JP2012144406A - High-strength mortar composition - Google Patents

High-strength mortar composition Download PDF

Info

Publication number
JP2012144406A
JP2012144406A JP2011005887A JP2011005887A JP2012144406A JP 2012144406 A JP2012144406 A JP 2012144406A JP 2011005887 A JP2011005887 A JP 2011005887A JP 2011005887 A JP2011005887 A JP 2011005887A JP 2012144406 A JP2012144406 A JP 2012144406A
Authority
JP
Japan
Prior art keywords
mass
mortar composition
cement
strength
strength mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011005887A
Other languages
Japanese (ja)
Other versions
JP6022747B2 (en
Inventor
Takayoshi Hirata
隆祥 平田
Yoshikazu Ishizeki
嘉一 石関
Koichiro Yoshida
浩一郎 吉田
Koji Tamataki
浩司 玉滝
Junji Tokiyasu
淳二 時安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Ube Corp
Original Assignee
Obayashi Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Ube Industries Ltd filed Critical Obayashi Corp
Priority to JP2011005887A priority Critical patent/JP6022747B2/en
Publication of JP2012144406A publication Critical patent/JP2012144406A/en
Application granted granted Critical
Publication of JP6022747B2 publication Critical patent/JP6022747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength mortar composition that is excellent in workability and is capable of promptly exerting high compressive strength only by cold curing.SOLUTION: The high-strength mortar composition comprises cement, a silica fume, water, a water reducing agent, a defoaming agent, a fine aggregate and an inorganic fine powder. The cement comprises 40.0-75.0 mass% CS and <2.7 mass% CA and leaves <25.0 mass% residue on a 45 μm sieve. A mixture of the fine aggregate and the inorganic fine powder comprises 40-80 mass% particles having a particle size of ≤0.15 mm and 30-80 mass% particles having a particle size of ≤0.075 mm. The inorganic fine powder is at least one fine powder chosen from the group consisting of a lime stone powder, a silica stone powder and a crushed-stone powder.

Description

本発明は、高強度モルタル組成物に関する。   The present invention relates to a high strength mortar composition.

近年、構造部材の軽量化、鉄筋使用量の削減などの要求に伴い、200N/mm程度の圧縮強度が得られるような超高強度材料が提案されている。これらの材料では、セメント、ポゾラン質微粉末、骨材及び高性能減水剤が使用されており、熱養生によって超高強度化が図られている。また、これらに金属繊維や有機繊維を添加することによって、高いじん性やひび割れ抑制機能を付与することが提案されている(特許文献1〜3参照)。そして、特許文献2及び3に記載の材料を標準の条件で養生した場合、材齢28日目の圧縮強度が150N/mm程度に留まることがわかっている(非特許文献1参照)。 In recent years, an ultra-high-strength material capable of obtaining a compressive strength of about 200 N / mm 2 has been proposed in accordance with demands for reducing the weight of structural members and reducing the amount of reinforcing bars used. In these materials, cement, pozzolanic fine powder, aggregate, and a high-performance water reducing agent are used, and ultrahigh strength is achieved by heat curing. In addition, it has been proposed to impart high toughness and crack suppression function by adding metal fibers and organic fibers to these (see Patent Documents 1 to 3). And when the materials described in Patent Documents 2 and 3 are cured under standard conditions, it is known that the compressive strength at the age of 28 days remains at about 150 N / mm 2 (see Non-Patent Document 1).

特開2001−181004号公報JP 2001-181004 A 特開2006−298679号公報JP 2006-298679 A 特開2007−126317号公報JP 2007-126317 A

超高強度繊維補強コンクリートの強度発現性状に関する実験的検討、コンクリート工学年次論文集、Vol.30、No.1、pp.243−248、2008Experimental study on strength development properties of ultra high strength fiber reinforced concrete, Annual report of concrete engineering, Vol. 30, no. 1, pp. 243-248, 2008

しかしながら、既存の技術では、コンクリートの超高強度化を実現するためには、熱養生を必要とする場合が多いため、コンクリートの製造箇所が限定され、製造品の運搬が必要である。また、コンクリート製品の形状や大きさは、材料の流動性、型枠や養生装置の形状等により制約を受けるため、超高強度材料は施工や設計の自由度が制限される。一方、ひび割れ抑制効果を備えた高じん性セメント系材料は、現場施工が可能であるが、強度は通常のコンクリートと同程度しか得られていない。このため、熱養生が不要であり、現場施工が可能な高強度材料が求められている。   However, in the existing technology, in order to realize the ultra-high strength of the concrete, heat curing is often required. Therefore, the production site of the concrete is limited, and it is necessary to transport the manufactured product. In addition, since the shape and size of the concrete product are restricted by the fluidity of the material, the shape of the formwork and the curing device, etc., the degree of freedom of construction and design is limited for the ultra-high strength material. On the other hand, a highly tough cement material having a crack suppressing effect can be applied on site, but the strength is only as high as that of ordinary concrete. For this reason, there is a need for a high-strength material that does not require heat curing and can be applied on site.

そこで、本発明は、施工性に優れ、かつ、常温養生のみで早期に高い圧縮強度を発現できる高強度モルタル組成物を提供することを目的とする。   Then, an object of this invention is to provide the high intensity | strength mortar composition which is excellent in workability | operativity and can express high compressive strength at an early stage only by normal temperature curing.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、特定の鉱物組成及び粒度分布を有するセメントと、特定の粒度を有する細骨材及び無機質微粉末とを、シリカフューム、減水剤及び消泡剤と組み合わせることで、モルタル組成物の流動性を向上でき、かつ、熱養生しなくともモルタル組成物の強度を向上できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have obtained a cement having a specific mineral composition and particle size distribution, a fine aggregate and a fine inorganic powder having a specific particle size, silica fume, water reducing agent and It has been found that by combining with an antifoaming agent, the fluidity of the mortar composition can be improved and the strength of the mortar composition can be improved without heat curing, and the present invention has been completed.

すなわち、本発明は、セメントと、シリカフュームと、水と、減水剤と、消泡剤と、細骨材と、無機質微粉末とを含む高強度モルタル組成物であって、セメントは、CSを40.0〜75.0質量%及びCAを2.7質量%未満含有し、かつ、45μmふるい残分が25.0質量%未満であり、細骨材と無機質微粉末との混合物は、粒径0.15mm以下の粒群を40〜80質量%、かつ、粒径0.075mm以下の粒群を30〜80質量%含有し、無機質微粉末が、石灰石粉、珪石粉及び砕石粉からなる群より選ばれる1種以上の微粉末である、高強度モルタル組成物を提供する。このようなモルタル組成物は、施工性に優れ、かつ、常温養生のみで早期に高い圧縮強度を発現することができる。 That is, the present invention is a high-strength mortar composition containing cement, silica fume, water, water reducing agent, antifoaming agent, fine aggregate, and inorganic fine powder, wherein the cement is C 3 S. 40.0-75.0% by mass and C 3 A less than 2.7% by mass, 45 μm sieve residue is less than 25.0% by mass, and a mixture of fine aggregate and inorganic fine powder Contains 40 to 80% by mass of particles having a particle size of 0.15 mm or less and 30 to 80% by mass of particles having a particle size of 0.075 mm or less, and the fine inorganic powder is limestone powder, quartzite powder and crushed stone Provided is a high-strength mortar composition that is one or more fine powders selected from the group consisting of powders. Such a mortar composition is excellent in workability and can exhibit high compressive strength at an early stage only by room temperature curing.

