JP3992115B2 - Inorganic cured body and method for producing the same - Google Patents

Inorganic cured body and method for producing the same Download PDF

Info

Publication number
JP3992115B2
JP3992115B2 JP21047294A JP21047294A JP3992115B2 JP 3992115 B2 JP3992115 B2 JP 3992115B2 JP 21047294 A JP21047294 A JP 21047294A JP 21047294 A JP21047294 A JP 21047294A JP 3992115 B2 JP3992115 B2 JP 3992115B2
Authority
JP
Japan
Prior art keywords
slag
glass fiber
hydration
cured
cured body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21047294A
Other languages
Japanese (ja)
Other versions
JPH0859310A (en
Inventor
秀三 中村
勝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP21047294A priority Critical patent/JP3992115B2/en
Publication of JPH0859310A publication Critical patent/JPH0859310A/en
Application granted granted Critical
Publication of JP3992115B2 publication Critical patent/JP3992115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements

Description

【0001】
【産業上の利用分野】
この発明は、外装材及び内装材のような建築材料、或いはブロック材のような土木材料等として用いられる無機硬化体の製造方法に関するものである。
【0002】
【従来の技術】
ポルトランドセメントや混合セメントをバインダとして用い、ガラス繊維を補強材としたガラス繊維補強コンクリート(GRC)は、強度も高く、靱性に優れており、建築材料や土木材料等として一部利用されてきている。しかし、その使用に際しては、セメントから生じるアルカリ(主としてCa(OH)2 )によってガラス繊維が侵されて強度及び靱性が低下するという欠点があり、用途はごく制限されたものとなっている。
【0003】
このため、高価な耐アルカリ性のガラス繊維を用いたり、セメントに炭酸ガスを作用させアルカリを低減することが試みられているが、いずれも長期の使用では、ガラス繊維の劣化が避けられず、十分な改善効果が得られていないのが現状である。
【0004】
また、低アルカリの硬化体を得るためにスラグの利用が試みられているが、スラグは、そのままの状態、即ち、未水和のスラグは低アルカリであるが炭酸ガスと反応せず炭酸化によって硬化体を得ることができない。従って、スラグとアルカリ刺激材を含む成形体を養生して水和させ硬化体とするか、あるいはスラグを含む成形体を高温におき水和させ硬化体とした後、炭酸ガスを作用させるなどの方法が採られている。
【0005】
【発明が解決しようとする課題】
しかし、この方法は成形体の養生中にガラス繊維が高いアルカリ下におかれることになり、その間にガラス繊維の劣化が生じて好ましいものでない。また、硬化体とした後に炭酸ガスを作用させることは、硬化体の内部へ炭酸ガスが非常に浸透し難く、炭酸化が極めて不十分なものとなりやすい。このため、炭酸ガスの浸透を容易ならしめるために硬化体の空隙を多くすると高強度のものが得られないなどの欠点がある。
【0006】
この発明は、硬化体中のアルカリ濃度が低く、耐アルカリ性ガラス繊維の使用は勿論のこと、安価なEガラス繊維を補強材として使用しても、長期耐久性に優れ、高強度及び高靱性な無機硬化体及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、この発明の無機硬化体の製造方法によれば、ガラス繊維を補強材として混入する無機硬化体の製造方法において、ブレーン比表面積1000〜20000cm /gのスラグを、水中若しくは温水中で少なくともIg.Lossで5重量%以上となるように攪拌混合して水和前処理し、ガラス繊維を混入して成形体とし、該成形体に炭酸ガスを作用させ硬化させることを特徴とする(請求項1)、又この発明の無機硬化体は、前記請求項1記載の製造方法により製造された無機硬化体である(請求項2)。以下、この発明を詳しく説明する。
【0008】
まず、ここで使用されるスラグは、いわゆるカルシウム含有スラグであり、カルシウムとして10%以上含有しているものであれば、特に制限されることなく利用することができ、中でも鉄鋼高炉スラグが好適に使用される。スラグは、後述する水和前処理を効果的に進めるために粉末状のものが良く、ブレーン比表面積1000〜20000cm2/g程度のものが好ましい。これが1000cm2/g以下では炭酸化時の効率が悪く、水和前処理後の再粉砕が必要となり、また、20000cm2/gをこえて粉砕しても水和前処理を効率的に進める以上に粉砕に要する負担が大きく経済的でない。また、当然のことながら、スラグに砂、砂利等を加え、モルタルまたはコンクリートとして使用することになんら問題はない。
【0009】
前述したように、スラグは、そのままでは炭酸化することはなく、硬化体を得ることができない。この発明は、スラグを水和前処理し、これを成形体材料として用いる。水和前処理は、スラグを単に水に漬けておくだけでも良いが、温度が20℃以上の水中若しくは温水中で攪拌混合することが好ましい。水和は水温が高いほど早く進み、また、水和中、スラグを攪拌混合することにより水和を促進すると共にスラグの固結ができないようにすれば、このスラリーを用いて直接成形の用に供することができる。
【0010】
スラグと水の混合比は、攪拌の便を考慮し重量比でスラグ/水=5〜0.1の範囲とすることが好ましい。この範囲を外れて水の量が少なくなると攪拌に大きな動力を必要とし、また、水の量が多くなると次工程における炭酸化で脱水量が多くなり非効率となる。尚、スラリーの凝集を防ぐために公知の分散剤を添加しても良く、さらに水和前処理を促進するためにオートクレーブや蒸気を作用させることもできる。
【0011】
上述したスラグの水和前処理は、Ig.Loss(強熱減量、100℃〜700℃の加熱による重量減少率)で5重量%以上となるまで行う。Ig.Lossは、スラグの水和率、すなわち、炭酸化可能度を端的に、しかも精度良く現すもので、これを5重量%以上とすることで、効果的に炭酸化硬化体を得ることができる。
【0012】
次に、水和前処理したスラグを用い、これに所望により砂、砂利、ガラス繊維等を混合して成形体を作る。成形は、公知のプレミックス法、スプレーサクション法、ダイレクトスプレー法等がいずれも採用できるが、多孔質板上で成形することにより効果的な脱水が行われる。補強材として混合するガラス繊維は、耐アルカリ性ガラス繊維を使用することにより飛躍的にその耐久性を上げることができるが、安価なEガラス繊維を用いても大幅に耐久性を改善することができ、特にガラス繊維の種類を問うことなく使用できる。
【0013】
次いで、成形体に炭酸ガスを作用させ硬化させる。硬化は、炭酸ガス雰囲気中に成形体を静置する方法、或いは、圧力を利用して炭酸ガスを成形体中に浸透させる方法等があるが、前記多孔質板上の成形体に加圧炭酸ガスを作用させることにより、余剰水の脱水と炭酸化硬化を効率的に行うことができる。炭酸ガスは、高濃度ガスほど効率的に炭酸化を行うことができるが、特に濃度に制限を受けるものではなく、また、炭酸ガスを含有する各種の排気ガスを有効に利用することもできる。
【0014】
【作用】
水和前処理したスラグを成形体材料とし、炭酸化によって得た硬化体は、アルカリ濃度が低く、耐アルカリ性ガラス繊維の使用は勿論のこと、安価なEガラス繊維を補強材として使用しても、長期耐久性に優れ、高強度及び高靱性な無機硬化体とすることができる。
【0015】
【実施例】
粉末度がブレーン値で6000cm2/gとした鉄鋼高炉スラグ(Ig.Loss、1.0重量%)を、30℃の温水(水対スラグの重量比2:1)中で7日間攪拌して水和前処理した(Ig.Loss、10重量%)。次に砂をスラグと同重量添加し、均一に攪拌してモルタルとした。成形は、1辺50cm、高さ80cmの角柱容器の下方から20cmの位置に布を張った穴空き鉄板を設置し、容器上方からスプレーガンを用いてモルタルを吹き付けると同時に、モルタルの固形分に対し5重量%のガラス繊維をカットしながら吹き付け、穴空き鉄板上に厚さ10mmの成形体を得た。次いで、容器に蓋をし、成形体に2気圧の炭酸ガスを5分間作用させ、余剰水の脱水と炭酸化硬化を行った。得られた硬化体を25cmm×5cmの大きさに切り分け、70℃の温水に所定期間浸漬したのち、スパン20cmの中央点集中載荷式による曲げ試験を行い、強度の変化を測定した。結果を表1に示す。表1には、比較例として、上記水和前処理したスラグの代わりに普通セメントモルタルを用いたものと、炭酸化未処理の普通セメントモルタル(20℃水中で7日間養生)の例を併せて示す。
【0016】
【表1】

Figure 0003992115
【0017】
【発明の効果】
以上、説明したように、この発明によれば、ガラス繊維のアルカリ劣化が防止され、長期耐久性に優れたものとすることができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing an inorganic cured body used as a building material such as an exterior material and an interior material, or a civil engineering material such as a block material.
[0002]
[Prior art]
Glass fiber reinforced concrete (GRC) using Portland cement or mixed cement as a binder and glass fiber as a reinforcing material is high in strength and excellent in toughness, and has been used in part as building materials and civil engineering materials. . However, in its use, there is a disadvantage that the glass fiber is eroded by alkali (mainly Ca (OH) 2 ) generated from the cement and the strength and toughness are lowered, and its use is extremely limited.
[0003]
For this reason, attempts have been made to reduce the alkali by using an expensive alkali-resistant glass fiber or by acting carbon dioxide on cement, but in both cases, deterioration of the glass fiber is inevitable in long-term use. The present situation is that the improvement effect is not obtained.
[0004]
In addition, the use of slag has been attempted in order to obtain a low-alkali cured product, but the slag remains as it is, that is, unhydrated slag is low-alkaline, but does not react with carbon dioxide gas and is carbonized. A cured product cannot be obtained. Therefore, the molded body containing slag and alkali stimulating material is cured and hydrated to obtain a cured body, or the molded body containing slag is hydrated to obtain a cured body, and then carbon dioxide gas is allowed to act. The method is taken.
[0005]
[Problems to be solved by the invention]
However, this method is not preferable because the glass fiber is placed under a high alkali during the curing of the molded body, and the glass fiber deteriorates during that time. Further, when carbon dioxide gas is allowed to act after forming a cured body, carbon dioxide gas hardly penetrates into the inside of the cured body and carbonation tends to be extremely insufficient. For this reason, there is a drawback that a high-strength material cannot be obtained if the voids of the cured body are increased in order to facilitate the penetration of carbon dioxide gas.
[0006]
This invention has a low alkali concentration in the cured product, and it is excellent in long-term durability, high strength, and high toughness even when inexpensive glass fiber is used as a reinforcing material as well as the use of alkali-resistant glass fiber. An inorganic cured body and a method for producing the same are provided.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object , according to the method for producing an inorganic cured body of the present invention, in the method for producing an inorganic cured body in which glass fibers are mixed as a reinforcing material, a slag having a Blaine specific surface area of 1000 to 20000 cm 2 / g is used. , At least Ig. The mixture is stirred and mixed so as to be 5% by weight or more with Loss, pretreated by hydration, mixed with glass fiber to form a molded body, and carbon dioxide gas is allowed to act on the molded body to cure. In addition, the inorganic cured body of the present invention is an inorganic cured body manufactured by the manufacturing method according to claim 1 (claim 2). Hereinafter, the present invention will be described in detail.
[0008]
First, the slag used here is a so-called calcium-containing slag, and can be used without particular limitation as long as it contains 10% or more as calcium, and steel blast furnace slag is particularly suitable. used. The slag is preferably in the form of a powder in order to effectively proceed with the hydration pretreatment described later, and preferably has a brain specific surface area of about 1000 to 20000 cm 2 / g. If this is less than 1000 cm 2 / g, the efficiency at the time of carbonation is poor, and re-grinding after hydration pretreatment is necessary, and even if pulverization exceeds 20000 cm 2 / g, the hydration pretreatment is effectively advanced. However, the burden required for crushing is large and not economical. As a matter of course, there is no problem in adding sand, gravel or the like to slag and using it as mortar or concrete.
[0009]
As described above, the slag is not carbonated as it is, and a cured product cannot be obtained. In the present invention, slag is pre-hydrated and used as a molding material. In the hydration pretreatment, slag may be simply immersed in water, but it is preferable to stir and mix in water at a temperature of 20 ° C. or higher or warm water. Hydration proceeds faster as the water temperature rises, and during hydration, if slag is stirred and mixed to promote hydration and prevent slag from solidifying, this slurry can be used for direct molding. Can be provided.
[0010]
The mixing ratio of slag and water is preferably in the range of slag / water = 5 to 0.1 in terms of weight ratio in consideration of the convenience of stirring. If the amount of water decreases outside this range, a large amount of power is required for stirring, and if the amount of water increases, the amount of dehydration increases due to carbonation in the next step, resulting in inefficiency. A known dispersant may be added in order to prevent the slurry from agglomerating, and an autoclave or steam can be allowed to act to promote the hydration pretreatment.
[0011]
The slag hydration pretreatment described above is the same as that of Ig. It is carried out until Loss (loss on ignition, weight reduction rate by heating at 100 ° C. to 700 ° C.) reaches 5% by weight or more. Ig. Loss expresses the hydration rate of slag, that is, the degree of carbonation in a straightforward and accurate manner. By setting this to 5% by weight or more, a carbonized cured product can be obtained effectively.
[0012]
Next, using slag pretreated by hydration, sand, gravel, glass fiber, etc. are mixed with this as desired to form a molded body. For the molding, any of a known premix method, spray suction method, direct spray method and the like can be adopted, but effective dehydration is performed by molding on a porous plate. Glass fiber to be mixed as a reinforcing material can dramatically improve its durability by using alkali-resistant glass fiber, but it can greatly improve durability even by using inexpensive E glass fiber. In particular, it can be used without questioning the type of glass fiber.
[0013]
Next, carbon dioxide is allowed to act on the molded body to be cured. Curing includes a method of allowing the molded body to stand in a carbon dioxide atmosphere or a method of allowing carbon dioxide gas to penetrate into the molded body using pressure. By allowing the gas to act, the excess water can be efficiently dehydrated and carbonized and cured. Carbon dioxide gas can be carbonized more efficiently as the concentration of the gas increases. However, the concentration is not particularly limited, and various exhaust gases containing carbon dioxide gas can be used effectively.
[0014]
[Action]
The slag pretreated by hydration is used as a molded body material, and the cured product obtained by carbonation has a low alkali concentration, not to mention the use of alkali-resistant glass fibers, but also using inexpensive E glass fibers as a reinforcing material. In addition, an inorganic cured body having excellent long-term durability and high strength and toughness can be obtained.
[0015]
【Example】
A steel blast furnace slag (Ig. Loss, 1.0% by weight) having a fineness of 6000 cm 2 / g as a brane value was stirred in 30 ° C. warm water (water to slag weight ratio 2: 1) for 7 days. Hydration was pretreated (Ig. Loss, 10% by weight). Next, sand was added in the same weight as the slag, and stirred uniformly to obtain a mortar. Molding is done by installing a perforated iron plate with a cloth stretched 20cm from the bottom of a prismatic container with a side of 50cm and a height of 80cm. On the other hand, it was sprayed while cutting 5% by weight of glass fiber to obtain a molded body having a thickness of 10 mm on a perforated iron plate. Next, the container was covered, and carbon dioxide gas of 2 atm was allowed to act on the molded body for 5 minutes to perform dehydration of excess water and carbonation curing. The obtained cured body was cut into a size of 25 cm × 5 cm, immersed in warm water at 70 ° C. for a predetermined period, and then subjected to a bending test by a center point concentrated loading method with a span of 20 cm to measure a change in strength. The results are shown in Table 1. In Table 1, as a comparative example, those using ordinary cement mortar instead of the slag pretreated with hydration and ordinary cement mortar not treated with carbonation (cured in 20 ° C. water for 7 days) are combined. Show.
[0016]
[Table 1]
Figure 0003992115
[0017]
【The invention's effect】
As described above, according to the present invention, alkali deterioration of glass fibers can be prevented and excellent long-term durability can be achieved.

Claims (2)

ガラス繊維を補強材として混入する無機硬化体の製造方法において、ブレーン比表面積1000〜20000cm/gのスラグを、水中若しくは温水中で少なくともIg.Lossで5重量%以上となるように攪拌混合して水和前処理し、ガラス繊維を混入して成形体とし、該成形体に炭酸ガスを作用させ硬化させることを特徴とする無機硬化体の製造方法。In the method for producing an inorganic cured body in which glass fiber is mixed as a reinforcing material, a slag having a Blaine specific surface area of 1000 to 20000 cm 2 / g is at least Ig. An inorganic cured body characterized in that it is stirred and mixed so as to be 5% by weight or more with Loss, pretreated by hydration , glass fiber is mixed to form a molded body, and carbon dioxide gas is allowed to act on the molded body to be cured. Production method. 請求項1記載の製造方法により製造された無機硬化体。  The inorganic hardening body manufactured by the manufacturing method of Claim 1.
JP21047294A 1994-08-11 1994-08-11 Inorganic cured body and method for producing the same Expired - Fee Related JP3992115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21047294A JP3992115B2 (en) 1994-08-11 1994-08-11 Inorganic cured body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21047294A JP3992115B2 (en) 1994-08-11 1994-08-11 Inorganic cured body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0859310A JPH0859310A (en) 1996-03-05
JP3992115B2 true JP3992115B2 (en) 2007-10-17

Family

ID=16589912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21047294A Expired - Fee Related JP3992115B2 (en) 1994-08-11 1994-08-11 Inorganic cured body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3992115B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038503A (en) * 1999-10-25 2001-05-15 김수태 Solidified product of the slag from the electric furnace and the prepatation thereof
EP2594336A1 (en) * 2011-11-21 2013-05-22 Helmut Schirmbrand Method and device for milling mineral substances and mineral substance
CA3136486C (en) * 2019-04-12 2023-01-10 Carbicrete Inc. Carbonation curing method to produce wet-cast slag-based concrete products
CN113905863A (en) * 2019-04-12 2022-01-07 碳化混凝土公司 Production method of wet casting slag-based concrete product

Also Published As

Publication number Publication date
JPH0859310A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
CN110218051A (en) A kind of high strength lightweight aggregate concrete and its preparation process
US8617452B2 (en) Methods of making a construction material with a voltage
US4968349A (en) Method for producing hardened cement mineral material, especially concrete, and an apparatus for implementation of the method
CN113716927A (en) Phosphogypsum-based soil curing agent, preparation method thereof, cured sample and preparation method thereof
CN108951637A (en) Extreme cold area in low temperature season concrete construction method
JP3992115B2 (en) Inorganic cured body and method for producing the same
JPS6081051A (en) Manufacture of coal ash solidified body
CN112341116A (en) Desulfurized gypsum and super-sulfur cement concrete and preparation method thereof
CN115432982B (en) Preparation method of aerated concrete
CN113321469B (en) High-strength concrete with high water permeability and preparation method thereof
CN115536321A (en) CO capture by calcium silicate 2 And synchronously coagulating into high breaking strength material
CN108726942A (en) A kind of air-mixed concrete pieces and preparation method thereof
RU2341477C1 (en) Binding agent and method of its preparation
JP4409281B2 (en) Method for producing lightweight cellular concrete
CN108275905A (en) A kind of compound additive and preparation method thereof of enhancing cement-based material self-healing properties
JPH0667791B2 (en) ALC manufacturing method
CN104892020B (en) A kind of foamed concrete wallboard and preparation method thereof
CN116514431B (en) Anti-cracking and anti-permeability agent for concrete and preparation method thereof
Nogueira et al. 6 Strategies for carbon capture in concrete production
RU2220932C1 (en) Concrete mix preparation method
CN116332539A (en) Carbonized reinforced nano silicon oxide doped basic magnesium sulfate cement and preparation method thereof
CA1293111C (en) Method for producing hardened cement mineral material, especially concrete, and an apparatus for implementation of the method
JP3226964B2 (en) Manufacturing method of lightweight cellular concrete
CN117342847A (en) Environment-friendly water-resistant ultra-high-performance concrete material and preparation method thereof
CN116477881A (en) Carbonized concrete and preparation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees