JP4858278B2 - 内燃機関の排気再循環装置 - Google Patents

内燃機関の排気再循環装置 Download PDF

Info

Publication number
JP4858278B2
JP4858278B2 JP2007100764A JP2007100764A JP4858278B2 JP 4858278 B2 JP4858278 B2 JP 4858278B2 JP 2007100764 A JP2007100764 A JP 2007100764A JP 2007100764 A JP2007100764 A JP 2007100764A JP 4858278 B2 JP4858278 B2 JP 4858278B2
Authority
JP
Japan
Prior art keywords
passage
egr
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007100764A
Other languages
English (en)
Other versions
JP2008255940A (ja
Inventor
宏行 芳賀
功 松本
尚史 曲田
宏樹 村田
晃 山下
武則 竿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007100764A priority Critical patent/JP4858278B2/ja
Publication of JP2008255940A publication Critical patent/JP2008255940A/ja
Application granted granted Critical
Publication of JP4858278B2 publication Critical patent/JP4858278B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は内燃機関の排気通路を通過する排気の一部を吸気通路に再循環させる内燃機関の排気再循環装置に関する。
内燃機関から大気中に排出される窒素酸化物(以下、「NOx」という。)の量を低減する技術として、内燃機関の排気系における排気の一部を吸気系に再循環させる排気再循環装置を備える技術や、NOx触媒などの排気浄化触媒(以下、「触媒」と略す。)或いは触媒を担持したパティキュレートフィルタ(以下、「フィルタ」という。)などの排気浄化装置を備える技術が知られている。
上記の排気浄化装置においては、内燃機関の始動前やエコラン停止時、ハイブリッド車輌における内燃機関停止期間中など、内燃機関が停止した状態において、触媒の暖機を促進することが重要な課題となっている。すなわち、内燃機関の停止時において触媒の温度を充分に上昇させておかないと、内燃機関の始動直後に触媒を活性化させることができず、内燃機関始動後におけるエミッションの悪化を招来するおそれがあるからである。
これに関連して、触媒を含めたシステムの早期暖機を促進する技術として、例えば、内燃機関の過給機を電動で駆動可能としておき、内燃機関の始動以前に過給機のコンプレッサを駆動して過給し、過給によって温度の上昇した吸入空気によって特定の部位を暖機する技術(特許文献1)や、内燃機関の過給機を電動で駆動可能としておき、内燃機関の冷間始動時においては、内燃機関に供給される吸気を循環させることにより過給機で複数回過給して吸気温を上昇させる技術(特許文献2参照。)や、内燃機関の冷間始動時に過給機を電動駆動する際に、吸気量を制限してより確実に吸気温を上昇させる技術(特許文献3参照。)などが公知である。
しかし、上記の技術では、温度上昇させた吸気は内燃機関や排気通路を通過してそのまま外部に放散されてしまうこととなり、過給機による過給によって与えられたエネルギを触媒や内燃機関の暖機のために必ずしも有効に利用できていなかった。
特開2003−307134号公報 特開2004−332715号公報 特開2004−340122号公報
本発明の目的とするところは、内燃機関が停止した状態において、より効率的に排気浄化装置の触媒の暖機を行うことができる技術を提供することである。
上記目的を達成するための本発明は、触媒を有する排気浄化装置が備えられた内燃機関の排気系において、排気系のガスの一部を吸気系に再循環する内燃機関の排気再循環装置であって、以下の点を最大の特徴とする。すなわち、内燃機関の停止時において、排気絞り弁の作動によって、前記内燃機関の排気通路及び吸気通路の一部とEGR通路とによってEGR経路を形成可能とする。また、EGR経路内のガスに該EGR経路内を強制的に再循環させる循環流生成手段を備える。そして、内燃機関が停止した際に前記触媒の温度が所定温度より低い場合には、排気絞り弁を絞ることによりEGR経路を形成するとともに循環流生成手段でEGR経路中のガスを再循環させ、高温のガスを外部に逃がさずに触
媒を通過させて暖機を促進する。
より詳しくは、内燃機関の排気通路に設けられ、前記排気通路を通過する排気を浄化する触媒を有する排気浄化装置と、
前記排気浄化装置より下流の前記排気通路と前記内燃機関の吸気通路とを連通するEGR通路と、
前記排気通路における前記EGR通路と該排気通路との接続部より下流側に設けられ、該排気通路を通過する排気の量を制御する排気絞り弁と、
前記吸気通路及び前記排気通路の一部と前記EGR通路とを含んで形成されるEGR経路に設けられ、前記内燃機関の停止中においても前記EGR経路内のガスに、該EGR経路を再循環する流れを生成可能な循環流生成手段と、
を備え、
前記内燃機関の停止中において、前記触媒の温度が所定温度より低い場合には、前記排気絞り弁を閉弁するとともに前記循環流生成手段によって前記EGR経路におけるガスに流れを生成させて、該ガスに前記EGR経路中を強制的に再循環させることを特徴とする。
これによれば、内燃機関の停止中において、EGR経路中に存在するガスにEGR経路中を再循環させて触媒を通過させることができるので、内燃機関や排気浄化装置に蓄積された熱を1回で外部に逃がしてしまわずに、触媒の暖機のために有効利用することができる。その結果、より効率的に触媒の暖機を行うことができる。
また、本発明においては、前記吸気通路における前記EGR通路と該吸気通路との接続部より上流側に設けられ、該吸気通路を通過する吸気の量を制御する吸気絞り弁をさらに備え、前記内燃機関の停止中において、前記触媒の温度が前記所定温度より低い場合には、前記吸気絞り弁及び前記排気絞り弁を閉弁するとともに前記循環流生成手段によって前記EGR経路におけるガスに流れを生成させて、該ガスに前記EGR経路中を強制的に再循環させるようにしてもよい。
すなわち、EGR通路と吸気通路の接続部の上流側に設けられた吸気絞り弁を、排気絞り弁とともに絞ることによって、よりEGR経路の密閉性を高めることができる。その結果、低温の新気がEGR経路に流入することを抑制でき、より効率的に排気浄化装置の触媒を暖機することができる。
なお、上記において閉弁とは必ずしも全閉を意味しない。吸気絞り弁または排気絞り弁を絞って開度が閉じ側に変化するように作動させること全般を含んでいる。
また、本発明においては、前記内燃機関の停止中において、前記触媒の温度が前記所定温度以上の場合には、前記吸気絞り弁及び前記排気絞り弁を閉弁するとともに前記循環流生成手段による前記ガスの流れの生成を停止させるようにしてもよい。
すなわち、内燃機関の停止中において排気絞り弁と吸気絞り弁とを絞って、EGR経路中に高温のガスを再循環させることによって、触媒の温度が所定温度以上になった場合または、内燃機関を停止した際に、既に排気浄化装置の触媒が所定温度以上である場合について考える。この場合には、循環流生成手段によってEGR経路中のガスに強制的に流れを生成すると、触媒の温度が逆に低下してしまう場合がある。
そこで、本発明においては、このような場合には、吸気絞り弁及び排気絞り弁を閉弁してEGR経路を密閉するとともに循環流生成手段の作動を停止し、触媒を保温することとした。そうすれば、低温の新気がEGR経路中に流入することを抑制できるとともに、不
要なガスの流れが触媒の熱を奪ってしまうことを抑制でき、触媒の温度をより確実に所定温度以上に維持することができる。
なお、ここにおいても閉弁は、吸気絞り弁または排気絞り弁を絞って開度が閉じ側に変化するように作動させること全般を含んでいる。しかし、吸気絞り弁または排気絞り弁を全閉としてEGR経路をより確実に密閉すれば、触媒の保温効果はより高まると言える。
また、本発明においては、前記吸気通路における前記EGR通路と該吸気通路との接続部より下流側にコンプレッサが設けられると共に前記排気通路における前記排気浄化装置の上流側にタービンが設けられた過給機をさらに備え、前記循環流生成手段は、電動機によって前記過給機のコンプレッサを作動させることによって前記EGR経路におけるガスに流れを生成させることが可能な電動過給機であってもよい。
これによれば、新たにEGR経路中に循環流生成手段を備える必要がなく、既存のコンプレッサを利用してガスの再循環を行うことができる。従って、コスト及びスペースの点で有利となる。
また、EGR経路中のガスがコンプレッサを通過する度に、コンプレッサの圧縮仕事によってガス温度を高めることができるので、より確実に前記触媒の暖機を促進することができる。例えば、内燃機関の始動前など、EGR経路中のガスの温度が低温の場合にも、当該ガスの温度を上昇させて、触媒の暖機を促進することが可能となる。
また、本発明においては、前記吸気通路における前記コンプレッサの下流側と、前記排気通路における前記タービンと前記排気浄化装置の間の部分とを連通し、前記吸気通路を通過するガスに前記タービンをバイパスさせるタービンバイパス通路をさらに備えるようにしてもよい。
この場合は、EGR経路内のガスに、経路の一部としてタービンバイパス通路を通過させるようにする。そうすれば、EGR経路中のガスがタービンを通過する際の膨張仕事によるエネルギの損失を抑制することができ、EGR経路中のガス温度が低下してしまうことを抑制できる。その結果、より効率的にEGR経路中のガスの熱量を前記触媒に供給でき、前記触媒をより効率的に暖機することができる。
また、本発明においては、前記タービンバイパス通路と前記排気通路における前記タービンより上流側の部分とを連通するタービン前連通路と、
前記タービンバイパス通路を通過するガスのうち、前記タービン前連通路に流入する吸気の量を制御するタービンバイパス量制御弁と、
をさらに備え、
前記電動過給機の電力原としてのバッテリの残留電力量が所定量より少ない場合には、前記タービンバイパス量制御弁によって前記タービン前連通路に流入するガスの量を増加させるようにしてもよい。
ここで、電動過給機のコンプレッサでEGR経路中のガスに流れを生成し、EGR経路中のガスにタービンバイパス通路を通過させている場合について考える。この場合には、コンプレッサの回転によって過給機のタービンも回転するので、タービンの上流が負圧の状態となる。そうすると、電動機の駆動電力が増大してしまう場合があった。
そこで、本発明においては、タービンバイパス通路と排気通路におけるタービンより上流側の部分とを連通するタービン前連通路を備えることとした。そして、電動過給機の電力源としてのバッテリの残留電力量が所定量より少ない場合には、タービンバイパス量制
御弁によってタービンバイパス通路を通過するガスのうちタービン前連通路に流入するガスの量を増加させることで、タービン上流側の負圧の増大を抑制し、電動機の駆動電力の増大を抑制することとした。
そうすれば、電動過給機のバッテリの残留電力量が低い状態で、さらに電動機の駆動電力が大きくなることを抑制できるので、バッテリ上がりや、電動過給機の動作不良が生じることを抑制できる。
なお、ここで所定量の残留電力量とは、電動過給機のバッテリの残留電力量がこれ以下の場合には、EGR経路中のガスにタービンをバイパスさせ続けると、バッテリ上がりや、電動過給機の動作不良が生じるおそれがある残留電力量であり、予め実験によって求めておいてもよい。
また、本発明においては、前記吸気通路における前記コンプレッサの下流側には、該コンプレッサで過給されたガスを冷却するインタークーラが設けられ、前記タービンバイパス通路は、前記吸気通路における前記コンプレッサと前記インタークーラの間の部分に接続されるようにしてもよい。
そうすれば、EGR経路中のガスにタービンバイパス通路を通過させることにより、該ガスがインタークーラで冷却されてしまい触媒の暖機効率が低下することを抑制できる。
また、本発明においては、前記EGR通路に設けられ該EGR通路を通過するガスを冷却するEGRクーラと、前記EGR通路における前記EGRクーラの上流側と下流側を連通し、前記EGR通路を通過するガスに前記EGRクーラをバイパスさせるEGRクーラバイパス通路と、をさらに備えるようにしてもよい。
すなわち、EGR経路中のガスがEGRクーラを通過すると、触媒暖機のためのガス温度が不用意に低下してしまう場合がある。従って、EGR通路にEGRクーラが備えられている場合には、EGRクーラをバイパスするEGRクーラバイパス通路をさらに備えるようにし、EGR経路中を再循環するガスには、EGRクーラバイパス通路を通過させることとする。そうすれば、EGR経路中のガスの温度が不用意に低下してしまうことを抑制できる。これによれば、EGRクーラによって触媒の暖機効率が低下することを抑制できる。
また、本発明においては、前記排気浄化装置は前記排気通路に直列に配置された複数の触媒を有し、前記EGR通路から分岐され、前記排気通路における前記複数の触媒の少なくとも一部の下流側に接続される一または複数のEGR分岐通路と、前記EGR分岐通路と前記EGR通路との接続部に設けられ、前記EGR通路を通過して吸気通路に再循環するガスのうち、前記EGR分岐通路の各々から前記EGR通路に流入するガスの量を制御可能なEGR切換弁と、をさらに備えるようにしてもよい。
そうすれば、各EGR分岐通路を通過するガスの量を制御することによって、排気浄化装置における複数の触媒のそれぞれを通過するガス量を制御することができる。そうすれば、排気浄化装置における複数の触媒の暖機をより高い自由度を持って促進することができる。
なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。
本発明にあっては、内燃機関が停止した状態において、より効率的に排気浄化装置の触媒の暖機を行うことができる。
以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。
図1は本発明を適用する内燃機関及び吸排気系、制御系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2と各気筒2に燃料を噴射する4つの燃料噴射弁3を有するディーゼル機関である。
内燃機関1には、吸気マニホールド8が接続されており、吸気マニホールド8の各枝管は吸気ポートを介して各気筒2の燃焼室と連通されている。吸気マニホールド8と吸気管9との接続部近傍には、吸気管9の流路断面積を変更可能なスロットル弁12が設けられている。スロットル弁12は吸気絞り弁の一例であり電気配線を介して後述するECU22に接続されている。そしてスロットル弁12は、ECU22からの制御信号に基づいてその弁開度が制御される事で、吸気管9を流れる吸気の流量を調節する事ができる。スロットル弁12より上流には、吸気管9を流れるガスを冷却するインタークーラ13が設けられている。
インタークーラ13より上流には、過給機10のコンプレッサが格納されたコンプレッサハウジング6が設けられている。本実施例におけるコンプレッサの回転軸は、モータ6aの出力軸と連結されている。このモータ6aは、バッテリ40から電力を供給されるとともに、ECU22からの指令信号に基づいて回転数が制御されている。即ち、モータ6aの回転数を制御することでコンプレッサをモータ駆動させ、吸気の過給圧を制御することが可能となっている。モータ6aは本実施例における電動機に相当し、本実施例における過給機10は電動過給機の一例である。また、過給機10は、本実施例において循環流生成手段の一例である。
また、コンプレッサハウジング6のさらに上流側には吸気管9の流路断面積を変更可能な第2スロットル弁17が設けられている。第2スロットル弁17もECU22に接続されており、ECU22からの制御信号に基づいて吸気管9を流れる吸気の流量を調節する。吸気管9における第2スロットル弁17のさらに上流側には、吸気管9を通過する吸気の量を検出するエアフローメータ24と、新気に浮遊するゴミを除去するエアクリーナ25が備えられている。ここで、吸気管9及び吸気マニホールド8は、本実施例において吸気通路を構成する。
一方、内燃機関1には、排気マニホールド18が接続されており、排気マニホールド18の各枝管は排気ポートを介して各気筒2の燃焼室と連通されている。排気マニホールド18には集合管16を介して過給機10のタービンが格納されたタービンハウジング7が接続されている。タービンハウジング7の排気が流出する開口部には排気管19が接続されている。排気管19には排気中のNOxを浄化する排気浄化装置としてのNSR20が
設けられている。
このNSR20は、その温度が活性温度以上に上昇した状態において、流入する排気の酸素濃度が高いときは排気中のNOxを吸収(吸蔵、吸着)し、流入する排気の酸素濃度
が低下し且つ還元剤が存在するときには吸収していたNOxを放出しつつNに還元する
。また、NSR20の直上流には、NSR20に吸収されたNOxを還元放出させる際に
、還元剤としての燃料を排気に添加する燃料添加弁26が備えられている。
NSR20より下流には排気管19の流路断面積を変更可能な排気絞り弁11が設けられている。排気絞り弁11より下流において排気管19は大気に開放されている。排気絞り弁11は電気配線を介してECU22に接続されており、ECU22からの制御信号に基づいてその弁開度が制御される事で、排気管19を流れる排気の流量を調節する事ができる。ここで排気マニホールド18、集合管16及び排気管19は、本実施例における排気通路を構成する。
排気管19のNSR20より下流かつ排気絞り弁11より上流の箇所と、吸気管9のコンプレッサハウジング6より上流の箇所とは、低圧EGR通路23によって連通されている。低圧EGR通路23には、低圧EGR通路23を流れるガスを冷却する低圧EGRクーラ14、低圧EGR通路23の流路断面積を変更可能な低圧EGR弁5が設けられている。低圧EGR弁5は電気配線を介してECU22に接続されている。そして、低圧EGR弁5は、ECU22からの制御信号に基づいてその弁開度が制御されることで、低圧EGR通路23を流れるガスの量を調節する事ができる(以下、低圧EGR通路23を流れるガスを「低圧EGRガス」といい、その量を「低圧EGRガス量」という場合がある。)。なお、低圧EGR通路23は本実施例におけるEGR通路として機能する。
一方、排気マニホールド18と吸気マニホールド8とは高圧EGR通路15によって連通されている。高圧EGR通路15には、高圧EGR通路15の流路断面積を変更可能な高圧EGR弁21が設けられている。高圧EGR弁21は電気配線を介してECU22に接続されており、ECU22からの制御信号に基づいてその弁開度が制御されることで、高圧EGR通路15を流れるガスの量を調節する事ができる(以下、高圧EGR通路15を流れるガスを「高圧EGRガス」といい、その量を「高圧EGRガス量」という場合がある。)。
また、内燃機関1には、内燃機関1を制御する電子制御コンピュータであるECU22が併設されている。ECU22は図示しないROM、RAM、CPU、入力ポート、出力ポート等を備え、前記各種センサによって検出される内燃機関1の運転状態や運転者による要求に応じて、燃料噴射等の既知の制御を行うとともに、高圧EGR弁21、低圧EGR弁5、スロットル弁12、第2スロットル弁17、排気絞り弁11等に対して開度指令信号を出力する。
上記の構成において、吸気管9に導入された空気は、エアクリーナ25でゴミが除去された後エアフローメータ24を通過し、コンプレッサハウジング6内のコンプレッサによって過給されるとともに、インタークーラ13、吸気マニホールド8を経由して内燃機関1の各気筒2に導入される。
各気筒2から排出されたガスは排気マニホールド18、集合管16を経由し、タービンハウジング7に流入してタービンを駆動する。その後排気管19を通過し、NSR20において排気中のNOxが浄化され、最終的に大気中に排出される。
ここで、低圧EGR弁5が開弁されると、低圧EGR通路23が導通状態となり、排気管19を通過するガスの一部が低圧EGR通路23を経由して吸気管9に流入する。吸気管9に流入した低圧EGRガスはコンプレッサハウジング6内のコンプレッサによって過給され、吸気マニホールド8を経由して内燃機関1の気筒2に導入される(低圧EGR通路23を経由して行われるEGRを、以下、「低圧EGR」という場合がある。)。
また、高圧EGR弁21が開弁されると、高圧EGR通路15が導通状態となり、排気マニホールド18を流れるガスの一部が高圧EGR通路15を経由して吸気マニホールド
8に流入し、内燃機関1の気筒2に再循環する。ここで、スロットル弁12の開度を調節して吸気マニホールド8における高圧EGR通路15の分岐箇所の圧力を増減することでも、高圧EGRガス量を調節することができる(高圧EGR通路15を経由して行われるEGRを、以下、「高圧EGR」という場合がある。)。
このように、低圧EGRと高圧EGRとによって排気の一部を内燃機関1の気筒2に再循環させることによって、燃焼室内における燃焼温度が低下し、燃焼過程で発生するNOxの量を低下させることができる。
なお、本実施例においては、低圧EGR通路23、吸気管9、吸気マニホールド8、内燃機関1、排気マニホールド18、集合管16及び排気管19によって、EGRループが形成される。このEGRループはEGR経路に相当する。
そして、内燃機関1においては、運転状態が低負荷及び低回転数の場合には、応答性に優れる高圧EGRを優先して用いることによりEGR全体の応答性を確保している。また、内燃機関の運転状態が高負荷または高回転数の場合には、低圧EGRによる低圧EGRガスの再循環を促進するとともに高圧EGRによる高圧EGRガスの再循環を抑制し、EGRガスの温度が過剰に高温になることを抑制している。その結果、より広い運転状態の範囲において排気の再循環を可能としている。
次に、この内燃機関1及び、その吸排気系、制御系の運転時における実際の作動について説明する。ここで、燃料資源の節約と大気環境保全の要請に対処して、内燃機関1が搭載された車輌の運行中にも、車輌が例えば交差点内で一時停車したとき、ECU22の指令によって内燃機関1を一時停止させるエコラン運転が行われている。このエコラン運転による内燃機関1の停止中には、内燃機関1から高温の排気が排出されなくなるため、排気系の構成要素である例えばNSR20の温度が低下してしまう場合があった。
そうすると、NSR20の暖機終了後の状態においては、折角活性化したNSR20が失活してしまうおそれがあった。また、冷間始動時においてはNSR20の活性化を遅らせてしまう場合があった。その結果、NSR20におけるNOxの浄化能力を確保できず
、エミッションの悪化を招くおそれがあった。
それに対し、本実施例においては、内燃機関1の停止中であって、NSR20の温度が活性温度より低い場合には、排気絞り弁11と第2スロットル弁17とを閉弁し、モータ6aによってコンプレッサハウジング6内のコンプレッサを電気的に作動させることとした。
これによれば、EGRループの密閉性を高くするとともに、EGRループを再循環する高温のガス流を形成することができる。その結果、高温のガスにNSR20を通過させるとともに、高温のガスがNSR20を通過した後にそのまま外部に放出されてエネルギを放散してしまうことを抑制できる。また、EGRループ中のガスがコンプレッサハウジング6を通過する度に、コンプレッサの圧縮仕事によってガスの温度を上昇させることができ、EGRループ中を再循環するガスの温度を高温に維持することができる。その結果、内燃機関1の停止中であってもNSR20の暖機を促進することができ、エミッションの悪化を抑制することができる。
次に、内燃機関1の停止中におけるNSR20の温度が活性温度以上である場合について説明する。内燃機関1の停止中におけるNSR20の温度が活性温度以上の状態で、EGRループ中のガスの再循環を継続した場合には、ガスの温度が相対的に低いために、NSR20をガスが通過することによって逆に冷却してしまうおそれがある。そこで、本実
施例においては、内燃機関1の停止中であって、NSR20の温度が活性温度以上の場合には、第2スロットル弁17と排気絞り弁11とを全閉とした上で、コンプレッサを停止することとした。これによれば、EGRループの密閉性をさらに向上させるとともに、EGRループにおけるガスの流れを停止することができる。そうすると、EGRループ中のNSR20を好適に保温することが可能となる。なお、上記においてNSR20の活性温度は、本実施例における所定温度に相当する。
図2には、本実施例における機関停止時触媒暖機ルーチンについてのフローチャートを示す。本ルーチンはECU22のROMに記憶されたプログラムであって、内燃機関1の搭載された車輌における電源投入時には所定期間毎に実行されるルーチンである。
本ルーチンが実行されると、まずS101において内燃機関1の停止中かどうかが判定される。具体的には、内燃機関1が停止している間はONしているフラグの値を読み込んで判定してもよいし、燃料噴射弁3の駆動信号から判定してもよい。ここで内燃機関1の停止中でないと判定された場合にはそのまま本ルーチンを終了する。一方、内燃機関1の停止中であると判定された場合にはS102に進む。
S102においては、NSR20の温度が活性温度より低いかどうかが判定される。これはNSR20の下流側に設けられた図示しない排気温度センサによって、NSR20から排出された排気の温度を検出し、検出された温度と、予め設定された活性温度の値とを比較することで判定してもよい。
S102においてNSR20の温度が活性温度以上であると判定された場合にはS106に進む。一方、NSR20の温度が活性温度より低いと判定された場合には、S103に進む。
S103においては、第2スロットル弁17及び排気絞り弁11を閉弁側に作動させる。これによって、EGRループにおける外部との密閉性が向上する。S103の処理が終了するとS104に進む。
S104においては、スロットル弁12及び低圧EGR5を開弁方向に作動させる。これにより、EGR通路23を導通状態とすることができ、また、吸気管9におけるコンプレッサの下流側を導通状態とすることができ、EGRループにおけるガスの循環性を向上させることができる。S104が終了するとS105に進む。
S105においては、モータ6aに通電され、コンプレッサが作動される。S105の処理が終了すると本ルーチンを一旦終了する。
また、本ルーチンのS102においてNSR20の温度が活性温度以上であると判定された場合には、S106に進む。S106においては、第2スロットル弁17及び、排気絞り弁11が全閉とされる。S106の処理が終了すると本ルーチンを一旦終了する。
以上、説明したように、本実施例においては、内燃機関1の停止中においてNSR20の温度が活性温度より低い場合には、第2スロットル弁17と排気絞り弁11を閉弁してEGRループを閉じさせるとともにコンプレッサをモータ6aによって駆動することとした。これによれば、EGRループ内においてガスを再循環させることができ、NSR20から排出された排気がそのまま外部へ放散されることを抑制できる。従って、エネルギが外部に無駄に放出されることを抑制できる。また、EGRループ中のガスがコンプレッサを通過する度にコンプレッサの圧縮仕事でガス温度を上昇させることができる。これにより、より効率的にNSR20の暖機を促進することができ、より早期に活性化させること
ができる。
また、本実施例においては、内燃機関1の停止中においてNSR20の温度が活性温度以上である場合には、第2スロットル弁17と排気絞り弁11を全閉してEGRループを閉じさせるとともにコンプレッサのモータ6aによる駆動を停止することとした。これによれば、EGRループの密閉性をさらに向上させるとともにEGRループ内におけるガスの再循環を停止することができるので、一旦上昇したNSR20をより効率的に保温することができる。
なお、本実施例においては、内燃機関の停止時においてNSR20の温度が活性温度より低い場合に、S104の処理においては、EGRループの密閉性を高くするために第2スロットル弁17と排気絞り弁11の両方を閉弁することとした。しかし、必ずしも第2スロットル弁17と排気絞り弁11の両方ともを閉弁する必要はない。例えば排気絞り弁11のみを閉弁するようにしても、NSR20を通過した後の高温の排気がそのまま外部に放出されることを抑制できEGRループが形成されるので、本発明の効果を相当程度奏することができる。
次に、本発明の実施例2について説明する。本実施例においては、吸気管におけるコンプレッサの下流側と、排気管におけるタービンの下流側とを連通してタービンをバイパスするタービンバイパス管と、タービンバイパス管と排気マニホールドとを連通するタービン前連通管とを備え、これらを含めてEGRループを形成する。そして、コンプレッサを駆動するモータのバッテリの状態に応じて、EGRループ中を再循環するガスを、タービンバイパス管からタービンの下流側に導入させるのか、タービン前連通管を介してタービンの上流側に導入させるのかを切換える。
図3には、本実施例における内燃機関1及び吸排気系、制御系の全体についての概略図を示す。本実施例の、図1に示した実施例1の全体図との相違点は、上述のように、コンプレッサハウジング6の下流側の吸気管9と、排気管19のタービンハウジング7と燃料添加弁26の間の部分とを連通するタービンバイパス管30を備え、さらに、タービンバイパス管30と、排気マニホールド18とを連通するタービン前連通管31とを備えることである。なお、本実施例においてタービンバイパス管30はタービンバイパス通路に相当し、タービン前連通管31はタービン前連通路に相当する。
そして、タービンバイパス管30には、タービンバイパス管30を通過するガスの量を調整する第1バイパス弁33が設けられている。また、タービンバイパス管30とタービン前連通管31との接続部には、三方弁であって、タービンバイパス管30に流入したガスのうち、タービン前連通管31を介して排気マニホールド18に導入されるガスの量と、そのままタービンバイパス管30を通過して排気管19に導入されるガスの量とを調整する第2バイパス弁34が設けられている。なお、本実施例において第2バイパス弁34はタービンバイパス量制御弁に相当する。
また、本実施例においては、低圧EGR通路23におけるEGRクーラ14の上流側と下流側を連通するEGRバイパス管28と、低圧EGR通路23を通過するガスのうち、EGRクーラ14を通過するガスの量とEGRバイパス管28を通過する量とを制御可能な第2EGR弁29を備えている。なお、本実施例においてEGRバイパス管28はEGRクーラバイパス通路に相当する。
本実施例においては、内燃機関1の停止中にNSR20の温度が活性温度より低い場合であって、且つバッテリ40の残量が充分に多い場合には、第2スロットル弁17及び排
気絞り弁11を閉弁する。またその際には、EGR弁6は開弁し、スロットル弁12は閉弁する。さらに、第1バイパス弁33を開弁し、三方弁である第2バイパス弁34には、タービンバイパス弁30を通過するEGRガスにそのまま排気管19に導入させる。
そうすれば、EGRループを再循環するガスがタービンにおける膨張仕事で冷却されてしまうことを抑制でき、より効率よくNSR20の暖機を行うことができる。
ここで、上記のように、EGRループを再循環するガスにタービンバイパス管30を通過させて排気管19におけるタービンハウジング7の下流側に直接導入する場合について考える。この場合には、排気マニホールド18及び集合管16など、タービンハウジング7の上流側の排気通路が負圧となるので、コンプレッサ及び、該コンプレッサに連結されたタービンをモータ6aで駆動する際の駆動電力が増加する。従って、バッテリ40の充電量の残量が例えば30%未満の場合に、この状態を継続すると、バッテリ40の充電量の不足(バッテリ上がりを含む)や、モータ6aの作動不良が生じるおそれがある。
そこで、本実施例においては、バッテリ40の充電量の残量が30%未満の場合には、第2バイパス弁34に、タービンバイパス管30を通過するガスをタービン前連通管31に流入させるようにした。
そうすれば、タービンの上流側の排気マニホールド18及び集合管16における負圧の増大を抑制でき、バッテリ40の充電量の不足や、モータ6aの作動不良の発生を抑制することができる。
また、本実施例においては、NSR20の温度が活性温度以下の場合には、低圧EGR通路23を再循環するガスにEGRバイパス管28を通過させ、ガスの温度がEGRクーラ14で低下することを抑制することとした。
図4には、本実施例における機関停止時触媒暖機ルーチン2についてのフローチャートを示す。本ルーチンはECU22のROMに記憶されたプログラムであって、内燃機関1の搭載された車輌における電源投入中には所定期間毎に実行されるルーチンである。
本ルーチンと、図1で示した機関停止時触媒暖機ルーチンとの相違点は、S104の処理の代わりにS201及びS202の処理が実行される点と、S105の処理の後にS203〜S207の処理が実行される点である。以下、本ルーチンと機関停止時触媒暖機ルーチンとの相違点についてのみ説明する。
本ルーチンにおいては、S103の処理が終了した後、S104でスロットル弁12及び低圧EGR弁5が開弁される代わりに、まずS201において、スロットル弁12は閉弁されて低圧EGR弁5は開弁される。そして、S201の処理が終了すると、S202に進む。
S202においては、第1バイパス弁33が開弁され、EGRバイパス弁29が閉弁される。これにより、タービンバイパス管30が導通状態となるとともに、EGRガスがEGRクーラ14を通過せずEGRバイパス管28を通過することが可能な状態となる。S202の処理が終了すると、S105に進む。
S105においては、モータ6aに通電されコンプレッサが作動を開始するので、EGRバイパス管28とタービンバイパス管30をガスが再循環するEGRループが形成される。S105の処理が終了するとS203に進む。
S203においては、バッテリ40の残量が検出され、これが最大充電時の10%以上かどうかが判定される。バッテリ40の充電量の残量は、具体的にはバッテリ40に備えられた図示しない充電残量センサの出力をECU22に読み込むことによって検出してもよい。ここで、バッテリ40の充電残量が最大充電時の10%より少ないと判定された場合には、モータ6aの駆動を行っても正常に作動しないか、バッテリ上がりの原因となると判断されるので、S205に進んでモータ6aを停止し、あるいはモータ6aの駆動を行なわずに本ルーチンを一旦終了する。一方、バッテリ40の充電量が10%以上残量していると判定された場合には、S204に進む。
S204においては、バッテリ40の残量が検出され、これが最大充電時の30%以上かどうかが判定される。判定の方法の詳細は、S203に示したものと同等である。ここで、バッテリ40の残量が30%以上あると判定された場合には、EGRループを再循環するガスがタービンバイパス通路30を通過して直接排気管19に導入されることにより、タービン上流側の負圧が増大したとしても、問題なくモータ6a及びコンプレッサの駆動を継続できると判断されるので、S206に進む。一方、バッテリ40の残量が30%より低いと判定された場合には、EGRループを再循環するガスがタービンバイパス通路30を通過して排気管19に直接導入されることにより、タービン上流側の負圧が増大すると、モータ6a及びコンプレッサが正常に作動しないか、バッテリ上がりが発生するおそれがあると判定されるので、S207に進む。
S206においては、第2バイパス弁34が作動され、タービンバイパス管30に流入したEGRガスはそのままタービンをバイパスして排気管19に流入するようになる。これにより、EGRループを再循環するガスがタービンを通過することを抑制でき、ガスがタービンを通過する際に温度が低下することを抑制できる。なお、この際、タービンの上流側の負圧が増大するが、バッテリ40の残量が充分にあることから、モータ6a及びコンプレッサの正常な作動が確保されるとともに、バッテリ上がりの心配もない。S206の処理が終了すると本ルーチンを一旦終了する。
S207においては、第2バイパス弁34が作動され、タービンバイパス管30に流入したEGRガスは、タービン前連通管31を通過して排気マニホールド18に流入するようになる。これにより、タービンの上流側の負圧が増大することが抑制され、モータ6a及びコンプレッサの正常な作動が確保されるとともに、バッテリ上がりが抑制される。S207の処理が終了すると本ルーチンを一旦終了する。
以上、説明したように、本実施例においては、まず、吸気管9におけるコンプレッサハウジング6の下流側と、排気管19におけるタービンハウジング7と燃料添加弁26の間の部分とを連通し、EGRループを再循環するガスにインタークーラ13及びタービンをバイパスさせるタービンバイパス管30を設けることとした。
これにより、NSR20の温度が活性化温度より低い場合に、EGRループを再循環するガスがインタークーラ13及びタービンハウジング7内のタービンを通過することによって冷却されてしまうことを抑制できる。
また、本実施例では、同様にEGRクーラ14をバイパスするEGRバイパス管28を有しているので、低圧EGR通路23を通過するガスがEGRクーラ14で冷却されることを抑制できる。
さらに、本実施例においては、タービンバイパス管30と排気マニホールド18とを連通するタービン前連通管31を備えており、バッテリ40の残量が30%より少ない場合には、タービンバイパス管30を通過するガスを排気マニホールド18に流入させてター
ビンをバイパスさせないこととした。従って、バッテリ40の残量が少ない場合にはタービンの上流側における負圧の増大を抑制し、モータ6aの正常動作を確保することができるとともに、バッテリ上がりの発生を抑制することができる。
なお、本実施例においては、第2バイパス弁34の作動を切換え、タービンバイパス管30に導入されたガスを、直接タービン下流の排気管19に導入するか、タービン前連通管31を介して排気マニホールド18に導入するかを切換えることとしたが、第2バイパス弁34による切換は、中間的な切換であってもよい。すなわち、バッテリ40の残量によって、タービンバイパス管30に導入されたガスのうち、直接タービン下流の排気管19に導入するガスの量と、タービン前連通管31を介して排気マニホールド18に導入するガスの量とを連続的に変更するような制御を行ってもよい。また、バッテリ40の残量が30%より少ない場合には、第2バイパス弁34によって前記タービン前連通管31に流入するガスの量を増加させるようにしてもよい。
なお、本実施例においては、バッテリ40の最大充電時の30%という残量が所定量の残留電力量に相当する。この所定量の値は30%に限るのもではなく、バッテリ性能やモータ6aの定格、内燃機関1の特性によって適宜定めてよい。
次に、本発明の実施例3について説明する。本実施例においては、排気管におけるNSRの上流側に、排気中の微粒子物質を捕集するフィルタと排気中の未燃成分であるHCを吸収するHC触媒とを組み合わせたフィルタユニットを備え、さらに、排気管におけるフィルタユニットとNSRとの間の部分と低圧EGR通路とを連通させた例について説明する。本実施例における内燃機関及び吸排気系、制御系のその他の部分は実施例1で説明したものと同等である。
図5には、本実施例における内燃機関と吸排気系及び制御系についての概略図を示す。本実施例においては、図に示すように、排気管19におけるNSR20の上流側に、排気中の微粒子物質を捕集するフィルタと、排気中の未燃成分であるHCを吸収するHC触媒とを組み合わせたフィルタユニット35が設けられている。また、排気管19におけるフィルタユニット35とNSR20との間の部分と低圧EGR通路23とは、EGR連通管37によって連通されている。ここで、低圧EGR通路23におけるEGR連通管37との接続部より(EGRループにおける)上流側を上流低圧EGR通路23a、低圧EGR通路23におけるEGR連通管37との接続部より(EGRループにおける)下流側を下流低圧EGR通路23bとする。また、排気管19における、EGR連通管37との接続部とNSR20との間には、第2排気絞り弁36が設けられ、EGR連通管37と低圧EGR通路23との接続部には三方弁である第2低圧EGR弁38が備えられている。なお、本実施例の排気浄化装置はフィルタユニット35とNSR20とを含んでおり、HC触媒及び、NSR20は複数の触媒に相当する。
本実施例においては、内燃機関1の停止時においてNSR20の温度が活性温度より低い場合には、第2スロットル弁17及び排気絞り弁11を絞る。また、第2排気絞り弁36を開弁する。さらに、第2低圧EGR弁38に、EGR連通管37と下流低圧EGR通路23bとの間を遮断し、上流低圧EGR通路23aと下流低圧EGR通路23bとの間を開通させる。このことにより、排気管19を通過するガスに、フィルタユニット35及びNSR20の両方を通過させた後に、上流低圧EGR通路23a及び下流低圧EGR通路23bを介して再循環させるようにする。
一方、内燃機関1の停止時においてNSR20の温度が活性温度以上で、且つ、フィルタユニット35のHC触媒の温度がその活性温度より低い場合には、第2排気絞り弁36
を閉弁させる。また、それとともに第2低圧EGR弁38に、EGR連通管37と下流低圧EGR通路23bとの間を開通させ、上流低圧EGR通路23aと下流低圧EGR通路23bとの間を遮断させる。このことにより、排気管19を通過するガスに、フィルタユニット35を通過させた後にNSR20は通過させず、EGR連通管37及び下流低圧EGR通路23bを介して再循環させるようにする。なお、この場合は、排気絞り弁11を閉弁することで、NSR20を好適に保温することもできる。
さらに、内燃機関1の停止時においてNSR20の温度が活性温度以上で、フィルタユニット35のHC触媒の温度もその活性温度以上である場合には、排気絞り弁11を全閉させるとともに第2スロットル弁17を全閉させて、モータ6aを停止することとする。
これによれば、フィルタユニット35のHC触媒及びNSR20の温度がそれぞれの活性温度以上かどうかにより、EGRループを変更し、暖機すべき触媒に選択的に高温のガスを通過させることができ、より効率的にフィルタユニット35のHC触媒及びNSR20の暖機を促進することができる。なお、本実施例において上流低圧EGR通路23a及びEGR連通管37はEGR分岐通路に相当する。また、第2低圧EGR弁38はEGR切換弁に相当する。
図6には、本実施例における機関停止時触媒暖機ルーチン3についてのフローチャートを示す。本ルーチンはECU22のROMに記憶されたプログラムであって、内燃機関1の搭載された車輌における電源投入中には所定期間毎に実行されるルーチンである。
本ルーチンと、図1で示した機関停止時触媒暖機ルーチンとの相違点は、S104とS105の処理の間にS301の処理が挿入される点と、S106の処理の終了後に、S302からS305の処理が追加されている点である。以下、本ルーチンと機関停止時触媒暖機ルーチンとの相違点についてのみ説明する。
本ルーチンにおいては、S104の処理が終了すると、S301の処理が実行される。S301においては、第2排気絞り弁36が開弁されるとともに第2低圧EGR弁38によって上流低圧EGR通路23aと下流低圧EGR通路23bの間が開通される。また、EGR連通管37と下流低圧EGR通路23bの間は遮断される。
また、本ルーチンにおいては、S106の処理が終了すると、S302に進み、フィルタユニット35のHC触媒の温度がその活性温度より低いかどうかが判定される。ここでHC触媒の温度がその活性温度以上と判定された場合には、HC触媒及びNSR20の両方が活性温度以上であると判断されるので、そのまま本ルーチンを終了する。一方、S302においてHC触媒の温度がその活性温度より低いと判定された場合には、NSR20の保温をするとともにHC触媒の暖機を促進する必要があるのでS303に進む。
S303においては、スロットル弁12及び低圧EGR弁5が開弁される。S303の処理が終了するとS304に進む。
S304においては、第2排気絞り弁36が閉弁されるとともに、第2低圧EGR弁38によって、EGR連通管37と下流低圧EGR通路23bの間が開通され、上流低圧EGR通路23aと下流低圧EGR通路23bの間は遮断される。S304の処理が終了するとS305に進む。
S305においては、モータ6aに通電され、コンプレッサの電動による作動が開始される。S305の処理が終了すると、本ルーチンを一旦終了する。
以上、説明したとおり、本実施例においては、フィルタユニット35のHC触媒とNSR20の活性化の状態に応じて、内燃機関1の停止中における排気系の制御を変更した。具体的には、まず、NSR20の温度が活性温度より低い場合には、排気絞り弁11、第2スロットル弁17を閉弁し、スロットル弁12、第2排気絞り弁36、低圧EGR弁5を開弁し、第2低圧EGR弁38には、上流低圧EGR通路23aと下流低圧EGR通路23bの間を開通させた。
これにより、フィルタユニット35、NSR20を含めてEGRループを形成することができ、モータ6aに通電することで、EGRループを再循環するガスにフィルタユニット35、NSR20の両方を通過させて両方の暖機を促進することができる。
一方、フィルタユニット35のHC触媒の温度はその活性温度より低く、NSR20の温度はその活性温度以上である場合には、排気絞り弁11、第2スロットル弁17を全閉とし、スロットル弁12及び低圧EGR弁5を開弁し、第2排気絞り弁36を閉弁し、第2低圧EGR弁38には、EGR連通管37と下流低圧EGR通路23bの間を開通させた。
これにより、排気絞り弁11、第2排気絞り弁36が閉弁するとともに、上流低圧EGR通路23aと下流低圧EGR通路23bとが遮断されることで、活性化したNSR20については、高温のガスを近傍の領域に閉じ込めるとともに流動を停止させて保温することができる。また、フィルタユニット35のHC触媒を含めてEGR経路を形成することができ、モータ6aに通電することで、高温のガスにフィルタユニット35を通過させてHC触媒の暖機を促進することができる。
さらに、フィルタユニット35のHC触媒とNSR20の両方が活性温度以上である場合には、排気絞り弁11及び第2スロットル弁17を全閉し、モータ6aの通電を停止した。
これにより、フィルタユニット35及びNSR20の両方について、高温のガスを近傍の領域に閉じ込めるとともに流動を停止させて保温することができる。
ここで、本実施例においては、フィルタユニット35のHC触媒とNSR20のそれぞれの温度が、それぞれの活性温度以上かどうかによって、第2排気絞り弁36と第2低圧EGR弁37の開閉を切換えることとしたが、この2つの弁の作動は全開と全閉を切換える作動に限られない。例えば、この2つの弁について、比較的開度の大きい状態と比較的開度の小さい状態との間で作動を切換えることによって、複数のループにより再循環するガスを維持させつつ、その量を変更するなど、制御の詳細は変更可能である。
なお、本発明における内燃機関の排気再循環装置は、上記の実施例2において説明した図3に係る構成と、実施例3において説明した図5に係る構成の両方を組み合わせた構成にすることもできる。そうすれば、排気再循環装置に、それぞれの実施例において説明した効果を兼ね備えさせることができる。その場合の内燃機関1及び吸排気系、制御系の構成について図7に示す。
また、上記の実施例においては、内燃機関1のエコラン運転時において内燃機関1が停止した場合を例にとって説明したが、内燃機関1の停止は他の原因によるものでもよい。例えば、内燃機関1の始動前の触媒暖機について本発明を適用してもよい。この場合には、EGRループをガスが通過してコンプレッサで圧縮仕事をされることによってその温度を上昇させることができ、温度が上昇したガスを触媒に導入することで暖機を促進することができる。また、本発明は、ハイブリッド車において内燃機関1が停止する期間に対し
て適用してもよい。
また、上記の実施例においては、モータ6aによる駆動が可能なコンプレッサを有する過給機が、循環流生成手段として機能していたが、循環流生成手段はこれに限られるものではない。例えば、EGRループ中に循環流生成手段としての電動ポンプを別途設けるようにしてもよい。
本発明の実施例1に係る内燃機関及びその吸排気系、制御系の概略図である。 本発明の実施例1に係る機関停止時触媒暖機ルーチンについてのフローチャートである。 本発明の実施例2に係る内燃機関及びその吸排気系、制御系の概略図である。 本発明の実施例2に係る機関停止時触媒暖機ルーチン2についてのフローチャートである。 本発明の実施例3に係る内燃機関及びその吸排気系、制御系の概略図である。 本発明の実施例3に係る機関停止時触媒暖機ルーチン3についてのフローチャートである。 本発明の実施例2及び実施例3に係る内燃機関及びその吸排気系、制御系の組み合わせた例についての概略図である。
符号の説明
1・・・内燃機関
2・・・気筒
3・・・燃料噴射弁
5・・・低圧EGR弁
6・・・コンプレッサハウジング
6a・・・モータ
7・・・タービンハウジング
8・・・吸気マニホールド
9・・・吸気管
10・・・過給機
11・・・排気絞り弁
12・・・スロットル弁
13・・・インタークーラ
14・・・EGRクーラ
15・・・高圧EGR通路
16・・・集合管
17・・・第2スロットル弁
18・・・排気マニホールド
19・・・排気管
20・・・フィルタ
21・・・高圧EGR弁
22・・・ECU
23・・・低圧EGR通路
23a・・・上流低圧EGR通路
23b・・・下流低圧EGR通路
24・・・エアフローメータ
25・・・エアクリーナ
26・・・燃料添加弁
30・・・タービンバイパス管
31・・・タービン前連通管
33・・・第1バイパス弁
34・・・第2バイパス弁
35・・・フィルタユニット
36・・・第2排気絞り弁
37・・・EGR連通管
38・・・第2低圧EGR弁
40・・・バッテリ

Claims (9)

  1. 内燃機関の排気通路に設けられ、前記排気通路を通過する排気を浄化する触媒を有する排気浄化装置と、
    前記排気浄化装置より下流の前記排気通路と前記内燃機関の吸気通路とを連通するEGR通路と、
    前記排気通路における前記EGR通路と該排気通路との接続部より下流側に設けられ、該排気通路を通過する排気の量を制御する排気絞り弁と、
    前記吸気通路及び前記排気通路の一部と前記EGR通路とを含んで形成されるEGR経路に設けられ、前記内燃機関の停止中においても前記EGR経路内のガスに、該EGR経路を再循環する流れを生成可能な循環流生成手段と、
    を備え、
    前記内燃機関の停止中において、前記触媒の温度が所定温度より低い場合には、前記排気絞り弁を閉弁するとともに前記循環流生成手段によって前記EGR経路におけるガスに流れを生成させて、該ガスに前記EGR経路中を強制的に再循環させることを特徴とする内燃機関の排気再循環装置。
  2. 前記吸気通路における前記EGR通路と該吸気通路との接続部より上流側に設けられ、該吸気通路を通過する吸気の量を制御する吸気絞り弁をさらに備え、
    前記内燃機関の停止中において、前記触媒の温度が前記所定温度より低い場合には、前記吸気絞り弁及び前記排気絞り弁を閉弁するとともに前記循環流生成手段によって前記EGR経路におけるガスに流れを生成させて、該ガスに前記EGR経路中を強制的に再循環させることを特徴とする請求項1に記載の内燃機関の排気再循環装置。
  3. 前記内燃機関の停止中において、前記触媒の温度が前記所定温度以上の場合には、前記吸気絞り弁及び前記排気絞り弁を閉弁するとともに前記循環流生成手段による前記ガスの流れの生成を停止させることを特徴とする請求項2に記載の内燃機関の排気再循環装置。
  4. 前記吸気通路における前記EGR通路と該吸気通路との接続部より下流側にコンプレッサが設けられると共に前記排気通路における前記排気浄化装置の上流側にタービンが設けられた過給機をさらに備え、
    前記循環流生成手段は、電動機によって前記過給機のコンプレッサを作動させることによって前記EGR経路におけるガスに流れを生成させることが可能な電動過給機であることを特徴とする請求項1から3のいずれかに記載の内燃機関の排気再循環装置。
  5. 前記吸気通路における前記コンプレッサの下流側と、前記排気通路における前記タービンと前記排気浄化装置の間の部分とを連通し、前記吸気通路を通過するガスに前記タービンをバイパスさせるタービンバイパス通路をさらに備えることを特徴とする請求項4に記載の内燃機関の排気再循環装置。
  6. 前記タービンバイパス通路と前記排気通路における前記タービンより上流側の部分とを連通するタービン前連通路と、
    前記タービンバイパス通路を通過するガスのうち、前記タービン前連通路に流入する吸気の量を制御するタービンバイパス量制御弁と、
    をさらに備え、
    前記電動過給機の電力原としてのバッテリの残留電力量が所定量より少ない場合には、前記タービンバイパス量制御弁によって前記タービン前連通路に流入するガスの量を増加させることを特徴とする請求項5に記載の内燃機関の排気再循環装置。
  7. 前記吸気通路における前記コンプレッサの下流側には、該コンプレッサで過給されたガ
    スを冷却するインタークーラが設けられ、
    前記タービンバイパス通路は、前記吸気通路における前記コンプレッサと前記インタークーラの間の部分に接続されていることを特徴とする請求項5または6に記載の内燃機関の排気再循環装置。
  8. 前記EGR通路に設けられ該EGR通路を通過するガスを冷却するEGRクーラと、
    前記EGR通路における前記EGRクーラの上流側と下流側を連通し、前記EGR通路を通過するガスに前記EGRクーラをバイパスさせるEGRクーラバイパス通路と、
    をさらに備えたことを特徴とする請求項1から7のいずれかに記載の内燃機関の排気再循環装置。
  9. 前記排気浄化装置は前記排気通路に直列に配置された複数の触媒を有し、
    前記EGR通路から分岐され、前記排気通路における前記複数の触媒の少なくとも一部の下流側に接続される一または複数のEGR分岐通路と、
    前記EGR分岐通路と前記EGR通路との接続部に設けられ、前記EGR通路を通過して吸気通路に再循環するガスのうち、前記EGR分岐通路の各々から前記EGR通路に流入するガスの量を制御可能なEGR切換弁と、
    をさらに備えることを特徴とする請求項1から8のいずれかに記載の内燃機関の排気再循環装置。
JP2007100764A 2007-04-06 2007-04-06 内燃機関の排気再循環装置 Expired - Fee Related JP4858278B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100764A JP4858278B2 (ja) 2007-04-06 2007-04-06 内燃機関の排気再循環装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100764A JP4858278B2 (ja) 2007-04-06 2007-04-06 内燃機関の排気再循環装置

Publications (2)

Publication Number Publication Date
JP2008255940A JP2008255940A (ja) 2008-10-23
JP4858278B2 true JP4858278B2 (ja) 2012-01-18

Family

ID=39979732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100764A Expired - Fee Related JP4858278B2 (ja) 2007-04-06 2007-04-06 内燃機関の排気再循環装置

Country Status (1)

Country Link
JP (1) JP4858278B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433534B2 (ja) 2009-09-08 2014-03-05 株式会社豊田自動織機 過給機付き内燃機関
JP5299572B2 (ja) * 2010-07-07 2013-09-25 トヨタ自動車株式会社 内燃機関
JP5682230B2 (ja) * 2010-10-28 2015-03-11 いすゞ自動車株式会社 内燃機関の制御装置
GB2502276B (en) 2012-05-21 2015-06-24 Perkins Engines Co Ltd Method and apparatus for controlling the starting of an internal combustion engine
GB2502269B (en) * 2012-05-21 2014-12-03 Perkins Engines Co Ltd Method and apparatus for controlling the starting of a forced induction internal combustion engine
KR102103441B1 (ko) * 2014-09-18 2020-04-23 한온시스템 주식회사 엔진의 공기 과급장치
US10753272B2 (en) 2015-01-30 2020-08-25 Mitsubishi Heavy Industries, Ltd. Engine supercharger for maintaining a battery charge
DE102015210079A1 (de) * 2015-06-01 2016-12-01 Volkswagen Aktiengesellschaft Verfahren und Steuervorrichtung zum Betreiben einer Antriebsvorrichtung
JP2018193957A (ja) * 2017-05-19 2018-12-06 株式会社Subaru エンジン暖機システム
US10920661B2 (en) * 2017-09-06 2021-02-16 Superturbo Technologies, Inc. Turbine bypass for engine with driven turbocharger
JP6966912B2 (ja) * 2017-09-29 2021-11-17 株式会社Subaru エンジン暖機システム
JP6912990B2 (ja) * 2017-09-29 2021-08-04 株式会社Subaru エンジン暖機システム
JP7040128B2 (ja) * 2018-03-01 2022-03-23 マツダ株式会社 エンジンの始動制御装置
JP2022143357A (ja) * 2021-03-17 2022-10-03 いすゞ自動車株式会社 エンジンシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166654A (ja) * 1990-10-31 1992-06-12 Isuzu Motors Ltd メタノールエンジンの触媒反応温度保持装置
JPH0712011A (ja) * 1993-01-30 1995-01-17 Suzuki Motor Corp 排気ガスの再循環装置
JP3714495B2 (ja) * 1996-08-12 2005-11-09 株式会社デンソー 内燃機関制御装置
JPH10103165A (ja) * 1996-09-24 1998-04-21 Ishikawajima Harima Heavy Ind Co Ltd 過給機付きエンジンの排気ガス再循環装置
JP2003106137A (ja) * 2001-09-27 2003-04-09 Komatsu Ltd 内燃機関の排気ガス浄化装置
JP3994855B2 (ja) * 2002-02-15 2007-10-24 トヨタ自動車株式会社 内燃機関の制御装置
JP2004150392A (ja) * 2002-10-31 2004-05-27 Toyota Motor Corp 内燃機関の制御装置
JP4207695B2 (ja) * 2003-07-02 2009-01-14 マツダ株式会社 エンジンのegr制御装置
JP4511845B2 (ja) * 2004-02-09 2010-07-28 日野自動車株式会社 過給機付内燃機関
JP2005351095A (ja) * 2004-06-08 2005-12-22 Toyota Motor Corp 排気再循環装置を備えた内燃機関
JP2006200362A (ja) * 2005-01-17 2006-08-03 Toyota Motor Corp ハイブリッド車両における排気浄化装置

Also Published As

Publication number Publication date
JP2008255940A (ja) 2008-10-23

Similar Documents

Publication Publication Date Title
JP4858278B2 (ja) 内燃機関の排気再循環装置
US9188050B2 (en) Engine cooling system
EP2165059B1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
KR102451916B1 (ko) 하이브리드 차량 및 이의 제어 방법
KR20200038783A (ko) 하이브리드 차량 및 이의 제어 방법
JP2006097591A (ja) 過給機付き内燃機関
JP2009191686A (ja) エンジンの過給装置
US10815873B2 (en) Methods and systems for a two-stage turbocharger
JP2010180710A (ja) エンジンの吸気制御方法及びその装置
JP2008280923A (ja) エンジンの過給装置
JP4802992B2 (ja) 内燃機関の排気還流装置
US11162460B2 (en) Methods and systems for an engine with exhaust gas recirculation
US20180266344A1 (en) Internal combustion engine
JP2005264821A (ja) 内燃機関の排気還流システム
JP2006322398A (ja) 内燃機関
JP2010151075A (ja) 内燃機関の排気還流装置
JP2019105267A (ja) 内燃機関
JP2010007634A (ja) 内燃機関の排気浄化装置
WO2021001669A1 (ja) 内燃エンジンの制御方法および制御装置
JP5360980B2 (ja) 内燃機関の暖機促進装置
JP2010121596A (ja) 排気浄化装置
JP2010127228A (ja) 排気浄化装置
JP2015203309A (ja) 内燃機関の制御システム
US11846257B2 (en) Engine system with reversible exhaust gas recirculation pump for controlling bypass flow
JP2015059560A (ja) Egr装置及び排気ガス還流方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R151 Written notification of patent or utility model registration

Ref document number: 4858278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees