JP4848210B2 - 空調システムおよびその運転制御方法 - Google Patents

空調システムおよびその運転制御方法 Download PDF

Info

Publication number
JP4848210B2
JP4848210B2 JP2006156016A JP2006156016A JP4848210B2 JP 4848210 B2 JP4848210 B2 JP 4848210B2 JP 2006156016 A JP2006156016 A JP 2006156016A JP 2006156016 A JP2006156016 A JP 2006156016A JP 4848210 B2 JP4848210 B2 JP 4848210B2
Authority
JP
Japan
Prior art keywords
unit
refrigerant
sound
indoor unit
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156016A
Other languages
English (en)
Other versions
JP2007322104A (ja
Inventor
和良 高橋
浩二 横浜
誠司 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006156016A priority Critical patent/JP4848210B2/ja
Publication of JP2007322104A publication Critical patent/JP2007322104A/ja
Application granted granted Critical
Publication of JP4848210B2 publication Critical patent/JP4848210B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数台の室外機および複数台の室内機が1系統の通信ネットワークに接続して構成される空調システムおよびその運転方法に関するものである。
従来、複数台の室外機と複数台の室内機とを1系統の通信ネットワークに接続してなるマルチ空調システムが知られている。このマルチ空調システムでは、室外機と室内機との冷媒接続状態を確認する配管接続検出が行われる。
この配管接続検出の手法として、例えば、特許文献1に開示される手法がある。この特許文献1では、室内機の電子膨張弁を開けた状態で特定の室外機を運転し、室内機の熱交換器の温度変化を検出し、この結果に基づいて室内機と室外機との冷媒接続状態を検出している。
特許第321956号公報
しかしながら、上述したような従来の冷媒接続検出手法では、室内機の熱交換器の温度変化を検出しているため、室外機および室内機の運転を始めてから熱交換器の温度が変化するまでに時間がかかり、処理時間を短縮することが難しいという問題があった。
本発明は、上記問題を解決するためになされたもので、短時間で冷媒配管の接続状態を検出することのできる空調システムおよびその運転制御方法を提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
本発明は、複数台の室外機と複数台の室内機とを1系統の通信ネットワークにより接続してなる空調システムの冷媒配管接続検出方法であって、前記室内機において、前記室外機をそれぞれ個別に運転させたときの膨張弁全閉の場合の冷媒の流動音と膨張弁開状態の場合の冷媒の流動音とをそれぞれ取得し、取得した前記冷媒の流動音の中から最大音量を抽出し、抽出した最大音量と前記膨張弁全閉の場合の冷媒の流動音との差分を算出し、該差分が予め設定されている閾値以上であった場合に、前記最大音量を示したときに運転されていた前記室外機と同一の冷媒配管で接続されていると仮設定し、同一の冷媒配管で接続されていると仮設定した前記室外機と前記室内機において、該室外機を運転したときの該室内機における膨張弁開状態の場合の冷媒の流動音を再度取得し、再度取得した該冷媒の流動音と前記最大音量との差分が予め設定されている所定範囲内である場合に、前記仮設定されている前記室外機と前記室内機との配管ペアリングを確定する空調システムの冷媒配管接続検出方法を提供する。
室内機の配管に冷媒が流れた場合、室内機の温度に変化が生ずるまでにはある一定の期間を必要とするのに対し、配管から生ずる音は、冷媒が流れれば即座に変化することとなる。したがって、室内機における冷媒配管を流れる冷媒の音に基づいて室内機と室外機との冷媒配管の接続状態を検出することにより、検出時間の短縮を図ることができる。
本発明は、複数台の室外機と複数台の室内機とを1系統の通信ネットワークにより接続してなる空調システムの運転制御方法であって、上記空調システムの冷媒配管接続検出方法によって、前記室内機と前記室外機との冷媒配管の接続状態を検出し、検出した前記冷媒配管の接続状態に基づいて、各前記室内機および各前記室外機に対してアドレスを設定する空調システムの運転制御方法を提供する。
このような方法によれば、室内機における膨張弁付近の配管を流れる冷媒の流動音に基づいて室内機と室外機との冷媒配管の接続状態が検出され、この検出結果に基づいて、室内機と室外機にアドレスが設定されることとなる。この場合において、流動音に基づいて冷媒配管の接続状態を検出するので、配管状態の検出時間を短縮することができる。この結果、アドレス設定が完了するまでに要する時間を短くすることができる。
上記空調システムの運転制御方法において、各前記室内機における冷媒配管を流れる冷媒の流動音に基づいて異常を検知することとしても良い。
このように、室内機における冷媒配管を流れる冷媒の流動音に基づいて異常を検知するので、音に対して敏感に反応することが可能となる。これにより、例えば、騒音が原因でユーザに与える不快感を低減させることができる。
上記空調システムの運転制御方法において、運転モードとして、通常運転モードよりも動作音を低減させる静音運転モードが選択された場合に、前記室内機における冷媒配管を流れる冷媒の流動音に基づいて、運転制御を行うこととしても良い。
