JP4844421B2 - 射出成形の流動解析方法及びその装置 - Google Patents

射出成形の流動解析方法及びその装置 Download PDF

Info

Publication number
JP4844421B2
JP4844421B2 JP2007028501A JP2007028501A JP4844421B2 JP 4844421 B2 JP4844421 B2 JP 4844421B2 JP 2007028501 A JP2007028501 A JP 2007028501A JP 2007028501 A JP2007028501 A JP 2007028501A JP 4844421 B2 JP4844421 B2 JP 4844421B2
Authority
JP
Japan
Prior art keywords
thickness
microelement
analysis
fluid
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007028501A
Other languages
English (en)
Other versions
JP2008188957A (ja
Inventor
誠 吉永
友昭 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007028501A priority Critical patent/JP4844421B2/ja
Publication of JP2008188957A publication Critical patent/JP2008188957A/ja
Application granted granted Critical
Publication of JP4844421B2 publication Critical patent/JP4844421B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、射出成形の流動解析方法及びその装置の技術に関し、より詳細には、射出成形品の形状を複数の微小要素に分割したシェルメッシュを用いて、流体の流動過程を解析する射出成形の流動解析方法及びその装置の技術に関する。
通常、樹脂製品は、射出成形、押出成形、ブロー成形などといった成形加工方法により形成される。近年では、このような加工方法において、CAE(Computer Aided Engineering)解析と呼ばれる解析技術が広く実用化されている。CAE解析とは、コンピュータを用いて金型キャビティ内の流体(溶融樹脂)の流動過程を数値解析により解析する技術のことである。成形加工中に生じる様々な現象をこのようなCAE解析を用いて予測することで、製品の設計や製造の効率性の向上が図られている。
上述したCAE解析を用いた流動解析方法としては、金型内のキャビティ形状、すなわち射出成形品の形状を、多数の三角形メッシュ又は四角形メッシュの微小要素に分割して2次元的にモデル化し、有限要素法や境界要素法などの数値解析法を用いて解析を行う方法(以下、シェル解析という)が実用化されている。また、近年では、射出成形品の形状を3次元的な形状(ソリッド)を有する微小要素に分割して3次元的にモデル化する方法(以下、ソリッド解析という)も実用化されている。
通常、自動車のボディ素材や船殻構造など、薄肉でかつ大型の樹脂部品は、サイズに比べて肉厚が薄いこともあり、流動解析のモデル化に際しては、上述したシェル解析が用いられる。また、電気系や機械系のプラスチック製品においても、サイズに比べて肉厚が比較的薄い場合にはシェル解析が用いられる。このように、薄肉の樹脂部品を成形する射出形成の流動解析には、少ない自由度で正確な構造挙動を表現できるという点で、シェル解析が用いられる。
ところで、射出成形における流体(溶融樹脂)は、水等の粘性体や金属等の弾性体とは異なり、両者の性質を併せ持つ高分子化合物特有の粘弾性体としての流動挙動を示す。そのため、シェル解析の際には、流体を粘弾性体として取り扱って数値解析を行うことが好ましいとされている。
しかしながら、流体の粘弾性を考慮した数値解析は、計算が不安定であり、また、計算時間がかかる等といったことから、実用化に多くの問題があった。
