JPS63103878A - Carbonation curing process for gamma type dilime silicate - Google Patents
Carbonation curing process for gamma type dilime silicateInfo
- Publication number
- JPS63103878A JPS63103878A JP24700086A JP24700086A JPS63103878A JP S63103878 A JPS63103878 A JP S63103878A JP 24700086 A JP24700086 A JP 24700086A JP 24700086 A JP24700086 A JP 24700086A JP S63103878 A JPS63103878 A JP S63103878A
- Authority
- JP
- Japan
- Prior art keywords
- molded product
- water
- curing
- moisture
- carbonation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 7
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 9
- 235000012241 calcium silicate Nutrition 0.000 claims description 9
- 239000004576 sand Substances 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 4
- 239000012779 reinforcing material Substances 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 description 42
- 238000001723 curing Methods 0.000 description 31
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- 238000000465 moulding Methods 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000013001 point bending Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009415 formwork Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、建築用あるいは土木用資材として有用な低
アルカリ濃度のコンクリート硬化体の製造に関し、さら
に詳しくいえばγ型珪酸二石灰の一層改良された炭酸化
養生方法に係わるものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of hardened concrete with a low alkali concentration useful as construction or civil engineering materials, and more specifically, to further improvement of γ-type dicalcium silicate. This relates to the carbonation curing method.
(従来の技術)
従来から、多量に使用されているコクリート製品は、ポ
ルトランドセメントまたは混合セメントの水和物である
ため硬化体中のアルカリ濃度が著しく高くなり、このた
めガラス繊維補強コンクリートの場合はガラス繊維が耐
用中実化することが避けられず、このためコンクリート
の強度が著しく低下するという欠点を有していた。(Prior art) Cocrete products, which have traditionally been used in large quantities, are hydrates of Portland cement or mixed cement, so the alkali concentration in the hardened product is extremely high. This has the disadvantage that the glass fibers inevitably become solid during use, resulting in a significant decrease in the strength of the concrete.
γ型珪酸二石灰(以下「γ−C2S」という)は、γ−
2CaO・5i02の化学式で示される鉱物であり、こ
れを水の存在下で炭酸化させると次式に従って反応し硬
化する。γ-type dicalcium silicate (hereinafter referred to as “γ-C2S”) is γ-
It is a mineral represented by the chemical formula 2CaO.5i02, and when it is carbonated in the presence of water, it reacts and hardens according to the following formula.
7−2CaO・S i02 +2Ca02−7−2Ca
O−s 1c)2 +2CO2・・・・・・ (1
)
このγ−C2Sの硬化体は、アルカリ濃度が従来のコン
クリートよりも著しく低いため、ポルトランドセメント
硬化体のような欠点がなく、以前から工業材料として注
目されていたが、その量産技術が従来確立されていなか
ったので、これを用いる応用技術の研究も従来はとんど
なされていなかったというのが実状であった。7-2CaO・S i02 +2Ca02-7-2Ca
O-s 1c)2 +2CO2・・・・・・ (1
) This hardened γ-C2S has a significantly lower alkali concentration than conventional concrete, so it does not have the drawbacks of hardened Portland cement, and has long been attracting attention as an industrial material, but mass production technology for it has not been established until now. As a result, the reality is that there has been little research into applied technology using this technology.
ところが本出願人は、先にγ−C2S粉末を低摩な原料
から安価に製造する量産技術を開発し、これを特願昭6
0−153154号として提案した。そこで今後はこの
ようにして量産可能となったγ−C2Sを使用した各種
の応用技術を開発することが要請されるところとなって
きた。本出願人も、すでにこれに関連したいくつかの提
案をしているが、更にγ−C2Sに関する応用技術の開
発が望まれている実状にある。However, the applicant had previously developed a mass production technology for inexpensively manufacturing γ-C2S powder from low-friction raw materials, and applied for this in a patent application filed in 1983.
It was proposed as No. 0-153154. Therefore, in the future, there will be a need to develop various applied technologies using γ-C2S, which can now be mass-produced in this way. Although the present applicant has already made several proposals related to this, there is a real need for further development of applied technology regarding γ-C2S.
(発明が解決しようとする問題点)
γ−C2S粉末を水で混練して成形物を得これを炭酸化
養生して硬化体を製造する際に、高い水分飽和度で充分
に時間をかけて炭酸化養生すれば肉薄の成形体では相当
に均質な硬化体を得ることが出来るが経済訂に問題があ
る。特にある程度の厚みがある部材では内部に未硬化部
分が残り均一な部材が得られない。また適度な水分飽和
度で炭酸化養生を行なっても隅角部、着部が乾き過ぎて
硬化不充分となるなど均一で高強度な硬化体を得るには
困難を極める。本発明者はこのような問題点を解決して
成形体の内部も外表面と同様に均一に炭酸化し、かつそ
の炭酸化に要する時間も短縮出来ようにし、もって全体
が均一に硬化した高強度の硬化体を得ようとするもので
ある。(Problems to be Solved by the Invention) When kneading γ-C2S powder with water to obtain a molded product and carbonating and curing it to produce a cured product, it is necessary to take a sufficient amount of time at a high water saturation level. If carbonation curing is used, it is possible to obtain a fairly homogeneous cured product in the case of a thin molded product, but there is a problem in economical processing. Particularly in the case of a member having a certain degree of thickness, an uncured portion remains inside, making it impossible to obtain a uniform member. Further, even if carbonation curing is carried out at an appropriate water saturation level, it is extremely difficult to obtain a uniformly cured product with high strength, as corners and bonded areas become too dry and curing is insufficient. The present inventor has solved these problems by making it possible to carbonate the inside of the molded product uniformly as well as the outside surface, and to shorten the time required for carbonation, thereby achieving high strength and uniform hardening of the entire body. The purpose is to obtain a cured product.
(問題点を解決するための手段)
この発明は、γ型珪酸二石灰粉末と砂との混合物又はこ
れらにさらに混和剤あるいは補強材としての繊維を加え
た混合物に水を加えて成形物を成形し、この成形物のγ
型珪酸二石灰を炭酸化させて硬化体を製造するにあたり
、原料混合物から成形される成形物の含水量を下記式で
定義する水分飽和度で0.4〜0.8に水分調整した後
炭酸化養生し、養生途中で硬化体の表面を吸湿処理し、
さらに炭酸化養生することを特徴とするγ型珪酸二石灰
の炭酸化養生方法である。以下にこの発明をさらに説明
する。(Means for Solving the Problems) This invention forms a molded article by adding water to a mixture of γ-type dicalcium silicate powder and sand, or a mixture of these with fibers as an admixture or reinforcing material. γ of this molded product
When producing a hardened body by carbonating mold dicalcium silicate, the moisture content of the molded product formed from the raw material mixture is adjusted to 0.4 to 0.8 at the moisture saturation defined by the following formula, and then carbonated. After curing, the surface of the cured material is treated with moisture absorption during curing.
This is a carbonation curing method for γ-type dicalcium silicate characterized by further carbonation curing. This invention will be further explained below.
本発明で使用するγ−C2Sは、次式に示す反応に従っ
てCO2と反応し硬化する。この場合水は触媒として作
用し、この炭酸化反応を円滑に進行させるためには、所
定量の水はどうしても存在させなければならない。γ-C2S used in the present invention reacts with CO2 and hardens according to the reaction shown in the following formula. In this case, water acts as a catalyst, and a predetermined amount of water must be present in order for this carbonation reaction to proceed smoothly.
CO2+H2O−4H2CO3・・・・・・(2)2C
aO・S i02 +2H2CO3→2 Ca CO3
+ S i 02 + 2 H20・・・・・・(3)
本発明者はγ−C2Sの炭酸化反応について各種の実験
をしていった結果、ここに存在する水の量が多すぎても
或は少なすぎても上記の(3)式の炭酸化反応が円滑に
進行せず、高強度の硬化体の得られないことを確認した
。そしてさらに実験をすすめたところ、成形体の水分量
が、上記式で示す水分飽和度で0.25〜0.95、好
ましくは0.4〜0.8のとき炭酸化反応が円滑に進行
し、短時間で高強度を発現することを見い出した。CO2+H2O-4H2CO3...(2)2C
aO・S i02 +2H2CO3→2 Ca CO3
+ S i 02 + 2 H20 (3) As a result of various experiments on the carbonation reaction of γ-C2S, the present inventor found that even if the amount of water present here is too large, It has been confirmed that if the amount is too small, the carbonation reaction of the above formula (3) will not proceed smoothly and a cured product with high strength will not be obtained. Further experiments revealed that the carbonation reaction proceeded smoothly when the moisture content of the molded body was 0.25 to 0.95, preferably 0.4 to 0.8, as expressed by the above formula. It was discovered that high strength was developed in a short period of time.
常法に従って、γ−C2S粉末と砂、必要によりその他
の混和材及び/又は補強材を含む配合物に水を混合して
成形体とする場合、その成形体の水分飽和度が0.4〜
0.8のものは、使用した材料の粒度分布によっても異
なるが、通常成形時に5〜10重量%の水を添加したと
きに得られるものである。しかしなから成形技術の面か
らすると、成形時の水の添加量が5〜10重量%といっ
た少量では、混練物に流動性がほとんどなく通常の流し
込み成形は出来ず、加圧成形しなければ製品とすること
が出来ないという問題がある。成形技術からすると、成
形性がよく且つ表面が平滑な成形体を得るには、混練水
を上記の水分飽和度を大きく超えて過剰に感謝し混練物
の流動性を増し、流し込み成形とすることが好ましい。When water is mixed into a compound containing γ-C2S powder, sand, and optionally other admixtures and/or reinforcing materials to form a molded body according to a conventional method, the water saturation of the molded body is 0.4 to 0.4.
A value of 0.8 is usually obtained when 5 to 10% by weight of water is added during molding, although it varies depending on the particle size distribution of the material used. However, from the perspective of molding technology, if the amount of water added during molding is small, such as 5 to 10% by weight, the kneaded material has almost no fluidity and normal pour molding is not possible, and the product cannot be manufactured without pressure molding. The problem is that it cannot be done. From the perspective of molding technology, in order to obtain a molded product with good moldability and a smooth surface, it is necessary to increase the fluidity of the kneaded product by adding excessive amounts of kneading water far exceeding the above water saturation level, and then perform pour molding. is preferred.
しかし仮に流し込み成形を採用した場合、この成形体は
その後水分飽和度が0.4〜0.8となるように乾燥等
で水分調整をし、それから炭酸化養生に供する必要があ
る。そうしないと上記の通り良好な硬化体を得ることが
出来ないからである。しかしこの場合、過剰な水を含む
成形体の内部と表層部を均一に乾燥して成形体の全体を
上記範囲の水分飽和度に水分調整をすることは簡単では
なく、しばしば成形体の表層部、角部、端部といったと
ころでは乾燥し過ぎとなっていた。特に、成形体が厚板
の場合にはこの傾向は避けられない。従ってこの状態で
炭酸化養生すると、水分飽和度が著しく小さくなった成
形体の表層部では充分な養生が出来ないという問題があ
った。However, if cast molding is used, the molded product must be dried to adjust its moisture content to a moisture saturation of 0.4 to 0.8, and then subjected to carbonation curing. Otherwise, a good cured product cannot be obtained as described above. However, in this case, it is not easy to uniformly dry the interior and surface layer of the molded body containing excess water and adjust the moisture content of the entire molded body to the above range of water saturation, and often the surface layer of the molded body , corners, and edges were too dry. In particular, this tendency is unavoidable when the molded body is a thick plate. Therefore, if carbonation curing is carried out in this state, there is a problem that sufficient curing cannot be achieved in the surface layer of the molded article, where the degree of water saturation is extremely low.
こうした現象を避けるために、これまでは炭酸化養生に
供される成形体の水分飽和度を予め適正値よりも若干多
くしておき、長時間をかけて養生を行ってきたが、しか
しこれでは生産性が上からずこの面からコストを引上げ
る結果となっていた。In order to avoid this phenomenon, conventional methods have been to increase the moisture saturation of the compacts to be carbonated and cured slightly higher than the appropriate value, and to cure them over a long period of time. Productivity did not improve, which resulted in increased costs.
これについて更に実験例を示して説明する。This will be further explained by showing an experimental example.
実験例
第1表に示すγ−c2s粉末1oogr−豊浦標準砂1
00gr及びEガラス繊維(13關のチョップドスッラ
ンド)4grの混合物に水60m1を添加して混練し、
これを吸引装置の付いた型枠に流し込み、型枠の下部を
減圧吸引して1o×10XI(cm)の板状に成形した
。この成形物をその後20℃の気密型恒温箱に入れ濃度
9996以上の炭酸ガスを流しなから種々の時間養生し
た。Experimental example γ-c2s powder shown in Table 1 1oogr-Toyoura standard sand 1
Add 60ml of water to a mixture of 4g of 00g and E glass fibers (13 pieces of chopped sulland) and knead.
This was poured into a formwork equipped with a suction device, and the lower part of the formwork was vacuum-suctioned to form a plate shape of 10×10XI (cm). This molded product was then placed in an airtight constant temperature box at 20° C. and cured for various times without flowing carbon dioxide gas at a concentration of 9996 or higher.
その後養生した硬化体について、4X9Xl(cm)の
供試体を作成し、3点曲げ強さく 7 cmスパン)及
び曲げ強さ測定後サンプルの炭酸化率を測定した。別に
、上記と同様にして成形した成形直後の成形体について
測定したところ、その水分飽和度は1.02であった。After that, a 4×9×1 (cm) specimen was prepared from the cured cured product, and after measuring the three-point bending strength (7 cm span) and bending strength, the carbonation rate of the sample was measured. Separately, when a molded article immediately after molding was molded in the same manner as above, the moisture saturation was 1.02.
第 1 表
硬化体についての3点曲げ強さ及び炭酸化率のflll
J定結果は添附図の通りであった。この図からも明らか
なように、炭酸化率が50%を超えかつ曲げ強さが15
0kg/dを越すには15時間以上の長時間養生が必要
となる。しかも、養生初期の5時間余は成形体の水分量
が多過ぎてほとんど養生がなされていないことが分る。Table 1 Three-point bending strength and carbonation rate of cured products
The J determination results are shown in the attached figure. As is clear from this figure, the carbonation rate exceeds 50% and the bending strength is 15%.
To exceed 0 kg/d, long-term curing of 15 hours or more is required. Furthermore, it can be seen that during the initial 5 hours of curing, the molded body contained too much moisture and was hardly cured.
こうした間居点を解消するために、本発明では成形物の
水分飽和度を予め調整しておいて炭酸化養生の開始時期
を早めるようにするとともに、養生の途中で成形体の表
面や隅角部といった水分が早期に逸散しやすい部分に、
養生途中水を噴霧して硬化体の表面を吸湿処理し、この
部分÷労イ扮の乾燥し過ぎによる炭酸化養生の不充分を
回避しようとするものである。In order to eliminate such gaps, in the present invention, the water saturation level of the molded product is adjusted in advance so that the start time of carbonation curing is brought forward, and the surface and corners of the molded product are In areas where moisture is likely to dissipate quickly, such as
During curing, water is sprayed on the surface of the cured product to absorb moisture, thereby avoiding insufficient carbonation and curing due to excessive drying of this portion.
本発明で炭酸化養生されるγ−C2S成形体は、γ型珪
酸二石灰粉末と砂との混合物又はこれらにさらに島和剤
あるいは補強材としての繊維を加えた混合物に水を加え
て常法によって成形される。The γ-C2S molded body to be carbonated and cured in the present invention can be produced by adding water to a mixture of γ-type dicalcium silicate powder and sand, or a mixture of these with an isolating agent or fibers as a reinforcing material. molded by.
なお、ここに使用される補強材としての繊維は、カーボ
ン繊維、ガラス繊維、合成無機U&維、有機質繊維を使
用することが出来る。また、成形法としてはプレミック
ス法、スプレーサクション法、ダイレクトスプレー法と
いったものがいづれも採用することが出来る。次に、こ
の成形体を乾燥、減圧吸引等公知の手段でその水分量を
水分飽和度で0.4〜0.8となるように水分調整する
。水分飽和度が0.4未満であると炭酸化養生後の硬化
体の強度が充分でなく、またこれが0.8を超えると炭
酸化養生時間が長くなるため好ましくない。上記のよう
に水分調整された成形体は、その後炭酸ガス雰囲気中で
炭酸化養生される。このときC02含有ガスのC02i
a度は3Qvo196以上が好ましい。この炭酸ガス養
生をつづけていくと成形体の表面や角部といった成形体
の表層部分が、その内部よりも早く乾燥してくるので、
乾燥した成形体の表層部分に水を噴霧して成形体を湿ら
す処理を施す。ここで噴霧する水量は、一般に成形体の
0.25〜3.0重量%が好ましい。これが0.25重
量%未満のときは吸湿効果が小さく、また3、0%を超
えると今度は逆に吸湿し過ぎて次の炭酸化養生の時間が
長くなるため好ましくない。上記の吸湿処理の施された
成形体はつづいて炭酸化養生されて最終的な硬化体とさ
れる。Note that carbon fiber, glass fiber, synthetic inorganic U&fiber, and organic fiber can be used as the reinforcing fiber used here. Further, as the molding method, any of the premix method, spray suction method, and direct spray method can be adopted. Next, the moisture content of this molded body is adjusted to a moisture saturation level of 0.4 to 0.8 using known means such as drying and vacuum suction. If the water saturation degree is less than 0.4, the strength of the cured product after carbonation curing will not be sufficient, and if it exceeds 0.8, the carbonation curing time will become long, which is not preferable. The molded body whose moisture content has been adjusted as described above is then carbonated and cured in a carbon dioxide atmosphere. At this time, C02i of the C02-containing gas
The a degree is preferably 3Qvo196 or higher. As this carbon dioxide curing continues, the surface layer of the molded product, such as the surface and corners, will dry faster than the inside.
Water is sprayed onto the surface layer of the dried molded body to moisten the molded body. The amount of water sprayed here is generally preferably 0.25 to 3.0% by weight of the molded body. If it is less than 0.25% by weight, the moisture absorption effect will be small, and if it exceeds 3.0%, it will absorb too much moisture and the next carbonation curing will take a long time, which is not preferable. The molded body subjected to the moisture absorption treatment described above is then carbonated and cured to form a final hardened body.
このようにすることによって、炭酸化養生の全期間を通
じ成形体の内部と表層部を略均−な水分飽和度に保ちつ
つ養生することが出来る。By doing so, it is possible to maintain the inside and surface portions of the molded body at a substantially even moisture saturation level throughout the entire period of carbonation and curing.
以下に実施例をあげてこの発明をさらに説明する。The present invention will be further explained below with reference to Examples.
実施例1゜
第1表に示すγ−C2S粉末50gr、豊浦標準砂50
gr及びEガラス繊維(ILmmチョップストランド)
2grの混合物に水30m1!を添加して混練し、その
後成形圧100kg/cJで10×5X1(cm)の板
状に成形した。この成形体をその後20℃、相対湿度5
0%の室に各種の時間放置して水分調整した。この結果
種々の含水量をもった成形体を得た。Example 1゜50g of γ-C2S powder shown in Table 1, Toyoura standard sand 50
gr and E glass fiber (ILmm chopped strand)
2gr mixture and 30ml water! was added and kneaded, and then molded into a plate shape of 10 x 5 x 1 (cm) at a molding pressure of 100 kg/cJ. This molded body was then heated at 20°C and relative humidity 5.
The moisture content was adjusted by leaving the samples in a 0% chamber for various times. As a result, molded bodies with various water contents were obtained.
これとは別に、上記と同様にして成形した成形体につい
て、含水量、見掛気孔率及び見掛比重を測定し、これよ
り成形体の水分飽和度を測定した。Separately, the water content, apparent porosity, and apparent specific gravity of the molded body molded in the same manner as above were measured, and the water saturation degree of the molded body was determined from this.
また、含水量の異なる種々の成形体についてもその乾燥
原料から水分飽和度を計算して求めた。In addition, the moisture saturation of various molded bodies with different moisture contents was calculated from the dried raw materials.
上記のようにして水分調整した種々の成形体を20℃の
気密型恒温箱に入れ、濃度99%以上の炭酸ガスをこの
中に流しなから種々の時間炭酸化養生した。こうした養
生を2時間及び4時間したのち、成形体の表面に水を1
重量%噴霧して吸湿させその後つづけて炭酸ガス養生を
2時間行った。The various molded bodies whose moisture content had been adjusted as described above were placed in an airtight constant temperature box at 20°C, and carbonated and cured for various times while flowing carbon dioxide gas with a concentration of 99% or more into the box. After 2 and 4 hours of curing, water was added to the surface of the molded product.
It was sprayed in a weight percent manner to absorb moisture, and then continued to be cured with carbon dioxide gas for 2 hours.
養生の終了した各々の硬化体について、硬化体の稜部か
゛らサイズ、l0XIX0.3 (cm)で切出した。After curing, each cured product was cut out from the edge of the cured product at a size of 10XIX0.3 (cm).
この切り出し片についてカーボン含有量を分析し、これ
によってγ−C2S粉末成形体稜部の炭酸化率を測定し
た。また各硬化体については3点曲げ強さく 7 cm
スパン)を測定した。これらを第2表に示す。なお、表
中には中間に吸湿処理を行なわないもの及び水分飽和度
が本発明で規定する範囲外のものを比較例として併せて
示した。The carbon content of this cut piece was analyzed, and the carbonation rate of the edge of the γ-C2S powder compact was measured. In addition, each cured product has a three-point bending strength of 7 cm.
Span) was measured. These are shown in Table 2. In addition, in the table, samples that were not subjected to intermediate moisture absorption treatment and samples whose moisture saturation was outside the range defined by the present invention are also shown as comparative examples.
第2表の結果から明らかなように、成形体の水分調整は
水分飽和度で0.4〜0,8になるように調整するのが
好ましい。水分飽和度が0.4未満であると炭酸化養生
後の硬化体の強度が小さく、養生途中で吸湿処理を行っ
ても強度向上の効果が少ない。また、水分飽和度が0.
8を超えると養生時間が長くなり好ましくない。表のN
α6.7.9及び11 (いづれも比較例)の硬化体の
表面、隅角部及び稜部には、炭酸化反応が不十分と考え
られる脆い部分がみられたが、本発明によるもの(No
、 4.5.8及び10)の硬化体についてはそのよう
な脆い部分はみられなかった。As is clear from the results in Table 2, it is preferable to adjust the moisture content of the molded product so that the moisture saturation level is 0.4 to 0.8. If the water saturation is less than 0.4, the strength of the cured product after carbonation curing will be low, and even if moisture absorption treatment is performed during curing, there will be little effect on improving the strength. In addition, the water saturation level is 0.
If it exceeds 8, the curing time becomes longer, which is not preferable. Table N
The cured products of α6.7.9 and 11 (both comparative examples) had brittle parts on the surface, corners, and ridges where the carbonation reaction was thought to be insufficient. No
, 4.5.8 and 10), such brittle portions were not observed.
実施例2゜
実施例1と同様にして水分飽和度か0.45で形状が実
施例1と同じ成形体を得た。これを実施例1と同様にし
て4時間炭酸化養生し、その後この硬化体表面に水を第
3表記載の通り種々の瓜噴霧した。つづいてこれを更に
2時間炭酸化養生した。ここに得られたものについて実
施例1と同様に3点曲げ強さ試験を実施し、またその稜
部の炭酸化率を測定した。結果は第3表に示す通りであ
る。Example 2 In the same manner as in Example 1, a molded article having a moisture saturation of 0.45 and the same shape as in Example 1 was obtained. This was carbonated and cured for 4 hours in the same manner as in Example 1, and then water was sprayed onto the surface of the cured product as described in Table 3. Subsequently, this was further carbonated and cured for 2 hours. A three-point bending strength test was conducted on the obtained product in the same manner as in Example 1, and the carbonation rate of the ridge was measured. The results are shown in Table 3.
第3表から明らかなように、本発明で硬化体に吸湿させ
る水分の量は0.25〜3.0%が好ましいことが分る
。吸水させる水分が0.25重量%未満の場合は吸湿に
よる硬化体の性状向上の効果が少なく、また3重−%を
超えると短い時間で養生を終了して良好な硬化体とする
ことは出来ない。As is clear from Table 3, it is found that the amount of moisture absorbed by the cured product in the present invention is preferably 0.25 to 3.0%. If the amount of water absorbed is less than 0.25% by weight, the effect of improving the properties of the cured product due to moisture absorption is small, and if it exceeds 3% by weight, curing cannot be completed in a short time and a good cured product cannot be obtained. do not have.
実施例3゜
実施例1で使用したγ−C2S粉末1重量部と2社以下
の川砂1重量部の混合物に水を添加混合してモルタルを
調整した。このモルタルと共に別に用意したEガラスの
ロービングを25mmのチョツプドストランドに切断し
なからスプレーサクション法により900X450X1
0mmの薄板に成形した。繊維の添加量は5%とした。Example 3 Water was added to a mixture of 1 part by weight of the γ-C2S powder used in Example 1 and 1 part by weight of river sand from two companies or less to prepare a mortar. Along with this mortar, E-glass roving prepared separately was cut into 25 mm chopped strands and then sprayed into 900 x 450 x 1 pieces using the spray suction method.
It was molded into a thin plate of 0 mm. The amount of fiber added was 5%.
その後この成形体を60°Cの乾燥機中で成形体の水分
飽和度が0.50になるまで乾燥した。次にこれを気密
型恒温箱に入れ濃度99%以上の炭酸ガスを流しなから
常温で4時間炭酸化養生した。その後成形体の表面、端
部等に水を噴霧しその後さらに2時間炭酸ガス養生した
。なお、水の噴霧量は1.5重量%とした。養生後得ら
れた硬化体について250X50X10mzの供試体を
作成し3点曲げ強さく200mmスパン)を測定した。Thereafter, this molded body was dried in a dryer at 60° C. until the moisture saturation of the molded body became 0.50. Next, this was placed in an airtight thermostatic box and carbonated and cured at room temperature for 4 hours without flowing carbon dioxide gas with a concentration of 99% or higher. Thereafter, water was sprayed onto the surface, edges, etc. of the molded body, and then the molded body was further cured with carbon dioxide gas for 2 hours. Note that the amount of water sprayed was 1.5% by weight. A specimen of 250 x 50 x 10 mz was prepared from the cured product obtained after curing, and the three-point bending strength (200 mm span) was measured.
その値は275kg/c−であった。The value was 275 kg/c-.
上記で測定したサンプルを1關以下に粉砕し、この中5
0kgを蒸溜水70m1中に入れかき混ぜて24時間後
の上澄み液のpH値を測定したところ10.3であった
。The sample measured above was crushed into pieces of 1 piece or less, and 5
0 kg was placed in 70 ml of distilled water and stirred, and the pH value of the supernatant liquid after 24 hours was measured and found to be 10.3.
実施例4゜
第1表に示す7−C2S粉末100gr、豊浦標準砂1
00gr及びEガラス繊維(13Mチョツプドストラン
ド)4grの混合物に水60m1を添加して混練し、そ
の後吸引装置の付いた型枠にこれを流し込み、型枠の下
部を減圧吸引してICXIO(cm)で種々の厚さの板
状の成形物を成J1した。この成形物を50℃の乾燥機
中で成形物Q水分飽和度が0155になるまで乾燥した
。そQ後これを30℃の気密型恒温箱に入れ濃度999
以上の炭酸ガスを流しなから5時間養生した。1の後こ
れを恒温箱から取出し、その表面に水を1.5wt%噴
霧して湿らせ、さらに2時間炭酸ガス養生をした。養生
の終えた硬化体について、4X9X3(cm)の供試体
を作成し、3点曲げ試験(7cmスパン)及び炭酸化率
を測定した。結果は、曲げ強さが143kg/cm、炭
酸化率54%であった。しかもこの硬化体の中心部に未
硬化部分はなかった。Example 4゜100g of 7-C2S powder shown in Table 1, Toyoura standard sand 1
60ml of water is added to a mixture of 4g of 00g and E glass fibers (13M chopped strands) and kneaded.Then, this is poured into a formwork equipped with a suction device, and the lower part of the formwork is suctioned under reduced pressure to produce ICXIO (cm ) to form plate-shaped molded products of various thicknesses. This molded product was dried in a dryer at 50° C. until the molded product Q moisture saturation level became 0155. After that, put it in an airtight thermostatic box at 30℃ to a concentration of 999.
It was cured for 5 hours without flowing carbon dioxide gas. After step 1, this was taken out from the thermostatic box, 1.5 wt % of water was sprayed onto its surface to moisten it, and it was further cured with carbon dioxide gas for 2 hours. After curing, a 4×9×3 (cm) specimen was prepared, and a 3-point bending test (7 cm span) and carbonation rate were measured. The results showed that the bending strength was 143 kg/cm and the carbonation rate was 54%. Furthermore, there was no uncured portion in the center of this cured product.
なお、比較例として上記と同様な成形体を成形し、同様
な気密箱に入れて同様な炭酸ガス養生を20時間行った
後、同様なサイズの供試体を作成し、同じようにして3
点曲げ試験及び炭酸化率を測定した。結果を第4表に示
す。As a comparative example, a molded body similar to that described above was molded, placed in a similar airtight box, and cured with carbon dioxide gas for 20 hours. After that, a specimen of the same size was created and 3
Point bending test and carbonation rate were measured. The results are shown in Table 4.
第 4 表
(発明の効果)
以上の通り本発明によると、短時間の養生で硬化体の全
部分が均一に養生出来て高強度を灯しかつ低アルカリな
コンクリートが得られることになり、その利用は広く当
業者が注目するところとなると思われる。Table 4 (Effects of the Invention) As described above, according to the present invention, all parts of the hardened material can be uniformly cured in a short time, and concrete with high strength and low alkalinity can be obtained. It is believed that its use will be of wide interest to those skilled in the art.
図は成形体の養生時間と炭酸化率及び曲げ強さく kg
/ cd )の関係を示す線図である。
出願人代理人 弁理士 鈴江武彦
を1時間(イγS)The figure shows the curing time, carbonation rate, and bending strength of the compact (kg)
/cd) is a diagram showing the relationship between Applicant's representative Patent attorney Takehiko Suzue for 1 hour (IγS)
Claims (1)
混和剤あるいは補強材としての繊維を加えた混合物に水
を加えて成形物を成形し、この成形物のγ型珪酸二石灰
を炭酸化させて硬化体を製造するにあたり、原料混合物
から成形される成形物の含水量を下記式で定義する水分
飽和度で0.4〜0.8に調整してから炭酸化養生し、
養生途中でこの成形物の表面を吸湿処理し、さらに炭酸
化養生することを特徴とするγ型珪酸二石灰の炭酸化養
生方法。 水分飽和度=(成形物水分(%)/100−成形物水分
(%))×(100−成形体の見掛気孔率(%)/成形
体の見掛気孔率(%))×成形体の見掛比重[Claims] Water is added to a mixture of γ-type dicalcium silicate powder and sand, or a mixture in which fibers as an admixture or reinforcing material are added to form a molded product, and the γ-type of this molded product is When producing a hardened product by carbonating dicalcium silicate, the moisture content of the molded product formed from the raw material mixture is adjusted to 0.4 to 0.8 at the water saturation level defined by the following formula, and then carbonated. Take care of yourself,
A method for carbonation curing of γ-type dicalcium silicate, which comprises subjecting the surface of the molded product to moisture absorption treatment during curing and further carbonation curing. Moisture saturation = (Moisture content of molded product (%) / 100 - Moisture content of molded product (%)) x (100 - Apparent porosity of molded product (%) / Apparent porosity of molded product (%)) x Molded product apparent specific gravity of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61247000A JP2524583B2 (en) | 1986-10-17 | 1986-10-17 | Carbonation curing method of γ-type dicalcium silicate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61247000A JP2524583B2 (en) | 1986-10-17 | 1986-10-17 | Carbonation curing method of γ-type dicalcium silicate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63103878A true JPS63103878A (en) | 1988-05-09 |
JP2524583B2 JP2524583B2 (en) | 1996-08-14 |
Family
ID=17156883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61247000A Expired - Lifetime JP2524583B2 (en) | 1986-10-17 | 1986-10-17 | Carbonation curing method of γ-type dicalcium silicate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2524583B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179170A (en) * | 2003-11-25 | 2005-07-07 | Jfe Steel Kk | Method of manufacturing carbonated solid |
JP2010095443A (en) * | 2003-11-25 | 2010-04-30 | Jfe Steel Corp | Method for producing carbonate solid |
JP2019052086A (en) * | 2013-03-13 | 2019-04-04 | ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. | Composite material for pavement material and block, and preparation method therefor |
WO2021243441A1 (en) | 2020-06-03 | 2021-12-09 | Carbicrete Inc. | Method for making carbonated precast concrete products with enhanced durability |
JP2022551516A (en) * | 2019-10-09 | 2022-12-09 | ソリディア テクノロジーズ インコーポレイテッド | Methods of forming cured composites with optimal pH, and related compositions and systems |
EP3946865A4 (en) * | 2020-06-03 | 2022-12-21 | Carbicrete Inc. | Method for making carbonated precast concrete products with enhanced durability |
-
1986
- 1986-10-17 JP JP61247000A patent/JP2524583B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179170A (en) * | 2003-11-25 | 2005-07-07 | Jfe Steel Kk | Method of manufacturing carbonated solid |
JP2010095443A (en) * | 2003-11-25 | 2010-04-30 | Jfe Steel Corp | Method for producing carbonate solid |
JP2019052086A (en) * | 2013-03-13 | 2019-04-04 | ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. | Composite material for pavement material and block, and preparation method therefor |
JP2022551516A (en) * | 2019-10-09 | 2022-12-09 | ソリディア テクノロジーズ インコーポレイテッド | Methods of forming cured composites with optimal pH, and related compositions and systems |
WO2021243441A1 (en) | 2020-06-03 | 2021-12-09 | Carbicrete Inc. | Method for making carbonated precast concrete products with enhanced durability |
EP3946865A4 (en) * | 2020-06-03 | 2022-12-21 | Carbicrete Inc. | Method for making carbonated precast concrete products with enhanced durability |
US11597685B2 (en) | 2020-06-03 | 2023-03-07 | Carbicrete Inc | Method for making carbonated precast concrete products with enhanced durability |
CN115884954A (en) * | 2020-06-03 | 2023-03-31 | 碳化混凝土公司 | Method for manufacturing carbonated precast concrete products with enhanced durability |
KR20230162898A (en) * | 2020-06-03 | 2023-11-29 | 칼비크리트 인크. | Method for manufacturing carbonated precast concrete products with improved durability |
Also Published As
Publication number | Publication date |
---|---|
JP2524583B2 (en) | 1996-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1466772A (en) | Castings of articles containing calcined gypsum | |
JPH06263562A (en) | Production of high-strength cured cement material utilizing carbonation reaction | |
JPS63103878A (en) | Carbonation curing process for gamma type dilime silicate | |
JP3204329B2 (en) | Manufacturing method of cement mortar molding | |
RU2194685C2 (en) | Raw mixture for wood-concrete materials making and method of its preparing | |
JPS61127656A (en) | Gypsum hardened body | |
CN108046714B (en) | Method for producing floor tile capable of being demoulded immediately by using waste glass | |
JPH07291765A (en) | Aging method of cement molding | |
JPS60191074A (en) | Manufacture of inorganic cured body | |
JPH0580422B2 (en) | ||
JPS62241856A (en) | Carbona tion curing process for gamma type dilime silicate | |
JPS63210054A (en) | Carbonation curing process for gamma dilime silicate | |
JPS5919079B2 (en) | Manufacturing method of lightweight cellular concrete | |
JP2000335947A (en) | Artificial lightweight aggregate, its production and cement hardened product | |
KR20020030840A (en) | Economic manufacture and product of High strength whangtoh Block | |
JPS60264355A (en) | Manufacture of calcium silicate molded body | |
SU1740348A1 (en) | Method of preparing arbolite on the base of crushed daur larch | |
US133887A (en) | Improvement in the manufacture of artificial stone | |
JPH11188711A (en) | Manufacture of glass-containing interlocking block | |
SU1699976A1 (en) | Method of preparing initial mixture for producing arbolite | |
SU1268528A1 (en) | Method of water-repellency treatment of porous aggregate | |
SU863347A1 (en) | Method of making articles of fine-grain concrete | |
JP2619945B2 (en) | Manufacturing method of inorganic plate material | |
KR790001810B1 (en) | Method of manufacturing for light-brick by formed plastic | |
JPS63185846A (en) | Manufacture of fiber reinforced inorganic products |