.0%が好ましいことが分る。吸
水させる水分が0.25重量%未満の場合は吸湿による硬化
体の性状向上の効果が少なく、また3重量%を超えると
短い時間で養生を終了して良好な硬化体とすることは出
来ない。
As is clear from Table 3, the amount of water absorbed by the cured product in the present invention is preferably 0.25 to 3.0%. When the water content absorbed is less than 0.25% by weight, the effect of improving the properties of the cured product due to moisture absorption is small, and when it exceeds 3% by weight, curing cannot be completed in a short time to form a good cured product.

実施例3. 実施例1で使用したγ−C2S粉末1重量部と2mm以下の
川砂1重量部の混合物に水を添加混合してモルタルを調
整した。このモルタルと共に別に用意したEガラスのロ
ービングを25mmのチョップドストランドに切断しながら
スプレーサクション法により900×450×10mmの薄板に成
形した。繊維の添加量は5%とした。その後この成形体
を60℃の乾燥機中で成形体の水分飽和度が0.50になるま
で乾燥した。次にこれを気密型恒温箱に入れ濃度99%以
上の炭酸ガスを流しながら常温で4時間炭酸化養生し
た。その後成形体の表面、端部等に水を噴霧しその後さ
らに2時間炭酸ガス養生した。なお、水の噴霧量は1.5
重量%とした。養生後得られた硬化体について250×50
×10mmの供試体を作成し3点曲げ強さ(200mmスパン)
を測定した。その値は275kg/cm2であった。
Example 3 Water was added to and mixed with a mixture of 1 part by weight of the γ-C 2 S powder used in Example 1 and 1 part by weight of river sand having a diameter of 2 mm or less to prepare a mortar. A roving of E glass separately prepared together with this mortar was cut into 25 mm chopped strands and molded into a thin plate of 900 × 450 × 10 mm by a spray suction method. The amount of fiber added was 5%. Thereafter, this molded body was dried in a dryer at 60 ° C. until the water saturation of the molded body reached 0.50. Next, this was placed in an airtight constant temperature box and carbonized at a room temperature for 4 hours while flowing carbon dioxide gas having a concentration of 99% or more. After that, water was sprayed on the surface and edges of the molded body, and thereafter, carbon dioxide gas curing was performed for another 2 hours. The amount of water sprayed is 1.5
It was set to% by weight. About the cured product obtained after curing 250 x 50
3-point bending strength (200 mm span) by making a specimen of × 10 mm
Was measured. Its value was 275 kg / cm 2 .

上記で測定したサンプルを1mm以下に粉砕し、この中5
0kgを蒸溜水70ml中に入れかき混ぜて24時間後の上澄み
液のpH値を測定したところ10.3であった。
The sample measured above is crushed to 1 mm or less.
When 0 kg was placed in 70 ml of distilled water and stirred, and the pH value of the supernatant after 24 hours was measured, it was 10.3.

実施例4. 第1表に示すγ−C2S粉末100gr、豊浦標準砂100gr及
びEガラス繊維(13mmチョップストランド)4grの混合
物に水60mlを添加して混練し、その後吸引装置の付いた
型枠にこれを流し込み、型枠の下部を減圧吸引して10×
10(cm)で種々の厚さの板状の成形物を成形した。この
成形物を50℃の乾燥機中で成形物の水分飽和度が0.55に
なるまで乾燥した。その後これを30℃の気密型恒温箱に
入れ濃度99%以上の炭酸ガスを流しながら5時間養生し
た。その後これを恒温箱から取出し、その表面に水を1.
5wt%噴霧して湿らせ、さらに2時間炭酸ガス養生をし
た。養生の終えた硬化体について、4×9×3(cm)の
供試体を作成し、3点曲げ試験(7cmスパン)及び炭酸
化率を測定した。結果は、曲げ強さが143kg/cm、炭酸化
率54%であった。しかもこの硬化体の中心部に未硬化部
分はなかった。
Example 4. To a mixture of 100 gr of γ-C 2 S powder shown in Table 1, 100 gr of Toyoura standard sand and 4 gr of E glass fiber (13 mm chopped strand) was added 60 ml of water and kneaded, and then a mold equipped with a suction device. Pour this into the frame and vacuum suction the bottom of the formwork to 10 x
Plate-shaped moldings having various thicknesses were molded at 10 (cm). The molded product was dried in a dryer at 50 ° C. until the water saturation of the molded product reached 0.55. Then, this was placed in an airtight constant temperature box at 30 ° C. and aged for 5 hours while flowing carbon dioxide gas with a concentration of 99% or more. After that, remove this from the constant temperature box, and water on the surface 1.
5 wt% was sprayed and moistened, and carbon dioxide was aged for 2 hours. A 4 × 9 × 3 (cm) specimen was prepared from the cured cured body, and a three-point bending test (7 cm span) and a carbonation rate were measured. As a result, the bending strength was 143 kg / cm and the carbonation rate was 54%. Moreover, there was no uncured portion in the center of this cured product.

なお、比較例として上記と同様な成形体を成形し、同
様な気密箱に入れて同様な炭酸ガス養生を20時間行った
後、同様なサイズの供試体を作成し、同じようにして3
点曲げ試験及び炭酸化率を測定した。結果を第4表に示
す。
As a comparative example, a molded body similar to that described above was molded, placed in a similar airtight box, and subjected to similar carbon dioxide gas curing for 20 hours, and then a test piece of a similar size was prepared.
The point bending test and the carbonation rate were measured. The results are shown in Table 4.

(発明の効果) 以上の通り本発明によると、短時間の養生で硬化体の
全部分が均一に養生出来て高強度を有しかつ低アルカリ
なコンクリートが得られることになり、その利用は広く
当業者が注目するところとなると思われる。
(Effect of the invention) As described above, according to the present invention, it is possible to obtain a concrete having a high strength and a low alkali, which can be uniformly aged in all parts of a hardened body, and is widely used. It will be of interest to those skilled in the art.

【図面の簡単な説明】[Brief description of drawings]

図は成形体の養生時間と炭酸化率及び曲げ強さ(kg/c
m2)の関係を示す線図である。
The figure shows the curing time, carbonation rate and bending strength (kg / c)
is a graph showing the relationship between m 2).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】γ型珪酸二石灰粉末と砂との混合物又はこ
れらにさらに混和剤あるいは補強材としての繊維を加え
た混合物に水を加えて成形物を成形し、この成形物のγ
型珪酸二石灰を炭酸化させて硬化体を製造するにあた
り、原料混合物から成形される成形物の含水量を下記式
で定義する水分飽和度で0.4〜0.8に調整してから炭酸化
養生し、養生途中でこの成形物の表面を吸湿処理し、さ
らに炭酸化養生することを特徴とするγ型珪酸二石灰の
炭酸化養生方法。
1. A molded product is molded by adding water to a mixture of γ-type dicalcium silicate powder and sand or a mixture of these and fibers as an admixture or a reinforcing material, to mold the molded product.
In producing a cured product by carbonating type dilime silicate, the water content of the molded product molded from the raw material mixture is adjusted to 0.4 to 0.8 by the water saturation defined by the following formula, and then carbonized and cured, A method for γ-type dicalcium silicate carbonization and curing, characterized in that the surface of the molded article is subjected to moisture absorption treatment during the course of curing and further carbonation and curing.
JP61247000A 1986-10-17 1986-10-17 Carbonation curing method of γ-type dicalcium silicate Expired - Lifetime JP2524583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247000A JP2524583B2 (en) 1986-10-17 1986-10-17 Carbonation curing method of γ-type dicalcium silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247000A JP2524583B2 (en) 1986-10-17 1986-10-17 Carbonation curing method of γ-type dicalcium silicate

Publications (2)

Publication Number Publication Date
JPS63103878A JPS63103878A (en) 1988-05-09
JP2524583B2 true JP2524583B2 (en) 1996-08-14

Family

ID=17156883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247000A Expired - Lifetime JP2524583B2 (en) 1986-10-17 1986-10-17 Carbonation curing method of γ-type dicalcium silicate

Country Status (1)

Country Link
JP (1) JP2524583B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506236B2 (en) * 2003-11-25 2010-07-21 Jfeスチール株式会社 Method for producing carbonated solid
JP5263190B2 (en) * 2003-11-25 2013-08-14 Jfeスチール株式会社 Method for producing carbonated solid
WO2014159832A1 (en) * 2013-03-13 2014-10-02 Solidia Technologies, Inc. Pavers and block composite materials and methods of preparation thereof
KR20230162898A (en) * 2020-06-03 2023-11-29 칼비크리트 인크. Method for manufacturing carbonated precast concrete products with improved durability
WO2021243441A1 (en) 2020-06-03 2021-12-09 Carbicrete Inc. Method for making carbonated precast concrete products with enhanced durability

Also Published As

Publication number Publication date
JPS63103878A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
JP3137263B2 (en) High bending strength hardened cement
JP2524583B2 (en) Carbonation curing method of γ-type dicalcium silicate
CN112551957B (en) Graphene oxide reinforced carbonization hardening composite material and preparation method thereof
JPH10231161A (en) Heat-curing type cement composition and production of wood-based cement board using the same composition
AU739884B2 (en) Cement composition, concrete using the same and method of manufacturing concrete product
US4166750A (en) Anhydrite concrete and method for preparing building elements
RU2194685C2 (en) Raw mixture for wood-concrete materials making and method of its preparing
JPH0580422B2 (en)
JPH07291765A (en) Aging method of cement molding
CN113321469A (en) High-strength concrete with high water permeability and preparation method thereof
JP6846744B2 (en) Precast cement panel for residual formwork and its manufacturing method
JP3992115B2 (en) Inorganic cured body and method for producing the same
JP2002356385A (en) Method of manufacturing carbon dioxide hardened compact
JPH0747502B2 (en) Carbonation of γ-type dicalcium silicate
JPS63210054A (en) Carbonation curing process for gamma dilime silicate
JPS5919079B2 (en) Manufacturing method of lightweight cellular concrete
JP3090085B2 (en) Manufacturing method of cement ceramic products
JPH11228251A (en) Production of light-weight foamed concrete
RU2144519C1 (en) Method of preparing complex additive for concrete mix (versions)
US133887A (en) Improvement in the manufacture of artificial stone
SU654573A1 (en) Method of manufacturing facing tile
JP4249833B2 (en) Method for producing calcium silicate molded body
JP4556016B2 (en) Energy-saving manufacturing method and molded body of ceramic-based molded body
SU490778A1 (en) The method of manufacture of heat-insulating heat-resistant concrete
SU1268422A1 (en) Method of preparing raw mixture