このように、室内機における冷媒配管を流れる冷媒の流動音に基づいて静音運転時における運転制御を行うので、運転音に対する制御を一層細やかに行うことが可能となる。
本発明は、1系統の通信ネットワークを介して複数台の室外機および少なくとも1台の他の室内機と接続される室内機であって、室内機冷媒回路部と制御手段とを備え、前記室内機冷媒回路部には、冷媒配管を流れる冷媒の流動音を検出するための音検出手段が設けられ前記制御手段は、前記室外機をそれぞれ個別に運転させたときの膨張弁全閉の場合の冷媒の流動音と該膨張弁開状態の場合の冷媒の流動音とを前記音検出手段からそれぞれ取得し、取得した前記冷媒の流動音の中から最大音量を抽出し、抽出した最大音量と前記膨張弁全閉の場合の冷媒の流動音との差分を算出し、該差分が予め設定されている閾値以上であった場合に、前記最大音量を示したときに運転されていた前記室外機と同一の冷媒配管で接続されていると仮設定し、同一の冷媒配管で接続されていると仮設定した前記室外機と前記室内機において、該室外機を運転したときの該室内機における膨張弁開状態の場合の冷媒の流動音を再度取得し、再度取得した該冷媒の流動音と前記最大音量との差分が予め設定されている所定範囲内である場合に、前記仮設定されている前記室外機と前記室内機との配管ペアリングを確定する室内機を提供する。
このような構成によれば、室内機冷媒回路部には、冷媒配管を流れる冷媒の流動音を検出するための音検出手段が設けられているので、この音検出手段の検出結果に基づいて配管に冷媒が流れているか否かを確認することが可能となる。
また、制御手段には、室内機冷媒回路部に設けられた音検出手段からの検出結果が入力され、この検出結果に基づいて共通する通信ネットワークを介して接続される複数の室外機のうち、どの室外機と同一冷媒配管により接続されているのかが判断されることとなる。これにより、簡便な処理により、且つ、短時間で冷媒配管の接続状態を検出することが可能となる。
上記室内機において、前記音検出手段は、膨張弁付近の配管を流れる冷媒の流動音、更に好ましくは、膨張弁と熱交換器との間を流れる冷媒の流動音を検出するように設けられていると良い。このような箇所を流れる冷媒の流動音を検出することで、冷媒の流れる音を一層効果的に検出することができる。
上記室内機において、前記制御手段が、前記冷媒配管の接続状態に応じてアドレスを設定することとしても良い。
迅速に検出される冷媒配管の接続状態に応じてアドレスを設定するので、アドレス設定が完了するまでに要する時間を短くすることができる。
上記室内機において、前記制御手段が、前記音検出手段からの検出結果に基づいて異常を検知することとしても良い。
このような構成によれば、室内機冷媒回路部の冷媒配管を流れる冷媒の流動音に基づいて異常を検知するので、音に関して敏感に反応することが可能となる。これにより、騒音が原因でユーザに与える不快感を低減させることができる。
上記室内機において、運転モードとして、通常運転モードよりも動作音を低減させる静音運転モードが選択された場合に、前記制御手段が、前記音検出手段からの検出結果に基づいて運転制御を行うこととしても良い。
このような構成によれば、室内機冷媒回路部の冷媒配管を流れる冷媒の流動音に基づいて静音運転時における運転制御を行うので、運転音に対する制御を一層細やかに行うことが可能となる。
上記室内機において、前記音検出手段と前記制御手段との間にノイズ低減手段を設け、前記音検出手段からの音信号は、前記ノイズ低減手段を介して前記制御手段へ送出されることとしても良い。
このような構成によれば、音検出手段によって検出された音信号はノイズ低減手段によりノイズが低減された後に制御手段に送信されることとなる。これにより、制御手段にはノイズの低減された音信号に基づいて各種判断処理等を実現することが可能となり、処理精度の向上を図ることができる。
上記室内機において、前記ノイズ低減手段は、性質が異なる複数のフィルタを備えており、該フィルタが、前記制御手段の制御内容に応じて切り替え可能に構成されていることとしても良い。
このような構成によれば、制御手段の制御内容に応じてノイズ低減に用いられるフィルタが切り替えられるので、必要な帯域の音信号のみを制御手段へ与えることが可能となる。これにより、制御手段における処理を簡便化することができ、処理精度の更なる向上および処理時間の短縮を実現させることができる。
本発明は、上記いずれかの複数の室内機と、複数の室外機とを1系統の通信ネットワークで接続してなる空調システムを提供する。
本発明によれば、短時間で冷媒配管の接続状態を検出することができるという効果を奏する。
以下に、本発明に係る実施形態について、図面を参照して説明する。
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る空調システムの全体構成を示す図である。
本実施形態に係る空調システムは、複数台の室外機1a、1bと複数台の室内機2a〜2fを備えて構成されている。これらの室外機1a、1b並びに室内機2a〜2fは、1系統の通信ネットワーク3により接続されている。具体的には、各室外機1a、1bの制御部7a、7bならびに各室内機2a〜2fの制御部(制御手段)8a〜8fが互いに1系統の通信ネットワーク3により接続されている。
室外機1aと室内機2a〜2cとは、同一冷媒配管11aにより接続されている。具体的には、室外機1aが備える室外機冷媒回路部4aと各室内機2a〜2cが備える室内機冷媒回路部5a〜5cとが同一の冷媒配管11aによって接続されている。
また、室外機1bと室内機2d〜2fとは、同一冷媒配管11bにより接続されている。具体的には、室外機1bが備える室外機冷媒回路部4bと各室内機2d〜2fが備える室内機冷媒回路部5d〜5fとが同一の冷媒配管11bによって接続されている。
上記室外機1a、1b及び全ての室内機2a〜2fには、それぞれ異なる識別番号IDが付されている。
図2は、上記室外機1aと室内機2a〜2c(以下、全ての室内機1a〜1cを総括して示す場合は単に符号「2」を付し、各室内機を識別する場合は、符号「2a」、「2b」、「2c」を付す。以下、各室内機が備える各構成要素についても同様とする。)とを備える空調システムの冷凍サイクルを示す冷媒回路図である。
この図において、室外機1aは、室外制御装置9aと室外機冷媒回路部4aとを備え、各室内機2は、室内制御装置10と室内機冷媒回路部5とをそれぞれ備えている。このような構成を備える空調システムは、冷媒を圧縮する圧縮機12と、圧縮された冷媒を凝縮させる凝縮器(熱交換器)13と、凝縮された液冷媒を貯留する受液器15と、受液器15からの液冷媒を膨張させる膨張弁17と、膨張弁17によって膨張された液冷媒を蒸発させる熱交換器(熱交換器)19とを備えている。
上記構成のうち、圧縮機12、凝縮器13、受液器15は、室外機1aを構成する室外機冷媒回路部4a内に設けられている。一方、熱交換器19及び膨張弁17は、室内機2を構成する室内機冷媒回路部5にそれぞれ設けられている。
なお、本実施形態では圧縮機12、受液器15は、室外機冷媒回路部4aに設けられているが、これらは必ずしも室外機冷媒回路部4a内に設けられている必要は無い。
圧縮機12は、熱交換器19からの低温低圧ガス冷媒を圧縮して高温高圧のガス冷媒を作り出すものであり、好適にはスクロールコンプレッサが用いられる。圧縮機12の吸入側の冷媒系統には低圧センサ51が設けられ、吐出側の冷媒系統には高圧センサ52が設けられている。これら圧力センサ51、52の出力は、室外機1aの室外制御装置9a内の入力部32へと出力される。また、冷媒配管には、圧縮機12を迂回するバイパス配管が設けられている。このバイパス配管には、圧力センサ51と52との差圧が所定値以上になった場合に作動し、圧縮機12の吸入側圧力と吐出側圧力とを略一定圧力に保つための圧力調節弁60が設けられている。この圧力調節弁60は、室外制御装置9aの制御部7aによりその開度が調節される。さらに、圧縮機12の吐出側の冷媒配管には温度センサ27が設けられており、この出力は入力部32へと送られるようになっている。
凝縮器13は、圧縮機12からの高温高圧のガス冷媒を外気である空気と熱交換させて凝縮させる熱交換器である。凝縮器13には、室外ファン13aが対向配置されており、この室外ファン13aによって送られる空気による強制対流によって熱交換が促進されるようになっている。室外ファン13aは、制御部7aによって起動・停止が行われ、あるいは回転数制御が行われる。
凝縮器13の上流側の冷媒配管には温度センサ23が、下流側には温度センサ24がそれぞれ設けられている。これら温度センサ23,24の出力は室外制御装置9aの入力部32に送られる。室外機冷媒回路部4aには、室外温センサ26が設けられており、この出力は入力部32に送られるようになっている。
受液器15は、凝縮器13において凝縮された液冷媒が貯留される容器である。低外気温ではない通常の外気温時には、システムにおいて余剰とされた余剰冷媒が貯留されるようになっている。受液器15の側壁には、受液器温度センサ28が設けられている。受液器温度センサ28の出力は、室外制御装置9aの入力部32へと送られるようになっており、この出力値に基づいて受液器15内の液面位置が推定される。
次に、室内機冷媒回路部5の内部構成について説明する。
膨張弁17は、室外機冷媒回路部4a側から供給された液冷媒を略等エンタルピー的に膨張させるものである。膨張弁17は、好適には電子膨張弁(EEV)が用いられ、室内制御装置10の制御部8によって開度がそれぞれ制御されるようになっている。この膨張弁17の開度によって、システム内を循環する循環冷媒量が決定される。また、所定の過熱度(例えば3deg)が維持されるように、制御部8によって制御される。
熱交換器19は、膨張弁17からの低圧液冷媒を室内空気と熱交換させて蒸発させる熱交換器である。熱交換器19の上流側の冷媒配管には温度センサ21が、下流側の冷媒配管には温度センサ22がそれぞれ設けられている。これら温度センサ21、22の出力は、室内制御装置10aの入力部42へと送られる。温度センサ22から温度センサ21を減じた温度によって過熱度が決定される。
熱交換器19には、室内ファン29が対向配置されており、この室内ファン29によって送られる空気による強制対流によって熱交換が促進されるようになっている。室内ファン29は、制御部8によって起動・停止が行われ、あるいは回転数制御が行われる。
室内機冷媒回路部5の熱交換器19の中間位置には熱交温度センサ25が設けられており、その出力は入力部42へと送られる。この温度センサ25によって得られる温度に基づいて、制御部8から出された指令は室外制御装置9aの入力部32に送られる。その指令や室内吸込み空気温度、設定室内温度等に基づいて制御部7aは圧縮機12の発停又はその回転数を制御することで冷凍能力を調整し、室内空気温度の制御を行う。
更に、上記室内機冷媒回路部5には、冷媒配管を流れる冷媒の流動音を検出するためのマイクロフォンなどの集音装置(音検出手段)70が設けられている。好ましくは、集音装置70は、室内機冷媒回路部5において、膨張弁17付近の配管を流れる冷媒の流動音、更に好ましくは、膨張弁17と熱交換器19との間の冷媒配管を流れる冷媒の流動音を検出するように設けられていると良い。この集音装置70は、冷媒配管に密着して取り付けられている必要は無く、上述したような配管を流れる冷媒の流動音を検出するに好ましい場所に取り付けられていれば良い。集音装置70の出力は入力部42を介して制御部8に送られる。集音装置70は、例えば、マイクロフォンである。
室外制御装置9aは、上述のようにマイコンを内蔵する制御部7aを備え、室外機冷媒回路部5内の各センサや制御部8からの指令に基づいて室外機冷媒回路部4aを制御する。同様に、室内制御装置10は、マイコンを内蔵する制御部8を備え、室内機冷媒回路部5内の各センサや室外制御装置7aからのデータに基づいて室内機冷媒回路部5をそれぞれ制御する。
このような構成を備える空調システムは、例えば、夏季のような通常外気温時には、以下のように動作する。
圧縮機12によって圧縮された高温高圧のガス冷媒は、凝縮器13において凝縮して高圧液冷媒となる。高圧液冷媒は、一部の余剰冷媒が受液器15に貯留された後、膨張弁17へと送られて略等エンタルピー的に減圧させられる。低圧液冷媒は、熱交換器19において蒸発し、室内ファン29によって送られる室内空気から熱を奪う。熱を奪われ冷却された空気は、室内へと送られ、室内温度を低下させることにより冷房を実現する。熱交換器19において蒸発した低圧ガス冷媒は、圧縮機12の吸入側へと導かれ、再び圧縮される。
ここで、上記空調システムを構成する室外機冷媒回路部4a及び室内機冷媒回路部5a〜5cは、上述したシングル冷房専用機だけなく、ヒートポンプ運転による暖房運転をも行うシングル冷暖房機、マルチ冷暖房機、マルチ組み合わせマルチ冷暖房機、冷暖フリーマルチエアコン、組み合わせ冷暖フリーマルチエアコンが複数系統として組み合わされた構成とされていても良い。
次に、図1に示した空調システムにおける運転制御方法について説明する。
なお、以下の説明において、空調システムを構成する各室外機及び各室内機は、図2に示した冷房専用機によって構成されているものとする。なお、この例に限定されることなく、上述のように冷房専用機のほか、他の冷暖房機の組み合わせ等により構成されている空調システムにおいても本実施形態に係る運転制御方法を適用することができる。
まず、配管接続検出に関するシーケンスについて図3〜図6を用いて説明する。ここで、以下に示すような配管接続検出処理が実施されるような状況としては、空調システムを新設した場合、既存の空調システムに対して新たな室内機や室外機が増設された場合などである。つまり、このような場合には、新たに接続された室内機、室外機がどの冷媒配管に接続されたかが既知になっていない。このような場合、以下に示す配管接続検出処理を行うことにより、各室内機と各室外機との冷媒接続の状態を検出することが重要となる。
以下に示す配管接続検出処理は、上述した室内機等の増設や、新設等の場合においては、例えば、自動的に実施される。また、例えば、手動により当該処理が要求された場合にも実施される。
なお、以下の処理においては、室外機1aの制御部7aがマスタとして機能することとする。
まず、図2のステップSA1において、配管接続検出処理の要求イベントが自動的あるいは手動により発生すると、ステップSA2において、マスタとして機能する室外機1aの制御部7aは、通信ネットワーク3を介して接続されている全ての制御部、つまり、制御部7b、8a〜8fに対して、識別番号IDが設定されているか否かを確認するための信号を送る。この結果、全ての制御部7b,8a〜8fから識別番号IDが付されている旨の信号が届いた場合には、ステップSA4に進む。一方、識別番号IDが設定されていない室外機あるいは室内機がある場合には、制御部7aは、ステップSA3において、所定のアルゴリズムに従って識別番号IDの再設定を行い、ステップSA4に移行する。
ステップSA4では、冷媒配管の接続状態が把握されていない室外機または室内機が存在するか、換言すると、配管ペアリングが未設定である室外機または室内機が存在するか否かを確認する。この確認は、制御部7aが、制御部7b、8a〜8fに対して配管ペアリングの確認指令を送信し、この返信を受け取ることにより行われる。
この結果、配管ペアリングが未設定である室外機または室内機が存在した場合には、ステップSA5に進み、全ての制御部7a、7b、8a〜8fが協調して、後述の配管ペアリング運転を実施する室外機の順番を決定する。ここでは、最初に室外機1aを運転し、次に室外機2aを運転させることとする。
続く、ステップSA6では、最初の順番として定められた室外機1aを対象室外機(なお、以下の説明において、対象室外機に対応する制御部を「対象制御部」という。)として設定し、ステップSA7において、流動音取得シーケンスを実行する。
流動音取得シーケンスでは、まず、図4のステップSB1において、膨張弁の開操作を行わせる室内機2a〜2fの順番を各制御部8a〜8fが協調して決定する。本実施形態では、識別番号IDの順序に従い、室内機2a、2b、・・・、2fの順に設定する。
続いて、ステップSB2では、対象制御部7aが全ての室内機2a〜2fに対応する制御部8a〜8fに対して膨張弁17を閉じる指令を出す。これにより、全ての室内機2a〜2fの膨張弁17が全閉状態とされる。続く、ステップSB3では、各室内機2a〜2fの制御部8a〜8fは、対応する室内機冷媒回路部5a〜5fに設置された集音装置70からの音信号を受信し、この音信号に基づく平均音量を基準音量(冷媒運転停止時における周囲音量)として保存する。
ステップSB4では、対象制御部7aが対象室外機1aの圧縮機12を作動させ、ステップSB5において、圧縮機12の高圧側と低圧側の差圧が発生したことを確認する。ステップSB6では、上述のステップSB1において最初に作動させる室内機として決定された室内機、つまり、室内機2aを選択室内機(なお、以下の説明において、選択室内機に対応する制御部を「選択制御部」という。)として設定する。
次に、ステップSB7において、対象制御部7aは、選択制御部8aに対して、配管ペアリング情報が設定されているかを確認する情報を送る。この結果、選択制御部8aから設定済みである旨の情報を受け取った場合には、ステップSB8およびSB9を実行せずに、ステップSB10に移行する。一方、選択制御部8aから未設定である旨の情報を受け取った場合には、ステップSB8に移行し、対象制御部7aは、選択制御部8aに対して膨張弁17を開状態とする旨の指令を送信する。
これにより、選択制御部8aは、室内機冷媒回路部5aの膨張弁17を開操作する。ここで、開操作による膨張弁の開度は、膨張弁の製品のバラツキを考慮し、確実に膨張弁を開かせることのできる値に設定されている。例えば、膨張弁17の全閉状態から全開状態とするのに、500パルスの指令が必要である場合、その一割程度のパルスを開指令として与えるものとする。
続いて、ステップSB9において、選択制御部8aは、膨張弁17を開操作した後に集音装置70から通知される音信号を受信し、この音信号を対象室外機1aの識別番号IDと対応付けて保存する。続いて、選択制御部8aは、一定期間における音信号を保存したことを確認すると、ステップSB10において、対象制御部7aに対して流動音取得終了を通知する。
対象制御部7aは、選択制御部8aから流動音取得終了の通知を受けると、ステップSB11において、全室内機2a〜2fの制御部8a〜8fについて配管ペアリングの設定を確認したか否かを判断し、確認していなかった場合には、ステップSB12において、次の順番に設定されている室内機、つまり、室内機2bを選択室内機として設定し、ステップSB7に戻る。これにより、今度は、選択室内機2bに対して上述したステップSB7〜SB10の処理が行われることとなる。このようにして、全ての室内機2a〜2fに対する配管ペアリングの設定確認が終了すると、ステップSB13に移行し、対象制御部7aから全ての制御部7b、8a〜8fに対して流動音取得シーケンスが終了した旨を通知し、当該流動音取得シーケンスを終了する。
このようにして、上記流動音取得シーケンスが終了すると、図3のステップSA8に進み、全ての室外機1a、1bについて上記流動音取得シーケンスを実施したか否かを判断する。この結果、室外機1bについては実施していないので、ステップSA9に進み、次の順番の室外機1bを対象室外機として設定し、ステップSA7に移行し、今度は、対象室外機1bに対する流動音取得シーケンスを同様の手順に従って実行する。
そして、対象室外機1bについての流動音取得シーケンスが終了すると、ステップSA8において「YES」と判断し、ステップSA10において、配管ペアリング確定シーケンスを実施する。
配管ペアリング確定シーケンスでは、まず、図5のステップSC1にて、各室内機2a〜2fの各制御部8a〜8fが、上述の流動音取得シーケンスにおいて保存した音信号において、最大音量の値を抽出する。具体的には、本実施形態では、各制御部8a〜8fがそれぞれ保有する各メモリには、基準音量の他に、室外機1aの識別番号IDに対応付けられた音信号と、室外機1bの識別番号IDに対応付けられた音信号とが保存されていることとなる。したがって、各制御部8a〜8fは、上記2つの音信号の中から最大音量を抽出する。続いて、ステップSC2では、抽出した最大音量と基準音量との差分を算出し、この差分が予め設定されている閾値以上であるか否かを判定する。
この結果、いずれかの制御部8a〜8fにおいて、差分が閾値未満であった場合には、ステップSC11に移行し、上述した配管ペアリングシーケンスの再実施、或いは、室外機へのエラー通知または運転停止通知、或いは、別の配管接続の検出手法に切り替えるなどの各種処理を行い、本配管ペアリング確定シーケンスを終了する。
一方、ステップSC2において、全ての制御部8a〜8fにおいて、上記差分が閾値以上であると判断された場合には、ステップSC3に移行し、最大音量が抽出された音信号が対応付けられている室外機を仮ペアリングとして設定する。つまり、この時点では、最大音量が抽出された音信号が取得されたときに運転されていた室外機を配管ペアリング、つまり、冷媒配管が接続されている対象であると仮定する。この仮設定が終了すると、各制御部8a〜8fは、マスタ制御部7aに対して仮設定が終了した旨を通知する。
次に、ステップSC4において、マスタ制御部7aは、最終確認運転を開始する旨を全ての制御部7b、8a〜8fに通知する。次に、ステップSC5において、任意の1台の室外機、ここでは、室外機1aを運転する。次に、ステップSC6において、ステップSC5で運転させた室外機1aが仮ペアリングとして設定されている室内機の膨張弁17を開操作させ、ステップSC7において、このときの音信号を取得する。続いて、ステップSC8において、上述の流動音取得シーケンスにおいて既に取得している音信号の音量と今回取得した音信号の音量との差分が所定範囲内であるか否かを判断する。つまり、再現性があるか否かを判断する。
この結果、上記差分が所定範囲内でなければ、つまり、再現性が確認できなければ、どこかに不具合や欠陥があるとして、ステップSC11に移行し、エラー表示等を行う。一方、ステップSC8において、再現性が確認されれば、ステップSC9に移行し、現在の仮ペアリング設定を確定させる。これにより、同一冷媒配管で接続されている室外機と室内機とのペアリングが確定され、例えば、室内機の制御部は、自己が冷媒配管接続されている室外機の識別番号IDを保存することにより、アドレス設定を行う。
続いて、ステップSC10では、全ての室外機について配管ペアリングの確認を終了したか否かを判断する。この結果、室外機1bについては、まだ配管ペアリングの確認をしていないので、ステップSC5に戻り、まだ配管ペアリングの確認をしていない、室外機1bを運転させ、上述のステップSC6〜ステップSC9を実行する。そして、全ての室外機1a、1bについて最終確認運転が終了すると、当該配管ペアリング確定シーケンスを終了する。
上記配管ペアリング確定シーケンスが終了すると、図3のステップSA11に進み、通常運転を開始する。
この通常運転では、例えば、図6に示すような通常運転シーケンスが各室内機2a〜2fの制御部8a〜8fによりそれぞれ個別に実行される。
具体的には、図6のステップSD1において、集音装置70から取得した所定時間単位における音信号に基づいて算出された平均音量が、基準音量に応じて設定される許容範囲内であるか否かを判定する。この結果、許容範囲内であれば、このステップSD1の処理を繰り返し行う。
一方、ステップSD1において、集音装置70から入力された音信号の音量が許容範囲内でなかった場合には、つまり、室内機において許容範囲を超える音が発生していた場合には、ステップSD2に移行し、異常回避動作を行う。この異常回避動作では、例えば、室内ファン29の速度を変更する、膨張弁17の開度を変更する、当該室内機と配管ペアリングが設定されている室外機の圧力制御値を変更する等の変更処理が実行される。
そして、ステップSD3において、上記異常回避動作を行った後において取得された音信号の音量が許容範囲内に入っているか否かを再度確認し、この結果、許容範囲内に入っていた場合には、ステップSD1に戻る。一方、許容範囲内に入っていなかった場合には、ステップSD4において、当該室内機の運転を停止し、ステップSD7においてエラー表示を行うとともに、当該室内機と配管ペアリングが設定されている室外機に対してエラー発生を通知し、当該通常運転シーケンスを終了する。
なお、上記通常運転シーケンスにおいては、利用者の操作などにより、運転モードが変更される場合がある。この運転モードの変更により、運転モードが、通常運転モードよりも動作音を低減させる静音運転モードに変更された場合、各室内機2a〜2fの制御部8a〜8fは、図6に示した許容範囲の設定を変更する。具体的には、通常運転モードよりも許容範囲を狭く設定する。これにより、集音装置70から通知される音信号の音量が静音運転に適した許容範囲内に収まるように膨張弁17の開度や室内ファン29の速度が制御されることとなる。
以上説明したように、本実施形態に係る空調システムの運転制御方法によれば、室内機2a〜2fにおける冷媒配管を流れる冷媒の流動音に基づいて室内機2a〜2fと室外機1a、1bとの冷媒配管接続状態がそれぞれ検出され、この検出結果に基づいて、室内機と室外機との配管ペアリングが設定されることとなる。この場合において、流動音に基づいて配管ペアリングを設定、確定させるので、温度に基づいて配管ペアリングを設定等する場合に比べて、迅速に配管ペアリングを設定することができる。これにより、処理時間の短縮を図ることができる。
また、空調システムの運転時においては、各室内機2a〜2f内を流れる冷媒の流動音に基づいて異常が検知されるので、異常により生ずる騒音を迅速に検出することが可能となる。これにより、騒音が原因でユーザに与える不快感を低減させることができる。
更に、運転モードとして、通常運転モードよりも動作音を低減させる静音運転モードが選択された場合には、室内機2a〜2f内を流れる冷媒の流動音が通常運転モードよりも小さい値に設定された許容範囲内となるように運転制御が行われるので、空調システムの運転音に対する制御を一層細やかに行うことが可能となる。
〔第2の実施形態〕
図7は、本発明の第2の実施形態に係る室内制御装置10の構成を示した図である。図7に示すように、本実施形態に係る室内制御装置10は、入力部42と制御部8との間に音信号のノイズを低減するためのノイズ低減部43が設けられている。
ノイズ低減部43は、高周波帯域のノイズを除去するローパスフィルタ44と低周波数帯のノイズを除去するハイパスフィルタ45と、ローパスフィルタおよびハイパスフィルタ45のいずれかを選択的に制御部8に接続させる切り替え部46と、切り替え部46と制御部8との間に設けられたピークホールド回路47とを備えている。切り替え部46は、制御部8からの制御信号に基づいて切り替え制御される。制御部8は、膨張弁から発生するピーという笛吹き音が除去された音信号を必要とする場合には、ローパスフィルタが選択されるように、また、冷媒流動音やゴボゴボというような脈動音が除去された音信号を必要とする場合には、ハイパスフィルタが選択されるように、切り替え部を制御する。
このような構成において、集音装置70により検出された音信号は、室内制御装置10内の入力部42を介してローパスフィルタ44およびハイパスフィルタ45に入力される。ローパスフィルタ44では、入力された音信号の高周波帯域におけるノイズ、例えば、膨張弁から発生するピーという笛吹き音が除去され、出力される。また、ハイパスフィルタ45では、入力された音信号の低周波帯域におけるノイズ、例えば、冷媒流動音やゴボゴボというような脈動音が除去されて出力される。出力されたノイズ除去後の音信号は、切り替え部46によりいずれか一方が選択されて、ピークホールド回路47に入力される。ピークホールド回路47では、音信号の最大音量が抽出されて、維持されるとともに、この維持された最大音量が制御部8に入力される。
このような構成にすることで、集音装置70によって検出された音信号は、ノイズ低減部43によりノイズが低減された後に制御部8に送信されることとなる。これにより、制御部8には所望の周波数帯域におけるノイズが除去された音信号を取得することが可能となるので、処理精度の向上を図ることができる。
また、制御部8は、ピークホールド回路47から入力された最大音量を用いることにより、例えば、図5に示した配管ペアリング確定シーケンスにおけるステップSC2の判断や、図6に示した通常運転シーケンスにおけるステップSD1、SD3の判断などを簡便な処理により実現させることができる。
なお、上述した実施形態に係るノイズ低減部の構成を以下のような構成とすることも可能である。
例えば、図8に示すように、図7に示したローパスフィルタ44およびハイパスフィルタ45に代えて、DSP装置48を設けることとしても良い。これにより、周波数分析が可能となるので、音源の特定精度を一層向上させることができる。これにより、所望の音源(例えば、膨張弁、或いは冷媒配管等)から発せられた音信号のみを抽出することが可能となる。更に、外来ノイズ、例えば、人の声、テレビの音などを選択的に除去することができるので、これらの外来ノイズの影響を低減させることができる。
また、図9に示すように、上記ローパスフィルタ44およびハイパスフィルタ46の前段に、可聴帯域フィルタ(一般に、20Hz〜20kHz)49を更に設けることとしても良い。これにより、人に耳障りな音を選択して取得することが可能となる。
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明の第1の実施形態に係る空調システムの全体構成を示す図である。 図1において室外機及び室内機を冷房専用機によって構成されているものとしたときの空気調和機の冷凍サイクルを示す冷媒回路図である。 本発明の第1の実施形態に係る空調システムの運転制御方法の処理手順について示したフローチャートである。 本発明の第1の実施形態に係る流動音取得シーケンスの処理手順について示したフローチャートである。 本発明の第1の実施形態に係る配管ペアリング確定シーケンスの処理手順について示したフローチャートである。 本発明の第1の実施形態に係る通常運転シーケンスの処理手順について示したフローチャートである。 本発明の第2の実施形態に係る室内制御装置の内部構成を示した図である。 図7に示した室内制御装置におけるノイズ低減部の変形例を示した図である。 図7に示した室内制御装置におけるノイズ低減部の変形例を示した図である。
符号の説明
1a、1b 室外機
2a〜2f 室内機
3 通信ネットワーク
4a、4b 室外機冷媒回路部
5a〜5f 室内機冷媒回路部
7a、7b 制御部
8a〜8f 制御部
11a、11b 冷媒配管
12 圧縮機
17 膨張弁
19 熱交換器
70 集音装置
42 入力部
43 ノイズ低減部
44 ローパスフィルタ
45 ハイパスフィルタ
46 切り替え部
47 ピークホールド回路
48 DSP装置
49 可聴帯域フィルタ

Claims (11)

  1. 複数台の室外機と複数台の室内機とを1系統の通信ネットワークにより接続してなる空調システムの冷媒配管接続検出方法であって、
    前記室内機において、前記室外機をそれぞれ個別に運転させたときの膨張弁全閉の場合の冷媒の流動音と膨張弁開状態の場合の冷媒の流動音とをそれぞれ取得し、
    取得した前記冷媒の流動音の中から最大音量を抽出し、
    抽出した最大音量と前記膨張弁全閉の場合の冷媒の流動音との差分を算出し、
    該差分が予め設定されている閾値以上であった場合に、前記最大音量を示したときに運転されていた前記室外機と同一の冷媒配管で接続されていると仮設定し、
    同一の冷媒配管で接続されていると仮設定した前記室外機と前記室内機において、該室外機を運転したときの該室内機における膨張弁開状態の場合の冷媒の流動音を再度取得し、
    再度取得した該冷媒の流動音と前記最大音量との差分が予め設定されている所定範囲内である場合に、前記仮設定されている前記室外機と前記室内機との配管ペアリングを確定する空調システムの冷媒配管接続検出方法。
  2. 複数台の室外機と複数台の室内機とを1系統の通信ネットワークにより接続してなる空調システムの運転制御方法であって、
    請求項1に記載の空調システムの冷媒配管接続検出方法によって、前記室内機と前記室外機との冷媒配管の接続状態を検出し、
    検出した前記冷媒配管の接続状態に基づいて、各前記室内機および各前記室外機に対してアドレスを設定する空調システムの運転制御方法。
  3. 各前記室内機における冷媒配管を流れる冷媒の流動音に基づいて異常を検知する請求項2に記載の空調システムの運転制御方法。
  4. 運転モードとして、通常運転モードよりも動作音を低減させる静音運転モードが選択された場合に、前記室内機における冷媒配管を流れる冷媒の流動音に基づいて、運転制御を行う請求項2または請求項3に記載の空調システムの運転制御方法。
  5. 1系統の通信ネットワークを介して複数台の室外機および少なくとも1台の他の室内機と接続される室内機であって、
    室内機冷媒回路部と制御手段とを備え、
    前記室内機冷媒回路部には、冷媒配管を流れる冷媒の流動音を検出するための音検出手段が設けられ
    前記制御手段は、前記室外機をそれぞれ個別に運転させたときの膨張弁全閉の場合の冷媒の流動音と該膨張弁開状態の場合の冷媒の流動音とを前記音検出手段からそれぞれ取得し、
    取得した前記冷媒の流動音の中から最大音量を抽出し、
    抽出した最大音量と前記膨張弁全閉の場合の冷媒の流動音との差分を算出し、
    該差分が予め設定されている閾値以上であった場合に、前記最大音量を示したときに運転されていた前記室外機と同一の冷媒配管で接続されていると仮設定し、
    同一の冷媒配管で接続されていると仮設定した前記室外機と前記室内機において、該室外機を運転したときの該室内機における膨張弁開状態の場合の冷媒の流動音を再度取得し、
    再度取得した該冷媒の流動音と前記最大音量との差分が予め設定されている所定範囲内である場合に、前記仮設定されている前記室外機と前記室内機との配管ペアリングを確定する室内機。
  6. 前記制御手段が、前記冷媒配管の接続状態に応じてアドレスを設定する請求項に記載の室内機。
  7. 前記制御手段が、前記音検出手段からの検出結果に基づいて異常を検知する請求項または請求項に記載の室内機。
  8. 運転モードとして、通常運転モードよりも動作音を低減させる静音運転モードが選択された場合に、前記制御手段が、前記音検出手段からの検出結果に基づいて運転制御を行う請求項から請求項のいずれかに記載の室内機。
  9. 前記音検出手段と前記制御手段との間にはノイズ低減手段が設けられ、前記音検出手段からの音信号は、前記ノイズ低減手段を介して前記制御手段へ送出される請求項から請求項のいずれかに記載の室内機。
  10. 前記ノイズ低減手段は、性質が異なる複数のフィルタを備えており、
    該フィルタが、前記制御手段の制御内容に応じて切り替え可能に構成されている請求項に記載の室内機。
  11. 請求項5から請求項10のいずれかに記載の複数の室内機と、複数の室外機とを1系統の通信ネットワークで接続してなる空調システム。
JP2006156016A 2006-06-05 2006-06-05 空調システムおよびその運転制御方法 Expired - Fee Related JP4848210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156016A JP4848210B2 (ja) 2006-06-05 2006-06-05 空調システムおよびその運転制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156016A JP4848210B2 (ja) 2006-06-05 2006-06-05 空調システムおよびその運転制御方法

Publications (2)

Publication Number Publication Date
JP2007322104A JP2007322104A (ja) 2007-12-13
JP4848210B2 true JP4848210B2 (ja) 2011-12-28

Family

ID=38855079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156016A Expired - Fee Related JP4848210B2 (ja) 2006-06-05 2006-06-05 空調システムおよびその運転制御方法

Country Status (1)

Country Link
JP (1) JP4848210B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759064A (zh) * 2018-08-20 2018-11-06 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及多联机空调系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989708B2 (ja) * 2009-11-20 2012-08-01 三菱電機株式会社 空調システム診断装置、空調システム診断方法、及び、プログラム
JP5634081B2 (ja) * 2010-03-01 2014-12-03 三菱電機株式会社 空気調和機
US9816718B2 (en) 2012-03-14 2017-11-14 Mitsubishi Electric Corporation Control device, air conditioning system, and equipment system
JP6227444B2 (ja) * 2014-02-28 2017-11-08 三菱重工業株式会社 配管接続検知装置及び配管接続検知方法
CN108266861B (zh) * 2018-03-08 2023-11-28 重庆物奇科技有限公司 通过识别卡进行配对组网的多联机空调系统及其组网方法
JP7292423B2 (ja) * 2019-12-20 2023-06-16 三菱電機株式会社 冷凍サイクル装置の室外ユニット
CN113701873A (zh) * 2020-05-19 2021-11-26 广州汽车集团股份有限公司 冷媒流动声检测装置、系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379948A (ja) * 1989-08-21 1991-04-04 Toshiba Audio Video Eng Corp 空気調和装置
JP2667950B2 (ja) * 1993-09-20 1997-10-27 株式会社日立製作所 空気調和機及びそのアドレス設定方法
JPH0972631A (ja) * 1995-09-05 1997-03-18 Hitachi Ltd 空気調和機
JP3562114B2 (ja) * 1996-03-19 2004-09-08 株式会社日立製作所 空気調和機
JPH10197034A (ja) * 1996-12-29 1998-07-31 Sanyo Electric Co Ltd 空気調和機の消音装置
JP4394893B2 (ja) * 2002-08-09 2010-01-06 ダイキン工業株式会社 故障診断システム
JP4311083B2 (ja) * 2003-05-29 2009-08-12 ダイキン工業株式会社 空気調和システム、空気調和システムの室内外機配管接続関係確立方法および室内外機配管接続関係確立プログラム
JP2005224882A (ja) * 2004-02-10 2005-08-25 Fuji Seisakusho:Kk ブラスト加工装置における異常検知方法及び異常検知システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759064A (zh) * 2018-08-20 2018-11-06 宁波奥克斯电气股份有限公司 一种降噪控制方法、装置及多联机空调系统

Also Published As

Publication number Publication date
JP2007322104A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4848210B2 (ja) 空調システムおよびその運転制御方法
EP3467406B1 (en) Air conditioner
JP3798374B2 (ja) 空気調和機の制御システム及びその制御方法
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
US8413456B2 (en) Refrigeration apparatus
JP5332093B2 (ja) 冷凍装置
WO2008059737A1 (fr) Climatiseur
JP2008064437A5 (ja)
JP2012198020A (ja) 空調システム及び空調システムの油戻し制御方法
WO2008032581A1 (en) Refrigeration device
JP2007139265A (ja) マルチ型空気調和機の運転制御方法およびプログラム
US11959672B2 (en) Air-conditioning apparatus
WO2008072608A1 (ja) 冷凍装置
JP4563658B2 (ja) マルチ空気調和機の運転制御方法
JP3856529B2 (ja) 空気調和装置
JP5281237B2 (ja) 空調システム及び空調システムの油戻し制御方法
JP2008180435A (ja) 空気調和機
JP2003074945A (ja) 空気調和装置
JP5217710B2 (ja) 空気調和装置
JP2002340390A (ja) 多室形空気調和機
KR20070008944A (ko) 공기조화기의 제어 시스템
JP5999163B2 (ja) 空気調和装置
WO2018122943A1 (ja) 空気調和装置
JP4179365B2 (ja) 空気調和装置
JP2710698B2 (ja) マルチ式空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4848210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees