JP4820792B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4820792B2
JP4820792B2 JP2007254810A JP2007254810A JP4820792B2 JP 4820792 B2 JP4820792 B2 JP 4820792B2 JP 2007254810 A JP2007254810 A JP 2007254810A JP 2007254810 A JP2007254810 A JP 2007254810A JP 4820792 B2 JP4820792 B2 JP 4820792B2
Authority
JP
Japan
Prior art keywords
receiving chamber
pressure receiving
chamber side
pressure
rubber film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007254810A
Other languages
Japanese (ja)
Other versions
JP2009085313A (en
Inventor
達也 鈴木
浩一 長谷川
篤 村松
英揮 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2007254810A priority Critical patent/JP4820792B2/en
Publication of JP2009085313A publication Critical patent/JP2009085313A/en
Application granted granted Critical
Publication of JP4820792B2 publication Critical patent/JP4820792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、内部の流体室に封入された非圧縮性流体の流動作用に基づき防振効果を得るようにした流体封入式防振装置に係り、特に、流体室の圧力変動を吸収する液圧吸収機構を備えた流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains a vibration isolation effect based on the flow action of an incompressible fluid enclosed in an internal fluid chamber, and in particular, a hydraulic pressure that absorbs pressure fluctuations in the fluid chamber. The present invention relates to a fluid-filled vibration isolator having an absorption mechanism.

従来から、振動伝達系を構成する部材間に介装される防振連結体や防振支持体等の防振装置の一種として、非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置が知られている。この流体封入式防振装置は、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結して、壁部の一部が本体ゴム弾性体で構成されて非圧縮性流体が封入された受圧室と、壁部の一部が変形容易な可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、両室をオリフィス通路を通じて相互に連通せしめた構造とされている。このような構造によれば、振動入力に伴い受圧室と平衡室の間に相対的な圧力変動が生じて、オリフィス通路を通じて流動せしめられる流体の共振作用等の流動作用に基づき防振効果としてのオリフィス効果が得られる。かくの如き流体封入式防振装置は、例えば、自動車用のエンジンマウントやボデーマウント、デフマウントの他サスペンションメンバマウント等への適用が検討されている。   Conventionally, as a type of vibration isolator such as an anti-vibration coupling body and an anti-vibration support body interposed between members constituting a vibration transmission system, an anti-vibration effect is obtained based on the flow action of an incompressible fluid. There has been known a fluid-filled vibration isolator. In this fluid-filled vibration isolator, the first mounting member and the second mounting member are connected by the main rubber elastic body, and a part of the wall portion is configured by the main rubber elastic body to enclose the incompressible fluid. The pressure receiving chamber is formed with an equilibrium chamber in which a part of the wall portion is made of a flexible membrane that is easily deformed and in which an incompressible fluid is sealed, and the two chambers communicate with each other through an orifice passage. It is said that. According to such a structure, a relative pressure fluctuation occurs between the pressure receiving chamber and the equilibrium chamber due to the vibration input, and the vibration isolation effect is based on the fluid action such as the resonance action of the fluid that flows through the orifice passage. An orifice effect is obtained. Such a fluid-filled vibration isolator has been studied for application to, for example, an automobile engine mount, body mount, and differential mount as well as a suspension member mount.

さらに、上述の流体封入式防振装置の発展型として、液圧吸収機構を備えた流体封入式防振装置がある。この液圧吸収機構は、受圧室と平衡室の間に可動ゴム膜を配設して、可動ゴム膜の一方の面に受圧室の圧力が及ぼされ且つ他方の面に平衡室の圧力が及ぼされるようになっており、受圧室と平衡室の間の相対的な圧力差による可動ゴム膜の変形によって、受圧室の圧力変動を吸収する構造とされている。それによって、例えば、オリフィス通路のチューニング周波数よりも高周波数域で問題となる振動が入力された場合に、受圧室の圧力変動が可動ゴム膜の弾性変形により吸収されて、高動ばね化が回避されることから、防振効果の安定化が図られる。   Furthermore, as a development type of the above-described fluid-filled vibration isolator, there is a fluid-filled vibration isolator equipped with a hydraulic pressure absorbing mechanism. In this hydraulic pressure absorbing mechanism, a movable rubber film is disposed between the pressure receiving chamber and the equilibrium chamber so that the pressure of the pressure receiving chamber is exerted on one surface of the movable rubber film and the pressure of the equilibrium chamber is exerted on the other surface. The structure is such that the pressure fluctuation in the pressure receiving chamber is absorbed by deformation of the movable rubber film due to the relative pressure difference between the pressure receiving chamber and the equilibrium chamber. As a result, for example, when a problem vibration is input in a frequency range higher than the tuning frequency of the orifice passage, the pressure fluctuation in the pressure receiving chamber is absorbed by the elastic deformation of the movable rubber film, thereby avoiding a high dynamic spring. Therefore, stabilization of the vibration isolation effect is achieved.

ところで、上述の流体封入式防振装置においては、第一の取付部材と第二の取付部材の間に衝撃的に大きな振動荷重が入力されると、受圧室に過大な負圧が生ぜしめられて、流体中に溶存していた空気が分離して、キャビテーション等と称される気泡を発生することがあった。そして、かかる気泡の崩壊に伴い水撃圧が生じて、これが第一の取付部材や第二の取付部材等に伝播すると、自動車のボデー等の防振対象部材に伝達されて、問題となる異音や振動が生ぜしめられるおそれがあった。   By the way, in the above-described fluid-filled vibration isolator, when a large vibration load is applied between the first mounting member and the second mounting member, an excessive negative pressure is generated in the pressure receiving chamber. In some cases, air dissolved in the fluid is separated to generate bubbles called cavitation or the like. When the water hammer pressure is generated along with the collapse of the bubbles and propagates to the first mounting member or the second mounting member, the water hammer pressure is transmitted to the vibration-proof target member such as the body of the automobile, which causes a problem. There was a risk of sound and vibration.

そこで、このような問題に対処するために、例えば特許文献1(特開2007−107712号公報)には、オリフィス通路の一部を利用してリリーフ機構を設けた構造が提案されている。即ち、オリフィス通路の一部を利用して短絡流路を仕切部材に形成すると共に、短絡流路の受圧室側の開口部にリリーフ弁を設ける。そして、衝撃的な振動入力時に、受圧室の負圧の作用によってリリーフ弁を開き、受圧室と平衡室を短絡流路を通じて短絡せしめる。これにより、受圧室の圧力と平衡室の圧力が平衡状態に向かい、受圧室の圧力がキャビテーションを発生する負圧に到達することが回避されることから、キャビテーションに起因する異音や振動の発生が防止される。   In order to deal with such a problem, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2007-107712) proposes a structure in which a relief mechanism is provided by using a part of an orifice passage. That is, a short-circuit channel is formed in the partition member using a part of the orifice passage, and a relief valve is provided in the opening on the pressure receiving chamber side of the short-circuit channel. At the time of shocking vibration input, the relief valve is opened by the action of the negative pressure of the pressure receiving chamber, and the pressure receiving chamber and the equilibrium chamber are short-circuited through the short-circuit channel. As a result, the pressure in the pressure receiving chamber and the pressure in the equilibrium chamber are brought into an equilibrium state, and the pressure in the pressure receiving chamber is prevented from reaching a negative pressure that generates cavitation. Is prevented.

ところが、特許文献1に記載の流体封入式防振装置では、リリーフ弁が仕切部材や可動ゴム膜等と別途配設されることにより、部品点数が増加すると共に、リリーフ弁における成形工程や組み付け工程等の製造工程が増えて、製造コストが高くなる問題があった。しかも、短絡流路がオリフィス通路の一部を利用して形成されていることから、オリフィス通路の設計自由度が制限されたり、オリフィス通路の壁部の一部がリリーフ弁で構成されることによって、オリフィス通路を通じての流体の流動作用が安定して生ぜしめられ難くなる可能性があった。   However, in the fluid-filled vibration isolator described in Patent Document 1, the relief valve is provided separately from the partition member, the movable rubber film, and the like, so that the number of parts increases and the molding process and assembly process of the relief valve are performed. There has been a problem that the manufacturing cost is increased due to an increase in the manufacturing process. In addition, since the short-circuit flow path is formed by using a part of the orifice passage, the degree of freedom in designing the orifice passage is limited, or a part of the wall of the orifice passage is constituted by a relief valve. There is a possibility that the fluid flow action through the orifice passage may not be stably generated.

なお、かかる問題に対処するため、例えば特許文献2(特開昭61−294236号公報)にも示されているように、可動ゴム膜に切れ込み等を入れておき、受圧室の負圧状態で、可動ゴム膜の変形による切れ込み部分の開口に基づきスリットを発現せしめて、このスリットを通じて受圧室と平衡室を短絡せしめることが考えられる。即ち、可動ゴム膜の弾性変形を利用して受圧室のリリーフ機構が構成されることから、リリーフ弁を別途設ける必要がなくなって、部品点数や製造工程の削減が図られるのである。   In order to deal with such a problem, for example, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 61-294236), a cut or the like is made in the movable rubber film so that the pressure receiving chamber is in a negative pressure state. It is conceivable that a slit is developed based on the opening of the cut portion due to the deformation of the movable rubber film, and the pressure receiving chamber and the equilibrium chamber are short-circuited through the slit. That is, since the relief mechanism of the pressure receiving chamber is configured using elastic deformation of the movable rubber film, it is not necessary to provide a relief valve separately, and the number of parts and the manufacturing process can be reduced.

しかしながら、特許文献2に係る流体封入式防振装置においては、可動ゴム膜に切れ込みが設けられていることで、切れ込み部を開口せしめる必要がない過大な正圧等が受圧室に生じた際にも、可動ゴム膜が弾性変形して、切れ込み部が開口せしめられる可能性があった。そのため、防振すべきオリフィス通路のチューニング周波数域の振動入力時等にも、受圧室と平衡室が短絡して、オリフィス通路を通じての流体流動量が充分に確保され難くなり、目的とするオリフィス効果が安定して得られ難い問題を内在していた。しかも、可動ゴム膜が繰り返し弾性変形することで、切れ込み部の端部の亀裂が伸長して、可動ゴム膜の耐久性が問題となり易い可能性があった。   However, in the fluid-filled vibration isolator according to Patent Document 2, when the movable rubber film is provided with a cut, an excessive positive pressure or the like that does not require opening the cut portion is generated in the pressure receiving chamber. However, there is a possibility that the movable rubber film is elastically deformed and the cut portion is opened. For this reason, the pressure receiving chamber and the equilibrium chamber are short-circuited even when vibration is input in the tuning frequency range of the orifice passage to be vibrated, making it difficult to secure a sufficient amount of fluid flow through the orifice passage. However, there were problems that were difficult to obtain stably. In addition, since the movable rubber film is repeatedly elastically deformed, the crack at the end of the cut portion may be extended, and the durability of the movable rubber film may easily become a problem.

特開2007−107712号公報JP 2007-107712 A 特開昭61−294236号公報JP-A 61-294236

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、受圧室のリリーフ機構の部品点数や製造工程が削減されて、低コスト化が図られることに加えて、オリフィス通路を通じての流体の流動作用に基づく防振効果が安定して得られる、新規な構造の流体封入式防振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that the number of parts of the relief mechanism of the pressure receiving chamber and the manufacturing process are reduced, thereby reducing the cost. In addition to being shown, it is an object of the present invention to provide a fluid-filled vibration isolator having a novel structure that can stably obtain a vibration isolating effect based on a fluid flow action through an orifice passage.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結すると共に、本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、可撓性膜で壁部の一部が構成されて非圧縮性流体が封入された平衡室を形成して、それら受圧室と平衡室をオリフィス通路によって相互に連通すると共に、それら受圧室と平衡室の間に可動ゴム膜を配設して可動ゴム膜の一方の面に受圧室の圧力が及ぼされるようにすると共に可動ゴム膜の他方の面に平衡室の圧力が及ぼされるようにすることにより受圧室の微小圧力変動を吸収する液圧吸収機構を構成した流体封入式防振装置において、可動ゴム膜にリリーフ用孔を貫通形成すると共に、リリーフ用孔の周囲において可動ゴム膜の一方の面上に突出する受圧室側筒状突部を可動ゴム膜に一体形成する一方、リリーフ用孔の形成部位において可動ゴム膜の一方の面側に受圧室側当接部材を配設すると共に可動ゴム膜の他方の面に平衡室側当接部材を配設して、リリーフ用孔の一方の開口部を構成する受圧室側筒状突部の突出先端面を受圧室側当接部材に当接させると共に、受圧室側筒状突部の内部を受圧室側当接部材に形成された連通孔を通じて受圧室に連通せしめる一方、リリーフ用孔の他方の開口周縁部を平衡室側当接部材に対して全周に亘って密接状態で当接させてリリーフ用孔を平衡室側当接部材で閉塞せしめた流体封入式防振装置にある。   That is, the present invention is characterized in that the first mounting member and the second mounting member are connected by the main rubber elastic body, and a part of the wall portion is configured by the main rubber elastic body so that the incompressible fluid is formed. And a pressure-receiving chamber in which a part of the wall portion is formed by a flexible membrane to form an incompressible fluid, and the pressure-receiving chamber and the equilibrium chamber communicate with each other by an orifice passage. In addition, a movable rubber film is disposed between the pressure receiving chamber and the equilibrium chamber so that the pressure of the pressure receiving chamber is exerted on one surface of the movable rubber film and the equilibrium chamber is disposed on the other surface of the movable rubber film. In a fluid-filled vibration isolator configured with a hydraulic pressure absorption mechanism that absorbs minute pressure fluctuations in the pressure receiving chamber by applying pressure, a relief hole is formed through the movable rubber film, and the relief hole Projecting on one side of the movable rubber film around The pressure-receiving chamber side cylindrical protrusion is integrally formed on the movable rubber film, while the pressure-receiving chamber side contact member is disposed on one surface side of the movable rubber film at the relief hole forming portion and the other of the movable rubber film An equilibrium chamber side abutting member is disposed on the surface of the pressure chamber, and the projecting tip surface of the pressure receiving chamber side cylindrical projection constituting one opening of the relief hole is brought into contact with the pressure receiving chamber side abutting member, The inside of the pressure-receiving chamber side cylindrical protrusion is communicated with the pressure-receiving chamber through a communication hole formed in the pressure-receiving chamber side abutting member, while the other opening peripheral edge of the relief hole is fully connected to the equilibrium chamber-side abutting member. In the fluid-filled vibration isolator, the relief holes are closed in close contact with each other around the circumference and closed by the equilibrium chamber side contact member.

このような本発明に従う構造とされた流体封入式防振装置においては、衝撃的な荷重が入力されて、受圧室に負圧が生じると、可動ゴム膜が受圧室側に向かって弾性変形する。この変形に伴い、可動ゴム膜と一体形成された受圧室側筒状突部が、受圧室側当接部材と可動ゴム膜の間で軸方向に圧縮変形すると共に、受圧室側筒状突部と反対側におけるリリーフ用孔の他方の開口周縁部が、受圧室側筒状部材の圧縮変形量に相当する分だけ受圧室側に向かって変位する。これにより、リリーフ用孔の他方の開口周縁部が平衡室側当接部材から離隔して、連通孔とリリーフ用孔を通じて受圧室と平衡室が短絡することから、受圧室の圧力と平衡室の圧力が平衡状態に向かい、受圧室の過大な負圧状態が解消されるリリーフ効果が得られる。その結果、受圧室の圧力がキャビテーションを発生する負圧に到ることが回避されて、キャビテーションに起因する異音や振動が防止される。   In such a fluid-filled vibration isolator having a structure according to the present invention, when a shock load is input and a negative pressure is generated in the pressure receiving chamber, the movable rubber film is elastically deformed toward the pressure receiving chamber. . Along with this deformation, the pressure receiving chamber side cylindrical protrusion integrally formed with the movable rubber film is compressed and deformed in the axial direction between the pressure receiving chamber side contact member and the movable rubber film, and the pressure receiving chamber side cylindrical protrusion. The other opening peripheral edge of the relief hole on the opposite side is displaced toward the pressure receiving chamber side by an amount corresponding to the amount of compressive deformation of the pressure receiving chamber side tubular member. Accordingly, the other opening peripheral edge of the relief hole is separated from the equilibrium chamber side contact member, and the pressure receiving chamber and the equilibrium chamber are short-circuited through the communication hole and the relief hole. The pressure is brought into an equilibrium state, and a relief effect is obtained in which the excessive negative pressure state of the pressure receiving chamber is eliminated. As a result, the pressure in the pressure receiving chamber is prevented from reaching a negative pressure that causes cavitation, and abnormal noise and vibration due to cavitation are prevented.

特に本構造では、受圧室の過負圧状態を解消させるリリーフ機構が、可動ゴム膜に形成されたリリーフ用孔や受圧室側筒状突部を含んで構成されており、受圧室が負圧になった際の可動ゴム膜および受圧室側筒状突部の変形を利用してリリーフ効果が発揮されるようになっている。従って、リリーフ機構と可動ゴム膜による液圧吸収機構が一体的に設けられていることから、両機構を備えた防振装置が少ない部品点数で実現されると共に、製造工程の短縮化が図られて、製造コストが効果的に低減され得る。   In particular, in this structure, the relief mechanism that eliminates the over-negative pressure state of the pressure receiving chamber is configured to include a relief hole formed in the movable rubber film and a pressure-receiving chamber side cylindrical projection, and the pressure receiving chamber is negative pressure. The relief effect is exhibited by utilizing the deformation of the movable rubber film and the pressure-receiving chamber side cylindrical protrusion when the pressure is reduced. Accordingly, since the relief mechanism and the hydraulic pressure absorption mechanism using the movable rubber film are integrally provided, the vibration isolator equipped with both mechanisms can be realized with a small number of parts and the manufacturing process can be shortened. Thus, the manufacturing cost can be effectively reduced.

しかも、リリーフ機構が可動ゴム膜側に設けられていることによって、オリフィス通路の設計自由度が有効に確保されることに加え、オリフィス通路を通じての流体流動量が充分に確保される。即ち、可動ゴム膜の共振周波数が、一般に、オリフィス通路を通じて流動せしめられる流体の共振周波数に比して高周波数域に設定されていることにより、オリフィス通路のチューニング周波数域の振動入力時に、可動ゴム膜が変形され難くなっている。これにより、可動ゴム膜の変形に伴う受圧室側筒状突部の変形も抑えられて、リリーフ用孔の他方の開口周縁部と平衡室側当接部材との当接状態が良好に維持される。それ故、オリフィス通路のチューニング周波数域の振動入力時に、受圧室の圧力がリリーフ用孔を通じて漏れることが抑えられ、オリフィス通路を通じての流体流動量が充分に確保されることに基づき、優れたオリフィス効果が得られるのである。   In addition, since the relief mechanism is provided on the movable rubber film side, the degree of freedom in designing the orifice passage is effectively ensured, and the amount of fluid flow through the orifice passage is sufficiently secured. That is, since the resonance frequency of the movable rubber film is generally set in a high frequency range as compared with the resonance frequency of the fluid that flows through the orifice passage, the movable rubber membrane can be used at the time of vibration input in the tuning frequency range of the orifice passage. The film is difficult to deform. As a result, deformation of the pressure-receiving chamber side cylindrical projection due to deformation of the movable rubber film is also suppressed, and the contact state between the other opening peripheral edge of the relief hole and the equilibrium chamber side contact member is maintained well. The Therefore, when the vibration in the tuning frequency range of the orifice passage is input, the pressure in the pressure receiving chamber is prevented from leaking through the relief hole, and the fluid flow rate through the orifice passage is sufficiently secured. Is obtained.

また、本発明に係る流体封入式防振装置では、受圧室側当接部材における受圧室側筒状突部の当接部分において、受圧室側筒状突部の内部に直接に開口して受圧室側筒状突部の内部を受圧室に連通せしめる連通孔が形成されていても良い。このような構造によれば、受圧室側当接部材に形成された連通孔と受圧室側筒状突部の内部にあるリリーフ用孔が直接に接続せしめられることから、受圧室と平衡室を短絡せしめる流路長さの短縮化とそれに伴うリリーフ効果の向上が図られ得る。   Further, in the fluid filled type vibration damping device according to the present invention, the pressure receiving chamber side cylindrical projecting portion of the pressure receiving chamber side contacting member opens directly into the pressure receiving chamber side cylindrical projecting portion to receive the pressure. A communication hole that allows the inside of the chamber-side cylindrical projection to communicate with the pressure receiving chamber may be formed. According to such a structure, since the communication hole formed in the pressure receiving chamber side contact member and the relief hole in the pressure receiving chamber side cylindrical projection are directly connected, the pressure receiving chamber and the equilibrium chamber are connected. It is possible to shorten the length of the channel that causes the short circuit and to improve the relief effect associated therewith.

また、本発明に係る流体封入式防振装置では、可動ゴム膜におけるリリーフ用孔が、可動ゴム膜の中央に位置して一つ形成されている構造が、採用されても良い。このような構造によれば、リリーフ用孔の受圧室側当接部材および平衡室側当接部材に対する周方向の位置決めが不要となって、可動ゴム膜の組み付けが一層楽になる。   In the fluid filled type vibration isolator according to the present invention, a structure in which one relief hole in the movable rubber film is formed at the center of the movable rubber film may be employed. According to such a structure, positioning of the relief hole in the circumferential direction with respect to the pressure receiving chamber side contact member and the equilibrium chamber side contact member becomes unnecessary, and the assembly of the movable rubber film is further facilitated.

また、本発明に係る流体封入式防振装置では、受圧室側筒状突部の突出先端面が、その全周に亘って受圧室側当接部材に対して当接せしめられている構造が、採用されても良い。このような構造によれば、受圧室側筒状突部と受圧室側当接部材の当接状態が安定して、筒状突部における軸方向の安定した圧縮変形に基づき、リリーフ用孔の他方の開口部と平衡室側当接部材の離隔状態が安定する。これにより、受圧室と平衡室が確実に短絡せしめられて、リリーフ効果がより有効に発揮され得る。   In the fluid-filled vibration isolator according to the present invention, the protruding tip end surface of the pressure-receiving chamber side cylindrical protrusion is in contact with the pressure-receiving chamber side contact member over the entire circumference. , May be adopted. According to such a structure, the contact state between the pressure-receiving chamber side cylindrical protrusion and the pressure-receiving chamber side contact member is stable, and the relief hole is formed on the basis of stable compressive deformation in the axial direction of the cylindrical protrusion. The separated state of the other opening and the equilibrium chamber side contact member is stabilized. As a result, the pressure receiving chamber and the equilibrium chamber can be short-circuited reliably, and the relief effect can be more effectively exhibited.

また、本発明に係る流体封入式防振装置では、可動ゴム膜が、リリーフ用孔の周囲において、受圧室側当接部材と平衡室側当接部材との間で厚さ方向で圧縮状態で配設されている構造が、採用されても良い。このような構造によれば、振動入力時に可動ゴム膜の各一方の面に受圧室と平衡室の圧力が及ぼされた際の可動ゴム膜の変位乃至は変形に伴って、可動ゴム膜のリリーフ用孔の周囲が、受圧室側および平衡室側の当接部材に対して当接乃至は離隔することが抑えられて、かかる当接乃至は離隔に起因する打音の発生が防止される。また、通常の大きさの荷重入力時にも、受圧室側筒状突部が軸方向に圧縮変形することに伴ってリリーフ用孔の他方の開口周縁部が平衡室側当接部材から離隔してしまって、受圧室が不必要に短絡せしめられることが防止される。   Further, in the fluid filled type vibration damping device according to the present invention, the movable rubber film is compressed in the thickness direction between the pressure receiving chamber side contact member and the equilibrium chamber side contact member around the relief hole. The disposed structure may be adopted. According to such a structure, the relief of the movable rubber film is caused by the displacement or deformation of the movable rubber film when the pressure of the pressure receiving chamber and the equilibrium chamber is applied to each one surface of the movable rubber film at the time of vibration input. The periphery of the hole is prevented from coming into contact with or separated from the contact members on the pressure-receiving chamber side and the equilibrium chamber side, and the generation of hitting sound due to such contact or separation is prevented. Even when a load of a normal size is inputted, the other opening peripheral edge of the relief hole is separated from the equilibrium chamber side abutting member as the pressure receiving chamber side cylindrical projection is compressed and deformed in the axial direction. This prevents the pressure receiving chamber from being unnecessarily short-circuited.

また、本発明に係る流体封入式防振装置では、リリーフ用孔の周囲において可動ゴム膜の他方の面上に突出する平衡室側筒状突部を可動ゴム膜に一体形成すると共に、リリーフ用孔の他方の開口部を構成する平衡室側筒状突部の突出先端面を平衡室側当接部材に当接させた構造が、採用されても良い。このような構造によれば、受圧室側および平衡室側の筒状突部のばね特性が協働して、可動ゴム膜の厚さ方向における受圧室側当接部材と平衡室側当接部材の間での予圧縮量を大きく設定することが可能となる。それによって、リリーフ用孔の開口周縁部と受圧室側乃至は平衡室側当接部材との当接面間の流体密性を高度に確保することも可能となり、通常の大きさの荷重入力時等におけるリリーフ用孔の閉塞状態の信頼性が向上される。   Further, in the fluid filled type vibration damping device according to the present invention, the balance chamber side cylindrical protrusion protruding on the other surface of the movable rubber film around the relief hole is integrally formed on the movable rubber film, and also for relief. A structure in which the protruding front end surface of the equilibrium chamber side cylindrical projection constituting the other opening of the hole is in contact with the equilibrium chamber side contact member may be employed. According to such a structure, the spring characteristics of the cylindrical protrusions on the pressure receiving chamber side and the equilibrium chamber side cooperate, and the pressure receiving chamber side contact member and the equilibrium chamber side contact member in the thickness direction of the movable rubber film It is possible to set a large amount of pre-compression between the two. As a result, it is possible to secure a high degree of fluid tightness between the contact surface between the opening peripheral edge of the relief hole and the pressure receiving chamber side or the equilibrium chamber side contact member, and when a load of a normal size is input. The reliability of the closed state of the relief hole in the case of the above or the like is improved.

また、本発明に係る流体封入式防振装置では、可動ゴム膜の外周縁部において厚肉環状の挟圧支持部が一体形成されていると共に、第二の取付部材に固定された支持部材によって挟圧支持部が圧縮状態で挟圧支持されており、挟圧支持部の内周側における可動ゴム膜の弾性変形に基づいて受圧室の微小圧力変動が吸収されるようになっている構造が、採用されても良い。このような構造によれば、可動ゴム膜の外周縁部が圧縮状態で挟圧支持部に支持せしめられることにより、可動ゴム膜の外周縁部の周りにおいて、流体流動を許容する隙間が生ぜしめられないようになっている。これにより、受圧室における隙間を通じての圧力漏れが抑えられて、オリフィス効果が一層安定して得られる。   Further, in the fluid filled type vibration damping device according to the present invention, the thick annular holding support portion is integrally formed at the outer peripheral edge portion of the movable rubber film, and the support member fixed to the second mounting member is used. A structure in which the pinching support portion is pinched and supported in a compressed state so that minute pressure fluctuations in the pressure receiving chamber are absorbed based on elastic deformation of the movable rubber film on the inner peripheral side of the pinching support portion. , May be adopted. According to such a structure, the outer peripheral edge of the movable rubber film is supported by the pinching support part in a compressed state, so that a gap allowing fluid flow is generated around the outer peripheral edge of the movable rubber film. It is not possible to. Thereby, pressure leakage through the gap in the pressure receiving chamber is suppressed, and the orifice effect can be obtained more stably.

また、本発明に係る流体封入式防振装置では、可動ゴム膜の厚さ方向両側にはそれぞれ所定距離を隔てて変位量制限部材が対向配置されており、可動ゴム膜のそれら変位量制限部材への当接によって可動ゴム膜の厚さ方向両側への変位量が制限されるようになっている構造が、採用されても良い。このような構造によれば、可動ゴム膜と変位量制限部材の離隔距離を設定変更することで、可動ゴム膜の変位量が制限されることから、可動ゴム膜の変位に基づく液圧吸収効果が容易にチューニング変更される。   Further, in the fluid filled type vibration damping device according to the present invention, the displacement amount limiting members are arranged opposite to each other at predetermined distances on both sides in the thickness direction of the movable rubber film, and these displacement amount limiting members of the movable rubber film are disposed. A structure may be employed in which the amount of displacement of the movable rubber film on both sides in the thickness direction is limited by the contact with. According to such a structure, since the amount of displacement of the movable rubber film is limited by changing the distance between the movable rubber film and the displacement amount limiting member, the hydraulic pressure absorption effect based on the displacement of the movable rubber film There are easy tuning changes.

なお、本構造に係る変位量制限部材は、上述の受圧室側当接部材や平衡室側当接部材とは別の部材で構成されても良いし、それら受圧室側当接部材や平衡室側当接部材で構成されても良い。特に後者を採用することにより、部品点数の削減が図られる。また、可動ゴム膜の変位は、例えば受圧室側筒状突部が受圧室側当接部材と可動ゴム膜の間で軸方向に弾性変形すると共に、可動ゴム膜における受圧室側筒状突部以外の部分が他部材に対して自由な状態で配設されて、受圧室側当接部材と平衡室側当接部材の間で受圧室と平衡室の圧力差に基づき変位するものを含む。或いは、可動ゴム膜の変位には、例えば受圧室側筒状突部が受圧室側当接部材と可動ゴム膜の間で軸方向に弾性変形すると共に、可動ゴム膜において受圧室側筒状突部から所定距離だけ離れた部分を他部材に固定して、固定された部分と受圧室側筒状突部の間の部分が受圧室と平衡室の圧力差による変形に基づき変位するものも含まれる。   In addition, the displacement amount limiting member according to this structure may be configured by a member different from the pressure receiving chamber side contact member and the equilibrium chamber side contact member described above, or the pressure receiving chamber side contact member and the equilibrium chamber. You may comprise with a side contact member. By adopting the latter in particular, the number of parts can be reduced. In addition, the displacement of the movable rubber film is, for example, that the pressure-receiving chamber side cylindrical protrusion is elastically deformed in the axial direction between the pressure-receiving chamber side contact member and the movable rubber film, and the pressure-receiving chamber-side cylindrical protrusion in the movable rubber film. A portion other than the other member is disposed in a free state with respect to the other member, and is displaced based on a pressure difference between the pressure receiving chamber and the equilibrium chamber between the pressure receiving chamber side contact member and the equilibrium chamber side contact member. Alternatively, when the movable rubber film is displaced, for example, the pressure-receiving-chamber-side cylindrical protrusion is elastically deformed in the axial direction between the pressure-receiving-chamber-side contact member and the movable rubber film, and the pressure-receiving chamber-side cylindrical protrusion is moved in the movable rubber film. Includes a part that is a predetermined distance away from the part and is fixed to another member, and the part between the fixed part and the pressure-receiving chamber side cylindrical projection is displaced by deformation due to the pressure difference between the pressure-receiving chamber and the equilibrium chamber. It is.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1には、本発明の流体封入式防振装置に係る一実施形態としての自動車用エンジンマウント10が示されている。自動車用エンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で連結された構造とされている。第一の取付金具12がパワーユニット側に取り付けられると共に、第二の取付金具14が車両ボデー側に取り付けられることにより、パワーユニットが車両ボデーに対して防振支持されるようになっている。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIG. 1 shows an automobile engine mount 10 as an embodiment according to the fluid filled type vibration damping device of the present invention. The automobile engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected by a main rubber elastic body 16. The first mounting bracket 12 is mounted on the power unit side and the second mounting bracket 14 is mounted on the vehicle body side, so that the power unit is supported in an anti-vibration manner with respect to the vehicle body.

なお、図1では、自動車に装着する前のエンジンマウント10の単体での状態が示されているが、本実施形態では、装着状態において、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力される。従って、マウント装着状態下では、本体ゴム弾性体16の弾性変形に基づき第一の取付金具12と第二の取付金具14が軸方向で互いに接近する方向に変位する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。   1 shows the state of the engine mount 10 as a single unit before being mounted on the automobile, but in the present embodiment, in the mounted state, the shared support load of the power unit is in the mount axis direction (in FIG. 1, (Up and down). Therefore, in the mounted state, the first mounting member 12 and the second mounting member 14 are displaced in the axial direction toward each other based on the elastic deformation of the main rubber elastic body 16. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.

より詳細には、第一の取付金具12が、小径の略円柱形状乃至は円錐台形状を呈していると共に、その中央部分には上端面に開口する螺子穴18が設けられている。第一の取付金具12は、螺子穴18を介して図示しないパワーユニット側の取付部材に螺着固定されるようになっている。   More specifically, the first mounting member 12 has a small-diameter substantially cylindrical shape or a truncated cone shape, and a screw hole 18 that opens to the upper end surface is provided at the center portion thereof. The first mounting bracket 12 is screwed and fixed to a power unit side mounting member (not shown) through a screw hole 18.

一方、第二の取付金具14が、大径の略円筒形状を有しており、その軸方向中間部分において内フランジ状の段部20が形成されていると共に、段部20の内周縁部から上方に向かう部位には、上方から下方に向かって径寸法が次第に小さくなるテーパ状部22が形成されている。第二の取付金具14は、図示しないブラケット部材等を介して車両ボデー側の取付部材に固定されるようになっている。   On the other hand, the second mounting bracket 14 has a large-diameter substantially cylindrical shape, and an inner flange-shaped step portion 20 is formed at an axially intermediate portion thereof, and from the inner peripheral edge portion of the step portion 20. A tapered portion 22 having a diameter that gradually decreases from the upper side to the lower side is formed at the upward portion. The second mounting bracket 14 is fixed to a mounting member on the vehicle body side via a bracket member (not shown).

このような第二の取付金具14のテーパ状部22を備えた開口部側に第一の取付金具12が離隔配置されて、両金具12,14の中心軸が略同一線上に位置せしめられている。これら第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体16が配されている。   The first mounting bracket 12 is spaced apart from the opening of the second mounting bracket 14 having the tapered portion 22 so that the central axes of both the brackets 12 and 14 are positioned substantially on the same line. Yes. A main rubber elastic body 16 is disposed between the first mounting bracket 12 and the second mounting bracket 14.

本体ゴム弾性体16は、略円錐台形状を有しており、その大径側端面には、下方に開口する逆すり鉢形状乃至は半球形状の大径凹所24が設けられている。本体ゴム弾性体16の小径側端面には、第一の取付金具12の軸方向中間部分から下端部にかけての略全体が埋設された状態で加硫接着されている。本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14のテーパ状部22の内周面が略全体に亘って加硫接着されている。また、本体ゴム弾性体16と一体形成された薄肉のシールゴム層26が、第二の取付金具14の段部20から下端部にかけての内周面の略全体に亘って被着形成されている。即ち、本体ゴム弾性体16は、第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、それによって、第一の取付金具12と第二の取付金具14が、本体ゴム弾性体16で相互に弾性的に連結されていると共に、第二の取付金具14の上方の開口部が本体ゴム弾性体16によって流体密に閉塞されている。   The main rubber elastic body 16 has a substantially frustoconical shape, and a large-diameter recess 24 having an inverted mortar shape or a hemispherical shape that opens downward is provided on an end surface on the large-diameter side. The small-diameter side end face of the main rubber elastic body 16 is vulcanized and bonded in a state where substantially the entire portion from the axially intermediate portion to the lower end portion of the first mounting member 12 is embedded. The inner peripheral surface of the tapered portion 22 of the second mounting bracket 14 is vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 over substantially the entire surface. Further, a thin seal rubber layer 26 integrally formed with the main rubber elastic body 16 is formed so as to cover substantially the entire inner peripheral surface from the step portion 20 to the lower end portion of the second mounting bracket 14. In other words, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14, whereby the first mounting bracket 12 and the second mounting bracket 12 are attached. The metal fittings 14 are elastically connected to each other by the main rubber elastic body 16, and the opening above the second mounting metal fitting 14 is fluid-tightly closed by the main rubber elastic body 16.

第二の取付金具14の下方の開口部には、可撓性膜としてのダイヤフラム28が設けられている。ダイヤフラム28は、変形容易な薄肉のゴム膜からなり、軸方向に弛んだ略円板形状を有している。ダイヤフラム28の外周縁部には、大径の円筒形状の固定リング30が加硫接着されており、固定リング30が第二の取付金具14の下方の開口部に嵌め込まれて、第二の取付金具14に八方絞り等の縮径加工が施されていることにより、固定リング30が、径方向に圧縮変形されたシールゴム層26を介して第二の取付金具14に嵌着固定されている。   A diaphragm 28 as a flexible film is provided in the opening below the second mounting bracket 14. The diaphragm 28 is made of a thin rubber film that can be easily deformed, and has a substantially disk shape that is slackened in the axial direction. A large-diameter cylindrical fixing ring 30 is vulcanized and bonded to the outer peripheral edge of the diaphragm 28, and the fixing ring 30 is fitted into the opening below the second mounting bracket 14, so that the second mounting Since the metal fitting 14 is subjected to diameter reduction processing such as an eight-way drawing, the fixing ring 30 is fitted and fixed to the second mounting metal fitting 14 via a seal rubber layer 26 that is compressed and deformed in the radial direction.

これにより、ダイヤフラム28が第二の取付金具14に固定されて、第二の取付金具14の下方の開口部がダイヤフラム28で流体密に覆蓋されていると共に、第二の取付金具14の内側における本体ゴム弾性体16とダイヤフラム28の軸方向対向面間には、外部空間に対して密閉された流体封入領域32が形成されている。   As a result, the diaphragm 28 is fixed to the second mounting bracket 14, the lower opening of the second mounting bracket 14 is fluid-tightly covered with the diaphragm 28, and at the inside of the second mounting bracket 14. Between the main rubber elastic body 16 and the diaphragm 28 facing each other in the axial direction, a fluid sealing region 32 sealed with respect to the external space is formed.

流体封入領域32には、第二の取付金具14に固定される支持部材としての仕切部材34が配設されている。仕切部材34は、図2〜4にも示されているように、全体として円形ブロック形状を有しており、金属材や合成樹脂材等の硬質材を用いて形成されている。また、仕切部材34は、仕切部材本体36と蓋部材38を含んで構成されている。   In the fluid sealing region 32, a partition member 34 as a support member fixed to the second mounting bracket 14 is disposed. 2 to 4, the partition member 34 has a circular block shape as a whole, and is formed using a hard material such as a metal material or a synthetic resin material. The partition member 34 includes a partition member main body 36 and a lid member 38.

仕切部材本体36は、円形ブロック形状を有している。仕切部材本体36の径方向中央部分には、仕切部材本体36の軸方向中間部分から上端面に開口する上側凹所40と下端面に開口する下側凹所42が、それぞれ形成されている。これらの凹所40,42は、何れも略一定の円形断面で軸方向に延びていると共に、下側凹所42の径寸法が上側凹所40の径寸法に比して大きくされている。また、仕切部材本体36の軸方向中間部分には、両凹所40,42の底壁部が協働して、薄肉円板形状の円形底部44を構成している。円形底部44の径方向中央部分の周りには、透孔46が貫設されている。   The partition member main body 36 has a circular block shape. An upper recess 40 that opens to the upper end surface and a lower recess 42 that opens to the lower end surface from the axially intermediate portion of the partition member main body 36 are formed in the central portion in the radial direction of the partition member main body 36, respectively. Each of these recesses 40, 42 extends in the axial direction with a substantially constant circular cross section, and the diameter dimension of the lower recess 42 is larger than the diameter dimension of the upper recess 40. Moreover, the bottom wall part of both the recesses 40 and 42 cooperates with the axial direction intermediate part of the partition member main body 36, and the circular bottom part 44 of a thin disk shape is comprised. A through hole 46 is provided around the central portion in the radial direction of the circular bottom 44.

本実施形態に係る透孔46は、径方向内側から外側に向かって幅寸法が次第に大きくなる略扇形状の第一小孔48と第二小孔50を含んで構成されている。これら第一小孔48と第二小孔50は、周方向の幅寸法と径方向の幅寸法の比が互いに異ならされていると共に、円形底部44の径方向中間部分と外周部分において、それぞれ周方向に等間隔に複数設けられている。即ち、透孔46は、円形底部44の径方向中間部分や外周部分において厚さ方向(図1,3中、上下)に貫通形成されており、円形底部44の径方向中央部分に形成されないようになっている。   The through-hole 46 according to the present embodiment includes a substantially fan-shaped first small hole 48 and a second small hole 50 whose width dimension gradually increases from the radially inner side to the outer side. The first small hole 48 and the second small hole 50 are different from each other in the ratio of the width dimension in the circumferential direction to the width dimension in the radial direction. A plurality are provided at equal intervals in the direction. In other words, the through-hole 46 is formed so as to penetrate in the thickness direction (up and down in FIGS. 1 and 3) in the radial intermediate portion and the outer peripheral portion of the circular bottom portion 44, and not to be formed in the radial central portion of the circular bottom portion 44. It has become.

また、仕切部材本体36の外周部分には、周方向に螺旋状に延びる周溝52が形成されており、周溝52の両端部が、仕切部材本体36の上端部と下端部にそれぞれ形成された切欠き状の各連通窓54,56に接続されている。また、仕切部材本体36の上側凹所40の周りの上端部分には、周方向に離隔して複数(本実施形態では3つ)の係合突部58が突設されている。   Further, a circumferential groove 52 extending in a spiral shape in the circumferential direction is formed on the outer peripheral portion of the partition member body 36, and both end portions of the circumferential groove 52 are formed at the upper end portion and the lower end portion of the partition member body 36, respectively. It is connected to each notch-shaped communication window 54, 56. A plurality of (three in the present embodiment) engagement protrusions 58 project from the upper end portion of the partition member body 36 around the upper recess 40 so as to be spaced apart in the circumferential direction.

一方、蓋部材38は、薄肉の円板形状を有していると共に、蓋部材38の外径寸法が仕切部材本体36の外径寸法と略同じとされている。ここで、蓋部材38の径方向中央部分には、連通孔60が、厚さ方向に貫通形成されている。連通孔60は、本実施形態において平面視で円形状を有しているが、これに限定されるものでない。また、蓋部材38における連通孔60の外周側には、透孔62が、連通孔60から独立して貫設されている。かかる透孔62は、仕切部材本体36に形成された透孔46における第一小孔48および第二小孔50と同様な形態の第一小孔64と第二小孔66を含んで構成されており、第一小孔64が蓋部材38の径方向中間部分において周方向に等間隔に複数設けられていると共に、第二小孔66が蓋部材38の径方向外周部分において周方向に等間隔に設けられている。また、蓋部材38の外周縁部には、切欠き状の連通窓68が形成されている。更に、蓋部材38の外周部分には、周方向に離隔して複数(本実施形態では3つ)の係止用孔70が貫設されている。このような蓋部材38は、例えばばね鋼等の金属板にプレス加工を施すことにより有利に実現される。   On the other hand, the lid member 38 has a thin disk shape, and the outer diameter of the lid member 38 is substantially the same as the outer diameter of the partition member main body 36. Here, a communication hole 60 is formed through the thickness direction in the central portion of the lid member 38 in the radial direction. The communication hole 60 has a circular shape in plan view in the present embodiment, but is not limited thereto. Further, a through hole 62 is provided on the outer peripheral side of the communication hole 60 in the lid member 38 independently from the communication hole 60. The through hole 62 includes a first small hole 64 and a second small hole 66 having the same form as the first small hole 48 and the second small hole 50 in the through hole 46 formed in the partition member main body 36. A plurality of first small holes 64 are provided at equal intervals in the circumferential direction at the radial intermediate portion of the lid member 38, and the second small holes 66 are circumferentially equal at the radial outer peripheral portion of the lid member 38. It is provided at intervals. A cutout communication window 68 is formed on the outer peripheral edge of the lid member 38. Furthermore, a plurality of (three in this embodiment) locking holes 70 are provided in the outer peripheral portion of the lid member 38 so as to be spaced apart in the circumferential direction. Such a lid member 38 is advantageously realized by pressing a metal plate such as spring steel.

この蓋部材38が仕切部材本体36の上端部分に重ね合わされると共に、仕切部材本体36の複数の係止突部58が蓋部材38の複数の係止用孔70に挿通されている。これにより、仕切部材本体36と蓋部材38が周方向で位置決めされつつ相互に組み付けられて、仕切部材34を構成している。また、仕切部材本体36の上側凹所40の開口部が蓋部材38で覆蓋せしめられることによって、上側凹所40の内側における蓋部材38と仕切部材本体36の円形底部44の軸方向対向面間には、上側凹所40の周壁部や蓋部材38、円形底部44で画成された収容領域72が設けられている。即ち、収容領域72が、仕切部材34の径方向中央部分の内部において軸方向に略一定の円形断面で延びている。特に本実施形態では、仕切部材本体36と蓋部材38が周方向で位置合わせされていることに基づき、仕切部材本体36における円形底部44の透孔54と蓋部材38の透孔62や、円形底部44の径方向中央部分と蓋部材38の連通孔60が、それぞれ軸方向で投影する位置に配されている。また、仕切部材本体36の連通窓54と蓋部材38の連通窓68が軸方向で重ね合わされている。   The lid member 38 is superimposed on the upper end portion of the partition member main body 36, and a plurality of locking protrusions 58 of the partition member main body 36 are inserted into the plurality of locking holes 70 of the lid member 38. As a result, the partition member main body 36 and the lid member 38 are assembled to each other while being positioned in the circumferential direction to constitute the partition member 34. In addition, the opening of the upper recess 40 of the partition member main body 36 is covered with the lid member 38, so that the gap between the lid member 38 inside the upper recess 40 and the axially opposed surface of the circular bottom 44 of the partition member main body 36. Is provided with a housing area 72 defined by the peripheral wall of the upper recess 40, the lid member 38, and the circular bottom 44. In other words, the accommodation region 72 extends with a substantially constant circular cross section in the axial direction inside the radial central portion of the partition member 34. In particular, in this embodiment, the partition member main body 36 and the lid member 38 are aligned in the circumferential direction, so that the through hole 54 of the circular bottom 44 and the through hole 62 of the lid member 38 in the partition member main body 36 are circular. The central portion in the radial direction of the bottom portion 44 and the communication hole 60 of the lid member 38 are arranged at positions that are projected in the axial direction. Further, the communication window 54 of the partition member main body 36 and the communication window 68 of the lid member 38 are overlapped in the axial direction.

かかる仕切部材34が、前述のダイヤフラム28の第二の取付金具14への組み付けに先立って、第二の取付金具14の下方の開口部から軸方向に嵌め込まれて、仕切部材34の蓋部材38の外周部分が第二の取付金具14の段部20にシールゴム層26を介して重ね合わせられている。また、仕切部材34の仕切部材本体36の下端部分には、第二の取付金具14に嵌め込まれたダイヤフラム28の固定リング30が重ね合わせられている。そして、第二の取付金具14に八方絞り等の縮径加工が施されることによって、第二の取付金具14の縮径変形に基づき、仕切部材本体36の外周面や蓋部材38の外周面が軸直角方向に圧縮変形したシールゴム層26を介して第二の取付金具14の内周面に重ね合わせられていると共に、該シールゴム層26の軸直角方向の圧縮変形に伴う軸方向の引張変形によって、仕切部材34の外周部分が第二の取付金具14の段部20とダイヤフラム28の固定リング30の間に挟圧固定されている。また、段部20に被着されたシールゴム層26が軸方向に圧縮変形しつつ、蓋部材38の外周部分と段部20の重ね合わせ面間に介装されていることによって、それら蓋部材38の外周部分と段部20が流体密に重ね合わせられている。   Prior to the assembly of the diaphragm 28 to the second mounting bracket 14, the partition member 34 is fitted in the axial direction from the opening below the second mounting bracket 14, and the lid member 38 of the partition member 34. The outer peripheral portion of the second mounting bracket 14 is superposed on the step portion 20 of the second mounting bracket 14 with a seal rubber layer 26 interposed therebetween. A fixing ring 30 of a diaphragm 28 fitted in the second mounting bracket 14 is overlaid on the lower end portion of the partition member main body 36 of the partition member 34. Then, the outer diameter of the partition member main body 36 and the outer diameter of the lid member 38 are obtained by reducing the diameter of the second mounting bracket 14 by reducing the diameter of the second mounting bracket 14 by reducing the diameter of the second mounting bracket 14. Is superimposed on the inner peripheral surface of the second mounting bracket 14 via a seal rubber layer 26 that is compressed and deformed in the direction perpendicular to the axis, and the tensile deformation in the axial direction accompanying the compression deformation in the direction perpendicular to the axis of the seal rubber layer 26. Thus, the outer peripheral portion of the partition member 34 is clamped and fixed between the step portion 20 of the second mounting bracket 14 and the fixing ring 30 of the diaphragm 28. Further, the sealing rubber layer 26 attached to the stepped portion 20 is interposed between the outer peripheral portion of the lid member 38 and the overlapping surface of the stepped portion 20 while being compressed and deformed in the axial direction. The outer peripheral portion and the stepped portion 20 are fluid-tightly overlapped.

これにより、仕切部材34が第二の取付金具14に固定的に支持されて、第二の取付金具14の内側の流体封入領域32を流体密に二分している。流体封入領域32の仕切部材34を挟んだ一方(図1中、上)の側には、壁部の一部が本体ゴム弾性体16で構成されて、本体ゴム弾性体16の弾性変形に基づき圧力変動が生ぜしめられる受圧室74が形成されている。また、流体封入領域32の仕切部材34を挟んだ他方(図1中、下)の側には、壁部の一部がダイヤフラム28で構成されて、ダイヤフラム28の弾性変形に基づき容積変化が容易に許容される平衡室76が形成されている。これら受圧室74や平衡室76には、非圧縮性流体が封入されている。封入流体としては、例えば水やアルキレングリコール, ポリアルキレングリコール, シリコーン油等が採用されるが、特に流体の共振作用等の流動作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。受圧室74や平衡室76への非圧縮性流体の封入は、例えば、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品に対する仕切部材34やダイヤフラム28の組み付けを非圧縮性流体中で行うことによって、好適に実現される。   Thereby, the partition member 34 is fixedly supported by the second mounting bracket 14, and the fluid sealing region 32 inside the second mounting bracket 14 is divided into two fluid-tightly. On one side (upper side in FIG. 1) of the fluid sealing region 32 with the partition member 34 interposed therebetween, a part of the wall portion is constituted by the main rubber elastic body 16, and based on the elastic deformation of the main rubber elastic body 16. A pressure receiving chamber 74 in which pressure fluctuation is generated is formed. Further, on the other side (lower side in FIG. 1) of the fluid sealing region 32 with the partition member 34 interposed therebetween, a part of the wall portion is constituted by the diaphragm 28, and the volume change is easy based on the elastic deformation of the diaphragm 28. An equilibration chamber 76 is formed. The pressure receiving chamber 74 and the equilibrium chamber 76 are filled with an incompressible fluid. As the sealing fluid, for example, water, alkylene glycol, polyalkylene glycol, silicone oil or the like is adopted, and in order to effectively obtain a vibration isolation effect based on a fluid action such as a resonance action of the fluid, 0.1 Pa · It is desirable to employ a low-viscosity fluid of s or less. For example, the incompressible fluid is sealed in the pressure receiving chamber 74 or the equilibrium chamber 76 by, for example, the partition member 34 or the diaphragm for the integrally vulcanized molded product of the main rubber elastic body 16 including the first and second mounting brackets 12 and 14. It is preferably realized by performing the assembly of 28 in an incompressible fluid.

また、仕切部材本体36の周溝52が第二の取付金具14で流体密に覆蓋されることにより、仕切部材34の外周部分を周方向に所定の長さで螺旋状に延びるオリフィス通路78が形成されている。このオリフィス通路78の一方の端部が、仕切部材本体36の連通窓54および蓋部材38の連通窓68を通じて受圧室74に接続されていると共に、オリフィス通路78の他方の端部が、仕切部材本体36の連通窓54を通じて平衡室76に接続されている。これにより、受圧室74と平衡室76がオリフィス通路78を通じて相互に連通せしめられて、それら両室74,76間でオリフィス通路78を通じての流体流動が許容されるようになっている。   In addition, the circumferential groove 52 of the partition member main body 36 is covered fluid-tightly by the second mounting bracket 14, so that an orifice passage 78 that spirally extends around the outer peripheral portion of the partition member 34 with a predetermined length in the circumferential direction. Is formed. One end of the orifice passage 78 is connected to the pressure receiving chamber 74 through the communication window 54 of the partition member main body 36 and the communication window 68 of the lid member 38, and the other end of the orifice passage 78 is connected to the partition member. It is connected to the equilibrium chamber 76 through the communication window 54 of the main body 36. As a result, the pressure receiving chamber 74 and the equilibrium chamber 76 are communicated with each other through the orifice passage 78, and fluid flow through the orifice passage 78 is allowed between the chambers 74 and 76.

本実施形態では、オリフィス通路78を通じて流動せしめられる流体の共振周波数が、該流体の共振作用に基づいてエンジンシェイク等に相当する10Hz前後の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるようにチューニングされている。オリフィス通路78のチューニングは、例えば、受圧室74や平衡室76の各壁ばね剛性、即ちそれら各室74,76を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム28等の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路78の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路78を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路78のチューニング周波数として把握することが出来る。   In the present embodiment, the resonance frequency of the fluid flowing through the orifice passage 78 is effective against vibrations in a low frequency region around 10 Hz corresponding to engine shake or the like based on the resonance action of the fluid. It is tuned so that the damping effect is demonstrated. The orifice passage 78 is tuned by, for example, the rigidity of the wall springs of the pressure receiving chamber 74 and the equilibrium chamber 76, that is, the main rubber elastic body 16 corresponding to the amount of pressure change required to change the chambers 74 and 76 by a unit volume. It is possible to adjust the passage length and passage cross-sectional area of the orifice passage 78 while taking into account the characteristic values based on the respective elastic deformation amounts such as the diaphragm 28 and the diaphragm 28. In general, the pressure transmitted through the orifice passage 78 The frequency at which the phase of the change changes and becomes a substantially resonant state can be grasped as the tuning frequency of the orifice passage 78.

また、仕切部材34に形成された収容領域72が、蓋部材38の透孔62や連通孔60を通じて受圧室74と連通されていると共に、仕切部材本体36の透孔46を通じて平衡室76と連通されている。なお、収容領域72の形成は、仕切部材34が第二の取付金具14に固定される前に、蓋部材38が仕切部材本体36の上端部に密着状に重ね合わせられて固定されることによって形成されても良く、或いは仕切部材34が第二の取付金具14に取り付けられる際に、第二の取付金具14の段部20とダイヤフラム28の固定リング30の軸方向間に及ぼされる挟圧作用を利用して、蓋部材38が仕切部材本体36の上端部に密着状に重ね合わせられることで形成されても良い。   The accommodation region 72 formed in the partition member 34 communicates with the pressure receiving chamber 74 through the through hole 62 and the communication hole 60 of the lid member 38 and communicates with the equilibrium chamber 76 through the through hole 46 of the partition member main body 36. Has been. In addition, the storage area 72 is formed by the cover member 38 being closely overlapped and fixed to the upper end portion of the partition member main body 36 before the partition member 34 is fixed to the second mounting bracket 14. It may be formed, or when the partition member 34 is attached to the second mounting member 14, a pinching action exerted between the step 20 of the second mounting member 14 and the axial direction of the fixing ring 30 of the diaphragm 28. The lid member 38 may be formed by being closely adhered to the upper end portion of the partition member main body 36 using the above.

この収容領域72には、可動ゴム膜としてのゴム弾性膜80が収容配置されている。ゴム弾性膜80は、図5,6にも示されているように、ゴム弾性材からなり、全体として略円板形状を有している。ゴム弾性膜80の厚さ寸法は、収容領域72の軸方向寸法となる蓋部材38と仕切部材本体36の円形底部44との軸方向の離隔距離、換言すると上側凹所40の軸方向寸法に比して、小さくされている。なお、本実施形態に係るゴム弾性膜80の厚さ寸法は、全体に亘って略一定とされているが、要求されるばね特性等に応じて、例えば、径方向中央部分から径方向外方に向かって次第に大きくされていたり、突部や溝部、凹所等が形成されていても良い。   In this accommodation area 72, a rubber elastic film 80 as a movable rubber film is accommodated. As shown in FIGS. 5 and 6, the rubber elastic film 80 is made of a rubber elastic material and has a substantially disk shape as a whole. The thickness dimension of the rubber elastic film 80 is the axial distance between the lid member 38 and the circular bottom 44 of the partition member main body 36, which is the axial dimension of the accommodation region 72, in other words, the axial dimension of the upper recess 40. It is smaller than that. In addition, although the thickness dimension of the rubber elastic film 80 according to the present embodiment is substantially constant throughout, for example, depending on the required spring characteristics, for example, radially outward from the radial center portion It may be gradually enlarged toward the surface, or a protrusion, a groove, a recess, or the like may be formed.

ゴム弾性膜80の外周縁部には、挟圧支持部としてのシール突部82が一体形成されている。シール突部82は、ゴム弾性膜80よりも軸方向外方に突出する略矩形断面で周方向に連続して延びている。即ち、シール突部82は、ゴム弾性膜80よりも厚肉とされて、円環形状を呈している。特に本実施形態では、シール突部82の軸方向寸法が、収容領域72の軸方向寸法に比して大きくされている。また、シール突部82の外径寸法が、収容領域72の軸直角方向寸法となる仕切部材本体36の上側凹所40の径寸法よりも僅かに小さくされている。   On the outer peripheral edge of the rubber elastic film 80, a seal projection 82 is integrally formed as a clamping support portion. The seal protrusion 82 extends continuously in the circumferential direction with a substantially rectangular cross section protruding outward in the axial direction from the rubber elastic film 80. That is, the seal protrusion 82 is thicker than the rubber elastic film 80 and has an annular shape. In particular, in the present embodiment, the axial dimension of the seal projection 82 is made larger than the axial dimension of the accommodation region 72. Further, the outer diameter dimension of the seal projection 82 is slightly smaller than the diameter dimension of the upper recess 40 of the partition member main body 36 that is the dimension perpendicular to the axis of the accommodation region 72.

ここで、ゴム弾性膜80の径方向中央部分には、リリーフ用孔84が貫通形成されている。リリーフ用孔84は、ゴム弾性膜80の厚さ方向と平行に延びる軸方向に略一定の円形断面で延びている。要するに、円形状のリリーフ用孔84が、円板形状のゴム弾性膜80の中央に位置して一つ形成されている。また、リリーフ用孔84の径寸法は、仕切部材本体36の透孔46(第一小孔48)の内径寸法に比して小さくされており、本実施形態では、蓋部材38の連通孔60の径寸法と略同じとされている。   Here, a relief hole 84 is formed through the central portion of the rubber elastic film 80 in the radial direction. The relief hole 84 extends in a substantially constant circular cross section in the axial direction extending parallel to the thickness direction of the rubber elastic film 80. In short, one circular relief hole 84 is formed at the center of the disk-shaped rubber elastic film 80. The diameter of the relief hole 84 is smaller than the inner diameter of the through hole 46 (first small hole 48) of the partition member main body 36. In this embodiment, the communication hole 60 of the lid member 38 is used. The diameter dimension is substantially the same.

さらに、リリーフ用孔84の周囲において、ゴム弾性膜80の一方(図1中、上)の面上には、受圧室側筒状突部86が一体的に突設されている。受圧室側筒状突部86は、リリーフ用孔84の径寸法と同じ大きさの内孔を備えた略円筒形状を有しており、ゴム弾性膜80におけるリリーフ用孔84の一方の周縁部側でリリーフ用孔84と同軸的に軸方向に延びている。このリリーフ用孔84の一方の端部が受圧室側筒状突部86の内部を通じて軸方向外方に開口せしめられていることから、かかるリリーフ用孔84の一方の開口部(面)が、受圧室側筒状突部86の突出先端面を含んで構成されている。   Further, around the relief hole 84, a pressure-receiving chamber side cylindrical projection 86 is integrally projected on one surface (upper in FIG. 1) of the rubber elastic film 80. The pressure receiving chamber side cylindrical protrusion 86 has a substantially cylindrical shape with an inner hole having the same size as the diameter of the relief hole 84, and one peripheral edge of the relief hole 84 in the rubber elastic film 80. It extends axially coaxially with the relief hole 84 on the side. Since one end of the relief hole 84 is opened outward in the axial direction through the inside of the pressure-receiving chamber side cylindrical projection 86, one opening (surface) of the relief hole 84 is The pressure receiving chamber side cylindrical protrusion 86 is configured to include a protruding front end surface.

また、特に、ゴム弾性膜80におけるリリーフ用孔84を挟んだ受圧室側筒状突部86と反対側の面上、即ちリリーフ用孔84の周囲においてゴム弾性膜80の他方(図1中、下)の面上には、平衡室側筒状突部88が一体的に突設されている。本実施形態に係る平衡室側筒状突部88は、受圧室側筒状突部86と略同じ大きさや形状を有しており、リリーフ用孔84の径寸法と同じ大きさの内孔を備えた略円筒形状とされている。平衡室側筒状突部88が、ゴム弾性膜80におけるリリーフ用孔84の他方の周縁部側でリリーフ用孔84および受圧室側筒状突部86と同軸的に軸方向に延びている。このリリーフ用孔84の他方の端部が平衡室側筒状突部88の内部を通じて軸方向外方に開口せしめられていることから、かかるリリーフ用孔84の他方の開口部(面)が、平衡室側筒状突部88の突出先端面を含んで構成されている。   Further, in particular, the other side of the rubber elastic film 80 (in FIG. 1, on the surface opposite to the pressure receiving chamber side cylindrical projection 86 sandwiching the relief hole 84 in the rubber elastic film 80, that is, around the relief hole 84. On the lower surface, an equilibrium chamber side cylindrical projection 88 projects integrally. The equilibrium chamber side cylindrical projection 88 according to this embodiment has substantially the same size and shape as the pressure receiving chamber side cylindrical projection 86, and has an inner hole having the same size as the diameter of the relief hole 84. It has a substantially cylindrical shape. The equilibrium chamber side cylindrical projection 88 extends in the axial direction coaxially with the relief hole 84 and the pressure receiving chamber side cylindrical projection 86 on the other peripheral edge side of the relief hole 84 in the rubber elastic film 80. Since the other end of the relief hole 84 is opened outward in the axial direction through the inside of the equilibrium chamber side cylindrical projection 88, the other opening (surface) of the relief hole 84 is It is configured to include the protruding front end surface of the equilibrium chamber side cylindrical protrusion 88.

すなわち、本実施形態においては、リリーフ用孔84の周壁部や受圧室側筒状突部86、平衡室側筒状突部88が協働して、ゴム弾性膜80の厚さ寸法よりも大きな軸方向寸法の筒状部を構成しており、かかる筒状部が、ゴム弾性膜80の径方向中央部分に貫通配置されて、ゴム弾性膜80の両面から軸方向外方に略等しい距離だけ突出せしめられた形態を有している。その結果、ゴム弾性膜80における薄肉の板状部分が、受圧室側および平衡室側筒状突部86,88が突設された径方向中央部分とシール突部82が一体形成された径方向外周縁部の間の径方向中間部分とされている。特に、ゴム弾性膜80の径方向中央部分におけるリリーフ用孔84や受圧室側および平衡室側突部86,88を合わせた軸方向寸法が、収容領域72の軸方向寸法よりも大きくされ、且つゴム弾性膜80のシール突部82の軸方向寸法よりも僅かに小さくされている。   That is, in the present embodiment, the peripheral wall portion of the relief hole 84, the pressure receiving chamber side cylindrical projection 86, and the equilibrium chamber side cylindrical projection 88 cooperate to be larger than the thickness dimension of the rubber elastic film 80. A cylindrical portion having an axial dimension is configured, and the cylindrical portion is disposed so as to penetrate the central portion in the radial direction of the rubber elastic film 80, and is approximately equal distance from both surfaces of the rubber elastic film 80 outward in the axial direction. It has a protruding shape. As a result, the thin plate-like portion of the rubber elastic film 80 is formed in the radial direction in which the pressure-receiving chamber side and equilibrium chamber side cylindrical protrusions 86 and 88 are projected and the seal protrusion 82 are integrally formed. It is set as the radial direction intermediate part between outer peripheral parts. In particular, the axial dimension of the relief hole 84 and the pressure receiving chamber side and equilibrium chamber side projections 86 and 88 in the central portion in the radial direction of the rubber elastic membrane 80 is made larger than the axial dimension of the housing region 72, and It is slightly smaller than the axial dimension of the seal projection 82 of the rubber elastic film 80.

このようなゴム弾性膜80が仕切部材本体36の上側凹所40に嵌め込まれて、ゴム弾性膜80の外周縁部に形成されたシール突部82の下端面が、仕切部材本体36の円形底部44の外周部分に重ね合わされている。特に、シール突部82の外径寸法が上側凹所40の径寸法に比して僅かに小さくされていることから、シール突部82を上側凹所40に嵌め込むことで、ゴム弾性膜80と仕切部材本体36が同軸的に位置決め配置されるセンタリング機能が働く。それによって、仕切部材本体36の円形底部44の中心軸とゴム弾性膜80のリリーフ用孔84の中心軸が略同一線上に位置せしめられて、リリーフ用孔84の他方(図1中、下)の開口周縁部を構成する平衡室側筒状突部88の突出先端面と円形底部44の径方向中央部分とが、軸方向で対向位置せしめられている。このようにゴム弾性膜80を上側凹所44に嵌め込むと、受圧室側筒状突部86の突出先端部分やシール突部84の上端部分が、上側凹所44の開口端面よりも軸方向外方に突出せしめられる。   Such a rubber elastic film 80 is fitted in the upper recess 40 of the partition member main body 36, and the lower end surface of the seal protrusion 82 formed on the outer peripheral edge of the rubber elastic film 80 is the circular bottom of the partition member main body 36. 44 is superposed on the outer peripheral portion of 44. In particular, since the outer diameter of the seal protrusion 82 is slightly smaller than the diameter of the upper recess 40, the rubber elastic film 80 can be obtained by fitting the seal protrusion 82 into the upper recess 40. And a centering function in which the partition member main body 36 is positioned coaxially. As a result, the central axis of the circular bottom 44 of the partition member main body 36 and the central axis of the relief hole 84 of the rubber elastic film 80 are positioned substantially on the same line, and the other of the relief holes 84 (lower in FIG. 1). The protruding front end surface of the equilibrium chamber side cylindrical protrusion 88 and the radial center portion of the circular bottom 44 are positioned opposite to each other in the axial direction. When the rubber elastic film 80 is fitted in the upper recess 44 in this way, the protruding tip portion of the pressure receiving chamber side cylindrical projection 86 and the upper end portion of the seal projection 84 are more axial than the opening end surface of the upper recess 44. Protruded outward.

さらに、蓋部材38が仕切部材本体36の上端部に重ね合わせられて、蓋部材38と仕切部材本体36が同軸的に位置合わせされていることに伴い、蓋部材38とゴム弾性膜80も同軸的に位置合わせされている。ここで、受圧室側筒状突部86の突出先端面が、蓋部材38の径方向中央部分における連通孔60の周りと軸方向で対向位置せしめられている。そして、蓋部材38が仕切部材本体36の上端部に密着状に重ね合わされて、収容領域72が形成されることに伴い、上側凹所40から突出したシール突部82や受圧室側筒状突部86に対して蓋部材38が軸方向に押し当てられる。   Further, the lid member 38 is superimposed on the upper end portion of the partition member main body 36, and the lid member 38 and the partition member main body 36 are coaxially aligned. Are aligned. Here, the protruding front end surface of the pressure-receiving chamber side cylindrical protrusion 86 is positioned opposite to the periphery of the communication hole 60 in the radial center portion of the lid member 38 in the axial direction. Then, the cover member 38 is closely overlapped with the upper end portion of the partition member main body 36 to form the accommodating region 72, and as a result, the seal protrusion 82 protruding from the upper recess 40 and the pressure receiving chamber side cylindrical protrusion are formed. The lid member 38 is pressed against the portion 86 in the axial direction.

これにより、シール突部82が、収容領域72の外周側において蓋部材38と円形底部44の間に挟圧配置されることに基づき軸方向に圧縮変形されて、シール突部82の上端面と下端面が、蓋部材38と円形底部44にそれぞれ密接されている。また、シール突部82の軸方向の圧縮変形による軸直角方向の膨出変形に伴い、シール突部82の外周面が、収容領域72の周壁部を構成する上側凹所40の周壁面に対して密接されている。その結果、ゴム弾性膜80の外周縁部が、第二の取付金具14に固定された仕切部材34によって固定的に支持せしめられていると共に、ゴム弾性膜80の外周縁部と収容領域72の壁部の間での自由な流体流動が阻止せしめられるようになっている。   As a result, the seal protrusion 82 is compressed and deformed in the axial direction on the outer peripheral side of the housing region 72 between the lid member 38 and the circular bottom 44, and the upper end surface of the seal protrusion 82 is The lower end surfaces are in close contact with the lid member 38 and the circular bottom 44, respectively. Further, along with the bulging deformation in the direction perpendicular to the axis due to the compressive deformation in the axial direction of the seal protrusion 82, the outer peripheral surface of the seal protrusion 82 is against the peripheral wall surface of the upper recess 40 constituting the peripheral wall portion of the housing region 72. Have been closely. As a result, the outer peripheral edge portion of the rubber elastic film 80 is fixedly supported by the partition member 34 fixed to the second mounting bracket 14, and the outer peripheral edge portion of the rubber elastic film 80 and the accommodation region 72. Free fluid flow between the walls is prevented.

また、受圧室側筒状突部86と平衡室側筒状突部88が、収容領域72の径方向中央側において蓋部材38と円形底部44の間に挟圧配置されることに基づき軸方向に圧縮変形されて、受圧室側筒状突部86の突出先端面が蓋部材38の下端面における連通孔60の周りに密接されていると共に、平衡室側筒状突部88の突出先端面が円形底部44の径方向中央部分に密接されている。これにより、ゴム弾性膜80におけるリリーフ用孔84の一方(図1中、上)の開口部が、受圧室側筒状突部86の内部と蓋部材38の連通孔60を通じて受圧室74に接続されている一方、リリーフ用孔84の他方(図1中、下)の開口部が、平衡室側筒状突部88の突出先端面を介して円形底部44によって流体密に閉塞せしめられている。   Further, the pressure receiving chamber side cylindrical projection 86 and the equilibrium chamber side cylindrical projection 88 are axially arranged based on being sandwiched between the lid member 38 and the circular bottom 44 at the radial center side of the accommodation region 72. And the projecting tip surface of the pressure-receiving chamber side cylindrical projection 86 is in close contact with the communication hole 60 in the lower end surface of the lid member 38 and the projecting tip surface of the equilibrium chamber side cylindrical projection 88. Is in intimate contact with the radially central portion of the circular bottom 44. Thereby, one opening (upper in FIG. 1) of the relief hole 84 in the rubber elastic film 80 is connected to the pressure receiving chamber 74 through the inside of the pressure receiving chamber side cylindrical projection 86 and the communication hole 60 of the lid member 38. On the other hand, the other opening (lower in FIG. 1) of the relief hole 84 is fluid-tightly closed by the circular bottom 44 through the protruding tip surface of the equilibrium chamber side cylindrical protrusion 88. .

平衡室側筒状突部88の突出先端面がその全周に亘って仕切部材本体36の円形底部44に当接されていることに加えて、特に本実施形態では、受圧室側筒状突部86の突出先端面が、その全周に亘って蓋部材38に当接されている。上述の説明からも明らかなように、ゴム弾性膜80の一方(図1中、上)の面側に配設される受圧室側当接部材が、蓋部材38を含んで構成されていると共に、ゴム弾性膜80の他方(図1中、下)の面側に配設される平衡室側当接部材が、仕切部材本体36の円形底部44を含んで構成されている。また、本実施形態では、かかる受圧室側当接部材における受圧室側筒状突部86の当接部分が、蓋部材38の径方向中央部分で構成されており、その径方向中央部分に形成された連通孔60と受圧室側筒状突部86の開口部分が軸方向で重ね合わされている。これにより、リリーフ用孔84の受圧室74側の開口部が、蓋部材38の連通孔60と直接に接続されて、受圧室74に常時連通せしめられている。   In addition to the fact that the protruding front end surface of the equilibrium chamber side cylindrical projection 88 is in contact with the circular bottom 44 of the partition member main body 36 over its entire circumference, particularly in the present embodiment, the pressure receiving chamber side cylindrical projection The protruding front end surface of the portion 86 is in contact with the lid member 38 over the entire circumference. As is clear from the above description, the pressure receiving chamber side contact member disposed on one surface side (the upper side in FIG. 1) of the rubber elastic film 80 includes the lid member 38. The equilibrium chamber side abutting member disposed on the other surface (lower side in FIG. 1) of the rubber elastic film 80 includes the circular bottom 44 of the partition member main body 36. Further, in this embodiment, the contact portion of the pressure receiving chamber side cylindrical projection 86 in the pressure receiving chamber side contact member is constituted by the radial center portion of the lid member 38 and is formed in the radial center portion. The communication hole 60 and the opening portion of the pressure receiving chamber side cylindrical projection 86 are overlapped in the axial direction. Thus, the opening on the pressure receiving chamber 74 side of the relief hole 84 is directly connected to the communication hole 60 of the lid member 38 and is always in communication with the pressure receiving chamber 74.

また、ゴム弾性膜80におけるシール突部82を備えた外周縁部と、受圧室側および平衡室側筒状突部86,88を備えた径方向中央部分が、蓋部材38と仕切部材本体36の円形底部44の間において圧縮状態で挟圧支持せしめられている。ここで、ゴム弾性膜80における受圧室側および平衡室側筒状突部86,88を備えた径方向中央部分の軸方向寸法がシール突部82の軸方向寸法に比して小さくされていることから、蓋部材38と円形底部44の間において、ゴム弾性膜80の径方向中央部分の予圧縮量が、シール突部82の予圧縮量に比して小さくされている。その結果、ゴム弾性膜80の径方向中央部分が、小さな圧力を及ぼされても変位し難くなっている一方、ゴム弾性膜80の外周縁部が、大きな圧力を及ぼされても変位し難い拘束状態とされている。   Further, the outer peripheral edge portion of the rubber elastic film 80 provided with the seal protrusion 82 and the radial center portion including the pressure-receiving chamber side and equilibrium chamber side cylindrical protrusions 86 and 88 are the lid member 38 and the partition member main body 36. Are supported in a compressed state between the circular bottom portions 44 of the two. Here, the axial dimension of the radial center portion including the pressure receiving chamber side and equilibrium chamber side cylindrical projections 86 and 88 in the rubber elastic film 80 is made smaller than the axial dimension of the seal projection 82. Therefore, between the lid member 38 and the circular bottom portion 44, the pre-compression amount of the central portion in the radial direction of the rubber elastic film 80 is made smaller than the pre-compression amount of the seal protrusion 82. As a result, the central portion in the radial direction of the rubber elastic film 80 is difficult to be displaced even when a small pressure is applied thereto, while the outer peripheral edge of the rubber elastic film 80 is not easily displaced even when a large pressure is applied thereto. It is in a state.

一方、ゴム弾性膜80において径方向中央部分と外周縁部の間の径方向中間部分が、収容領域72の軸方向の略中央部分において軸直角方向に広がるように配置せしめられて、軸方向一方の側で対向せしめられた蓋部材38と軸方向他方の側で対向せしめられた円形底部44に対して、互いに略等しい距離だけ離隔配置せしめられている。そして、蓋部材38の透孔62を通じてゴム弾性膜80の径方向中間部分の一方(図1中、上)の面に受圧室74の圧力が及ぼされるようになっていると共に、円形底部44の透孔46を通じてゴム弾性膜80の径方向中間部分の他方(図1中、下)の面に平衡室76の圧力が及ぼされるようになっている。   On the other hand, in the rubber elastic film 80, a radial intermediate portion between the central portion in the radial direction and the outer peripheral edge portion is arranged so as to spread in a direction perpendicular to the axial direction at a substantially central portion in the axial direction of the housing region 72. The lid member 38 opposed to the other side and the circular bottom 44 opposed to the other side in the axial direction are spaced apart from each other by a substantially equal distance. The pressure of the pressure receiving chamber 74 is applied to one surface (upper in FIG. 1) of the radial intermediate portion of the rubber elastic film 80 through the through hole 62 of the lid member 38 and the circular bottom 44 The pressure of the equilibrium chamber 76 is applied to the other surface (lower side in FIG. 1) of the intermediate portion in the radial direction of the rubber elastic film 80 through the through hole 46.

従って、受圧室74と平衡室76の相対的な圧力差に基づきゴム弾性膜80の径方向中間部分が弾性変形することにより変位すると、受圧室74の圧力変動が吸収される。即ち、本実施形態に係る液圧吸収機構が、ゴム弾性膜80や仕切部材本体36の透孔46、蓋部材38の透孔62を含んで構成されている。   Accordingly, when the radial intermediate portion of the rubber elastic film 80 is displaced by elastic deformation based on the relative pressure difference between the pressure receiving chamber 74 and the equilibrium chamber 76, the pressure fluctuation in the pressure receiving chamber 74 is absorbed. That is, the hydraulic pressure absorbing mechanism according to the present embodiment includes the rubber elastic film 80, the through hole 46 of the partition member main body 36, and the through hole 62 of the lid member 38.

また、ゴム弾性膜80の径方向中間部分が厚さ方向に変位して、蓋部材38または仕切部材本体36の円形底部44に当接することにより、ゴム弾性膜80の厚さ方向の変位量が制限されて、ゴム弾性膜80の変位による受圧室74の液圧吸収作用が調整されるようになっている。このことからも明らかなように、ゴム弾性膜80の厚さ方向両側に所定距離を隔てて対向配置されて、ゴム弾性膜80の当接によってゴム弾性膜80の厚さ方向両側の変位量を制限する変位量制限部材が、蓋部材38と仕切部材本体36の円形底部44を含んで構成されている。   Further, the intermediate portion in the radial direction of the rubber elastic film 80 is displaced in the thickness direction and comes into contact with the circular bottom 44 of the lid member 38 or the partition member main body 36, whereby the amount of displacement in the thickness direction of the rubber elastic film 80 is reduced. The hydraulic pressure absorbing action of the pressure receiving chamber 74 due to the displacement of the rubber elastic film 80 is limited. As is clear from this, the rubber elastic film 80 is opposed to the both sides in the thickness direction at a predetermined distance, and the displacement amount on both sides in the thickness direction of the rubber elastic film 80 is reduced by the contact of the rubber elastic film 80. The displacement amount limiting member to be limited includes the lid member 38 and the circular bottom portion 44 of the partition member main body 36.

特に本実施形態では、アイドリング振動や低速こもり音等に相当する20〜40Hz程度の中周波数域の振動入力に際して、ゴム弾性膜80の弾性変形による受圧室74の液圧吸収効果に基づく防振効果(低動ばね特性に基づく振動絶縁効果)が有効に発揮されるように、ゴム弾性膜80の固有振動数がチューニングされている。   In particular, in the present embodiment, a vibration isolation effect based on the hydraulic pressure absorption effect of the pressure receiving chamber 74 due to elastic deformation of the rubber elastic film 80 at the time of vibration input in the middle frequency range of about 20 to 40 Hz corresponding to idling vibration, low-speed booming sound, and the like. The natural frequency of the rubber elastic film 80 is tuned so that the (vibration insulation effect based on the low dynamic spring characteristic) is effectively exhibited.

そこにおいて、第一の取付金具12と第二の取付金具14の間に通常の大きさの振動乃至は荷重が入力された状態では、平衡室側筒状突部88の突出先端面が円形底部44に当接されて、リリーフ用孔84の他方の開口部(図1中、下)の閉塞状態が維持されるように、ゴム弾性膜80における受圧室側および平衡室側筒状突部86,88を備えた径方向中央部分の圧縮変形量が設定されている。   In this state, when a normal vibration or load is input between the first mounting bracket 12 and the second mounting bracket 14, the protruding tip surface of the equilibrium chamber side cylindrical projection 88 has a circular bottom. 44, and the other opening (lower in FIG. 1) of the relief hole 84 is maintained in the closed state so that the pressure receiving chamber side and equilibrium chamber side cylindrical protrusions 86 in the rubber elastic film 80 are maintained. , 88, the amount of compressive deformation of the central portion in the radial direction is set.

一方、第一の取付金具12と第二の取付金具14の間に過大な振動乃至は荷重が入力されて、問題となる大きな負圧が受圧室74に発生する状態では、図7にも示されているように、受圧室側および平衡室側筒状突部86,88を備えたゴム弾性膜80に負圧作用が及ぼされて、ゴム弾性膜80が受圧室74側に向かって変位することに伴い、受圧室側筒状突部86が蓋部材38とゴム弾性膜80の間で軸方向に圧縮変形すると共に、平衡室側筒状突部88が受圧室74側に向かって変位して仕切部材本体36の円形底部44から離隔せしめられるように、ゴム弾性膜80における受圧室側および平衡室側筒状突部86,88を備えた径方向中央部分の圧縮変形量が設定されている。平衡室側筒状突部88の突出先端面が円形底部44から離隔せしめられて、リリーフ用孔84の他方の開口部が収容領域72内に開口せしめられると、リリーフ用孔84が開口状態となり、受圧室74と平衡室76が、蓋部材38の連通孔60や受圧室側筒状部86の内部、リリーフ用孔84、平衡室側筒状部88の内部、収容領域72における可動ゴム膜80と円形底部44の間の領域、円形底部44の透孔46を通じて短絡せしめられる。   On the other hand, when excessive vibration or load is input between the first mounting bracket 12 and the second mounting bracket 14 and a large negative pressure in question is generated in the pressure receiving chamber 74, it is also shown in FIG. As described above, a negative pressure is exerted on the rubber elastic film 80 including the pressure receiving chamber side and equilibrium chamber side cylindrical protrusions 86 and 88, and the rubber elastic film 80 is displaced toward the pressure receiving chamber 74 side. Along with this, the pressure-receiving chamber side cylindrical projection 86 is compressed and deformed in the axial direction between the lid member 38 and the rubber elastic film 80, and the equilibrium chamber-side cylindrical projection 88 is displaced toward the pressure receiving chamber 74 side. The amount of compressive deformation of the central portion in the radial direction provided with the pressure receiving chamber side and equilibrium chamber side cylindrical protrusions 86 and 88 in the rubber elastic film 80 is set so as to be separated from the circular bottom 44 of the partition member main body 36. Yes. When the protruding front end surface of the equilibrium chamber side cylindrical projection 88 is separated from the circular bottom 44 and the other opening of the relief hole 84 is opened in the receiving area 72, the relief hole 84 is in an open state. The pressure receiving chamber 74 and the equilibrium chamber 76 are the movable rubber film in the communication hole 60 of the lid member 38, the inside of the pressure receiving chamber side cylindrical portion 86, the relief hole 84, the inside of the equilibrium chamber side cylindrical portion 88, and the accommodating region 72. Short-circuit is made through a region between 80 and the circular bottom 44, through a through hole 46 in the circular bottom 44.

上述の如き構造とされた自動車用エンジンマウント10においては、走行時に問題となるエンジンシェイク等の低周波数域の振動が入力されると、受圧室82に比較的に大きな圧力変動が生ぜしめられる。この圧力は大きいため、微振幅にチューニングされたゴム弾性膜80では、受圧室74の圧力を実質的に吸収し得ない。また、特に受圧室74において問題となる負圧が発生しない状態では、平衡室側筒状突部88の突出先端面が円形底部44に流体密に当接せしめられて、リリーフ用孔84が閉塞された状態が保持されている。従って、ゴム弾性膜80の弾性変形による受圧室74の圧力変動の吸収やリリーフ用孔84を通じての受圧室74の圧力漏れが抑えられていることから、受圧室74と平衡室76の間に有効な圧力差が生ぜしめられて、オリフィス通路78を通じての流体の流動量が充分に確保される。それ故、オリフィス通路78を通じての流体の共振作用等の流動作用に基づいて、エンジンシェイク等の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるのである。   In the automobile engine mount 10 having the above-described structure, a relatively large pressure fluctuation is generated in the pressure receiving chamber 82 when vibrations in a low frequency region such as an engine shake which is a problem during traveling are input. Since this pressure is large, the rubber elastic film 80 tuned to a small amplitude cannot substantially absorb the pressure in the pressure receiving chamber 74. Further, particularly in a state where no negative pressure is generated in the pressure receiving chamber 74, the protruding tip surface of the equilibrium chamber side cylindrical protrusion 88 is brought into fluid tight contact with the circular bottom 44, and the relief hole 84 is blocked. Maintained. Accordingly, absorption of pressure fluctuation in the pressure receiving chamber 74 due to elastic deformation of the rubber elastic film 80 and pressure leakage of the pressure receiving chamber 74 through the relief hole 84 are suppressed, and therefore effective between the pressure receiving chamber 74 and the equilibrium chamber 76. As a result, a sufficient pressure difference is generated, and a sufficient amount of fluid flows through the orifice passage 78. Therefore, based on the fluid action such as the resonance action of the fluid through the orifice passage 78, an effective anti-vibration effect (high damping effect) is exhibited against low-frequency vibration such as engine shake.

また、停車時に問題となるアイドリング振動や走行時に問題となる低速こもり音等の中周波数域の振動の入力では、受圧室74に対して小さな振幅の圧力変動が惹起されることとなる。その際、当該振動の周波数域がオリフィス通路78のチューニング周波数よりも高いことから、オリフィス通路78が、反共振的な作用による流体流通抵抗の増加に起因して、実質的に閉塞状態となる。そこで、当該中周波数域にチューニングされたゴム弾性膜80の弾性変形に基づいて、受圧室74の圧力変動が吸収されることにより、オリフィス通路78の実質的な閉塞化に起因する著しい高動ばね化が回避されることとなる。それ故、中周波数域の振動に対する良好な防振効果(低動ばね特性に基づく振動絶縁効果)が発揮されるのである。   In addition, when an idling vibration that is a problem when the vehicle is stopped or a vibration in a medium frequency range such as a low-speed booming sound that is a problem when traveling is performed, a pressure fluctuation with a small amplitude is caused in the pressure receiving chamber 74. At that time, since the frequency range of the vibration is higher than the tuning frequency of the orifice passage 78, the orifice passage 78 is substantially closed due to an increase in fluid flow resistance due to an anti-resonant action. In view of this, a significant high dynamic spring resulting from the substantial blockage of the orifice passage 78 by absorbing the pressure fluctuation of the pressure receiving chamber 74 based on the elastic deformation of the rubber elastic film 80 tuned to the middle frequency range. Will be avoided. Therefore, a good anti-vibration effect (vibration insulation effect based on the low dynamic spring characteristics) against vibration in the middle frequency range is exhibited.

なお、ゴム弾性膜80の弾性変形により受圧室74の圧力変動を吸収せしめる形態では、当該圧力が極めて微小とされていることから、受圧室74の負圧作用によって平衡室側筒状突部88が仕切部材本体36の円形底部44から離隔変位する程に大きな負圧が、受圧室74において発生し難くなっている。これにより、ゴム弾性膜80の径方向中央部分が蓋部材38と円形底部44の間で挟圧支持せしめられた状態が維持されて、ゴム弾性膜80の径方向中間部分の変形による変位に基づいて、目的とする液圧吸収効果が安定して得られる。   In the embodiment in which the pressure fluctuation of the pressure receiving chamber 74 is absorbed by the elastic deformation of the rubber elastic film 80, the pressure is extremely small. Therefore, the balance chamber side cylindrical protrusion 88 is caused by the negative pressure action of the pressure receiving chamber 74. Therefore, a negative pressure that is large enough to be displaced away from the circular bottom 44 of the partition member main body 36 is less likely to be generated in the pressure receiving chamber 74. As a result, the state where the central portion in the radial direction of the rubber elastic film 80 is supported by pressure between the lid member 38 and the circular bottom portion 44 is maintained, and based on the displacement caused by the deformation of the intermediate portion in the radial direction of the rubber elastic film 80. Thus, the intended hydraulic pressure absorption effect can be stably obtained.

ところで、自動車が段差乗り越えたり凹凸の大きな路面等を走行して、第一の取付金具12と第二の取付金具14の間に衝撃的な荷重が入力されると、本体ゴム弾性体16が急激に乃至は過大に弾性変形することに伴い、受圧室74において、問題となる異音の発生要因のキャビテーション気泡を生ぜしめる程に過大な負圧が発生する場合がある。   By the way, when an automobile travels over a step or travels on a road surface with large unevenness and a shocking load is input between the first mounting bracket 12 and the second mounting bracket 14, the main rubber elastic body 16 is suddenly moved. As a result of excessive elastic deformation, an excessive negative pressure may be generated in the pressure receiving chamber 74 to the extent that cavitation bubbles, which are the cause of abnormal noise, are generated.

そこにおいて、本実施形態に係る自動車用エンジンマウント10では、このキャビテーション気泡が発生する前の大きな負圧の段階で、ゴム弾性膜80や受圧室側筒状突部86、平衡室側筒状突部88に負圧が及ぼされると、蓋部材38と円形底部44の軸方向間に配設されて受圧室側および平衡室側筒状突部86,88を備えたゴム弾性膜80の径方向中央部分における前述のばね特性の設定に基づき、平衡室側筒状突部88が円形底部44から離隔して、リリーフ用孔84の閉塞状態が解除される。その結果、受圧室74と平衡室76がリリーフ用孔84を通じて相互に連通せしめられて、受圧室74の圧力と平衡室76の圧力が平衡状態に向かい、受圧室74の過負圧状態が解消されることから、キャビテーション気泡の発生が有利に抑えられて、問題となる異音や振動等が防止されるのである。   Therefore, in the automotive engine mount 10 according to the present embodiment, the rubber elastic film 80, the pressure receiving chamber side cylindrical protrusion 86, and the equilibrium chamber side cylindrical protrusion are in the stage of a large negative pressure before the generation of the cavitation bubbles. When a negative pressure is applied to the portion 88, the radial direction of the rubber elastic membrane 80 provided between the cover member 38 and the circular bottom portion 44 in the axial direction and including the pressure-receiving chamber side and equilibrium chamber side cylindrical protrusions 86, 88. Based on the setting of the aforementioned spring characteristic in the central portion, the equilibrium chamber side cylindrical projection 88 is separated from the circular bottom 44 and the closed state of the relief hole 84 is released. As a result, the pressure receiving chamber 74 and the equilibrium chamber 76 are communicated with each other through the relief hole 84, the pressure in the pressure receiving chamber 74 and the pressure in the equilibrium chamber 76 are brought into an equilibrium state, and the overnegative pressure state of the pressure receiving chamber 74 is eliminated. As a result, the generation of cavitation bubbles is advantageously suppressed, and problematic abnormal noises and vibrations are prevented.

ここで、本実施形態に係る自動車用エンジンマウント10においては、受圧室74の過負圧状態を解消させるリリーフ機構が、ゴム弾性膜80に形成されたリリーフ用孔84やゴム弾性膜80と一体形成された受圧室側筒状突部86、平衡室側突部88の他、蓋部材38や蓋部材38に形成された連通孔60、仕切部材本体36の円形底部44、円形底部44に形成された透孔46を含んで構成されている。即ち、当該リリーフ機構が、受圧室74の圧力変動を吸収する液圧吸収機構を構成する部材乃至は部位の多くを含んで構成されている。これにより、リリーフ機構をそれら部材乃至は部位と別途形成することに伴う部品点数の増加が抑えられて、製造効率の向上や低コスト化が有利に図られ得るのである。   Here, in the automotive engine mount 10 according to the present embodiment, the relief mechanism for eliminating the overnegative pressure state of the pressure receiving chamber 74 is integrated with the relief hole 84 formed in the rubber elastic film 80 and the rubber elastic film 80. In addition to the pressure receiving chamber side cylindrical projection 86 and the equilibrium chamber side projection 88 formed, the lid member 38, the communication hole 60 formed in the lid member 38, the circular bottom 44 of the partition member main body 36, and the circular bottom 44 are formed. It is comprised including the through-hole 46 made. That is, the relief mechanism is configured to include many of the members or parts constituting the hydraulic pressure absorbing mechanism that absorbs the pressure fluctuation in the pressure receiving chamber 74. As a result, an increase in the number of parts associated with forming the relief mechanism separately from those members or parts can be suppressed, and improvement in manufacturing efficiency and cost reduction can be advantageously achieved.

しかも、リリーフ機構がオリフィス通路78と独立して形成されて、且つオリフィス通路78が仕切部材34におけるリリーフ機構の外周側に形成されていることによって、オリフィス通路78の設計自由度が有効に確保される。加えて、例えばオリフィス通路の壁部にリリーフ用孔を形成すること等に起因して、オリフィス通路を通じての流体の流動作用が生ぜしめられる際に、流体がリリーフ用孔を通じて漏れるおそれもない。これにより、オリフィス通路78を通じての流体流動量が充分に確保されることに基づき、優れたオリフィス効果が得られる。   In addition, since the relief mechanism is formed independently of the orifice passage 78 and the orifice passage 78 is formed on the outer peripheral side of the relief mechanism in the partition member 34, the design freedom of the orifice passage 78 is effectively ensured. The In addition, there is no possibility that the fluid leaks through the relief hole when a fluid flow action through the orifice passage occurs due to, for example, forming a relief hole in the wall of the orifice passage. Accordingly, an excellent orifice effect can be obtained based on the fact that a sufficient fluid flow amount through the orifice passage 78 is ensured.

特に本実施形態では、ゴム弾性膜80のリリーフ用孔84の周囲において受圧室側筒状突部86と反対側に平衡室側筒状突部88が突設されていることによって、ゴム弾性膜80におけるリリーフ用孔84および受圧室側筒状突部86が形成された部位の厚さ方向のばね特性が高度にチューニングされる。   Particularly in the present embodiment, the balance chamber side cylindrical projection 88 is provided on the opposite side of the pressure receiving chamber side cylindrical projection 86 around the relief hole 84 of the rubber elastic membrane 80, thereby providing a rubber elastic membrane. The spring characteristics in the thickness direction of the portion where the relief hole 84 and the pressure receiving chamber side cylindrical projection 86 are formed in 80 are highly tuned.

さらに、受圧室74の過大な負圧作用によりゴム弾性膜80が受圧室74側に向かって吸引せしめられて、リリーフ用孔84を通じて受圧室74と平衡室76が短絡せしめられて、受圧室74の過負圧状態が解消された後には、再びゴム弾性膜80におけるリリーフ用孔84の他方(図1中、下)の開口周縁部が仕切部材本体36の円形底部44に当接せしめられて、リリーフ用孔84の閉塞状態が保たれることとなる。そこにおいて、リリーフ用孔84の他方の開口部が平衡室側筒状突部88の突出先端面で構成されて、ゴム弾性膜80が平衡室側筒状突部88を介して円形底部44に打ち当たるようになっていることから、平衡室側筒状突部88の弾性による緩衝作用に基づいて、打ち当たりに伴う大きな打音の発生が効果的に低減され得る。   Further, the rubber elastic film 80 is sucked toward the pressure receiving chamber 74 by the excessive negative pressure action of the pressure receiving chamber 74, and the pressure receiving chamber 74 and the equilibrium chamber 76 are short-circuited through the relief hole 84, so that the pressure receiving chamber 74. After the overnegative pressure state is resolved, the other peripheral edge of the relief hole 84 (lower in FIG. 1) of the rubber elastic film 80 is brought into contact with the circular bottom 44 of the partition member main body 36 again. Thus, the closed state of the relief hole 84 is maintained. In this case, the other opening of the relief hole 84 is formed by a protruding tip surface of the equilibrium chamber side cylindrical projection 88, and the rubber elastic film 80 is formed on the circular bottom 44 via the equilibrium chamber side cylindrical projection 88. Since it hits, based on the buffering action by the elasticity of the equilibrium chamber side cylindrical projection 88, the generation of a loud hitting sound associated with the hitting can be effectively reduced.

また、それら受圧室側筒状突部86と平衡室側筒状突部88が形成されたゴム弾性膜80の径方向中央部分や、ゴム弾性膜80の外周縁部に形成されたシール突部82が、何れも蓋部材38と仕切部材本体36の円形底部44の軸方向間に圧縮変形されていることによって、特に受圧室74の圧力変動が小さい状態では、ゴム弾性膜80の中央部分および外周部分が変形し難くされている。これにより、ゴム弾性膜80を収容領域88内に安定して収容せしめつつ、有効面積の大きな径方向中間部分の弾性変形によって受圧室82の圧力変動が効率的に吸収されるようになっていることから、前述の問題となるアイドリング振動や低速こもり音等の中周波数域の振動に対する防振効果が安定して得られるのである。   Further, the radial center portion of the rubber elastic film 80 in which the pressure receiving chamber side cylindrical protrusion 86 and the equilibrium chamber side cylindrical protrusion 88 are formed, and the seal protrusion formed on the outer peripheral edge of the rubber elastic film 80. 82 is compressed between the lid member 38 and the circular bottom 44 of the partition member main body 36 in the axial direction, so that the center portion of the rubber elastic film 80 and The outer peripheral part is made difficult to deform. As a result, the rubber elastic film 80 is stably accommodated in the accommodating region 88, and the pressure fluctuation in the pressure receiving chamber 82 is efficiently absorbed by the elastic deformation of the radial intermediate portion having a large effective area. For this reason, it is possible to stably obtain an anti-vibration effect with respect to vibrations in the middle frequency range such as idling vibration and low-speed booming noise, which are the problems described above.

また、本実施形態では、ゴム弾性膜80のシール突部82が仕切部材本体36の円形底部44と蓋部材38の軸方向間に圧縮変形されることよる軸直角方向の膨出変形によって、ゴム弾性膜80の外周縁部が、シール突部82を介して収容領域72の周壁部に流体密に重ね合わせられている。即ち、ゴム弾性膜80が可動膜構造を呈している。その結果、ゴム弾性膜80の外周縁部と仕切部材本体36の周壁部の間の隙間を通じての圧力漏れが一層有利に抑えられて、オリフィス通路78を通じての流体流動量の更なる安定した確保が図られ得る。   Further, in this embodiment, the seal protrusion 82 of the rubber elastic film 80 is compressed and deformed between the circular bottom portion 44 of the partition member main body 36 and the cover member 38 in the axial direction, thereby causing the rubber to swell. The outer peripheral edge portion of the elastic film 80 is fluid-tightly overlapped with the peripheral wall portion of the accommodation region 72 via the seal protrusion 82. That is, the rubber elastic film 80 has a movable film structure. As a result, pressure leakage through the gap between the outer peripheral edge portion of the rubber elastic membrane 80 and the peripheral wall portion of the partition member main body 36 is further advantageously suppressed, and further stable securing of the fluid flow rate through the orifice passage 78 is ensured. Can be illustrated.

さらに、本実施形態では、受圧室側筒状突部86を当接する受圧室側当接部材やゴム弾性膜80の厚さ方向一方の変位量を制限する変位量制限部材が、蓋部材38で構成されていることに加えて、平衡室側筒状突部88を当接する平衡室側当接部材やゴム弾性膜80の厚さ方向他方の変位量を制限する変位量制限部材が、仕切部材本体36の円形底部44で構成されている。これら仕切部材本体36と蓋部材38は、受圧室74と平衡室76を仕切る仕切部材34の一部を構成している。即ち、受圧室側および平衡室側当接部材や変位量制限部材が、仕切部材34を利用して構成されていることから、当接部材や変位量制限部材を新たに設ける必要がなくなり、部品点数の増加や構造の複雑化が防止される。   Further, in the present embodiment, the lid member 38 includes a pressure receiving chamber side abutting member that abuts the pressure receiving chamber side cylindrical projection 86 and a displacement amount limiting member that limits the amount of displacement in one of the thickness directions of the rubber elastic film 80. In addition to being configured, the equilibrium chamber side abutting member that abuts the equilibrium chamber side cylindrical projection 88 and the displacement amount limiting member that limits the displacement amount of the rubber elastic film 80 in the thickness direction other are partition members. It is constituted by a circular bottom 44 of the main body 36. The partition member body 36 and the lid member 38 constitute a part of the partition member 34 that partitions the pressure receiving chamber 74 and the equilibrium chamber 76. In other words, since the pressure receiving chamber side and equilibrium chamber side contact members and the displacement amount limiting member are configured using the partition member 34, there is no need to newly provide the contact member and the displacement amount limiting member. An increase in the number of points and a complicated structure are prevented.

また、本実施形態では、蓋部材38における受圧室側筒状突部86の当接部分において、受圧室側筒状突部86の外径よりも小さな内径寸法の連通孔60が形成されている。そして、連通孔60が、リリーフ用孔84内の中央に開口位置せしめられている。即ち、リリーフ用孔84の受圧室74側の開口部が、蓋部材38の連通孔60と直接に接続されて、受圧室74に常時連通されている。これにより、平衡室側筒状突部88の開口端部が仕切部材本体36の円形底部44から離隔して、リリーフ用孔84が開口状態になると、受圧室74と平衡室76が、リリーフ用孔84が連通孔60を通じて直接に受圧室に開口する形態の短い流路によって短絡されることとなり、キャビテーション気泡の発生がより効果的に抑えられる。   In the present embodiment, a communication hole 60 having an inner diameter smaller than the outer diameter of the pressure receiving chamber side cylindrical projection 86 is formed in the contact portion of the pressure receiving chamber side cylindrical projection 86 in the lid member 38. . The communication hole 60 is positioned at the center of the relief hole 84. That is, the opening on the pressure receiving chamber 74 side of the relief hole 84 is directly connected to the communication hole 60 of the lid member 38 and is always in communication with the pressure receiving chamber 74. Thereby, when the opening end of the equilibrium chamber side cylindrical projection 88 is separated from the circular bottom 44 of the partition member main body 36 and the relief hole 84 is in an open state, the pressure receiving chamber 74 and the equilibrium chamber 76 are used for relief. The hole 84 is short-circuited by a short flow path that opens directly to the pressure receiving chamber through the communication hole 60, and generation of cavitation bubbles is more effectively suppressed.

それ故、本実施形態に従う構造とされた自動車用エンジンマウント10においては、製造工程の短縮化や低コスト化、コンパクト化が有利に図られつつ、オリフィス通路78等のチューニング自由度が向上されて、目的の防振効果が安定して得られるのである。   Therefore, in the automobile engine mount 10 having the structure according to this embodiment, the degree of freedom of tuning of the orifice passage 78 and the like is improved while advantageously reducing the manufacturing process, reducing the cost, and reducing the size. Thus, the desired vibration-proofing effect can be obtained stably.

以上、本発明の実施形態について詳述してきたが、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。例えば、仕切部材34やゴム弾性膜80、リリーフ用孔84、受圧室側筒状突部86等における形状や大きさ、構造、配置、数等の形態は例示の如きものに限定されない。   The embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific descriptions in the embodiments, and various changes, modifications, and improvements based on the knowledge of those skilled in the art. Needless to say, any of these embodiments can be included in the scope of the present invention without departing from the spirit of the present invention. For example, the shape, size, structure, arrangement, number, and the like of the partition member 34, the rubber elastic film 80, the relief hole 84, the pressure receiving chamber side cylindrical protrusion 86, and the like are not limited to those illustrated.

以下に、前記実施形態とは別の態様を幾つか図示して例示する。なお、以下の各態様では、前記実施形態と実質的に同一の構造とされた部材および部位については、前記実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   Hereinafter, some aspects different from the above embodiment will be illustrated and exemplified. In each of the following aspects, members and parts having substantially the same structure as those of the above-described embodiment are denoted by the same reference numerals as those of the above-described embodiment, and detailed description thereof is omitted.

先ず、前記実施形態では、受圧室側筒状突部86の突出先端部分が周方向に連続して延びる円環形状とされて、その突出先端面が全周に亘って蓋部材38に当接されていたが、例えば本発明の第二の態様が図8に示されているように、受圧室側筒状突部86の突出先端部分を、部分的に、蓋部材38に当接させても良い。図8に例示した態様では、受圧室側筒状突部86の突出先端部分において、周上の複数箇所(例えば等分に位置する4箇所)に、それぞれ径方向内外に延びるU字溝形状の切欠90が形成されている。そして、受圧室側筒状突部86は、これら切欠90が形成されていない部分だけが、蓋部材38に当接されている。このように、適当な大きさや形状,数をもって切欠90を形成すること等により、受圧室側筒状突部86の蓋部材38に対する当接面積を調節することによって、受圧室側筒状突部86の軸方向圧縮方向(受圧室74の負圧作用時の弾性変形方向)におけるばね特性を大きな自由度をもって調節することが可能となる。   First, in the said embodiment, the protrusion front-end | tip part of the pressure-receiving chamber side cylindrical protrusion 86 is made into the annular | circular shape extended continuously in the circumferential direction, and the protrusion front-end | tip surface contact | abuts the cover member 38 over the perimeter. However, for example, as shown in FIG. 8 in the second aspect of the present invention, the protruding tip portion of the pressure-receiving chamber side cylindrical protrusion 86 is partially brought into contact with the lid member 38. Also good. In the aspect illustrated in FIG. 8, the protruding tip portion of the pressure-receiving chamber side cylindrical protrusion 86 has U-shaped groove shapes extending radially inward and outward at a plurality of locations on the circumference (for example, four locations located equally). A notch 90 is formed. The pressure receiving chamber side cylindrical protrusion 86 is in contact with the lid member 38 only in a portion where the notches 90 are not formed. Thus, by adjusting the contact area of the pressure receiving chamber side cylindrical protrusion 86 with respect to the lid member 38 by forming the notches 90 with an appropriate size, shape and number, the pressure receiving chamber side cylindrical protrusion It is possible to adjust the spring characteristics in the axial compression direction 86 (the elastic deformation direction during the negative pressure action of the pressure receiving chamber 74) with a large degree of freedom.

なお、図8に示された態様においては、受圧室側筒状突部86に切欠90が形成されていることにより、リリーフ用孔84が、蓋部材38の連通孔60を通じて受圧室74に直接に連通されていることに加えて、仕切部材34内において受圧室側筒状突部86の外周側に位置する収容領域72から第一及び第二の小孔64,66を通じても受圧室74に連通されている。要するに、これら第一及び第二の小孔64,66も、受圧室側筒状突部86の内部を受圧室74に連通せしめる連通孔として機能しているのである。   In the embodiment shown in FIG. 8, the notch 90 is formed in the pressure receiving chamber side cylindrical projection 86, so that the relief hole 84 is directly connected to the pressure receiving chamber 74 through the communication hole 60 of the lid member 38. In addition, the pressure receiving chamber 74 also enters the pressure receiving chamber 74 through the first and second small holes 64 and 66 from the accommodating region 72 located on the outer peripheral side of the pressure receiving chamber side cylindrical projection 86 in the partition member 34. It is communicated. In short, the first and second small holes 64 and 66 also function as communication holes that allow the inside of the pressure receiving chamber side cylindrical projection 86 to communicate with the pressure receiving chamber 74.

また、前記実施形態では、受圧室側筒状突部86と平衡室側筒状突部88が、略同じ形状や大きさとされていたが、例えば、図8に示されているように、軸方向寸法や軸直角方向の厚さ寸法等が互いに異ならされていても良い。具体的には、受圧室側筒状突部86の肉厚寸法を、平衡室側筒状突部88の肉厚寸法よりも小さく設定した態様が、図8に示されている。これにより、厚肉の平衡室側筒状突部88によって形状保持剛性を確保しつつ、受圧室側筒状突部86を薄肉として軸方向圧縮ばね特性を適当に調節することも可能となる。なお、受圧室側筒状突部86や平衡室側筒状突部88は、その軸方向全長に亘って一定の内外径寸法である必要はない。例えば、軸方向突出先端部に向かって次第に外径寸法を小さくしてテーパ状外周面を採用することにより、弾性変形の安定性を向上させることも可能である。   In the above embodiment, the pressure receiving chamber side cylindrical projection 86 and the equilibrium chamber side cylindrical projection 88 have substantially the same shape and size. For example, as shown in FIG. The direction dimension and the thickness dimension in the direction perpendicular to the axis may be different from each other. Specifically, FIG. 8 shows an aspect in which the thickness dimension of the pressure receiving chamber side cylindrical projection 86 is set smaller than the thickness dimension of the equilibrium chamber side cylindrical projection 88. Accordingly, it is possible to appropriately adjust the axial compression spring characteristics by making the pressure receiving chamber side cylindrical projection 86 thin while securing the shape retention rigidity by the thick equilibrium chamber side cylindrical projection 88. The pressure receiving chamber side cylindrical projection 86 and the equilibrium chamber side cylindrical projection 88 do not have to have a constant inner and outer diameter dimension over the entire axial length thereof. For example, it is possible to improve the stability of elastic deformation by gradually reducing the outer diameter dimension toward the axially projecting tip and adopting a tapered outer peripheral surface.

また、平衡室側筒状突部88は必須の構成要件でない。例えば、図9に示された本発明の第三の態様においては、仕切部材本体36の円形底部44において収容領域72に向かって平衡室側当接部材としての台座部92が突出形成されている。図示の台座部92は、円形底部44をプレス加工して一体形成されているが、別体の台座を円形底部44に固着して形成しても良い。そして、この台座部92の上面に対して、ゴム弾性膜80におけるリリーフ用孔84の他方(図9中、下)の開口周縁部が重ね合わされている。   Further, the equilibrium chamber side cylindrical protrusion 88 is not an essential constituent requirement. For example, in the third aspect of the present invention shown in FIG. 9, a pedestal 92 serving as an equilibrium chamber side abutting member is projected from the circular bottom 44 of the partition member main body 36 toward the accommodation region 72. . The illustrated pedestal portion 92 is integrally formed by pressing the circular bottom portion 44, but may be formed by fixing a separate pedestal to the circular bottom portion 44. The other peripheral edge of the relief hole 84 in the rubber elastic film 80 (the lower side in FIG. 9) is superimposed on the upper surface of the pedestal 92.

このような台座部92を設けることにより、平板形状のゴム弾性膜80の平衡室側(図9中の下側)において円形底部44との間にゴム弾性膜80の弾性変形許容スペースを確保しつつ、リリーフ用孔84の平衡室側への開口を閉塞状態に当接させることが出来る。加えて、図9に示されているように、このような台座部92を採用することにより、平衡室側筒状突部(88)を採用しなくても、本発明を実施することが可能となる。   By providing such a pedestal portion 92, an elastic deformation allowable space of the rubber elastic film 80 is secured between the flat rubber elastic film 80 and the circular bottom 44 on the equilibrium chamber side (lower side in FIG. 9). However, the opening of the relief hole 84 toward the equilibrium chamber can be brought into contact with the closed state. In addition, as shown in FIG. 9, by adopting such a pedestal portion 92, the present invention can be carried out without adopting the equilibrium chamber side cylindrical projection (88). It becomes.

さらに、前記実施形態では、リリーフ用孔84の径寸法が、受圧室側当接部材としての蓋部材38に形成された連通孔60の径寸法と同じとされていたが、連通孔60の大きさや形状は限定されるものでない。例えば、上述の図8,9に示された態様の如く、リリーフ用孔84の断面形状や大きさを考慮して、連通孔60の口径を大きくしたり、小さくしたりすることが出来る。   Further, in the above embodiment, the diameter of the relief hole 84 is the same as the diameter of the communication hole 60 formed in the lid member 38 as the pressure receiving chamber side contact member. The sheath shape is not limited. For example, the diameter of the communication hole 60 can be increased or decreased in consideration of the cross-sectional shape and size of the relief hole 84 as in the embodiment shown in FIGS.

また、例えば図10に示された本発明の第四の態様のように、蓋部材38における受圧室側筒状突部86が当接する部分において収容領域72に向かって凹状に開口する収容凹所94を設けても良い。この収容凹所94に対して、受圧室側筒状突部86の先端を入り込ませて、受圧室側筒状突部86の先端面を収容凹所94の平坦な上底面に重ね合わせて当接させている。このような収容凹所94を設けることにより、受圧室側筒状突部86の位置決め効果や、受圧室側筒状突部86の弾性変形時における形状安定性の向上効果が達成され得る。   Further, for example, as in the fourth aspect of the present invention shown in FIG. 10, the housing recess that opens concavely toward the housing region 72 at the portion where the pressure receiving chamber side cylindrical projection 86 contacts the lid member 38. 94 may be provided. The tip of the pressure receiving chamber side cylindrical projection 86 is inserted into the receiving recess 94, and the tip end surface of the pressure receiving chamber side cylindrical projection 86 is overlapped with the flat upper bottom surface of the receiving recess 94. Touching. By providing such a housing recess 94, the positioning effect of the pressure receiving chamber side cylindrical projection 86 and the effect of improving the shape stability during elastic deformation of the pressure receiving chamber side cylindrical projection 86 can be achieved.

また、ゴム弾性膜80の外周縁部に一体形成されて、蓋部材38と円形底部44の間に挟圧支持せしめられていたシール突部82は、本発明において必須の構成要件でない。例えば、上述の図10に示された態様では、ゴム弾性膜80の外周縁部が、収容領域72の周壁部と僅かな隙間を隔てて対向位置せしめられている。要するに、ゴム弾性膜80の外径寸法が、収容領域72の内径寸法よりも僅かに小さくされている。なお、かかる隙間寸法は、低周波大振幅振動の入力時に受圧室74の圧力変動が充分に発生されるように設定される。これにより、ゴム弾性膜80は、中央部分において受圧室側及び平衡室側の筒状突部86,88が蓋部材38と円形底部44との間で弾性的に挟持されて位置保持されつつ、その外周部分が収容領域72内で所定量だけ変位せしめられ得る。そして、かかる変位に基づいて、受圧室と平衡室の圧力差が吸収されて、可動板機能を発揮し得ることとなる。   Further, the seal protrusion 82 that is integrally formed on the outer peripheral edge of the rubber elastic film 80 and is supported by pressing between the lid member 38 and the circular bottom 44 is not an essential component in the present invention. For example, in the embodiment shown in FIG. 10 described above, the outer peripheral edge portion of the rubber elastic film 80 is opposed to the peripheral wall portion of the accommodation region 72 with a slight gap therebetween. In short, the outer diameter of the rubber elastic membrane 80 is slightly smaller than the inner diameter of the accommodation region 72. The gap size is set so that the pressure fluctuation in the pressure receiving chamber 74 is sufficiently generated when the low frequency large amplitude vibration is input. As a result, the rubber elastic membrane 80 is held in position while the cylindrical projections 86 and 88 on the pressure receiving chamber side and the equilibrium chamber side are elastically sandwiched between the lid member 38 and the circular bottom portion 44 in the central portion. The outer peripheral portion can be displaced by a predetermined amount within the accommodation region 72. And based on this displacement, the pressure difference between the pressure receiving chamber and the equilibrium chamber is absorbed, and the movable plate function can be exhibited.

また、前記実施形態では、受圧室側当接部材に形成される連通孔60が、蓋部材38の径方向中央において受圧室側筒状突部86と当接される部分に形成されていたが、連通孔を当接部分以外に形成することも可能である。   In the above-described embodiment, the communication hole 60 formed in the pressure receiving chamber side contact member is formed in the portion in contact with the pressure receiving chamber side cylindrical projection 86 at the radial center of the lid member 38. It is also possible to form the communication hole other than the contact portion.

例えば図11における本発明の第五の態様に示されているように、リリーフ用孔84を、仕切部材34内において受圧室側筒状突部86の外周側に位置する収容領域72から第一及び第二の小孔64,66を通じて、受圧室74に連通させても良い。即ち、本態様では、前述の図8に示された本発明の第二の態様の構造に比して、蓋部材38の連通孔60が形成されていない。本態様においては、受圧室側筒状突部86の内部が、切欠90を通じて、収容領域72内の上側領域に対して、常時連通されている。なお、この上側領域は、蓋部材38に形成された第一及び第二の小孔64,66を通じて、常時、受圧室74に連通されている。従って、本態様では、リリーフ用孔84が、切欠90で連通せしめられた収容領域72から第一及び第二の小孔64,66を通じて受圧室74に連通されているのである。このことから明らかなように、本実施形態では、これら第一及び第二の小孔64,66が、受圧室側筒状突部86の内部を受圧室74に連通せしめる連通孔とされている。   For example, as shown in the fifth aspect of the present invention in FIG. 11, the relief hole 84 is first formed from the accommodation region 72 located on the outer peripheral side of the pressure receiving chamber side cylindrical projection 86 in the partition member 34. In addition, the pressure receiving chamber 74 may be communicated with the second small holes 64 and 66. That is, in this embodiment, the communication hole 60 of the lid member 38 is not formed as compared with the structure of the second embodiment of the present invention shown in FIG. In this aspect, the inside of the pressure-receiving chamber side cylindrical projection 86 is always communicated with the upper region in the accommodation region 72 through the notch 90. The upper region is always in communication with the pressure receiving chamber 74 through the first and second small holes 64 and 66 formed in the lid member 38. Therefore, in this embodiment, the relief hole 84 is communicated with the pressure receiving chamber 74 through the first and second small holes 64 and 66 from the accommodating region 72 communicated with the notch 90. As is clear from this, in the present embodiment, the first and second small holes 64 and 66 are communication holes that allow the inside of the pressure receiving chamber side cylindrical projection 86 to communicate with the pressure receiving chamber 74. .

かかる受圧室側筒状突部86に形成された切欠90は、受圧室74に過大な負圧が生じ、受圧室側筒状突部86が蓋部材38とゴム弾性膜80の軸方向間で圧縮変形せしめられて、平衡室側筒状突部88の開口端部が仕切部材本体36の円形底部44から離隔した状態でも、図12に示されているように、収容領域72と受圧室側筒状突部86の内部を連通状態に維持せしめ得るようになっている。それ故、受圧室74に大きな負圧が生ぜしめられた際に、受圧室74と平衡室76が、蓋部材38の透孔62や収容領域72における可動ゴム膜80と蓋部材38の間の領域、連通路98、受圧室側筒状部86の内部、リリーフ用孔84、平衡室側筒状部88の内部、収容領域72における可動ゴム膜80と円形底部44の間の領域、円形底部44の透孔46を通じて、短絡状態が発現される。これにより、前記第一の実施形態と同様な作用効果が発揮され得るのである。   The notch 90 formed in the pressure receiving chamber side cylindrical protrusion 86 generates an excessive negative pressure in the pressure receiving chamber 74, and the pressure receiving chamber side cylindrical protrusion 86 is interposed between the cover member 38 and the rubber elastic film 80 in the axial direction. As shown in FIG. 12, even when the open end of the equilibrium chamber side cylindrical projection 88 is separated from the circular bottom 44 of the partition member main body 36 by being compressed and deformed, as shown in FIG. The inside of the cylindrical protrusion 86 can be maintained in a communicating state. Therefore, when a large negative pressure is generated in the pressure receiving chamber 74, the pressure receiving chamber 74 and the equilibrium chamber 76 are located between the movable rubber film 80 and the lid member 38 in the through hole 62 of the lid member 38 or the accommodation region 72. Area, communication path 98, pressure receiving chamber side cylindrical portion 86, relief hole 84, equilibrium chamber side cylindrical portion 88, area between movable rubber film 80 and circular bottom 44 in storage area 72, circular bottom The short circuit state is developed through the through holes 46 of 44. Thereby, the same effect as said 1st embodiment can be exhibited.

また、前記実施形態では、ゴム弾性膜80が、マウント10及び仕切部材34の中心軸上に同軸的に配設されていたが、ゴム弾性膜の配設位置は限定されるものでない。また、リリーフ用孔84がゴム弾性膜80の径方向中央部分に設けられていたが、受圧室側筒状突部86をゴム弾性膜の径方向中央から外れた位置に形成することによって、リリーフ用孔をマウント中心軸に対して偏倚した位置に設けることも可能である。更に、受圧室側筒状突部86やそれによって形成されるリリーフ用孔による短絡流路は、一つに限定されるものでなく、一つのゴム弾性膜80に対して複数の位置してかかる短絡流路を形成することも可能である。また、一つのマウントに対して複数のゴム弾性膜80を配設し、それらにリリーフ用孔を形成することで、マウント全体として複数の短絡流路を付与することも可能である。   Moreover, in the said embodiment, although the rubber elastic film | membrane 80 was coaxially arrange | positioned on the center axis | shaft of the mount 10 and the partition member 34, the arrangement | positioning position of a rubber elastic film is not limited. Further, the relief hole 84 is provided in the central portion in the radial direction of the rubber elastic membrane 80. However, the relief chamber side cylindrical projection 86 is formed at a position deviating from the radial center of the rubber elastic membrane. It is also possible to provide the hole in a position deviated from the mount center axis. Furthermore, the pressure-receiving chamber side cylindrical protrusion 86 and the short-circuit flow path formed by the relief hole are not limited to one, but are located at a plurality of positions with respect to one rubber elastic film 80. It is also possible to form a short-circuit channel. It is also possible to provide a plurality of short circuit channels as a whole mount by disposing a plurality of rubber elastic films 80 on one mount and forming relief holes in them.

また、前記実施形態に係る自動車用エンジンマウントでは、単一オリフィス通路を設けた構造が採用されていたが、例えばオリフィス通路として、第一のオリフィス通路と、第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路とが設けられている構造が、採用されても良い。これにより、例えば、問題となり易い振動が低周波数域と中乃至は高周波数域に存在する場合に、第一のオリフィス通路や第二のオリフィス通路を通じて流動せしめられる各流体の共振周波数を、それぞれ低周波周域と高周波数域にチューニングすることによって、複数の振動に対して防振効果が有効に発揮され得る。   Further, in the automobile engine mount according to the embodiment, the structure provided with the single orifice passage is adopted. For example, as the orifice passage, the first orifice passage and the higher frequency region than the first orifice passage are used. A structure provided with a second orifice passage tuned to the above may be employed. Thus, for example, when vibrations that are likely to cause problems are present in the low-frequency range and the middle to high-frequency range, the resonance frequency of each fluid that flows through the first orifice passage and the second orifice passage is reduced. By tuning to the frequency range and the high frequency range, the vibration isolation effect can be effectively exhibited against a plurality of vibrations.

加えて、前記実施形態では、本発明を自動車用エンジンマウントに適用したものの具体例について説明したが、本発明は、自動車用ボデーマウントやデフマウント、サスペンションメンバマウント等の他、自動車以外の各種振動体の防振装置に対して、何れも、適用可能である。   In addition, in the above-described embodiments, specific examples of applying the present invention to an automobile engine mount have been described. However, the present invention is not limited to an automobile body mount, a differential mount, a suspension member mount, etc. Any of them can be applied to the body vibration isolator.

本発明の一実施形態としての自動車用エンジンマウントの縦断面図であって図2のI−I断面に相当する図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as one Embodiment of this invention, Comprising: The figure equivalent to the II cross section of FIG. 同自動車用エンジンマウントの一部を構成する仕切部材にゴム弾性膜を組み付けた状態を示す平面図。The top view which shows the state which assembled | attached the rubber elastic film to the partition member which comprises some engine mounts for the said cars. 同仕切部材の一側面図。The one side view of the partition member. 同仕切部材の底面図。The bottom view of the partition member. 同ゴム弾性膜の縦断面図。The longitudinal cross-sectional view of the rubber elastic membrane. 同弾性ゴム板の平面図。The top view of the elastic rubber board. 同自動車用エンジンマウントの一作動形態の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of one action | operation form of the engine mount for the said motor vehicles. 本発明の別の一具体例(第二の態様)としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as another specific example (2nd aspect) of this invention. 本発明のまた別の一具体例(第三の態様)としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as another specific example (3rd aspect) of this invention. 本発明の更に別の一具体例(第四の態様)としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as another specific example (4th aspect) of this invention. 本発明の更にまた別の一具体例(第五の態様)としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as another specific example (5th aspect) of this invention. 図11に示される自動車用エンジンマウントにおいて図11と異なる作動形態を示す縦断面図。The longitudinal cross-sectional view which shows the operation form different from FIG. 11 in the engine mount for motor vehicles shown by FIG.

符号の説明Explanation of symbols

10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、28:ダイヤフラム、36:仕切部材本体、38:蓋部材、44:円形底部、46:透孔、60:連通孔、62:透孔、74:受圧室、76:平衡室、78:オリフィス通路、80:ゴム弾性膜、84:リリーフ用孔、86:受圧室側筒状突部 10: Automotive engine mount, 12: First mounting bracket, 14: Second mounting bracket, 16: Rubber elastic body, 28: Diaphragm, 36: Partition body, 38: Lid member, 44: Circular bottom, 46: through-hole, 60: communication hole, 62: through-hole, 74: pressure receiving chamber, 76: equilibrium chamber, 78: orifice passage, 80: rubber elastic membrane, 84: relief hole, 86: pressure receiving chamber side cylindrical protrusion Part

Claims (8)

第一の取付部材と第二の取付部材を本体ゴム弾性体で連結すると共に、該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、可撓性膜で壁部の一部が構成されて非圧縮性流体が封入された平衡室を形成して、それら受圧室と平衡室をオリフィス通路によって相互に連通すると共に、それら受圧室と平衡室の間に可動ゴム膜を配設して該可動ゴム膜の一方の面に該受圧室の圧力が及ぼされるようにすると共に該可動ゴム膜の他方の面に該平衡室の圧力が及ぼされるようにすることにより該受圧室の微小圧力変動を吸収する液圧吸収機構を構成した流体封入式防振装置において、
前記可動ゴム膜にリリーフ用孔を貫通形成すると共に、該リリーフ用孔の周囲において該可動ゴム膜の前記一方の面上に突出する受圧室側筒状突部を該可動ゴム膜に一体形成する一方、該リリーフ用孔の形成部位において該可動ゴム膜の一方の面側に受圧室側当接部材を配設すると共に該可動ゴム膜の他方の面に平衡室側当接部材を配設して、該リリーフ用孔の一方の開口部を構成する該受圧室側筒状突部の突出先端面を該受圧室側当接部材に当接させると共に、該受圧室側筒状突部の内部を該受圧室側当接部材に形成された連通孔を通じて該受圧室に連通せしめる一方、該リリーフ用孔の他方の開口周縁部を該平衡室側当接部材に対して全周に亘って密接状態で当接させて該リリーフ用孔を該平衡室側当接部材で閉塞せしめたことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are connected by a main rubber elastic body, and a pressure receiving chamber in which a part of a wall portion is configured by the main rubber elastic body and incompressible fluid is enclosed, and a flexible An equilibrium chamber in which a part of the wall portion is formed of an insulative film and in which an incompressible fluid is sealed is formed, and the pressure receiving chamber and the equilibrium chamber are communicated with each other by an orifice passage. A movable rubber film is disposed therebetween so that the pressure of the pressure receiving chamber is exerted on one surface of the movable rubber film, and the pressure of the equilibrium chamber is exerted on the other surface of the movable rubber film. In a fluid-filled vibration isolator that constitutes a hydraulic pressure absorption mechanism that absorbs minute pressure fluctuations in the pressure receiving chamber by
A relief hole is formed in the movable rubber film so as to penetrate therethrough, and a pressure-receiving chamber side cylindrical projection protruding on the one surface of the movable rubber film around the relief hole is formed integrally with the movable rubber film. On the other hand, a pressure receiving chamber side abutting member is disposed on one surface side of the movable rubber film at the site where the relief hole is formed, and an equilibrium chamber side abutting member is disposed on the other surface of the movable rubber film. The projecting tip surface of the pressure receiving chamber side cylindrical projection constituting one opening of the relief hole is brought into contact with the pressure receiving chamber side contact member, and the inside of the pressure receiving chamber side cylindrical projection Is communicated with the pressure receiving chamber through a communication hole formed in the pressure receiving chamber side abutting member, and the other opening peripheral edge of the relief hole is closely in contact with the equilibrium chamber side abutting member over the entire circumference. The relief hole is closed in the state and closed by the equilibrium chamber side contact member. Fluid filled type vibration damping device that.
前記受圧室側当接部材における前記受圧室側筒状突部の当接部分において、該受圧室側筒状突部の内部に直接に開口して該受圧室側筒状突部の内部を前記受圧室に連通せしめる前記連通孔が形成されている請求項1に記載の流体封入式防振装置。   In the contact portion of the pressure receiving chamber side cylindrical projection in the pressure receiving chamber side contact member, the pressure receiving chamber side cylindrical projection is directly opened to the inside of the pressure receiving chamber side cylindrical projection. The fluid filled type vibration damping device according to claim 1, wherein the communication hole for communicating with the pressure receiving chamber is formed. 前記可動ゴム膜における前記リリーフ用孔が、該可動ゴム膜の中央に位置して一つ形成されている請求項1又は2に記載の流体封入式防振装置。   The fluid-filled vibration isolator according to claim 1 or 2, wherein the relief hole in the movable rubber film is formed at one position in the center of the movable rubber film. 前記受圧室側筒状突部の突出先端面が、その全周に亘って前記受圧室側当接部材に対して当接せしめられている請求項1乃至3の何れか一項に記載の流体封入式防振装置。   The fluid according to any one of claims 1 to 3, wherein a protruding front end surface of the pressure receiving chamber side cylindrical protrusion is in contact with the pressure receiving chamber side contact member over the entire circumference thereof. Enclosed vibration isolator. 前記可動ゴム膜が、前記リリーフ用孔の周囲において、前記受圧室側当接部材と前記平衡室側当接部材との間で厚さ方向で圧縮状態で配設されている請求項1乃至4の何れか一項に記載の流体封入式防振装置。   The movable rubber film is disposed in a compressed state in a thickness direction between the pressure receiving chamber side contact member and the equilibrium chamber side contact member around the relief hole. The fluid-filled vibration isolator according to any one of the above. 前記リリーフ用孔の周囲において前記可動ゴム膜の前記他方の面上に突出する平衡室側筒状突部を該可動ゴム膜に一体形成すると共に、該リリーフ用孔の他方の開口部を構成する該平衡室側筒状突部の突出先端面を前記平衡室側当接部材に当接させた請求項1乃至5の何れか一項に記載の流体封入式防振装置。   An equilibrium chamber side cylindrical protrusion protruding on the other surface of the movable rubber film around the relief hole is formed integrally with the movable rubber film and constitutes the other opening of the relief hole. The fluid filled type vibration damping device according to any one of claims 1 to 5, wherein a protruding front end surface of the equilibrium chamber side cylindrical protrusion is in contact with the equilibrium chamber side contact member. 前記可動ゴム膜の外周縁部において厚肉環状の挟圧支持部が一体形成されていると共に、前記第二の取付部材に固定された支持部材によって該挟圧支持部が圧縮状態で挟圧支持されており、該挟圧支持部の内周側における該可動ゴム膜の弾性変形に基づいて前記受圧室の微小圧力変動が吸収されるようになっている請求項1乃至6の何れか一項に記載の流体封入式防振装置。   A thick annular pinching support portion is integrally formed at the outer peripheral edge of the movable rubber film, and the pinching support portion is pinched and supported in a compressed state by a support member fixed to the second mounting member. The micro pressure fluctuation in the pressure receiving chamber is absorbed based on elastic deformation of the movable rubber film on the inner peripheral side of the pinching support portion. The fluid-filled vibration isolator described in 1. 前記可動ゴム膜の厚さ方向両側にはそれぞれ所定距離を隔てて変位量制限部材が対向配置されており、該可動ゴム膜のそれら変位量制限部材への当接によって該可動ゴム膜の厚さ方向両側への変位量が制限されるようになっている請求項1乃至7の何れか一項に記載の流体封入式防振装置。   Displacement amount limiting members are disposed opposite to each other on both sides in the thickness direction of the movable rubber film, and the thickness of the movable rubber film is determined by contacting the movable rubber film with the displacement amount limiting member. The fluid-filled vibration isolator according to any one of claims 1 to 7, wherein a displacement amount to both sides in the direction is limited.
JP2007254810A 2007-09-28 2007-09-28 Fluid filled vibration isolator Active JP4820792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254810A JP4820792B2 (en) 2007-09-28 2007-09-28 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254810A JP4820792B2 (en) 2007-09-28 2007-09-28 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2009085313A JP2009085313A (en) 2009-04-23
JP4820792B2 true JP4820792B2 (en) 2011-11-24

Family

ID=40658990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254810A Active JP4820792B2 (en) 2007-09-28 2007-09-28 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4820792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161992A1 (en) * 2012-04-27 2013-10-31 山下ゴム株式会社 Liquid-sealing vibration-proof device
KR101845455B1 (en) 2016-11-17 2018-04-04 현대자동차주식회사 Noise reduction structure for membrane of hydro mount for vehicle
KR20180056169A (en) * 2016-11-18 2018-05-28 현대자동차주식회사 Integrated sealing membrane for preventing hydro-mount nozzle from leaking

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890443B (en) 2011-12-27 2015-11-25 住友理工株式会社 fluid-sealed vibration-damping device
JP5846939B2 (en) 2012-01-31 2016-01-20 住友理工株式会社 Fluid filled vibration isolator
JP5882125B2 (en) * 2012-04-24 2016-03-09 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP5882124B2 (en) * 2012-04-24 2016-03-09 東洋ゴム工業株式会社 Liquid-filled vibration isolator
CN104364554B (en) 2012-06-12 2016-05-11 住友理工株式会社 Fluid-sealed vibration-damping device
JP6116343B2 (en) * 2013-05-01 2017-04-19 株式会社ブリヂストン Vibration isolator
JP6343486B2 (en) * 2014-05-12 2018-06-13 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP6984947B2 (en) * 2018-05-22 2021-12-22 株式会社ブリヂストン Anti-vibration device
JP7233242B2 (en) * 2019-02-19 2023-03-06 Toyo Tire株式会社 Liquid-filled anti-vibration device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522482A1 (en) * 1985-06-22 1987-01-15 Freudenberg Carl Fa HYDRAULIC DAMPING ENGINE MOUNT
JP2773796B2 (en) * 1986-03-07 1998-07-09 本田技研工業株式会社 Anti-vibration support device
JPH0454344A (en) * 1990-06-22 1992-02-21 Bridgestone Corp Vibration-proof device
JPH06307489A (en) * 1993-04-26 1994-11-01 Kurashiki Kako Co Ltd Liquid enclosed type vibration proofing mount
JP2817570B2 (en) * 1993-04-26 1998-10-30 東海ゴム工業株式会社 Fluid-filled anti-vibration mount
JP2004301245A (en) * 2003-03-31 2004-10-28 Tokai Rubber Ind Ltd Liquid enclosed type damping device
JP4228219B2 (en) * 2004-03-22 2009-02-25 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4218061B2 (en) * 2004-10-18 2009-02-04 東海ゴム工業株式会社 Fluid filled vibration isolator
JP2006132615A (en) * 2004-11-04 2006-05-25 Bridgestone Corp Vibration absorbing device
JP2006177530A (en) * 2004-12-24 2006-07-06 Tokai Rubber Ind Ltd Fluid sealed vibration isolator
JP4732842B2 (en) * 2005-09-09 2011-07-27 株式会社ブリヂストン Vibration isolator
JP4265613B2 (en) * 2005-09-14 2009-05-20 東海ゴム工業株式会社 Fluid filled vibration isolator
JP2007092972A (en) * 2005-09-30 2007-04-12 Tokai Rubber Ind Ltd Fluid sealed type vibration control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161992A1 (en) * 2012-04-27 2013-10-31 山下ゴム株式会社 Liquid-sealing vibration-proof device
JP2013231480A (en) * 2012-04-27 2013-11-14 Yamashita Rubber Co Ltd Liquid-sealing vibration-proof device
CN104254708A (en) * 2012-04-27 2014-12-31 山下橡胶株式会社 Liquid-sealing vibration-proof device
CN104254708B (en) * 2012-04-27 2016-05-18 山下橡胶株式会社 Liquid-sealed antivibration device
KR101845455B1 (en) 2016-11-17 2018-04-04 현대자동차주식회사 Noise reduction structure for membrane of hydro mount for vehicle
KR20180056169A (en) * 2016-11-18 2018-05-28 현대자동차주식회사 Integrated sealing membrane for preventing hydro-mount nozzle from leaking
KR101894887B1 (en) 2016-11-18 2018-09-05 현대자동차주식회사 Integrated sealing membrane for preventing hydro-mount nozzle from leaking

Also Published As

Publication number Publication date
JP2009085313A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4820792B2 (en) Fluid filled vibration isolator
JP4103008B2 (en) Fluid filled vibration isolator
JP4228219B2 (en) Fluid filled vibration isolator
JP5248645B2 (en) Liquid-filled vibration isolator
JP5719724B2 (en) Fluid filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP2007100875A (en) Fluid filled vibration absorbing device
JP2006250338A (en) Fluid encapsulated type vibration isolating device
JP5431982B2 (en) Liquid-filled vibration isolator
WO2018168567A1 (en) Fluid-filled vibration-damping device
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2013148192A (en) Fluid sealing type vibration-proof device
JP2009085252A (en) Fluid sealed type vibration damper
JP4871902B2 (en) Fluid filled vibration isolator
JP4986292B2 (en) Fluid filled vibration isolator
JP5049918B2 (en) Fluid filled vibration isolator
JP2008121811A (en) Fluid-sealed vibration isolator
JP2008133937A (en) Fluid sealing type damping device
JP4861998B2 (en) Fluid filled vibration isolator
JP2010007837A (en) Fluid sealed type vibration control device
JP2007255442A (en) Liquid filled vibration isolation device
JP2008196508A (en) Fluid-sealed vibration isolating device
JP2014219035A (en) Fluid sealed type vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350