無機質微粉末のブレーン比表面積が3000〜5000cm/gであると、高強度モルタル組成物の流動性をより一層向上できる。 If the Blaine specific surface area of the inorganic fine powder is 3000 to 5000 cm 2 / g, the fluidity of the high-strength mortar composition can be further improved.

上記シリカフュームの平均粒子径が0.05〜2.0μmであると、モルタル組成物の強度を更に向上することができる。そして、本発明の高強度モルタル組成物は、セメントを基準として、シリカフュームを3〜30質量%含むことが好ましい。   The intensity | strength of a mortar composition can be further improved as the average particle diameter of the said silica fume is 0.05-2.0 micrometers. And it is preferable that the high intensity | strength mortar composition of this invention contains 3-30 mass% of silica fume on the basis of a cement.

本発明の高強度モルタル組成物は、セメント及びシリカフュームの合計量100質量部に対して、水を10〜25質量部、減水剤を0.5〜6.0質量部含むことが好ましい。これにより、モルタル組成物の強度がより一層向上する。   The high-strength mortar composition of the present invention preferably contains 10 to 25 parts by mass of water and 0.5 to 6.0 parts by mass of a water reducing agent with respect to 100 parts by mass of the total amount of cement and silica fume. Thereby, the intensity | strength of a mortar composition improves further.

また、本発明の高強度モルタル組成物は、セメント及びシリカフュームの合計量100質量部に対して、細骨材を10〜60質量部、無機質微粉末を10〜60質量部含むことにより、流動性が更に向上し、施工性に一層優れるものとなる。   The high-strength mortar composition of the present invention contains 10-60 parts by mass of fine aggregate and 10-60 parts by mass of inorganic fine powder with respect to 100 parts by mass of the total amount of cement and silica fume. Is further improved and the workability is further improved.

本発明の高強度モルタル組成物には、高張力繊維を更に含むことができる。また、高張力繊維は、引張強度が100〜10000N/mm、アスペクト比が40〜250であり、モルタル組成物に対する含有量が外割りで0.3〜5.0体積%であることによって、高いじん性と高い圧縮強度及び引張強度を得ることができる。さらに、上記高張力繊維は、金属繊維、炭素繊維及びアラミド繊維からなる群より選ばれる1種以上の繊維であると、モルタル組成物の強度をより一層向上することができる。 The high-strength mortar composition of the present invention can further contain high-tensile fibers. Further, the high-tensile fiber has a tensile strength of 100 to 10000 N / mm 2 , an aspect ratio of 40 to 250, and a content with respect to the mortar composition is 0.3 to 5.0% by volume on an external basis. High toughness and high compressive strength and tensile strength can be obtained. Furthermore, the strength of the mortar composition can be further improved when the high-tensile fiber is one or more fibers selected from the group consisting of metal fibers, carbon fibers, and aramid fibers.

本発明によれば、施工性に優れ、かつ、常温養生のみで早期に高い圧縮強度を発現できるモルタル組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the mortar composition which is excellent in workability and can express high compressive strength at an early stage only by normal temperature curing can be provided.

実施例で用いた消泡剤のH−NMRスペクトルである。It is a 1 H-NMR spectrum of the antifoaming agents used in Examples. 実施例3のモルタル組成物のスランプフロー試験後の状態を撮影した写真である。It is the photograph which image | photographed the state after the slump flow test of the mortar composition of Example 3. FIG. 比較例7のモルタル組成物のスランプフロー試験後の状態を撮影した写真である。It is the photograph which image | photographed the state after the slump flow test of the mortar composition of the comparative example 7. FIG.

本発明の高強度モルタル組成物は、セメントと、シリカフュームと、水と、減水剤と、消泡剤と、細骨材と、無機質微粉末とを含むものである。以下、本発明に係るモルタル組成物の好適な実施形態について説明する。   The high-strength mortar composition of the present invention contains cement, silica fume, water, a water reducing agent, an antifoaming agent, fine aggregate, and an inorganic fine powder. Hereinafter, preferred embodiments of the mortar composition according to the present invention will be described.

セメントの鉱物組成は、CS量が40.0〜75.0質量%であり、CA量が2.7質量%未満である。セメントのCS量は、好ましくは45.0〜73.0質量%、より好ましくは48.0〜70.0質量%であり、更に好ましくは50.0〜68.0質量%である。CA量は好ましくは2.3質量%未満であり、より好ましくは2.1質量%未満であり、更に好ましくは1.9質量%未満である。CS量が40.0質量%未満では圧縮強度が低くなる傾向があり、75.0質量%を超えるとセメントの焼成自体が困難となる傾向がある。また、CA量が2.7質量%以上では流動性が悪くなる。なお、CA量の下限値は特に限定されないが、0.1質量%程度である。 As for the mineral composition of cement, the amount of C 3 S is 40.0 to 75.0% by mass, and the amount of C 3 A is less than 2.7% by mass. The amount of C 3 S in the cement is preferably 45.0 to 73.0% by mass, more preferably 48.0 to 70.0% by mass, and still more preferably 50.0 to 68.0% by mass. The amount of C 3 A is preferably less than 2.3% by mass, more preferably less than 2.1% by mass, and even more preferably less than 1.9% by mass. If the amount of C 3 S is less than 40.0% by mass, the compressive strength tends to be low, and if it exceeds 75.0% by mass, the cement itself tends to be difficult to fire. Further, when the amount of C 3 A is 2.7% by mass or more, the fluidity is deteriorated. In addition, the lower limit of the amount of C 3 A is not particularly limited, but is about 0.1% by mass.

また、セメントのCS量は好ましくは9.5〜40.0質量%、より好ましくは10.0〜35.0質量%であり、更に好ましくは12.0〜30.0質量%である。CAF量は好ましくは9.0〜18.0質量%、より好ましくは10.0〜15.0質量%であり、更に好ましくは11.0〜15.0質量%である。このようなセメントの鉱物組成の範囲であれば、モルタル組成物の高い圧縮強度及び高い流動性を確保できる。 Also, C 2 S content of the cement preferably 9.5 to 40.0 wt%, more preferably from 10.0 to 35.0 wt%, more preferably from 12.0 to 30.0 wt% . The amount of C 4 AF is preferably 9.0 to 18.0% by mass, more preferably 10.0 to 15.0% by mass, and still more preferably 11.0 to 15.0% by mass. If it is the range of the mineral composition of such a cement, the high compressive strength and high fluidity | liquidity of a mortar composition are securable.

また、セメントの粒度は、45μmふるい残分が、上限で25.0質量%未満であり、好ましくは20.0質量%であり、より好ましくは18.0質量%であり、更に好ましくは16.0質量%である。45μmふるい残分の下限は0.0質量%であり、好ましくは1.0質量%であり、より好ましくは2.0質量%である。セメントの粒度がこの範囲であれば、高い圧縮強度を確保でき、また、このセメントを使用して調製したモルタルスラリーは適度な粘性があるため、繊維を添加した場合には、十分な分散性が確保できる。   The cement particle size is such that the 45 μm sieve residue is less than 25.0% by mass, preferably 20.0% by mass, more preferably 18.0% by mass, and still more preferably 16.5% by mass. 0% by mass. The lower limit of the 45 μm sieve residue is 0.0% by mass, preferably 1.0% by mass, and more preferably 2.0% by mass. If the particle size of the cement is within this range, high compressive strength can be secured, and the mortar slurry prepared using this cement has an appropriate viscosity. Therefore, when fibers are added, sufficient dispersibility is obtained. It can be secured.

セメントのブレーン比表面積は、好ましくは2500〜4800cm/g、より好ましくは2800〜4000cm/g、更に好ましくは3000〜3600cm/gであり、特に好ましくは3100〜3500cm/gである。セメントのブレーン比表面積が2500cm/g未満ではモルタル組成物の強度が低くなる傾向があり、4800cm/gを超えると低水セメント比での流動性が低下する傾向がある。 The brane specific surface area of the cement is preferably 2500 to 4800 cm 2 / g, more preferably 2800 to 4000 cm 2 / g, still more preferably 3000 to 3600 cm 2 / g, and particularly preferably 3100 to 3500 cm 2 / g. When the brane specific surface area of the cement is less than 2500 cm 2 / g, the strength of the mortar composition tends to be low, and when it exceeds 4800 cm 2 / g, the fluidity at the low water cement ratio tends to decrease.

本実施形態に係るセメントの製造にあたっては、通常のセメントと特に異なる操作を行う必要は無い。上記セメントは、石灰石、珪石、スラグ、石炭灰、建設発生土、高炉ダスト等の原料の調合を目標とする鉱物組成に応じて変え、実機キルンで焼成した後、得られたクリンカーに石膏を加えて所定の粒度に粉砕することによって製造することができる。焼成するキルンには、一般的なNSPキルンやSPキルン等を使用することができ、粉砕には一般的なボールミル等の粉砕機が使用可能である。また、必要に応じて、2種以上のセメントを混合することもできる。   In manufacturing the cement according to the present embodiment, it is not necessary to perform an operation different from that of normal cement. The cement is changed according to the target mineral composition such as limestone, silica, slag, coal ash, construction generated soil, blast furnace dust, etc., fired in the actual kiln, gypsum added And can be manufactured by pulverizing to a predetermined particle size. A general NSP kiln, SP kiln, or the like can be used for the kiln to be fired, and a general pulverizer such as a ball mill can be used for pulverization. Moreover, 2 or more types of cement can also be mixed as needed.

シリカフュームは、金属シリコン、フェロシリコン、電融ジルコニア等を製造する際に、発生する排ガス中のダストを集塵して得られる副産物であり、主成分は、アルカリ溶液中で溶解する非晶質のSiOである。シリカフュームの平均粒子径は、好ましくは0.05〜2.0μm、より好ましくは0.10〜1.5μm、更に好ましくは0.18〜0.28μmである。このようなシリカフュームを用いることで、モルタル組成物の高い圧縮強度及び高い流動性を確保できる。 Silica fume is a byproduct obtained by collecting dust in the exhaust gas generated when producing metal silicon, ferrosilicon, fused zirconia, etc., and the main component is an amorphous substance that dissolves in an alkaline solution. SiO 2 . The average particle diameter of the silica fume is preferably 0.05 to 2.0 μm, more preferably 0.10 to 1.5 μm, and still more preferably 0.18 to 0.28 μm. By using such silica fume, the high compressive strength and high fluidity of the mortar composition can be ensured.

本発明の高強度モルタル組成物において、セメントを基準としたシリカフューム含有量は、好ましくは3〜30質量%、より好ましくは5〜20質量%、更に好ましくは10〜18質量%である。また、モルタル1m当たりのシリカフュームの単位量は、好ましくは35〜380kg/m、より好ましくは58〜253kg/m、更に好ましくは116〜228kg/mである。 In the high-strength mortar composition of the present invention, the silica fume content based on cement is preferably 3 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 10 to 18% by mass. The unit amount of silica fume per 1 m 3 of mortar is preferably 35 to 380 kg / m 3 , more preferably 58 to 253 kg / m 3 , and still more preferably 116 to 228 kg / m 3 .

減水剤としては、リグニン系、ナフタレンスルホン酸系、アミノスルホン酸系、ポリカルボン酸系の減水剤、高性能減水剤、高性能AE減水剤等を使用することができる。低水セメント比での流動性確保の観点から、減水剤として、ポリカルボン酸系の減水剤、高性能減水剤又は高性能AE減水剤を用いることが好ましく、ポリカルボン酸系の高性能減水剤を用いることがより好ましい。本実施形態に係るモルタル組成物は、セメントとシリカフュームの合計量100質量部に対して、減水剤を好ましくは0.5〜6.0質量部、より好ましくは1.0〜4.0質量部、更に好ましくは1.8〜3.0質量部である。また、モルタル1m当たりの減水剤の単位量は、好ましくは7〜86kg/m、より好ましくは13〜58kg/m、更に好ましくは18〜43kg/mである。 As the water reducing agent, lignin-based, naphthalenesulfonic acid-based, aminosulfonic acid-based, polycarboxylic acid-based water reducing agents, high-performance water reducing agents, high-performance AE water reducing agents, and the like can be used. From the viewpoint of ensuring fluidity at a low water cement ratio, it is preferable to use a polycarboxylic acid-based water reducing agent, a high-performance water reducing agent or a high-performance AE water reducing agent as the water reducing agent, and a polycarboxylic acid-based high-performance water reducing agent. It is more preferable to use The mortar composition according to the present embodiment is preferably 0.5 to 6.0 parts by mass, more preferably 1.0 to 4.0 parts by mass of the water reducing agent with respect to 100 parts by mass of the total amount of cement and silica fume. More preferably, it is 1.8 to 3.0 parts by mass. The unit amount of the water reducing agent per 1 m 3 of mortar is preferably 7 to 86 kg / m 3 , more preferably 13 to 58 kg / m 3 , and still more preferably 18 to 43 kg / m 3 .

消泡剤としては、特殊非イオン配合型界面活性剤、ポリアルキレン誘導体、疎水性シリカ、ポリエーテル系等が挙げられる。この場合、セメントとシリカフュームの合計量100質量部に対して、消泡剤を好ましくは0.01〜2.0質量部、より好ましくは0.02〜1.5質量部、更に好ましくは0.03〜1.0質量部である。また、モルタル1m当たりの消泡剤の単位量は、好ましくは0.13〜29kg/m、より好ましくは0.26〜22kg/m、更に好ましくは0.39〜15kg/mである。 Examples of antifoaming agents include special nonionic compounding surfactants, polyalkylene derivatives, hydrophobic silica, and polyethers. In this case, the antifoaming agent is preferably 0.01 to 2.0 parts by weight, more preferably 0.02 to 1.5 parts by weight, and still more preferably 0.000 parts by weight with respect to 100 parts by weight of the total amount of cement and silica fume. It is 03-1.0 mass part. The unit amount of the antifoaming agent per 1 m 3 of mortar is preferably 0.13 to 29 kg / m 3 , more preferably 0.26 to 22 kg / m 3 , and still more preferably 0.39 to 15 kg / m 3 . is there.

細骨材としては、川砂、陸砂、海砂、砕砂、珪砂、石灰石骨材、高炉スラグ細骨材、フェロニッケルスラグ細骨材、銅スラグ細骨材、電気炉酸化スラグ細骨材等を使用することができる。なお、細骨材の粒度は、10mmふるいを全部通り、5mmふるいを85質量%以上通過する。   Fine aggregates include river sand, land sand, sea sand, crushed sand, quartz sand, limestone aggregate, blast furnace slag fine aggregate, ferronickel slag fine aggregate, copper slag fine aggregate, electric furnace oxidation slag fine aggregate, etc. Can be used. In addition, the particle size of the fine aggregate passes through the 10 mm sieve and passes through the 5 mm sieve by 85% by mass or more.

また、無機質微粉末としては、石灰石粉、珪石粉、砕石粉等を使用することができる。無機質微粉末は、石灰石粉、珪石粉、砕石粉等をブレーン比表面積が2500cm/g以上となるまで粉砕又は分級した微粉末であり、細骨材の微粒分を補う目的で配合され、モルタル組成物の流動性を改善することができる。無機質微粉末のブレーン比表面積は3000〜5000cm/gであることが好ましく、3200〜4500cm/gであることがより好ましく、3400〜4300cm/gであることが更に好ましい。 Moreover, limestone powder, quartzite powder, crushed stone powder, etc. can be used as the inorganic fine powder. Inorganic fine powder is a fine powder obtained by pulverizing or classifying limestone powder, silica stone powder, crushed stone powder, etc. until the Blaine specific surface area is 2500 cm 2 / g or more, and is blended for the purpose of supplementing fine particles of fine aggregate, The fluidity of the composition can be improved. Preferably Blaine specific surface area of the powder inorganic fine powder is 3000~5000cm 2 / g, more preferably 3200~4500cm 2 / g, and further preferably from 3400~4300cm 2 / g.

本実施形態に係る細骨材と無機質微粉末との混合物は、粒径0.15mm以下の粒群を40〜80質量%、好ましくは45〜80質量%含み、より好ましくは50〜75質量%含む。また、上記混合物は、粒径0.075mm以下の粒群を30〜80質量%、好ましくは35〜70質量%含み、より好ましくは40〜65質量%含む。無機質微粉末の含有量が30質量%以下では、モルタルスラリーの粘性が低すぎるため高張力繊維が十分に分散しない恐れがある。無機質微粉末の含有量が90質量%を超えると、微粉量が多すぎて粘性が高くなり、所定のフローを出すためには水セメント比を増やす必要があるため強度低下に繋がる恐れがある。   The mixture of fine aggregate and inorganic fine powder according to this embodiment contains 40 to 80% by mass, preferably 45 to 80% by mass, more preferably 50 to 75% by mass of a particle group having a particle size of 0.15 mm or less. Including. Moreover, the said mixture contains 30-80 mass% of particle groups with a particle size of 0.075 mm or less, Preferably it contains 35-70 mass%, More preferably, it contains 40-65 mass%. When the content of the inorganic fine powder is 30% by mass or less, since the viscosity of the mortar slurry is too low, the high tension fiber may not be sufficiently dispersed. When the content of the inorganic fine powder exceeds 90% by mass, the amount of fine powder is too large and the viscosity becomes high, and it is necessary to increase the water-cement ratio in order to give a predetermined flow, which may lead to a decrease in strength.

セメント及びシリカフュームの合計量100質量部に対して、細骨材を10〜60質量部、無機質微粉末を10〜60質量部含むことが好ましく、細骨材を15〜50質量部、無機質微粉末を15〜50質量部含むことがより好ましく、細骨材を15〜30質量部、無機質微粉末を15〜30質量部含むことが更に好ましい。また、モルタル1m当たりの細骨材及び無機質微粉末の単位量は、好ましくは140〜980kg/m、より好ましくは300〜900kg/m、更に好ましくは600〜900kg/mである。 It is preferable to contain 10-60 parts by mass of fine aggregate and 10-60 parts by mass of fine inorganic powder, and 15-50 parts by mass of fine aggregate, inorganic fine powder with respect to 100 parts by mass of the total amount of cement and silica fume. It is more preferable that 15-50 mass parts is included, and it is still more preferable that 15-30 mass parts of fine aggregates and 15-30 mass parts of inorganic fine powder are included. The unit amount of fine aggregate and inorganic fine powder per 1 m 3 of mortar is preferably 140 to 980 kg / m 3 , more preferably 300 to 900 kg / m 3 , and still more preferably 600 to 900 kg / m 3 .

本実施形態に係るモルタル組成物は、高張力繊維を更に含むことができる。高張力繊維としては、金属繊維、炭素繊維、アラミド繊維等が挙げられる。金属繊維として、鋼繊維、ステンレス繊維、アモルファス合金繊維等を使用することができる。高張力繊維の繊維径は0.05〜1.20mmが好ましく、0.08〜0.70mmがより好ましく、0.10〜0.35mmが更に好ましく、0.12〜0.20mmが特に好ましい。高張力繊維の繊維長は3〜60mmが好ましく、5〜35mmがより好ましく、7〜20mmが更に好ましく、9〜15mmが特に好ましい。高張力繊維のアスペクト比(繊維長/繊維径)は40〜250が好ましく、50〜200がより好ましく、60〜170が更に好ましく、70〜140が特に好ましい。高張力繊維の引張強度は100〜10000N/mmが好ましく、500〜5000N/mmより好ましく、2000〜3000N/mmが更に好ましく、1500〜2500N/mmが特に好ましい。高張力繊維の密度は、1〜20g/cmが好ましく、3〜15g/cmがより好ましく、5〜10g/cmが更に好ましい。このような高張力繊維を用いることで、モルタル組成物に高いじん性、高い圧縮強度、高い引張強度及び高い流動性を付与することができる。 The mortar composition according to the present embodiment can further include high-tensile fibers. Examples of the high-tensile fiber include metal fiber, carbon fiber, and aramid fiber. As the metal fiber, steel fiber, stainless steel fiber, amorphous alloy fiber, or the like can be used. The fiber diameter of the high-tensile fiber is preferably 0.05 to 1.20 mm, more preferably 0.08 to 0.70 mm, still more preferably 0.10 to 0.35 mm, and particularly preferably 0.12 to 0.20 mm. The fiber length of the high-tensile fiber is preferably 3 to 60 mm, more preferably 5 to 35 mm, still more preferably 7 to 20 mm, and particularly preferably 9 to 15 mm. The aspect ratio (fiber length / fiber diameter) of the high-tensile fiber is preferably 40 to 250, more preferably 50 to 200, still more preferably 60 to 170, and particularly preferably 70 to 140. The tensile strength of the high strength fiber is preferably 100~10000N / mm 2, preferably from 500~5000N / mm 2, more preferably 2000~3000N / mm 2, 1500~2500N / mm 2 is particularly preferred. The density of high-tensile fibers, preferably from 1 to 20 g / cm 3, more preferably 3 to 15 g / cm 3, more preferably 5 to 10 g / cm 3. By using such a high-tensile fiber, high toughness, high compressive strength, high tensile strength, and high fluidity can be imparted to the mortar composition.

また、本実施形態に係るモルタル組成物は、モルタル組成物に対して外割りで(すなわち、モルタル組成物における、高張力繊維を除いた組成物100体積%に対して)高張力繊維を好ましくは0.3〜5.0体積%、より好ましくは0.5〜3.0体積%、更に好ましくは1.0〜2.5体積%含むことによって、高いじん性が得られる。なお、5.0体積%を超えるとモルタルの練混ぜが困難になる場合がある。また、モルタル1mに対する高張力繊維の配合量は、好ましくは23〜393kg、より好ましくは39〜236kg、更に好ましくは79〜196kgである。 In addition, the mortar composition according to the present embodiment is preferably made of high-tensile fibers on an external basis with respect to the mortar composition (that is, with respect to 100% by volume of the composition excluding high-tensile fibers in the mortar composition). High toughness can be obtained by including 0.3 to 5.0% by volume, more preferably 0.5 to 3.0% by volume, and still more preferably 1.0 to 2.5% by volume. In addition, when it exceeds 5.0 volume%, mixing of mortar may become difficult. The amount of high-tensile fibers to mortar 1 m 3 is preferably 23~393Kg, more preferably 39~236Kg, more preferably 79~196Kg.

また、本実施形態に係るモルタル組成物は、セメントとシリカフュームの合計量100質量部に対して、水を好ましくは10〜25質量部、より好ましくは12〜20質量部、更に好ましくは13〜18質量部含む。モルタル1m当たりの単位水量は、好ましくは180〜280kg/m、より好ましくは190〜270kg/m、更に好ましくは200〜250kg/mである。 Moreover, the mortar composition according to the present embodiment is preferably 10 to 25 parts by mass of water, more preferably 12 to 20 parts by mass, and still more preferably 13 to 18 parts by mass with respect to 100 parts by mass of the total amount of cement and silica fume. Including parts by mass. Unit water per mortar 1 m 3 is preferably 180~280kg / m 3, more preferably 190~270kg / m 3, more preferably a 200~250kg / m 3.

本実施形態に係るモルタル組成物には、必要に応じて、膨張材、収縮低減剤、凝結促進剤、凝結遅延剤、増粘剤、ガラス繊維、有機繊維、合成樹脂粉末、ポリマーエマルジョン、ポリマーディスパージョン等を1種以上添加してもよい。   In the mortar composition according to the present embodiment, an expansion material, a shrinkage reducing agent, a setting accelerator, a setting retarding agent, a thickening agent, a glass fiber, an organic fiber, a synthetic resin powder, a polymer emulsion, and a polymer disperse are included as necessary. One or more of John and the like may be added.

さらに、上記本実施形態に係るモルタル組成物に、粗骨材を適量組み合わせることにより、コンクリートを調製してもよい。粗骨材の量や、水の量は、目標圧縮強度、じん性、目標スランプに応じて適時変えればよい。粗骨材としては、砂利、砕石、石灰石骨材、高炉スラグ粗骨材、電気炉酸化スラグ粗骨材等を使用することができる。また、5mmの篩いに85質量%以上とどまる粗骨材がより好ましい。   Furthermore, concrete may be prepared by combining an appropriate amount of coarse aggregate with the mortar composition according to the present embodiment. The amount of coarse aggregate and the amount of water may be changed as appropriate according to the target compressive strength, toughness, and target slump. As the coarse aggregate, gravel, crushed stone, limestone aggregate, blast furnace slag coarse aggregate, electric furnace oxidized slag coarse aggregate and the like can be used. Moreover, the coarse aggregate which stays at 85 mass% or more on a 5 mm sieve is more preferable.

本実施形態に係るモルタル組成物の製造方法は、特に限定されないが、水及び減水剤以外の材料の一部又は全部を予め混合しておき、次に、水、減水剤を添加してミキサに入れて練り混ぜる。また、繊維を配合する場合は、モルタルを製造した後にミキサに添加し、更に練り混ぜる。モルタルの練混ぜに使用するミキサは特に限定されず、モルタル用ミキサ、二軸強制練りミキサ、パン型ミキサ、グラウトミキサ等を使用することができる。   Although the manufacturing method of the mortar composition according to the present embodiment is not particularly limited, a part or all of materials other than water and a water reducing agent are mixed in advance, and then water and a water reducing agent are added to the mixer. Add and knead. Moreover, when mix | blending a fiber, after manufacturing a mortar, it adds to a mixer, and also mixes. The mixer used for kneading mortar is not particularly limited, and a mortar mixer, a biaxial forced kneading mixer, a pan mixer, a grout mixer, and the like can be used.

本発明の高強度モルタル組成物は、高強度が求められるPC梁、高耐久性パネル、ブロック耐震壁などに有効である。高張力繊維を添加することによって、橋梁等の鉄筋量を減らすことが可能となる。また、橋梁の補修・補強等にも有効である。   The high-strength mortar composition of the present invention is effective for PC beams, high-durability panels, block earthquake resistant walls and the like that require high strength. By adding high-tensile fiber, the amount of reinforcing bars such as bridges can be reduced. It is also effective for bridge repair and reinforcement.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.

[使用材料の準備]
実施例及び比較例のモルタル組成物を作製するために、以下に示す材料を準備した。
[Preparation of materials used]
In order to prepare the mortar compositions of Examples and Comparative Examples, the following materials were prepared.

(1)セメント(C)
石灰石、珪石、スラグ、石炭灰、建設発生土、銅ガラミ等の原料を調合し、キルンで焼成した後、石膏を加えて粉砕することにより、ポルトランドセメントを調製した。得られたセメントの化学成分を、JIS R 5202−2010「セメントの化学分析方法」にしたがい測定し、鉱物組成を下記のボーグ式により算出した。得られたセメントの鉱物組成を表1に示す。
(1) Cement (C)
Portland cement was prepared by blending raw materials such as limestone, silica stone, slag, coal ash, construction generated soil, copper gravel, etc., calcining with kiln, adding gypsum and grinding. The chemical components of the obtained cement were measured according to JIS R 5202-2010 “Cement chemical analysis method”, and the mineral composition was calculated by the following Borg equation. The mineral composition of the obtained cement is shown in Table 1.

S量=(4.07×CaO)−(7.60×SiO)−(6.72×Al)−(1.43×Fe)−(2.85×SO
S量=(2.87×SiO)−(0.754×CS)
A量=(2.65×Al)−(1.69×Fe
AF量=3.04×Fe
C 3 S amount = (4.07 × CaO) − (7.60 × SiO 2 ) − (6.72 × Al 2 O 3 ) − (1.43 × Fe 2 O 3 ) − (2.85 × SO 3 )
C 2 S amount = (2.87 × SiO 2 ) − (0.754 × C 3 S)
C 3 A amount = (2.65 × Al 2 O 3 ) − (1.69 × Fe 2 O 3 )
C 4 AF amount = 3.04 × Fe 2 O 3

また、得られたセメントの45μmふるい残分をセメント協会標準試験方法 JCAS K−02「45μm網ふるいによるセメントの粉末度試験方法」に準じて、ブレーン比表面積をJIS R 5201−1997「セメントの物理試験方法」に準じて測定した。結果を表1に示す。   Also, the 45 μm sieve residue of the obtained cement was determined according to JIS R 5201-1997 “Cement physics” according to JIS R 5201-1997 “Cement physics”. It measured according to the "test method". The results are shown in Table 1.

(2)シリカフューム(SF):平均粒子径0.24μm
シリカフュームの平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、商品名「LA−950V2」)を用いて測定した粒子径分布より、粒子径−通過分積算%曲線を算出し、粒子径−通過分積算%曲線より通過分積算が50体積%となる粒子径を求めた。試料分散媒は0.2%ヘキサメタリン酸ナトリウム水溶液を用い、測定前に出力600Wのホモジナイザーにて10分間分散処理した。粒度分布の演算はMie散乱理論に従った。粒子屈折率は1.45−0.00i、溶媒屈折率は1.333とした。各粒度の通過分積算(体積%)を表2に示す。
(2) Silica fume (SF): average particle size 0.24 μm
The average particle size of silica fume is calculated from a particle size distribution measured using a laser diffraction / scattering particle size distribution measuring device (trade name “LA-950V2” manufactured by Horiba, Ltd.), and a particle size-passage integrated% curve is calculated. Then, the particle diameter at which the accumulated amount of the passage was 50% by volume was determined from the particle diameter-accumulated amount of passage% curve. A 0.2% sodium hexametaphosphate aqueous solution was used as a sample dispersion medium, and the sample was dispersed for 10 minutes with a homogenizer with an output of 600 W before measurement. The calculation of the particle size distribution followed Mie scattering theory. The particle refractive index was 1.45-0.00i, and the solvent refractive index was 1.333. Table 2 shows the accumulated amount (volume%) of each particle size.

(3)細骨材
砕砂:安山岩砕砂、表乾密度2.62g/cm、粗粒率2.80
(4)無機質微粉末
石灰石微粉末、密度2.71g/cm、ブレーン比表面積4280cm/g
珪石粉、密度2.63g/cm、ブレーン比表面積3820cm/g
(3) Fine aggregate Crushed sand: Andesite crushed sand, surface dry density 2.62 g / cm 3 , coarse particle ratio 2.80
(4) Fine inorganic powder Limestone fine powder, density 2.71 g / cm 3 , Blaine specific surface area 4280 cm 2 / g
Silica powder, density 2.63 g / cm 3 , Blaine specific surface area 3820 cm 2 / g

上記砕砂及び無機質微粉末の粒度を、JIS A 1102−2006「骨材のふるい分け試験方法」を参考として測定した。次いで、細骨材及び無機質微粉末を混合して所定の粒度になるように調整した。結果を表3に示す。   The particle size of the crushed sand and inorganic fine powder was measured with reference to JIS A 1102-2006 “Aggregate Screening Test Method”. Subsequently, the fine aggregate and the inorganic fine powder were mixed and adjusted so as to have a predetermined particle size. The results are shown in Table 3.

(5)減水剤:ポリカルボン酸系高性能減水剤(固形分濃度25質量%)
(6)消泡剤:特殊非イオン配合型界面活性剤
図1は、上記消泡剤を重メタノールに溶解し、NMR測定装置(BRUKER製、商品名「AVANCE」)を用いて測定したH−NMRスペクトルである。上記消泡剤の構造単位である、ポリオキシプロピレン(以下、「POP」と略記する)の構造単位、ポリオキシエチレン(以下、「POE」と略記する)の構造単位及びアルキル鎖の構造単位のモル比を、POP中のメチル基に由来するシグナルの積分値を基準に算出した。この内、POPに対するPOEのモル比を、3.5ppm付近に現れるPOPのメチル基以外の炭化水素基に由来するシグナル及びPOEの炭化水素基に由来するシグナルの積分値からPOPのメチル基以外の炭化水素基に由来するシグナルの積分値を差し引くことにより算出した。消泡剤中のPOP、POE及びアルキル鎖の構造単位のモル比を表4に示す。
(5) Water reducing agent: polycarboxylic acid-based high-performance water reducing agent (solid content concentration 25% by mass)
(6) Antifoaming agent: special non-ion-containing surfactant FIG. 1 shows 1 H measured by dissolving the antifoaming agent in deuterated methanol and using an NMR measuring apparatus (trade name “AVANCE” manufactured by BRUKER). -NMR spectrum. The structural unit of the antifoaming agent is a structural unit of polyoxypropylene (hereinafter abbreviated as “POP”), a structural unit of polyoxyethylene (hereinafter abbreviated as “POE”), and a structural unit of an alkyl chain. The molar ratio was calculated based on the integrated value of the signal derived from the methyl group in POP. Among these, the molar ratio of POE to POP is determined based on the integral value of signals derived from hydrocarbon groups other than the POP methyl group appearing in the vicinity of 3.5 ppm and signals derived from the POE hydrocarbon group. It was calculated by subtracting the integral value of the signal derived from the hydrocarbon group. Table 4 shows the molar ratio of the structural units of POP, POE and alkyl chain in the antifoaming agent.

(7)高張力繊維:鋼繊維、東京製綱株式会社製、商品名「CW9416」、密度:7.87g/cm、繊維径0.16mm、繊維長13mm、アスペクト比81.25、引張強度2200N/mm
(8)練混ぜ水(W):上水道水
(7) High tensile fiber: Steel fiber, manufactured by Tokyo Seizuna Co., Ltd., trade name “CW9416”, density: 7.87 g / cm 3 , fiber diameter 0.16 mm, fiber length 13 mm, aspect ratio 81.25, tensile strength 2200 N / mm 2
(8) Mixing water (W): Tap water

[モルタル組成物の作製]
モルタル組成物の作製を、表5の配合組成に基づき、以下の通りに行った。
[Preparation of mortar composition]
Preparation of the mortar composition was performed as follows based on the formulation composition of Table 5.

セメント、シリカフューム、細骨材、無機質微粉末及び消泡剤を二軸強制練りミキサに加え、減水剤を含む練混ぜ水をミキサ内に投入して10分間撹拌し、モルタル組成物を作製した。なお、実施例3〜10及び比較例5〜7では、鋼繊維を更に投入して、モルタル組成物を作製した。   Cement, silica fume, fine aggregate, inorganic fine powder and antifoaming agent were added to the biaxial forced kneading mixer, and kneading water containing a water reducing agent was put into the mixer and stirred for 10 minutes to prepare a mortar composition. In Examples 3 to 10 and Comparative Examples 5 to 7, steel fibers were further added to prepare a mortar composition.


*1:セメント及びシリカフュームの合計量100質量%に対する水の量
*2:セメント100質量%に対するシリカフュームの量
*3:セメント及びシリカフュームに対して外割りで添加した値。なお、減水剤中の水分は単位水量に含める。
*4:モルタル組成物に対して外割りで添加した値。

* 1: The amount of water with respect to 100% by mass of the total amount of cement and silica fume * 2: The amount of silica fume with respect to 100% by mass of cement * 3: The value added on an external basis with respect to cement and silica fume. The water content in the water reducing agent is included in the unit water volume.
* 4: Value added externally to the mortar composition.

[モルタル組成物の評価]
(1)フレッシュ性状
(試験方法)
実施例1〜10及び比較例1〜6で作製したモルタル組成物を用いて、モルタル0打フロー又はスランプフローを測定した。モルタル0打フローは、JIS R 5201−1997「セメントの物理試験方法」に準じ、落下無しの条件で測定し、鋼繊維を含まないモルタルについて試験を行った。また、スランプフローはJIS A 1150−2007「コンクリートのスランプフロー試験方法」に準じ、試験後の鋼繊維の分散状態を目視により観察した。
[Evaluation of mortar composition]
(1) Fresh properties (test method)
Using the mortar compositions prepared in Examples 1 to 10 and Comparative Examples 1 to 6, the mortar zero-stroke flow or slump flow was measured. Mortar 0 striking flow was measured in accordance with JIS R 5201-1997 “Cement physical testing method” under the condition of no dropping, and the mortar containing no steel fiber was tested. In addition, the slump flow was observed visually according to JIS A 1150-2007 “Concrete slump flow test method” for the dispersion state of the steel fibers after the test.

(2)強度試験
JIS A 1132−2006「コンクリートの強度試験用供試体の作り方」に準じて5cm×10cmの円柱供試体を作製し、JIS A 1108−2006「コンクリートの圧縮強度試験方法」に準じて圧縮強度試験、JIS A 1113−2006「コンクリートの割裂引張強度試験方法」に準じて割裂引張強度試験を行った。供試体は試験材齢まで標準養生した。
(2) Strength test According to JIS A 1132-2006 “How to make a specimen for concrete strength test”, a 5 cm × 10 cm cylindrical specimen is prepared and according to JIS A 1108-2006 “Concrete compressive strength test method”. Then, a split tensile strength test was conducted according to the compressive strength test, JIS A 1113-2006 “Concrete tensile strength test method for concrete”. The specimens were standard cured until the test material age.

(評価結果)
表6に、モルタル0打フロー試験、スランプフロー試験、繊維の分散状態、圧縮強度試験及び割裂引張強度試験の結果を示す。また、図2に実施例3のモルタル組成物、図3に比較例7のモルタル組成物のスランプフロー試験後の状態をそれぞれ撮影した写真を示す。なお、図2及び3における写真(b)は、写真(a)の一部を拡大した部分である。
(Evaluation results)
Table 6 shows the results of a mortar zero-stroke flow test, a slump flow test, a fiber dispersion state, a compressive strength test, and a split tensile strength test. Moreover, the photograph which image | photographed the state after the slump flow test of the mortar composition of Example 3 in FIG. 2 and the mortar composition of Comparative Example 7 in FIG. 3 is shown, respectively. Note that the photograph (b) in FIGS. 2 and 3 is an enlarged part of the photograph (a).

モルタル0打フローの値から流動性を、以下の基準で評価した。モルタル0打フローが小さい場合、作業性や狭部へのモルタル組成物の充填性等が不十分となることから、施工性に乏しいと判断される。
○:モルタル0打フローの値が200mm以上であり、流動性が高い。
×:モルタル0打フローの値が200mm未満であり、流動性が悪い。
The fluidity was evaluated according to the following criteria from the value of mortar zero stroke flow. When the mortar zero hit flow is small, workability, filling property of the mortar composition into a narrow portion, and the like are insufficient, and therefore, it is determined that the workability is poor.
○: The value of the mortar zero stroke flow is 200 mm or more, and the fluidity is high.
X: The value of the mortar zero hit flow is less than 200 mm, and the fluidity is poor.

スランプフローの値から流動性を、以下の基準で評価した。スランプフローが小さい場合、作業性や狭部へのモルタル組成物の充填性等が不十分となることから、施工性に乏しいと判断される。
◎:スランプフローの値が750mmを超え、流動性が極めて高い。
○:スランプフローの値が700mm以上750mm未満であり流動性が高い。
△:スランプフローの値が650mm以上700mm未満であり、流動性に問題ない。
×:スランプフローの値が650mm未満であり、流動性が悪い。
The fluidity was evaluated according to the following criteria from the slump flow value. When the slump flow is small, the workability and the filling property of the mortar composition into the narrow part are insufficient, and therefore it is judged that the workability is poor.
(Double-circle): The value of slump flow exceeds 750 mm, and fluidity | liquidity is very high.
○: The slump flow value is 700 mm or more and less than 750 mm, and the fluidity is high.
(Triangle | delta): The value of slump flow is 650 mm or more and less than 700 mm, and there is no problem in fluidity | liquidity.
X: The slump flow value is less than 650 mm, and the fluidity is poor.

繊維分散性を、以下の基準で評価した。
◎:ファイバーボール(繊維の塊)が認められない。
○:僅かにファイバーボールが認められる。
×:多数のファイバーボールが認められる。
The fiber dispersibility was evaluated according to the following criteria.
A: Fiber ball (fiber lump) is not recognized.
○: Slight fiber balls are observed.
X: Many fiber balls are recognized.

(セメントの鉱物組成及び粒度)
セメントの種類を変更して、モルタル組成物の流動性及び強度発現を評価した。実施例1及び2では、流動性に優れ、かつ、材齢7日において十分に高い圧縮強度が得られることが確認された。これに対し、比較例1、3及び4では、流動性が劣り、比較例2では、流動性に優れるものの、圧縮強度が十分ではなかった。
(Mineral composition and particle size of cement)
By changing the type of cement, the flowability and strength development of the mortar composition were evaluated. In Examples 1 and 2, it was confirmed that the fluidity was excellent and a sufficiently high compressive strength was obtained at a material age of 7 days. On the other hand, in Comparative Examples 1, 3 and 4, the fluidity was inferior, and in Comparative Example 2, although the fluidity was excellent, the compressive strength was not sufficient.

(細骨材及び無機質微粉末の粒径)
本発明に係る細骨材及び無機質微粉末の混合物を配合した実施例3〜10では、流動性に優れ、かつ、試験後試料を観察したところ、ファイバーボールはほとんど認めらず、繊維分散性に優れていることが確認された(図2参照)。
(Particle size of fine aggregate and inorganic fine powder)
In Examples 3 to 10 in which the mixture of the fine aggregate and the inorganic fine powder according to the present invention was blended, the fluidity was excellent, and the sample after the test was observed. It was confirmed that it was excellent (see FIG. 2).

これに対して、無機質微粉末のみを配合した比較例5及び6では、粒径0.15mm以下の粒群が多いため、組成物の粘性が高く、十分な流動性が得られなかった。また、比較例7は、流動性に優れるものの、試験後試料に多量のファイバーボールが認められ、硬化後の鋼繊維の偏在が懸念された(図3参照)。   On the other hand, in Comparative Examples 5 and 6 in which only inorganic fine powder was blended, since there were many particle groups having a particle diameter of 0.15 mm or less, the viscosity of the composition was high and sufficient fluidity could not be obtained. Moreover, although the comparative example 7 was excellent in fluidity | liquidity, a lot of fiber balls were recognized by the sample after a test, and there was concern about uneven distribution of the steel fiber after hardening (refer FIG. 3).

また、実施例3〜10では圧縮強度が十分に高いことが確認された。これに対して、比較例5の圧縮強度はやや低く、圧縮試験前に比較例5の試験体を研磨したところ、試料中に気泡の残存が認められた。比較例5では、流動性に乏しいため内在気泡が抜けにくく、これによって強度低下が生じたものと考えられる。   In Examples 3 to 10, it was confirmed that the compressive strength was sufficiently high. On the other hand, the compressive strength of Comparative Example 5 was slightly low, and when the specimen of Comparative Example 5 was polished before the compression test, bubbles remained in the sample. In Comparative Example 5, it is considered that the internal bubbles are difficult to escape due to poor fluidity, which causes a decrease in strength.

さらに、実施例3、4及び10では、割裂引張強度が優れていた。一方、比較例7では、モルタル組成物の硬化体中に繊維が偏在したため、割裂引張強度が低かった。   Furthermore, in Examples 3, 4 and 10, the split tensile strength was excellent. On the other hand, in Comparative Example 7, since the fibers were unevenly distributed in the cured body of the mortar composition, the split tensile strength was low.

以上のことから、本発明のモルタル組成物によれば、流動性が十分に高く施工性に優れ、かつ、常温養生のみで早期に高い圧縮強度を発現できることが確認された。   From the above, it was confirmed that according to the mortar composition of the present invention, the fluidity was sufficiently high and the workability was excellent, and high compressive strength could be expressed at an early stage only by room temperature curing.

Claims (9)

セメントと、シリカフュームと、水と、減水剤と、消泡剤と、細骨材と、無機質微粉末とを含む高強度モルタル組成物であって、
前記セメントは、CSを40.0〜75.0質量%及びCAを2.7質量%未満含有し、かつ、45μmふるい残分が25.0質量%未満であり、
前記細骨材と無機質微粉末との混合物は、粒径0.15mm以下の粒群を40〜80質量%、かつ、粒径0.075mm以下の粒群を30〜80質量%含有し、
前記無機質微粉末が、石灰石粉、珪石粉及び砕石粉からなる群より選ばれる1種以上の微粉末である、高強度モルタル組成物。
A high-strength mortar composition comprising cement, silica fume, water, water reducing agent, antifoaming agent, fine aggregate, and inorganic fine powder,
The cement contains 40.0-75.0% by mass of C 3 S and less than 2.7% by mass of C 3 A, and a 45 μm sieve residue is less than 25.0% by mass,
The mixture of the fine aggregate and the inorganic fine powder contains 40-80% by mass of a particle group having a particle size of 0.15 mm or less, and 30-80% by mass of a particle group having a particle size of 0.075 mm or less,
A high-strength mortar composition, wherein the inorganic fine powder is one or more fine powders selected from the group consisting of limestone powder, silica stone powder, and crushed stone powder.
前記無機質微粉末のブレーン比表面積が3000〜5000cm/gである、請求項1に記載の高強度モルタル組成物。 The high intensity | strength mortar composition of Claim 1 whose brane specific surface area of the said inorganic fine powder is 3000-5000cm < 2 > / g. 前記シリカフュームの平均粒子径が0.05〜2.0μmである、請求項1又は2に記載の高強度モルタル組成物。   The high intensity | strength mortar composition of Claim 1 or 2 whose average particle diameter of the said silica fume is 0.05-2.0 micrometers. 前記セメントを基準として、前記シリカフュームを3〜30質量%含む、請求項1〜3のいずれか1項に記載の高強度モルタル組成物。   The high-strength mortar composition according to any one of claims 1 to 3, comprising 3 to 30% by mass of the silica fume based on the cement. 前記セメント及び前記シリカフュームの合計量100質量部に対して、水を10〜25質量部、減水剤を0.5〜6.0質量部含む、請求項1〜4のいずれか1項に記載の高強度モルタル組成物。   5 to 10 parts by mass of water and 0.5 to 6.0 parts by mass of a water reducing agent are contained according to any one of claims 1 to 4, with respect to 100 parts by mass of the total amount of the cement and the silica fume. High strength mortar composition. 前記セメント及び前記シリカフュームの合計量100質量部に対して、細骨材を10〜60質量部、無機質微粉末を10〜60質量部含む、請求項1〜5のいずれか1項に記載の高強度モルタル組成物。   The high according to any one of claims 1 to 5, comprising 10 to 60 parts by mass of fine aggregate and 10 to 60 parts by mass of inorganic fine powder with respect to 100 parts by mass of the total amount of the cement and the silica fume. Strength mortar composition. 高張力繊維を更に含む、請求項1〜6のいずれか1項に記載の高強度モルタル組成物。   The high-strength mortar composition according to any one of claims 1 to 6, further comprising high-tensile fibers. 前記高張力繊維は、引張強度が100〜10000N/mm、アスペクト比が40〜250であり、前記モルタル組成物に対する含有量が0.3〜5.0体積%である、請求項7に記載の高強度モルタル組成物。 The high-strength fibers have a tensile strength of 100~10000N / mm 2, the aspect ratio is 40 to 250, weight content with respect to the mortar composition is 0.3 to 5.0% by volume, according to claim 7 High strength mortar composition. 前記高張力繊維は、金属繊維、炭素繊維及びアラミド繊維からなる群より選ばれる1種以上の繊維である、請求項7又は8に記載の高強度モルタル組成物。   The high-strength mortar composition according to claim 7 or 8, wherein the high-tensile fibers are one or more fibers selected from the group consisting of metal fibers, carbon fibers, and aramid fibers.
JP2011005887A 2011-01-14 2011-01-14 High strength mortar composition Active JP6022747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005887A JP6022747B2 (en) 2011-01-14 2011-01-14 High strength mortar composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005887A JP6022747B2 (en) 2011-01-14 2011-01-14 High strength mortar composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015121020A Division JP5997807B2 (en) 2015-06-16 2015-06-16 High strength mortar composition

Publications (2)

Publication Number Publication Date
JP2012144406A true JP2012144406A (en) 2012-08-02
JP6022747B2 JP6022747B2 (en) 2016-11-09

Family

ID=46788394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005887A Active JP6022747B2 (en) 2011-01-14 2011-01-14 High strength mortar composition

Country Status (1)

Country Link
JP (1) JP6022747B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009993A (en) * 2013-06-26 2015-01-19 宇部興産株式会社 Method for producing high strength mortar composition
JP2015024947A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2015160789A (en) * 2014-02-28 2015-09-07 太平洋セメント株式会社 Splitton block, and production method thereof
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2016098140A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
EP3196179A4 (en) * 2014-08-25 2018-04-18 Taiheiyo Cement Corporation Cement composition and manufacturing method for cement cured body using same
CN112194403A (en) * 2020-10-10 2021-01-08 厦门安能建设有限公司 Additive, preparation method thereof and composite cement paste for improving impermeability of weak soil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JP2008214147A (en) * 2007-03-06 2008-09-18 Ube Ind Ltd Cement composition for highly flowable concrete and highly flowable concrete composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JP2008214147A (en) * 2007-03-06 2008-09-18 Ube Ind Ltd Cement composition for highly flowable concrete and highly flowable concrete composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104287A (en) * 2013-06-17 2018-07-05 宇部興産株式会社 High-strength cement mortar composition
JP2015024947A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2015024948A (en) * 2013-06-17 2015-02-05 宇部興産株式会社 High-strength cement mortar composition and method for producing hardened high-strength cement mortar
JP2018162213A (en) * 2013-06-17 2018-10-18 宇部興産株式会社 High strength cement mortar composition and manufacturing method of high strength cement mortar cured body
JP2015009993A (en) * 2013-06-26 2015-01-19 宇部興産株式会社 Method for producing high strength mortar composition
JP2015160789A (en) * 2014-02-28 2015-09-07 太平洋セメント株式会社 Splitton block, and production method thereof
EP3196179A4 (en) * 2014-08-25 2018-04-18 Taiheiyo Cement Corporation Cement composition and manufacturing method for cement cured body using same
US10351476B2 (en) 2014-08-25 2019-07-16 Taiheiyo Cement Corporation Cement composition and manufacturing method for cement cured body using same
US10577282B2 (en) 2014-08-25 2020-03-03 Taiheiyo Cement Corporation Cement composition and manufacturing method for cement cured body using same
JP2016098140A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2016098141A (en) * 2014-11-21 2016-05-30 宇部興産株式会社 High strength concrete composition and manufacturing method of high strength concrete cured body
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
CN112194403A (en) * 2020-10-10 2021-01-08 厦门安能建设有限公司 Additive, preparation method thereof and composite cement paste for improving impermeability of weak soil
CN112194403B (en) * 2020-10-10 2022-02-15 厦门安能建设有限公司 Additive, preparation method thereof and composite cement paste for improving impermeability of weak soil

Also Published As

Publication number Publication date
JP6022747B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6022747B2 (en) High strength mortar composition
JP5336300B2 (en) High toughness and high strength mortar composition
JP2018104287A (en) High-strength cement mortar composition
JP5702608B2 (en) High strength mortar composition
JP2018162213A (en) High strength cement mortar composition and manufacturing method of high strength cement mortar cured body
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JP5863253B2 (en) High toughness and high strength mortar composition
JP5997807B2 (en) High strength mortar composition
JP5735288B2 (en) High strength paste composition
JP6012290B2 (en) High toughness and high strength mortar composition
JP6031281B2 (en) Paste composition
JP6023488B2 (en) Paste composition
JP5815250B2 (en) Mortar composition
JP5592807B2 (en) High toughness and high strength mortar composition
JP5592806B2 (en) High toughness and high strength mortar composition
JP6063159B2 (en) Paste composition
JP5612504B2 (en) High strength mortar composition
JP5731848B2 (en) High strength paste composition
JP6072873B2 (en) Mortar composition
JP5768092B2 (en) High toughness and high strength mortar composition
JP2006182645A (en) Binding material
Aravinth Development of High Strength Self Compacting Concrete using Mineral and Chemical Admixture
Srishaila et al. Influence of fly ash and silica fumes on rheology and mechanical properties of Self Compacting Concrete
Rao et al. Binary and Ternary blended self compacting concrete proportioned based on the rheological properties-An experimental investigation
MAHESH et al. Study of Compressive and Flexural Strength of Fibrous Triple Blended High Strength Concrete with Fly Ash and Condensed Silica Fume

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150727

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6022747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250