一方で、従来のシェル解析のように、流体の粘弾性を考慮することなく数値解析を行うと、フランジやリブ等の局所的に肉厚が変化する箇所の流れ解析の精度に劣っていた。すなわち、流体は、肉厚の厚い部位に比べて薄い部位では流れにくいなど、肉厚に応じて流動挙動が異なってくるため、流体の粘弾性を考慮しない場合には、メルトフロントの流動分布の精度に劣り、正確な流動パターンをシュミレーションすることができないという問題があった。
なお、上述したように、流動解析において流体の粘弾性を考慮するという観点からは、例えば、特許文献1及び特許文献2に、樹脂の粘弾性的な性質等を考慮して最終的な成形品形状を精度よく予測するための形状精度予測方法が開示されている(特許文献1及び特許文献2参照)。
しかし、特許文献1及び特許文献2に開示される予測方法は、流動解析から得られた温度や圧力等のデータに基づいて、樹脂の粘弾性的特性(クリープや応力緩和等)及び金型内での冷却時の樹脂と金型間の型拘束を考慮した構造解析を行う点に特徴を有するのであって、樹脂の粘弾性を考慮して数値解析(特に、流れ解析)を行うものではない。
また、同様の観点から、特許文献3には、発泡経路構造の適正化及び発泡材料注入量の適正化を図るための発泡流動挙動を解析する計算方法において、注入された発泡材料の粘度変化の流動過程を計算する際に、発泡材料の時間と肉厚を含む粘度の関数を含む関数式を入力する解析方法が開示されている(特許文献3参照)。
しかし、特許文献3に開示される解析方法は、発泡流動体の流れ解析であって、直ちに射出成形における溶融樹脂の流れ解析に応用することはできない。つまり、発泡流動体の流れ解析では、発泡材料が発泡する際の肉厚の拡大が製品密度に影響することから、上述の粘度の関数を考慮する必要がある。
特開2003−84103号公報 特開2003−11199号公報 特開2006−18616号公報
そこで、本発明では、射出成形の流動解析方法及びその装置に関し、前記従来の課題を解決するものであって、簡易かつ高精度に流体の流れ解析を行うことができる流動解析方法及びその装置を提供することを目的とするものである。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
すなわち、請求項1においては、射出成形品の形状を複数の微小要素に分割したシェルメッシュを用いて、流体の流動過程を数値解析する射出成形の流動解析方法において、前記微小要素に、射出成形品の板厚に関する数値である肉厚を設定し、所定の微小要素の肉厚と、該微小要素に流体の流れ方向の川上に隣接する微小要素の肉厚と、の差より求められる肉厚差を、微小要素ごとに計算し、前記微小要素ごとに、前記肉厚差と流体の速度とで表される関数を含む粘度式を演算処理して、流体の流れ解析を行うものである。
請求項2においては、入力された各微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うものである。
請求項3においては、射出成形品のCADデータより算出された微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うものである。
請求項4においては、射出成形品の形状を複数の微小要素に分割したシェルメッシュを構築するモデル構築手段と、該シェルメッシュを用いて流体の流動過程を数値解析する数値解析手段とを具備してなる射出成形の流動解析装置において、前記数値解析手段は、前記微小要素に、射出成形品の板厚に関する数値である肉厚を設定し、所定の微小要素の肉厚と、該微小要素に流体の流れ方向の川上に隣接する微小要素の肉厚と、の差より求められる肉厚差を、微小要素ごとに計算する肉厚差計算手段を具備し、前記微小要素ごとに、前記肉厚差と流体の速度とで表される関数を含む粘度式を演算処理するものである。
請求項5においては、前記肉厚差計算手段は、入力された各微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うものである。
請求項6においては、前記肉厚差計算手段は、射出成形品のCADデータより算出された前記微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うものである。
本発明の効果として、粘度式を流体の粘弾性挙動を関数化した肉厚差と流体の速度とで表される関数を含む簡易な粘度式で表すことで、数値解析の際に、肉厚の急縮小部での肉厚の変化が、流体の流動挙動に及ぼす影響を考慮することができ、流体の複雑な粘弾性挙動を考慮した場合と等価な検討が可能となって、高精度に流体の流れ解析を行うことができる。また、数値解析における計算方法が簡易となり、演算処理の負担を軽減できる。
次に、発明の実施の形態を説明する。
図1は本発明の一実施例に係る流動解析装置の全体的な構成を示した機能ブロック図、図2はフロンドバンパ端部の斜視図、図3は本実施例の流動解析装置を用いた流体の流れ解析のフローチャート、図4はシェルモデルの配置構成図、図5は粘度式に含まれる関数gにおける肉厚差及び流体の速度の関係をプロットした図である。
まず、本実施例の流動解析装置1の全体構成について、以下に詳述する。
図1に示すように、本実施例の流動解析装置1は、射出成形品2の形状を複数の微小要素30・30・・・に分割したシェルメッシュ3を用いて、流体の流動過程を解析する装置であって、解析装置10と、補助記憶装置11と、入力装置12と、出力装置13等とで構成されている。
解析装置10は、CPUや、ROM・RAMなどの主記憶装置等で構成されている。そして、射出成形品2の形状を特定し、特定した射出成形品2の形状を有限要素法などの解析で使用される複数の微小要素30・30・・・に分割してシェルメッシュ3(図4参照)を構築するモデル構築手段としてのモデル構築部10aと、流体としての溶融樹脂の流動過程を数値解析する数値解析手段としての数値解析部10b等とが設けられている。
なお、数値解析部10bには、後述するシェルメッシュ3を構成する微小要素30間での肉厚差Δtの計算を行う肉厚差計算手段も具備されている(図3参照)。
補助記憶装置11は、ハードディスク装置等で構成されており、解析装置10に対して、外付け若しくは内蔵されて接続されている。この補助記憶装置11には、各種プログラムやデータ等が格納されており、各種プログラムとしては、シェルメッシュ3(解析モデル)を構築するためのモデル構築プログラムや、数値解析を行う数値解析プログラム等が格納されている。この各種プログラムは、実行される際に解析装置の主記憶装置に読み取られる。また、データとしては、射出成形品2の形状データや、射出成形品2を形成する樹脂の材質ごとに、物理定数や数値解析に必要な計算式(関数)などが格納されている。各種プログラム及びデータは、オペレータにより変更して書き換え可能とされる。
入力装置12は、キーボードやマウス等で構成され、例えば、解析される射出成形品2の射出成形条件や形状データの入力等が行われる。入力されたデータ等は、補助記憶装置11に格納される。なお、この入力装置12には、後述するCADインターフェースも含まれる。
出力装置13は、CRTやプリンタ等で構成され、解析装置10により得られた解析結果が出力される。
流動解析装置1を用いて流動解析が行われる際には、まず、入力装置12により後述する射出成形条件と形状データが入力されて、補助記憶装置11に格納される。次いで、解析装置10は、補助記憶装置11に格納されたデータを主記憶装置に読み込みこんで数値流動解析を行う。そして、得られた解析結果は、出力装置13より外部出力されるとともに、補助記憶装置11に格納される。
なお、本実施例の流動解析装置1は、上述した構成に限定されず、例えば、解析装置10に、解析結果に基づいて構造解析を行う構造解析部等が別途設けられてもよい。
図2に示すように、本実施例の射出成形品2は、自動車のフロントバンパなど薄肉でかつ大型の樹脂部品として構成されている。具体的には、射出成形品2は、バンパ本体部20の縁部20aの一部に、内側に略直角に屈曲された薄肉のフランジ部21・21・・・が形成されている。また、成形用の金型には、射出成形品2の形状と合致するように形成されたキャビティが設けられており、ゲートを介してキャビティ内に溶融樹脂が射出される。
次に、本実施例の流動解析装置1を用いた射出成形の流動解析について、以下に概説する。
図3に示すように、本実施例の流動解析装置1を用いた射出成形の流動解析では、射出成形品2の形状を複数の微小要素30・30・・・に分割したシェルメッシュ3を用いて、流体の流動過程が数値解析される。この流動解析によって、溶融樹脂の流れ解析、ウェルドライン解析、エアトラップ解析などの他に、射出成形品2の反り解析などの解析結果が得られる。以下、本実施例では、本実施例の流動解析装置1を用いた射出成形の流れ解析について説明する。
ここで、流れ解析とは、成形過程で充填される溶融樹脂のメルトフロントの流動分布を解析することをいい、この流れ解析によって、流体の流動パターンを、実際の金型キャビティ内での溶融樹脂の流動現象に則してシミュレーション(プロセス・シュミレーション)することができる。
はじめに、射出成形品2の射出成形条件が特定される(S100)。このステップでは、流動解析装置1の入力装置12によって、オペレータにより射出成形条件が入力されて、補助記憶装置11に記憶される。
この射出成形条件には、成形材料として用いる樹脂の密度、比熱、潜熱、熱伝導率、流動停止温度、固化温度、熱伝導率、粘性などの樹脂データと、熱伝導率、比熱などの金型データと、初期樹脂温度、初期金型温度、射出圧力、射出流速などの射出データ等が含まれる。
次に、解析対象となる射出成形品2の形状データが特定される(S101)。このステップでは、射出成形品2の形状データが入力され、入力された形状データに基づいて、射出成形品2の3次元形状が特定される。
本実施例では、射出成形品2の形状データを入力する際には、オペレータによる手入力の他に、図示せぬCADインターフェースを用いて、射出成形品2を設計する際に用いられたCADデータ若しくはCADの立体情報データを入力することができる。これらのCADデータを用いて、射出成形品2の3次元形状が定義される。なお、立体情報データとは、CADで設計する際の手順や、各種ポイント、カーブ、サーフェース、ボリューム等の詳細な情報よりなるデータのことをいう。
次いで、射出成形品2のシェルメッシュ3が構築される(S102)。このステップでは、解析装置10に記憶されたモデル構築プログラムによって、特定された射出成形品2の3次元形状がメッシュ分割されて、シェルメッシュ3が構築される。
本実施例では、解析対象となる射出成形品2の解析モデルとして、2次元のシェルメッシュ3が作成され、このシェルメッシュ3にゲート位置情報やランナー情報などが付加さされる。
具体的には、図4に示すように、シェルメッシュ3は、射出成形品2の形状の断面形状が複数の微小要素30・30・・・にメッシュ分割されて作成される(図4(a)参照)。具体的には、シェルメッシュ3は、本来厚みを有している射出成形品2を、厚みのない三角形平面の微小要素30の集合体に置き換えたものであり、射出成形品2の肉厚方向の略中央(若しくは表裏面)を基準平面として各微小要素30の位置が合わせられ(図4(b)参照)、この基準平面に沿って複数の微小要素30・30・・・に分割される。
次いで、シェルメッシュ3の肉厚tが設定される(S103)。このステップでは、各微小要素30に射出成形品2の板厚(肉厚t)に関する数値が設定される。肉厚tは、射出成形品2を構成するある壁面から他方の壁面への垂線の長さとして計算されるか(図4(b)参照)、若しくは、座標ごとの数値として任意に入力されてもよい。肉厚の入力方法としては、上述したように、他のCADデータやCADの立体情報データなどで計算された値を微小要素30ごとの数値に変換して入力されてもよい。
次いで、作成されたシェルメッシュ3を用いて数値解析が行われる(S104)。このステップでは、作成されたシェルメッシュ3(解析モデル)に基づいて、有限要素法などを用いた数値解析が行われ、溶融樹脂の流動パターンがシミュレーションされる。
本実施例では、各微小要素30における流体の粘弾性挙動を関数化した関数を含む、次の粘度式(1)が演算処理されて流れ解析が行われる。
μ=f(‘γ、T)・g(Δt、v) (1)
具体的には、粘度式(1)は、各微小要素30における流体のせん断速度‘γ及び温度Tを変数とする関数fと、微小要素間での肉厚差Δt及び流体の速度vを変数とする関数gとの積で表される。
本実施例の数値解析では、射出成形における流体としての溶融樹脂が、水等の粘性体と金属等の弾性体との性質を併せ持つ粘弾性体としての流動挙動を示すことから、流体流れが、非圧縮性非ニュートン流体の二次元非等温流れとして取り扱われる。
そこで、関数fは、例えば、従来のアレニウス型べき乗モデル(べき指数則に基づく粘性方程式)として任意の関数で定義される。
関数gにおける肉厚差Δtは、微小要素30ごとに計算され、該当する微小要素30と、これに隣接する微小要素30との間の肉厚tの変化量で表される。
ここで、所定の微小要素30の肉厚t1、これに流体の流れ方向の川上に隣接する微小要素30の肉厚t2とすると、当該所定の微小要素30の肉厚差Δtは、肉厚t1と肉厚t2との差(Δt=t1−t2)より求められる。なお、肉厚t2は、流体の流れ方向の川上に位置する微小要素30の平均値として表される。
例えば、肉厚差Δtがマイナスになると、川上に隣接する微小要素30よりも所定の微小要素30の肉厚t1が縮小すること表している。一方、肉厚差Δtがプラスになると、川上に隣接する微小要素30よりも所定の微小要素30の肉厚t1が拡大することを表している。
図5に示すように、関数gは、肉厚差Δtがゼロからマイナス側(図5において左側)に大きくなればなるほどg(Δt)が増加し、肉厚差Δtがゼロからプラス側(図5において右側)に大きくなればなるほどg(Δt)が減少する任意の関数として定義される。これは、流体は肉厚の小さな部位を流れる際にその流動性が低下するため、肉厚差Δtがゼロからマイナス側へ増加するにつれて、流体の粘度μが増加することを表している。一方で、流体は肉厚の大きな部位を流れる際にその流動性が増加するため、肉厚差Δtがゼロからプラス側へ増加するにつれて、流体の粘度μが減少することを表している。
また、関数gは、各微小要素30の流体の速度vが大きいほど、g(Δt)の増減率が大きくなる関数として定義される。例えば、図5に示したように、流体の速度vが、v1〜v3と大きくなる(v1<v2<v3)につれて、g(Δt)の増減の変動率が大きくなる。
なお、関数gにおいては、予め、代表的な射出成形品2の例などを用いて試験を行うことで、使用される物理定数が決定される。
本実施例では、上述した粘度式(1)の他に、物体の各部(各微小要素30)における変形状態とそこに働く応力との関係を表した構成方程式、質量保存を表す連続式、運動量の保存を表す運動方程式(例えば、Navier−Storks近似式)、エネルギー保存の方程式などの計算式が用いられる。これらの計算式は、汎用の計算式を用いることができる。これらの計算式の連立方程式は、粘度式(1)を含めて、解析プログラムによって演算処理される。
得られた解析結果は、例えばグラフィック処理されて、等高線あるいはグラフなどの形式で出力装置13にて画像表示される。
以上のように、本実施例では、射出成形品2を複数の微小要素30・30・・・に分割したシェルメッシュ3を用いて、流体の流動過程を数値解析する射出成形の流動解析方法において、微小要素30ごとに、肉厚差Δtと流体の速度vとで表される関数を含む粘度式(1)を演算処理して、流体の流れ解析を行うものであるため、粘度式(1)が、流体の粘弾性挙動を関数化した肉厚差Δtと流体の速度vとで表される関数gを含む簡易な粘度式で表すことで、まず、数値解析の際に、フランジやリブ等の肉厚tの急縮小部やコーナでの肉厚tの変化が、流体の流動挙動に及ぼす影響を考慮することができ、流体の複雑な粘弾性挙動を考慮した場合と等価な検討が可能となって、高精度に流体の流れ解析を行うことができる。
また、従来、粘弾性流体(溶融樹脂)のレオロジー特性を記述する構成方程式(モデル)としてLeonovモデルやGiesekusモデルなどを用いた数値解析では、計算機のメモリの制限や、計算方法が複雑となって計算時間がかかってしまうといった問題があったが、本実施例の方法では、数値解析における計算方法が簡易となり、演算処理の負担を軽減できる。
なお、粘度式(1)の関数gにおける肉厚差Δtは、上述した実施例の他に、肉厚t1と肉厚t2との差(Δt=t2−t1)より求められてもよい。この場合には、肉厚差Δtがプラスになると、川上に隣接する微小要素30よりも所定の微小要素30の肉厚t1が縮小し、肉厚差Δtがマイナスになると、川上に隣接する微小要素30よりも所定の微小要素30の肉厚t1が拡張することを表す。そのため、関数gは、肉厚差Δtがプラス側(図5において右側)に大きくなればなるほどg(Δt)が増加する関数であり、肉厚差Δtがマイナス側(図5において左側)に大きくなればなるほどg(Δt)が減少する関数として定義される。
また、所定の微小要素30に対して、流体の流れ方向の下流に隣接する微小要素30との肉厚差より求められてもよい。
本発明の一実施例に係る流動解析装置の全体的な構成を示した機能ブロック図。 フロンドバンパ端部の斜視図。 本実施例の流動解析装置を用いた流体の流れ解析のフローチャート。 シェルモデルの配置構成図。 粘度式に含まれる関数gにおける肉厚差及び流体の速度の関係をプロットした図。
1 流動解析装置
2 射出成形品
3 シェルメッシュ
30 微小要素
Δt 肉厚差
v 流体の速度

Claims (6)

  1. 射出成形品の形状を複数の微小要素に分割したシェルメッシュを用いて、流体の流動過程を数値解析する射出成形の流動解析方法において、
    前記微小要素に、射出成形品の板厚に関する数値である肉厚を設定し、
    所定の微小要素の肉厚と、該微小要素に流体の流れ方向の川上に隣接する微小要素の肉厚と、の差より求められる肉厚差を、微小要素ごとに計算し、
    前記微小要素ごとに、前記肉厚差と流体の速度とで表される関数を含む粘度式を演算処理して、流体の流れ解析を行うことを特徴とする射出成形の流動解析方法。
  2. 入力された各微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うことを特徴とする請求項1に記載の射出成形の流動解析方法。
  3. 射出成形品のCADデータより算出された微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うことを特徴とする請求項1に記載の射出成形の流動解析方法。
  4. 射出成形品の形状を複数の微小要素に分割したシェルメッシュを構築するモデル構築手段と、該シェルメッシュを用いて流体の流動過程を数値解析する数値解析手段とを具備してなる射出成形の流動解析装置において、
    前記数値解析手段は、
    前記微小要素に、射出成形品の板厚に関する数値である肉厚を設定し、所定の微小要素の肉厚と、該微小要素に流体の流れ方向の川上に隣接する微小要素の肉厚と、の差より求められる肉厚差を、微小要素ごとに計算する肉厚差計算手段を具備し、
    前記微小要素ごとに、前記肉厚差と流体の速度とで表される関数を含む粘度式を演算処理することを特徴とする射出成形の流動解析装置。
  5. 前記肉厚差計算手段は、入力された各微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うことを特徴とする請求項4に記載の射出成形の流動解析装置。
  6. 前記肉厚差計算手段は、射出成形品のCADデータより算出された前記微小要素の肉厚に基づいて、各微小要素間での肉厚差の計算を行うことを特徴とする請求項4に記載の射出成形の流動解析装置。
JP2007028501A 2007-02-07 2007-02-07 射出成形の流動解析方法及びその装置 Expired - Fee Related JP4844421B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028501A JP4844421B2 (ja) 2007-02-07 2007-02-07 射出成形の流動解析方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028501A JP4844421B2 (ja) 2007-02-07 2007-02-07 射出成形の流動解析方法及びその装置

Publications (2)

Publication Number Publication Date
JP2008188957A JP2008188957A (ja) 2008-08-21
JP4844421B2 true JP4844421B2 (ja) 2011-12-28

Family

ID=39749503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028501A Expired - Fee Related JP4844421B2 (ja) 2007-02-07 2007-02-07 射出成形の流動解析方法及びその装置

Country Status (1)

Country Link
JP (1) JP4844421B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572833B2 (ja) * 1996-12-19 2004-10-06 株式会社デンソー 樹脂封止型半導体装置の製造方法
JP3804400B2 (ja) * 2000-05-10 2006-08-02 株式会社日立製作所 3次元発泡解析方法、それを用いた製品設計支援方法及びそれらを記録した記録媒体
JP2003228594A (ja) * 2002-02-06 2003-08-15 Toray Ind Inc 数値解析方法および装置
JP2003271678A (ja) * 2002-03-18 2003-09-26 Toray Ind Inc 数値解析方法および装置
JP4006316B2 (ja) * 2002-11-06 2007-11-14 キヤノン株式会社 樹脂流動解析方法及びその装置
JP3840173B2 (ja) * 2002-11-15 2006-11-01 キヤノン株式会社 三次元解析用メッシュ生成方法、三次元解析用メッシュ生成装置、プログラムおよび記憶媒体
JP2006072573A (ja) * 2004-08-31 2006-03-16 Toyota Motor Corp モデル作成装置およびモデル作成プログラム

Also Published As

Publication number Publication date
JP2008188957A (ja) 2008-08-21

Similar Documents

Publication Publication Date Title
US9283695B1 (en) Computer-implemented simulation method and non-transitory computer medium capable of predicting fiber orientation for use in a molding process
KR20020041446A (ko) 성형공동내로 유체를 사출하는 것을 모형화하는 방법 및장치
JP2007122269A (ja) 流体−構造体の連成数値シミュレーション方法及び流体−構造体の連成数値シミュレーション用記憶装置のプログラム
US8768662B2 (en) Predicting shrinkage of injection molded products with viscoelastic characteristic
US9409335B1 (en) Computer-implemented simulation method and non-transitory computer medium for use in molding process
Zhou et al. Numerical filling simulation of injection molding based on 3D finite element model
US10427344B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
Kim et al. Non-isothermal non-Newtonian three-dimensional flow simulation of fused filament fabrication
de Miranda et al. Evaluation of the predictive capacity of viscosity models in polymer melt filling simulations
Hétu et al. Numerical modeling of casting processes
JP4844421B2 (ja) 射出成形の流動解析方法及びその装置
JP2008191830A (ja) 樹脂流動解析プログラム、樹脂流動解析装置、及び樹脂流動解析方法
JP4765883B2 (ja) 発泡射出成形品の品質予測システム、プログラム、及び方法
JP3641882B2 (ja) 流体流動過程の解析方法および射出成形品の製造方法
JP2003271678A (ja) 数値解析方法および装置
JP2004318863A (ja) 成形品の設計支援方法および装置
Nakhoul et al. A multiphase Eulerian approach for modelling the polymer injection into a textured mould
US10960592B2 (en) Computer-implemented simulation method for injection-molding process
JP4807280B2 (ja) 射出成形品の品質予測装置、方法およびプログラム
Zhou et al. Integrated simulation of the injection molding process with stereolithography molds
JP2008001088A (ja) 2次ウェルドライン予測方法および装置、そのプログラム、記憶媒体およびそれらを用いた成形品の製造方法
JP4032755B2 (ja) 成型シミュレーション方法、成型シミュレーション装置及び成型シミュレーションプログラム並びに当該成型シミュレーションプログラムを記録したコンピュータ読みとり可能な記録媒体
JP2000211005A (ja) 射出成形品の欠陥予測・評価方法及び欠陥予測・評価装置
EP3511149B1 (en) Curvature deformation prevention design method for resin molded article, program, recording medium, and curvature deformation prevention design apparatus for resin molded article
JP3582930B2 (ja) 射出成型品の製造方案

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees